
Application Note
MATLAB® and Simulink® Model-Based Design Using
C2000™ Real-Time Microcontrollers

Aditya Dholakia, Jayakarthigeyan Prabakar and Aditya Padmanabha

ABSTRACT

With industrial and automotive control applications becoming more complex, decoupling the high-level control
algorithm development from low-level device specific driver development using code generation tools such
as Embedded Coder® from MathWorks® is useful. With the advent of code generation tools, it becomes of
paramount importance to evaluate the ease-of-use, efficiency and performance of the generated code for a
real-time microcontroller such as C2000™. This application note provides detailed insight on usage of MATLAB’s
C2000 Microcontroller Blockset for C2000 covering aspects from getting started to the best practices and
performance evaluation. To showcase the entire use-case, an eCompressor reference design TIDM-02012 is
chosen for evaluation.

Table of Contents
1 Introduction...2

1.1 Getting Started... 2
2 Model-Based Design of eCompressor..2

2.1 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines..3
2.2 Block Diagram..4
2.3 Hardware, Software and Testing Requirements...7

3 Simulink Configuration Settings ... 9
3.1 Simulink Tool Optimization... 10
3.2 C2000 Specific Optimization.. 13
3.3 Performance Comparison.. 17

4 Profiling Using Simulink .. 18
4.1 Processor-in-Loop (PIL) Method.. 18
4.2 C2000 Timer-Based Profiling... 19
4.3 Code Composer Studio tools... 23

5 Summary... 23
6 Revision History... 23

List of Figures
Figure 2-1. Model-Based Design of eCompressor.. 4
Figure 2-2. TMS320F280039C Model Block... 5
Figure 2-3. TIDM-02012 Control Host Block..6
Figure 2-4. System Overview...6
Figure 2-5. Build, Deploy and Start..8
Figure 2-6. Host Serial Configuration.. 8
Figure 2-7. Baud Rate Configuration... 9
Figure 3-1. Hardware Settings...10
Figure 3-2. Configuration Parameters... 10
Figure 3-3. Custom Compiler Optimization Configuration... 13
Figure 3-4. TMU Configuration.. 14
Figure 3-5. Code Replacement Library configuration.. 15
Figure 3-6. Booting From Flash... 16
Figure 3-7. Running Code From RAM... 17

www.ti.com Table of Contents

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

Figure 4-1. Processor-in-Loop Profiling... 18
Figure 4-2. PIL COM Port Configuration..19
Figure 4-3. PIL Configuration settings... 19
Figure 4-4. Timer Initialization Code..20
Figure 4-5. Storage Class for Variable...21
Figure 4-6. System Outputs Timer Code... 22

Trademarks
C2000™ and Code Composer Studio™ are trademarks of Texas Instruments.
MathWorks®, MATLAB®, and Simulink® are registered trademarks of The MathWorks, Inc.
All trademarks are the property of their respective owners.
1 Introduction
The application note focuses on enabling performance optimization using model-based design code generation
in MATLAB®. To understand the performance optimization, a reference example of TIDM-02012 eCompressor
using model-based design code generation tools of MATLAB is chosen. The implementation, optimization and
performance evaluation of the reference design will be discussed.

1.1 Getting Started
The required software toolset for enabling the model-based design are TI's Code Composer Studio IDE,
C2000Ware Software Development Kit (SDK), MATLAB tools such as Simulink®, Embedded Coder, C2000
Microcontroller Blockset and Motor Control Blockset..

Links to download and install the same are given below.

Texas Instruments tools:

• Code composer studio: CCSTUDIO IDE
• C2000Ware SDK: C2000WARE Software development kit (SDK)
• C2000Ware MotorControl SDK:C2000WARE-MOTORCONTROL-SDK Software development kit (SDK)

MathWorks tools:

• MATLAB: Download MATLAB, Simulink, Stateflow and Other MathWorks Products Installation of Simulink,
Embedded Coder, MATLAB Coder, Simulink Coder, C2000 Microcontroller Blockset and Motor Control
Blockset.

