EVM User's Guide: TPS548B23EVM TPS548B23 Step-Down Converter Evaluation Module

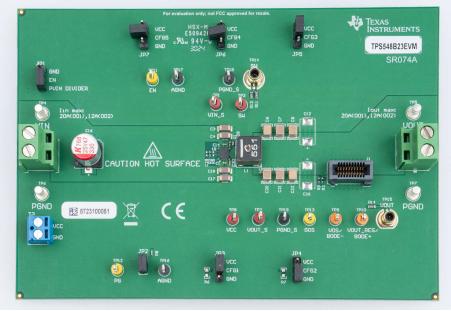
Description

The TPS548B23EVM is designed to provide a quick setup to evaluate the TPS548B23 device and gain familiarity with the device. This EVM can deliver a continuous load current of up to 20A, operating within an input voltage range of 8V to 16V (12V nominal) and the output voltage range of 0.5V to 5.5V (1.0V default). The TPS548B23 uses a nominal 12V bus to produce a regulated 1.0V (default) output at up to 20A of load current. The TPS548B23EVM includes jumpers to quickly configure different settings selected by the CFG pins and test points to evaluate the device's performance.

Get Started

- 1. Order the TPS548B23EVM.
- 2. Download the latest TPS548B23 data sheet.

Features


- Input voltage range: 8V to 16V, 12V nominal
- Output voltage range: 0.5V to 5.5V, 1.0V default
- Output current range: 0A to 20A
- Includes jumpers and resistor placeholders to evaluate different settings selected by the CFG pins

- Internal feedback configuration:
 - Output voltage: 13 fixed options ranging from 0.8V to 5.0V
 - Operation mode: FCCM or PFM
 - Frequency: 600kHz, 800kHz, or 1200kHz
 - · Soft-start: fixed 2ms
 - OCP threshold: 15A, 18A, or 21A
 - · Fault recovery: hiccup mode
- External feedback configuration:
 - Output voltage: adjustable from 0.5V to 5.5V using an external resistor divider
 - Operation mode: FCCM or PFM
 - Frequency: 600kHz, 800kHz, 1000kHz, or 1200kHz
 - Soft-start: 1ms, 2ms, or 3ms
- OCP threshold: resistor programmable
- Fault recovery: hiccup mode or latch-off

Applications

- Rack server and blade server
- Data center switches
- Hardware accelerator and add-in cards
- Industrial PC
- Baseband unit (BBU)

1 Evaluation Module Overview

1.1 Introduction

The TPS548B23EVM evaluation module (EVM) is built using the TPS548B23 device. The EVM is designed to accommodate various settings by changing only the jumper configurations, and therefore, the design is not optimized for any specific condition. The default jumper settings can be found in Table 1-1. The test data in this user's guide were all collected in this configuration. For design optimization, TI offers a range of resources. Users can start by consulting the data sheet. Additionally, TI provide an Excel design calculator, WEBENCH, and simulation models. Users can also contact the TI field representative or use our E2E design support for additional help.

······································				
Jumper	Pin	Connection	Device Configuration	
JP3	CFG1	VCC	Internal FB Configuration	
JP4	CFG2	GND	 V_{OUT}: 1.0V Operation mode: FCCM F_{SW}: 800kHz OCP threshold: 21A 	
JP5	CFG3	VCC		
JP6	CFG4	Float		
JP7	CFG5	Float	Fault recovery: Hiccup mode	

Table 1-1	Default Jump	er Configuration
	Delault Jullip	

The following warnings and cautions are noted for the safety of anyone using or working close to the TPS548B23EVM. Observe all safety precautions.

WARNING

The TPS548B23EVM can become hot during operation due to dissipation of power in some operating conditions. Avoid contact with the board. Follow all applicable safety procedures applicable to your laboratory.

WARNING

The circuit module has signal traces, components, and component leads on the bottom of the board and can result in exposed voltages, hot surfaces or sharp edges. Do not reach under the board during operation.

CAUTION

Some power supplies can be damaged by application of external voltages. If using more than 1 power supply, then check the equipment requirements and use blocking diodes or other isolation techniques, as needed, to prevent damage to the equipment.

1.2 Kit Contents

The kit includes the TPS548B23EVM.