• C2000 Microcontroller Blockset: C2000 Microcontroller Blockset - MATLAB

Installation guidelines for the C2000 Microcontroller Blockset to be integrated with MATLAB is given in the
installation page of the blockset. Training video for the C2000 Microcontroller Blockset can be found here.

Note
Since Embedded Coder, C2000 Microcontroller Blockset as well as C2000’s compiler is further
updated for optimal code generation with every release, it is recommended to use the latest available
tools to get the best possible efficiency for code generation and performance.

2 Model-Based Design of eCompressor
TIDM-02012 model-based design example is an eCompressor hardware with target application ranging from
air-conditioning, heating and traction drives. With the automotive industry transitioning to electric vehicles, the
heating and cooling systems of the car use the permanent magnet synchronous motor (PMSM) to drive the
eCompressor. The reference design available with the motor control SDK of C2000 demonstrates the controlling
of eCompressor motor using field-oriented control (FOC) without a position sensor. The focus of this application
note is not to understand the functionality of an eCompressor hardware, but to understand the flow of enabling a
model-based design for given target application.

Trademarks www.ti.com

2 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/C2000WARE/
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://in.mathworks.com/downloads/
https://in.mathworks.com/products/ti-c2000-microcontroller.html
https://www.youtube.com/watch?v=kQnS6ZIH6XY
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

The current challenges in the conventional way of developing the application using manually written code is
the coding expertise requirement, time taken to build the end application and debuggability. These challenges
can be addressed by taking up the model-based design work flow to build the application. Model-based design
allows ease in development with limited knowledge on coding the microcontroller, reduction in development time
and enables a graphical approach that allows you to visualize the application code and flow. The model can be
simulated at any point to get an instant view of system behavior in Simulink.

For detailed information on the high-voltage HEV/EV HVAC eCompressor motor control reference design, see
the TIDM-02012 product page and the High-Voltage HEV and EV HVAC eCompressor Motor Control Reference
Design

2.1 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines

WARNING

Always follow TI’s setup and application instructions, including use of all interface components within their
recommended electrical rated voltage and power limits. Always use electrical safety precautions to help ensure
your personal safety and those working around you. For more information, contact TI's Product Information
Center https://support/ti./com.

Save all warnings and instructions for future reference.

WARNING
Failure to follow warnings and instructions may result in personal injury, property damage or death
due to electrical shock and burn hazards.

The term TI HV EVM refers to an electronic device typically provided as an open framed, unenclosed printed
circuit board assembly. It is intended strictly for use in development laboratory environments, solely for qualified
professional users having training, expertise and knowledge of electrical safety risks in development and
application of high voltage electrical circuits. Any other use and/or application are strictly prohibited by Texas
Instruments. If you are not suitable qualified, you should immediately stop from further use of the HV EVM.

1. Work Area Safety
a. Keep work area clean and orderly.
b. Qualified observer(s) must be present anytime circuits are energized.
c. Effective barriers and signage must be present in the area where the TI HV EVM and its interface

electronics are energized, indicating operation of accessible high voltages may be present, for the
purpose of protecting inadvertent access.

d. All interface circuits, power supplies, evaluation modules, instruments, meters, scopes and other related
apparatus used in a development environment exceeding 50Vrms/75VDC must be electrically located
within a protected Emergency Power Off EPO protected power strip.

e. Use stable and nonconductive work surface.
f. Use adequately insulated clamps and wires to attach measurement probes and instruments. No

freehand testing whenever possible.
2. Electrical Safety

As a precautionary measure, it is always a good engineering practice to assume that the entire EVM may
have fully accessible and active high voltages.
a. De-energize the TI HV EVM and all its inputs, outputs and electrical loads before performing any

electrical or other diagnostic measurements. Revalidate that TI HV EVM power has been safely de-
energized.