1.3 Specification

A summary of the TPS548B23EVM performance characteristics is provided in Table 1-2. The TPS548B23EVM is designed and tested for V_{IN} = 8V to 16V. Characteristics are given for an input voltage of V_{IN} = 12V and output voltage of 1V (see Table 1-1), unless otherwise specified. The ambient temperature is room temperature (20°C to 25°C) for all measurements, unless otherwise noted.

SPECIFICATION	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _{IN} voltage range			8	12	16	V
Input current	V _{IN} = 8V, I _{OUT} = 20A			3		А
V _{IN} start voltage	Set by EN pin resistor d	ivider		3.84		V
V _{IN} stop voltage	V _{IN} falling			3.77	3.83	V
Output voltage setpoint				1		V
Output current range	V _{IN} = 8V to 16V		0		20	А
Line and load regulation	V _{IN} = 8V to 16V, I _{OUT} = 0A to 20A			±0.14		%
	I _{OUT} = 5A to 15A	Voltage change		-21		mV
Load transient response	I _{OUT} = 15A to 5A	Voltage change		24		mV
Output ripple voltage	I _{OUT} = 20A			6.8		mVPP
Soft-start time	From start of switching to V_{FB} = 0.5V, t_{SS} = 2ms setting		1.4	2	2.6	ms
Current limit	OCP = 21A setting by CFG pin selection		19	21	23	А
Switching frequency (f _{SW})	f _{SW} = 800kHz setting by CFG1-5 pin selection			800		kHz
Peak efficiency	I _{OUT} = 7.5			90		%
IC case temperature	I _{OUT} = 20A, 15-minute soak			77.4		°C

1.4 Device Information

The TPS548B23 device is a small, high-efficiency, synchronous buck converter with an adaptive on-time D-CAP4 control mode. The device provides low minimum on-time and fast load-transient response without requiring external compensation. The TPS548B23 is an excellent choice for space-constrained data center applications and features differential remote sense, integrated MOSFETs, and an accurate ±1.0% internal reference. Pinstrap options allow the configuration of various parameters such as overcurrent limit, fault response, and soft start time. Additionally, the device is lead-free and RoHS-compliant without exemption.

Please refer to the TPS548B23 4V to 16V Input, 20A, Remote Sense, D-CAP4, Synchronous Buck Converter data sheet for more information about the device.

2 Hardware

2.1 Configurations and Modifications

These evaluation modules provide access to the TPS548B23 features with jumpers for testing different configurations. All internal feedback configuration settings can be tested without board modifications, while for external feedback configuration, R6, R7, and the resistor divider network (R2 and R5) need to be installed. Modify the module if the desired performance is not achieved. Use the data sheet equations, WEBENCH, or an Excel design calculator to calculate external component values, verifying sufficient voltage and current ratings for all components.

2.1.1 Multifunction Configuration (CFG1-5) Pins Selection

The multifunction configuration pins (CFG1-5) allow the device to be configured for various operating modes. The CFG1-2 pins set the device switching frequency, overcurrent threshold, soft start time, and either hiccup or latch-up fault recovery operation, while the CFG3-5 pins provide selectability for internal or external feedback as well as FCCM or PFM operation.

When the device is configured for internal feedback operation with the CFG 3-5 pins (see Table 2-3), the switching frequency and current limit are programmed by tying the CFG1-2 pins either high (VCC), low (GND) or left floating based on Table 2-1.

Note When the device is configured for internal feedback operation, the soft start time is set to 2ms, and the fault recovery is configured for hiccup.

Table 2-1. CFG1-2 Pin Jumper (JP3-4) Selection for Internal Feedback Configuration				
JP4 (CFG2)	SWITCHING FREQUENCY (f _{SW}) (kHz)	Valley OCP (A)		
VCC	600	21		
GND ⁽¹⁾	800	21		
Float	1200	21		
VCC	600	18		
GND	800	18		
Float	1200	18		
VCC	600	15		
GND	800	15		
Float	1200	15		
	JP4 (CFG2) VCC GND ⁽¹⁾ Float VCC GND Float VCC GND Float	JP4 (CFG2) SWITCHING FREQUENCY (fsw) (kHz) VCC 600 GND ⁽¹⁾ 800 Float 1200 VCC 600 GND 800 Float 1200 VCC 600 GND 800 Float 1200 VCC 600 GND 800 GND 800		

Table 2-1. CFG1-2 Pin Jumper (JP3-4) Selection for Internal Feedback Configuration

(1) Default jumper setting

When the device is configured for external feedback operation with the CFG 3-5 pins, the switching frequency, fault recovery mode, overcurrent threshold, and soft start time are programmed by connecting resistors between the CFG1-2 pins and AGND (see Table 2-3). The switching frequency, fault recovery mode, and soft start time are programmed by connecting a resistor (R6) between the CFG1 pin and AGND based on Table 2-2.