b. With the EVM confirmed de-energized, proceed with required electrical circuit configurations, wiring,
measurement equipment connection, and other application needs, while still assuming the EVM circuit
and measuring instruments are electrically live.

www.ti.com Model-Based Design of eCompressor

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TIDM-02012
https://www.ti.com/lit/pdf/TIDUF17
https://www.ti.com/lit/pdf/TIDUF17
https://login.ti.com/idp/SSO.saml2?SAMLRequest=jZJLT8MwEIT%2FSuR78yIlrdVUCq0QlXhETeDAzbW3xZJjB69T4N%2BTukWABIirPZ75dtYzZK1KO1r27kmv4bkHdMFrqzTS401BequpYSiRatYCUsdpXd5c0zSMaWeNM9woEpSIYJ00emE09i3YGuxecrhfXxfkybkOaRRh33XGutDJkJs20mzfsR2EwpBgOQRLzQ4On3pldlJ%2FqKXoorq%2BCz0XCS6N5eCxC7JlCoEEq2VB6ttFnOdZdj5JJ0m%2BYYJPN9PJdsM5cBgDnInJIMSKIco9fD5F7GGl0THtCpLGaTaKk1ESN8mYjjOa5OH0LHkkQXUa%2BEJqIfXu73Y2RxHSq6apRtVd3XiDvRRgbwf1v4p5AIu%2BlMGRzGd%2Beupx7ddF%2FU3CPrZD5j9HzqKvxqeYjh4oV8vKKMnfglIp87KwwNxA7mwPfgktc79nJ2HiT6QYbb2UQsukKoWwgEii%2BSn3%2BwecvwM%3D&RelayState=https%3A%2F%2Fsupport.ti.com%2Fnavpage.do&SigAlg=http%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fxmldsig%23rsa-sha1&Signature=hDWbyA9qRdEBgDrGjFEDmAJGtfev03odcimJVRU2I%2FGtwsmGjixUKQs1tfxJC9VEjiDAy4NityWYtVFmuCYEcGcTne43pksp0GgUm7%2BA1hsllMsfC8smDBKn3A9dLoaSiOEYAWI2lso9PJOZebLX9WAIzD3eHXsy7uB51YYn1De2s2UcY2tzRPPR%2BGiZTarbmsJJbNShw5fwJF3HlitKQMDIei999o4TpUZjsbhQANVpET9yj%2BJlJe9SXi1Ku5NUtCyqp4UeOf8a7vpieKawmcWVWzDf3r8gsbHct9ijZqtVFkssJDt%2FLHfP6Qjf0nwyCv%2FLqGJtbRds6kPU38XqGg%3D%3D
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

c. After EVM readiness is complete, energize the EVM as intended.

WARNING
While the EVM is energized, never touch the EVM or its electrical circuits, as they could be at high
voltages capable of causing electrical shock hazard.

3. Personal Safety
a. Wear personal protective equipment (for example, latex gloves or safety glasses with side shields) or

protect EVM in an adequate lucent plastic box with interlocks to protect from accidental touch.

Limitation for safe use:

EVMs are not to be used as all or part of a production unit.

2.2 Block Diagram
Figure 2-1 shows the model-based design for the eCompressor motor control reference design.

The Simulink subsystem titled TMS320F280039C contains the C2000 device driver blocks and control blocks.
Source code for the MCU of the subsystem can be automatically generated using C2000 Microcontroller
Blockset and Embedded Coder. The block titled Inverter and Motor – Plant Model contains Simulation plant
model for the inverter and motor with similar configured parameters as present in the actual reference design
hardware. You are expected to update the model based on the hardware specification as per the application.

Figure 2-1. Model-Based Design of eCompressor

Going into the TMS320F280039C block, the complete control loop algorithm is implemented as shown in Figure
2-2.