Note For external feedback operation, remove jumpers JP3 and JP4 and install R6 and R7.

R6 (CFG1 PIN RESISTANCE TO AGND)(kΩ)	SWITCHING FREQUENCY (f _{SW}) (kHz)	FAULT RECOVERY MODE	SOFT START TIME (ms)
0 (GND)	600	Hiccup	1
4.99	800	Hiccup	1
7.50	1000	Hiccup	1
10.5	1200	Hiccup	1
13.3	600	Latch Off	1
16.9	800	Latch Off	1
21.0	1000	Latch Off	1
24.9	1200	Latch Off	1
30.1	600	Hiccup	2
35.7	800	Hiccup	2
42.2	1000	Hiccup	2
48.7	1200	Hiccup	2
56.2	600	Latch Off	2
64.9	800	Latch Off	2
75.0	1000	Latch Off	2
86.6	1200	Latch Off	2
102	600	Hiccup	3
118	800	Hiccup	3
137	1000	Hiccup	3
158	1200	Hiccup	3
182	600	Latch Off	3
210	800	Latch Off	3
243	1000	Latch Off	3
≥280 (Float)	1200	Latch Off	3

Table 2-2. CFG1 Pin Resistor (R6) Selection for External Feedback Configuration

The valley overcurrent protection is programmed with a resistor (R7) between CFG2 and AGND based on Equation 1:

$$R7 = \frac{K_{OCL}}{I_{OCLIM} - \frac{1}{2} \times \frac{(V_{IN} - V_0) \times V_0}{V_{IN}} \times \frac{1}{L \times f_{SW}}}$$

where

- I_{OCLIM} is overcurrent limit threshold for load current in A
- R7 is ILIM resistor value in Ω
- K_{OCL} is a constant of 84×10³ for the calculation
- V_{IN} is input voltage value in V
- V_O is output voltage value in V
- L is output inductor value in µH
- f_{SW} is switching frequency in MHz

$$I_{\text{OCLIM}} = \frac{K_{\text{OCL}}}{R7} + \frac{1}{2} \times \frac{(V_{\text{IN}} - V_{\text{O}}) \times V_{\text{O}}}{V_{\text{IN}}} \times \frac{1}{L \times f_{\text{SW}}}$$

(2)

5

(1)

Note

TI recommends a $\pm 1\%$ tolerance resistor because a worse tolerance resistor provides less accurate OCL threshold.

To protect the device from an unexpected connection to the ILIM pin, an internal fixed OCL clamp is implemented. This internal OCL clamp limits the maximum valley current on the low-side MOSFET to 21A when the ILIM pin has too small of a resistance to AGND, or is accidentally shorted to ground.

The CFG3-5 pins select the device output voltage configuration as well as FCCM or PFM operation based on Table 2-3.

JP5 (CFG3)	JP6 (CFG4)	JP7 (CFG5)	V _{FB} Config	V _{OUT} (V)	F _{SW} Mode	
VCC	VCC	VCC	internal	5.0	FCCM	
VCC	GND	VCC	internal	3.3	FCCM	
VCC	Float	VCC	internal	2.5	FCCM	
VCC	VCC	GND	internal	1.8	FCCM	
VCC	GND	GND	internal	1.5	FCCM	
VCC	Float	GND	internal	1.2	FCCM	
VCC	VCC	Float	internal	1.1	FCCM	
VCC	GND	Float	internal	1.05	FCCM	
VCC ⁽¹⁾	Float ⁽¹⁾	Float ⁽¹⁾	internal	1.0	FCCM	
GND	VCC	VCC	internal	0.95	FCCM	
GND	GND	VCC	internal	0.9	FCCM	
GND	Float	VCC	internal	0.85	FCCM	
GND	VCC	GND	internal	0.8	FCCM	
GND	GND	GND	external	0.5	FCCM	
GND	Float	GND	internal	5.0	PFM	
GND	VCC	Float	internal	3.3	PFM	
GND	GND	Float	internal	2.5	PFM	
GND	Float	Float	internal	1.8	PFM	
Float	VCC	VCC	internal	1.5	PFM	
Float	GND	VCC	internal	1.2	PFM	
Float	Float	VCC	internal	1.1	PFM	
Float	VCC	GND	internal	1.0	PFM	
Float	GND	GND	internal	0.95	PFM	
Float	Float	GND	internal	0.9	PFM	
Float	VCC	Float	internal	0.85	PFM	
Float	GND	Float	internal	0.8	PFM	
Float	Float	Float	external	0.5	PFM	

(1) Default jumper setting

2.1.2 Setting Output Voltage Using External Feedback Configuration

In the External Feedback configuration (see Table 2-3), the output voltage is set by the resistor divider network of R2 (R_{FBT}) and R5 (R_{FBB}). The FB pin is regulated to the 0.5V reference voltage (V_{REF}). To change the output voltage, adjust the values of resistors R2 and R5. The recommended R5 value is 10k Ω , but the range can be from 1k Ω to 15k Ω . The value of R2 for a specific output voltage can be calculated using Equation 3. After changing R2, the feed-forward capacitor (C29) must also be adjusted accordingly.

$$R2 = R5 \times \left(\frac{V_{OUT}}{0.5 V} - 1\right)$$

6

(3)

3 Implementation Results

3.1 Test Setup and Results

This section describes how to properly connect, set up, and use the TPS548B23EVM evaluation module. The section also includes test results typical for the evaluation modules. Measurements are taken with the following conditions unless otherwise noted.

- 12V input
- Room temperature (20°C to 25°C)
- The default setting output voltage of 1V, switching frequency of 800kHz, and maximum current limit setting of 21A

3.1.1 Input and Output Connections

The TPS548B23EVM is provided with input connectors, output connectors, and test points as shown in Table 3-1 and Table 3-2.

To support the minimum input voltage with the full rated load on both outputs with the default EVM, a power supply capable of supplying greater than 10A must be connected to the VIN and PGND terminal blocks (T1) through a pair of 18-AWG wires or better.

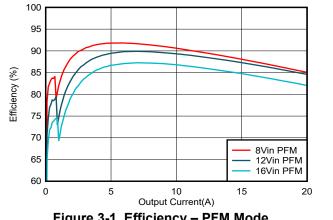
The load must be connected to T2. A pair of 10AWG wires or better must be used for each connection. With the maximum current limit setting, the maximum load current capability is near **TBD A** before the TPS548B23 goes into current limit. Wire lengths must be minimized to reduce losses in the wires.

REFERENCE DESIGNATOR	NAME	FUNCTION	
T1	VIN	VIN screw terminal to connect input voltage	
T2	VOUT	VOUT screw terminal to connect load to output	
JP1	EN	 EN pin selection header: Short EN – PVIN DIVIDER: EN pin connected to VIN pin through resistor divider (default) Short EN – GND: EN pin shorted to GND Open: Float EN 	
JP2	PG	 PG pin selection header: Short: PG pulled up to VCC pin through a 10kΩ resistor (default) Open: Float PG 	
JP3	CFG1	CFG1 selection header. Use shunt to select VCC, GND, or Float	
JP4	CFG2	CFG2 selection header. Use shunt to select VCC, GND, or Float	
JP5	CFG3	CFG3 selection header. Use shunt to select VCC, GND, or Float	
JP6	CFG4	CFG4 selection header. Use shunt to select VCC, GND, or Float	
JP7	CFG5	CFG5 selection header. Use shunt to select VCC, GND, or Float	