Model-Based Design of eCompressor www.ti.com

4 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

Note
The processor TMS320F280039C model contains the blocks only for which the code is generated
using Embedded Coder. Plant model is for simulation only of the Inverter and Motor that will not
generate application code.

The operation is primarily divided in 3 parts.

• Sensing and communication
• Control loop
• Duty cycle control through PWMs

Sensing of motor phase currents Ia, Ib and Ic is done using the ADC available within Sensor Driver Blocks
subsystem in the model as shown in the Figure 2-2. The interrupt block contains configuration for 2 interrupts
– ADC and SCI. ADC interrupt is executed at a faster rate of 15 kHz for control operation, whereas, SCI
interrupt is running every 0.1 sec at a slower rate to read changes in reference speed and on/off controls for the
motor. The interrupt configurations are present in the Sensor Driver Blocks and SCI Interrupt block within the
TMS320F280039C block.

Figure 2-2. TMS320F280039C Model Block

On top of the code to be executed on the device, to ensure that the control is correctly implemented, there are
additional requirements such as to enable / disable the motor, configure the speed of the motor and to read back
the parameters from the actual system such as the speed, direct and quadrature axis currents - Id and Iq, motor
phase currents Ia and Ib and the position calculated. For the values to be read, the SCI module on board is used
to send the selected data to the control host. User has complete control over the operations of motor using the
control host model. The SCI module for the receiver is implemented within the Serial Receive block as shown in
Figure 2-2.

www.ti.com Model-Based Design of eCompressor

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

The SCI module on the control host is implemented within the Serial Communication block in the file
TIDM_02012_control_host.six file as shown in Figure 2-3.

Figure 2-3. TIDM-02012 Control Host Block

The pictorial representation of how the models work is shown in Figure 2-4. The model runs on the hardware,
whereas the host system runs the control host application.

Figure 2-4. System Overview

Model-Based Design of eCompressor www.ti.com

6 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

2.3 Hardware, Software and Testing Requirements
This sections highlights the requirements for running the model-based design on the TIDM-02012 eCompressor
hardware. For detailed information on the guidelines, see the Hardware, Software, Testing Requirements, and
Test Results section in the High-Voltage HEV and EV HVAC eCompressor Motor Control Reference Design.

2.3.1 Hardware setup

1. Connect a USB cable to TMDSCNCD280039C controlCARD for JTAG connection.
2. Connect the eCompressor motor wires to terminals J13U, J13V, J13W.
3. Connect measuring instruments – multimeter, oscilloscope probes and other measurement instruments to

probe or analyze various signals and parameters as desired. Apply 12V auxiliary DC power supply to
terminal J5.

4. Apply a DC bus power supply to terminal J2 and J3. The maximum input to the design is 800VDC.

Note
Add ferrite beads on JTAG signals and USB cable, if the external emulator has connectivity issues
while testing. And make the connection lines as short as possible.

WARNING
The ground planes of both the power domains can be same or different depending on hardware
configuration. Meet proper isolation requirements before connecting any test equipment with the
board to ensure the safety of yourself and your equipment. Review the GND connections before
powering the board. An isolator is required if measurement equipment is connected to the board.

2.3.2 Software setup

Download and install MATLAB, Code Composer Studio™ (CCS) and C2000Ware. Details for the version for
these software is given in Section 1.1.

The model-based design for this reference design is available as a part of C2000 MotorControl
SDK. Once downloaded and installed, browse to the folder for this design by going to
C2000Ware_MotorControl_SDK_X_XX\solutions\tidm_02012_ecompressor\matlab. The MATLAB folder just
contains the .slx files to start with. Once the project is built, the generated files will also be available in the
same folder location.

The example contains two primary files - TIDM_02012_F280039_MBD.slx and TIDM_02012_control_host.slx.
TIDM_02012_F280039_MBD.slx file contains the main control loop implementation whereas the
TIDM_02012_control_host.slx contains the universal receiver receiver/transmitter (UART) code, which is used to
send data relating to desired speed and control parameters.