Table 3-1. Connectors and Jumpers

Table 3-2. Test Points

REFERENCE DESIGNATOR	NAME	FUNCTION	
TP1	VIN_S	VIN test point. Use this for efficiency measurements.	
TP2	VOUT_S	VOUT test point. Use this for efficiency, output regulation, and bode plot measurements.	
TP3	SW	SW node test point	
TP4	VIN	VIN test point	
TP5	VOUT	VOUT test point	
TP6	PGND	PGND test point	
TP7	PGND	PGND test point	
TP8	VCC	VCC test point	
TP9	BODE-/VOS	Test point between voltage divider network and output voltage. Used for Bode plot measurements.	
TP10	BODE+/VOUT_REG	Test point between voltage divider network and output voltage. Used for Bode plot measurements.	
TP11	EN	EN test point	
TP12	PG	PG test point (pulled up to VCC pin through a $10k\Omega$ resistor)	
TP13	GOS	GOS test point	
TP14	SW	SMB connector to measure SW node. When using this test point, set the scope for 50Ω termination. The combination of 50Ω termination and 450Ω series resistance creates a 10:1 attenuation.	
TP15	VOUT	SMB connector to measure output voltage. When using this test point, set the scope for $1M\Omega$ termination. When using 50Ω termination, a 2:1 divider is created.	
TP16	AGND	AGND test point	
TP17	AGND	AGND test point	
TP18	PGND_S	PGND test point. Use this for efficiency measurements.	
TP19	PGND_S	PGND test point. Use this for efficiency measurements.	


3.1.2 Efficiency

The efficiency on the TPS548B23EVM is shown in Figure 3-1 and Figure 3-2. The test points used for the efficiency measurement are listed in Table 3-3. Use these test points to minimize the contribution of PCB parasitic power loss to the measured power loss.

The following are some additional test setup considerations to minimize external sources of power dissipation.

Do not measure the SW pin with TP14 while measuring the efficiency. Measuring the SW pin with this test • point loads this node with 500Ω and the efficiency measurement includes the power lost in this external resistance.

Table 3-3. Efficiency Measurement Test Points			
TEST POINT NAME	REFERENCE DESIGNATOR	FUNCTION	
VIN_S	TP1	Input voltage test point connected near pins	
PGND_S	TP18	PGND reference test point for input voltage	
VOUT_S	TP2	Output voltage test point near output inductor	
PGND_S	TP19	PGND reference test point for output voltage	

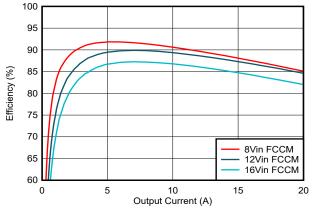
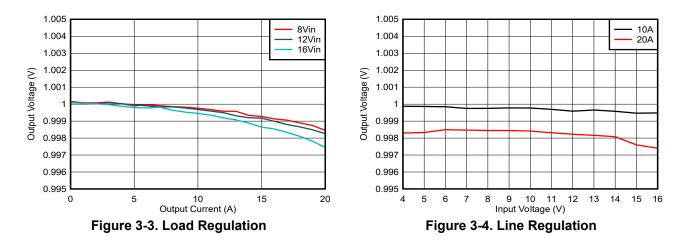


Figure 3-1. Efficiency – PFM Mode


Figure 3-2. Efficiency – FCCM Mode (Default)

3.1.3 Output Voltage Regulation

The load and line regulation is shown in Figure 3-3 and Figure 3-4. The test points used for the output voltage regulation measurement are shown in Table 3-3.

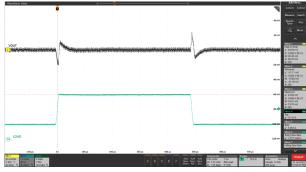
TEST POINT NAME	REFERENCE DESIGNATOR	FUNCTION
VIN_S	TP1	Input voltage test point connected near pins
PGND_S	TP18	PGND reference test point for input voltage
VOUT_REG/BODE+	TP10	Output voltage test point
GOS	TP13	PGND reference test point for output voltage

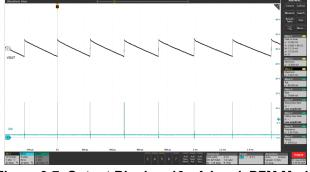
Table 3-4. Output Voltage Regulation Measurement Test Points

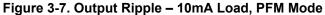
3.1.4 Load Transient and Loop Response

The response to load transients for both designs is shown in Figure 3-5 and Figure 3-6. The current step is from 5A to 15A and the current step slew rate is $1A/\mu s$. An electronic load is used to provide a DC 5A load and the load transient circuit on the EVM is used to provide a 10A step. The VOUT voltage is measured using TP10.

shows the loop characteristics. Gain and phase plots are shown for V_{IN} voltage of 12V and a 20A load.




Figure 3-5. Transient Response



3.1.5 Output Voltage Ripple

The TPS548B23EVM output voltage ripple is shown in Figure 3-7 through Figure 3-10. The load currents are 10mA, 10A, and 20A. V_{IN} = 12V. The VOUT voltage is measured using TP10.

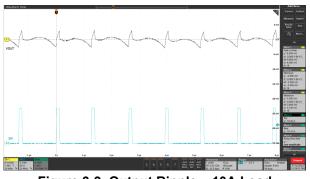


Figure 3-9. Output Ripple – 10A Load

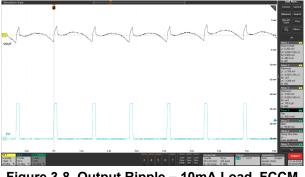


Figure 3-8. Output Ripple – 10mA Load, FCCM Mode

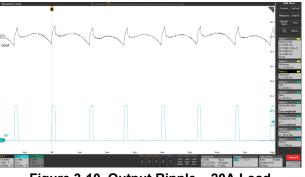


Figure 3-10. Output Ripple – 20A Load

3.1.6 Start-up and Shutdown with EN

The start-up and shutdown waveforms with EN are shown in Figure 3-11 and Figure 3-12. The input voltage is initially applied and the output is inhibited by pulling EN to GND using an external function generator, as shown in Figure 3-11. When the EN voltage is increased above the enable-threshold voltage, the start-up sequence begins and the output voltage ramps up to the externally set value. The external function generator pulls EN to ground and the TPS548B23 shuts down, as shown in Figure 3-12.

Figure 3-11. Start-up with EN – 20A Load

Figure 3-12. Shutdown with EN – 20A Load

3.1.7 Thermal Performance

The temperature rise of the TPS548B23 ICs at full 20A load is shown in Figure 3-13. A minimum of 10 minutes for soak time was used before taking each measurement.

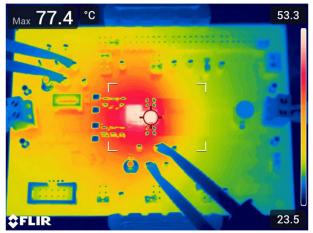


Figure 3-13. Thermal Performance – 20A Load

4 Hardware Design Files

4.1 Schematic

The TPS548B23EVM schematic is shown in Figure 4-1.

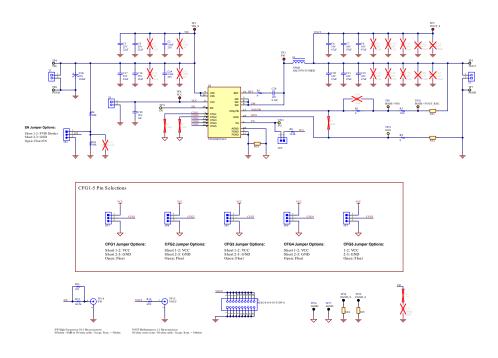


Figure 4-1. Schematic

4.2 Board Layout

This section provides a description of the TPS548B23EVM board layout and layer illustrations.

4.2.1 Layout

The board layout for the TPS548B23EVM is shown in Figure 4-2 and Figure 4-9. The top-side layer of the EVM is laid out in a manner typical of a user application. The top, bottom, and internal layers are 2-oz. copper.

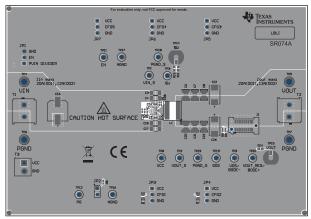


Figure 4-2. Top-Side Composite View

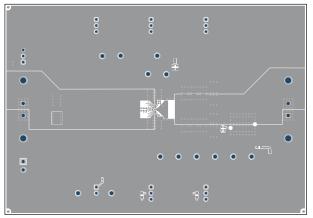


Figure 4-4. Top Layer Layout

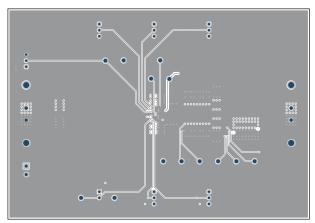


Figure 4-6. Mid Layer 2 Layout

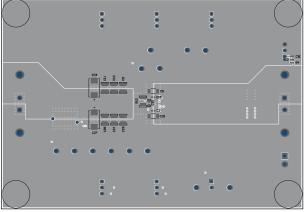


Figure 4-3. Bottom-Side Composite View (Viewed From Bottom)