2.3.3 Test Procedure

To run the algorithm on hardware, configure the hardware parameters corresponding to inverter and motor by
selecting Edit motor & inverter parameters option in the TIDM_02012_F280039C_MBD example. This opens
up the tidm_2012_param_init_script.m that contains the motor and inverter parameter initializations such as
the PWM frequency, data type, motor model number and electrical parameters. It also contains C2000 device
initialization parameters such as device part number, frequency, PWM, ADC configuration.

User is expected to update the parameter based on the application.

Before running the algorithm on hardware, the control loop algorithm can be tested using simulation in Simulink.
To run the simulation, once all the parameters for the motor and inverter are configured, click on Simulation’
tab in the Simulink window and click on ‘Run. The execution of simulation can be checked by putting scope or
data display blocks wherever desired in the example. By opening the Simulink Data Inspector from the Apps tab
in Simulink, the preset parameters are available to watch. You are free to add more parameters that might be
needed for validation of the algorithm.

Keep in mind, that while running the simulation, no code is being generated. It is just the control algorithm that
can be validated for operation. The C2000 device F280039C is not needed to be connected until this point.

www.ti.com Model-Based Design of eCompressor

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/TIDUF17
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

Once the simulation is validated, to deploy the code on the hardware, select the Hardware tab and choose Build,
Deploy and Start as shown in Figure 2-5. Ensure that the hardware is already connected for the code to be
deployed. The code starts running as soon as it is deployed on the hardware.

Figure 2-5. Build, Deploy and Start

To control the motor operation such as start-stop, motor speed and watch the run time parameters such as
speed, current, etc., a separate example file TIDM_02012_control_host model has to be used. Open the file and
choose the correct COM port for UART communication. Ensure the same COM port is enabled in Host Serial
Setup, Host Serial Receive and Host Serial Transmit as highlighted in Figure 2-6.

Figure 2-6. Host Serial Configuration

Model-Based Design of eCompressor www.ti.com

8 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

The baud rate for communication with the device is to be configured the same as what is configured in control
algorithm model that was deployed on the hardware, the default value on the example is 5e6. To check in the
main example, open model explorer (Ctrl + E), go to Hardware Implementation, expand the drop down Target
hardware resources and check the configured baud rate under SCIA as shown in Figure 2-7.

Figure 2-7. Baud Rate Configuration

Run the control host example by clicking on Run in the simulation tab. Keep the simulation time as ‘Inf’ for
continuous execution. The selected parameter from the options will now be continuously read and plotted on the
scope when the motor is started. Additionally, the motor speed can also be controlled by moving the marker or
by providing input in the box.

3 Simulink Configuration Settings
One of the key challenges while using model-based design is to generate optimized code for the C2000
MCU. While generating the code using C2000 Microcontroller Blockset, there are two stages of optimizations
in use – Simulink tool optimization and C2000 specific optimizations. To generate the most optimal code for
the application, each of the mentioned optimization needs to be configured. It is to be noted that, while we
discussed about the TIDM-02012 eCompressor application in the previous section, the optimization settings that
are discussed here are generic and can be applied for efficient code generation for all applications.

www.ti.com Simulink Configuration Settings

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

3.1 Simulink Tool Optimization
The C2000 Microcontroller Blockset along with Embedded Coder is responsible to generate the code for C2000
devices. To ensure that the code generated is optimized for C2000, the configurations in the tool are to be
specifically chosen. All configurations corresponding to model-based code generation are available in the model
configuration tab in Simulink.

Figure 3-1. Hardware Settings

Open model configuration parameters by selecting the Hardware settings option under the Hardware tab of
Simulink window. Code optimization configurations are available in the Optimization tab available in the Code
Generation drop down as shown in Figure 3-2.

Figure 3-2. Configuration Parameters

 Simulink Configuration Settings www.ti.com

10 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

Configurations to be made to ensure optimal code generation for C2000 are as shown in Table 3-1.

Table 3-1. MATLAB Optimization Settings
Simulink Tab Specific Setting Default Configuration Optimized Configuration

Code Generation
Build configuration Faster Builds Faster Runs

Prioritized objectives Unspecified Execution efficiency

Optimization

Priority Balance RAM and speed Speed

Specify custom optimization On Off

Default parameter behavior Tunable Inlined

Efficient Map of Float to Int Off On

Interface

Support absolute time On Off

Support complex On Off

Support non finite On Off

Math and Data Types Life span auto 1

All the mentioned configurations can be configured manually by selecting appropriate options in the Model
configuration section as shown in Figure 3-2. Alternatively, a MATLAB .m script containing the above
configuration can be integrated with the application example to ensure that the optimized configurations are
invoked.

The script to integrate with the application is available with the TIDM_2012_F280039_MBD example with the
name - TIDM_02012_F280039C_MBD_optimconfigs.m.

Note
The script provided with the example TIDM_02012_F380039C_MBD_optimconfigs can be used as-is
for other application examples by changing just the model name and running before generating the
code to ensure all the optimal settings are configured in the Simulink tool.

Code Generation:

1. Build Configuration: Faster runs

The build configuration of faster runs ensures the C2000 tool chain configuration is updated to use compiler
optimization -O2 in place of default -O0.

2. Objective priorities: Execution efficiency

Keeping execution efficiency as the highest priority in the objective priority ensures the code generation
from MATLAB is focused on the execution speed. Other parameters such as RAM, ROM efficiency are also
available as a part of objective priorities that can be invoked based on the requirement, but may impact the
performance. Default configuration is none.

Optimization:

1. Optimization priority: Maximize speed

User is allowed to configure the optimization priority to either maximize the speed, minimize the memory
(RAM) or to balance between minimizing RAM and maximizing speed. To generate code focused on better
performance in terms of execution speed, the optimization priority is to be set to maximize the speed. The
default behavior is to optimize keeping a balance between RAM and speed.

Change Configuration Parameters > Code Generation > Optimization > Optimization levels > Priority
to Maximize Execution Speed. This applies code generation settings to maximize execution speed.

www.ti.com Simulink Configuration Settings

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

11

Copyright © 2024 Texas Instruments Incorporated

https://mathworks.com/help/ecoder/ref/priority.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

2. Optimization customization: Off

If the optimization customization is unchecked, the default configurations under the Details tab is auto-
populated with the block operation optimized for improving code execution speed.

Uncheck the Specify custom optimizations in Configuration Parameters > Code Generation >
Optimization > Optimization levels. This disables the parameters in the Details section, so that you
cannot individually select or clear these parameters.

3. Default parameter behavior: Inlined

Boost performance by changing Configuration Parameters > Code Generation > Optimization > Default
parameter behavior to Inlined, optimizing default parameter behavior.

Also, check the Inline invariant signals checkbox in Configuration Parameters > Code Generation >
Optimization > Advanced parameters. This uses the numerical values of model parameters, instead of
their symbolic names, in generated code.

4. Efficient Map of Float to Int: On

Datatype mapping from float to int is to be enabled. This configuration removes code that handles floating-
point to integer conversion results for NaN values.

Check the Remove code from floating-point to integer conversions with saturation that maps
NaN to zero checkbox in Configuration Parameters > Code Generation > Optimization > Advanced
parameters. This removes code that handles floating-point to integer conversion results for NaN values.

Interface:

Under the interface tab, the support for all the data type configurations that are noto going to be in use can
be disabled. For generating efficient code, the configuration support for absolute time, non-finite numbers and
complex numbers can be removed. Additional checks for the selected configurations in the Support tab is
enabled, which may add additional number of cycles in run time application code.

Uncheck the Support: absolute time, non-finite numbers and complex numbers checkbox in Configuration