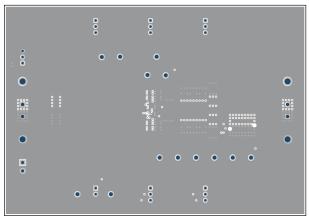


Figure 4-5. Mid Layer 1 Layout

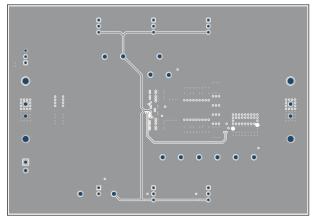


Figure 4-7. Mid Layer 3 Layout

Hardware Design Files

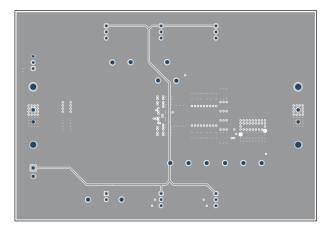


Figure 4-8. Mid Layer 4 Layout

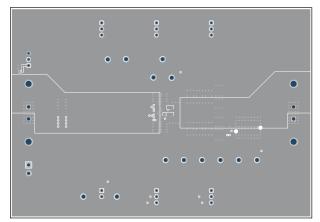


Figure 4-9. Bottom Layer Layout

4.3 Bill of Materials

The bill of materials for the TPS548B23EVM is detailed in Table 4-1.

Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer
PCB1	1		Printed Circuit Board		SR074	Any
C1, C14	2	1µF	Chip Multilayer Ceramic Capacitors for General Purpose, 0402, 1.0uF, X6S, 22%, 10%, 25V	402	GRM155C81E105KE11D	Murata
C3, C4, C17, C18	4	22uF	CAP, CERM, 22uF, 25V, +/- 20%, X6S, 1206_190	1206_190	GRM31CC81E226ME11L	MuRata
C6, C7, C8, C20, C21, C22	6	47uF	CAP, CERM, 47uF, 10V, +/- 20%, X7R, 1210	1210	GRM32ER71A476ME15L	MuRata
C16	1	330µF	Cap Aluminum Polymer 330uF 25V 20% Solder Cylindrical 19m Ohm 2325mA 2000 hr 125°C T/R	SMT_CAP_8MM3_8MM3	A768KS337M1ELAE019	KEMET
C28	1	0.1uF	CAP, CERM, 0.1uF, 10V, +/- 10%, X5R, 0402	402	C1005X5R1A104K050BA	TDK
C30	1	1uF	CAP, CERM, 1uF, 16V, +/- 10%, X6S, 0402	402	C1005X6S1C105K050BC	TDK
H1, H2, H3, H4	4		Bumpon, Hemisphere, 0.44 X 0.20, Clear	Transparent Bumpon	SJ-5303 (CLEAR)	3M
J1	1		Card Edge Socket, 0.8mm, 10x2, SMT	Card Edge Socket, 0.8mm, 10x2, SMT	HSEC8-110-01-S-DV-A	Samtec
JP1, JP3, JP4, JP5, JP6, JP7	6		Header, 100mil, 3x1, Gold, TH	3x1 Header	TSW-103-07-G-S	Samtec
JP2	1		Header, 100mil, 2x1, Gold, TH	Sullins 100mil, 1x2, 230 mil above insulator	PBC02SAAN	Sullins Connector Solutions
L1	1	550nH	Inductor, Shielded, Composite, 550 nH, 29A, 0.00142 ohm, SMD	7.2x7x7.5mm	XAL7070-551MEB	Coilcraft
LBL1	1		Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll	PCB Label 0.650 x 0.200 inch	THT-14-423-10	Brady
R1, R2, R9	3	0	RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	402	CRCW04020000Z0ED	Vishay-Dale
R3	1	10	RES, 10.0, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	402	CRCW040210R0FKED	Vishay-Dale
R4	1	200k	RES, 200 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	402	CRCW0402200KFKED	Vishay-Dale
R8	1	10.0k	RES, 10.0 k, 1%, 0.2 W, AEC-Q200 Grade 0, 0402	402	ERJPA2F1002X	Panasonic
R10	1	100k	RES, 100 k, 1%, 0.1 W, 0402	402	ERJ-2RKF1003X	Panasonic
R11	1	453	RES, 453, 1%, 0.1 W, 0603	603	RC0603FR-07453RL	Yageo
R13	1	66.5k	RES, 66.5 k, 1%, 0.1 W, 0603	603	RC0603FR-0766K5L	Yageo
R14	1	49.9	RES, 49.9, 1%, 0.1 W, 0603	603	RC0603FR-0749R9L	Yageo
SH-J1, SH-J2, SH- J3, SH-J4, SH-J5, SH-J6, SH-J7	7		Shunt, 100mil, Tin plated, Black	Shunt Connector Black Open Top, 2x1	SNT-100-BK-T-H	Samtec
T1, T2	2		Therminal Block, 5mm, 2-pole, Tin, TH	TH, 2-Leads, Body 10x10mm, Pitch 5mm	282856-2	TE Connectivity

Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer
Т3	1		Terminal Block, 3.5mm Pitch, 2x1, TH	7.0x8.2x6.5mm	ED555/2DS	On-Shore Technology
TP1, TP2, TP3, TP8	4		Test Point, Multipurpose, Red, TH	Red Multipurpose Test point	5010	Keystone
TP4, TP5, TP6, TP7	4		Terminal, Turret, TH, Triple	Keystone1598-2	1598-2	Keystone
TP9, TP10	2		Test Point, Multipurpose, Orange, TH	Orange Multipurpose Test point	5013	Keystone Electronics
TP11, TP12, TP13	3		Test Point, Multipurpose, Yellow, TH	Yellow Multipurpose Test point	5014	Keystone Electronics
TP14, TP15	2		Connector, Receptacle, 50 ohm, TH	SMB Connector	SMBR004D00	JAE Electronics
TP16, TP17, TP18, TP19	4		Test Point, Multipurpose, Black, TH	Black Multipurpose Test point	5011	Keystone Electronics
U1	1		4V to 16V Input, 20A, Remote Sense, D-CAP4 Synchronous Buck Converter	WQFN-HR19	TPS548B23VAN	Texas Instruments
C2, C15	0	1µF	Chip Multilayer Ceramic Capacitors for General Purpose, 0402, 1.0uF, X6S, 22%, 10%, 25V	402	GRM155C81E105KE11D	Murata
C5, C19	0	22uF	CAP, CERM, 22uF, 25V, +/- 20%, X6S, 1206_190	1206_190	GRM31CC81E226ME11L	MuRata
C9, C10, C11, C23, C24, C25	0	47uF	CAP, CERM, 47uF, 10V, +/- 20%, X7R, 1210	1210	GRM32ER71A476ME15L	MuRata
C12, C13, C26, C27	0	220µF	Molded Tantalum Polymer Capacitor 220uF 20% 6.3V life 1000Hours SMD 2917	2917	6TCF220M5L	Panasonic
C29	0	22pF	CAP, CERM, 22pF, 50V, +/- 5%, C0G/NP0, AEC- Q200 Grade 1, 0402	402	CGA2B2NP01H220J050BA	TDK
C31	0	0.1uF	CAP, CERM, 0.1uF, 50V, +/- 10%, X7R, AEC-Q200 Grade 1, 0402	402	CGA2B3X7R1H104K050BB	TDK
C32	0	560pF	CAP, CERM, 560pF, 100V, +/- 10%, X7R, 0603	603	GRM188R72A561KA01D	MuRata
FID1, FID2, FID3	0		Fiducial mark. There is nothing to buy or mount.	N/A	N/A	N/A
R5	0	10.0k	RES, 10.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	402	CRCW040210K0FKED	Vishay-Dale
R6	0	7.50k	RES, 7.50 k, 1%, 0.1 W, 0603	603	ERJ-3EKF7501V	Panasonic
R7	0	5.23k	RES, 5.23 k, 0.1%, 0.1 W, 0603	603	RT0603BRD075K23L	Yageo America
R12	0	5.1	RES, 5.10, 1%, 0.5 W, 1210	1210	RC1210FR-075R1L	Yageo

Table 4-1. Bill of Materials (continued)

5 Additional Information

5.1 Trademarks

All trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated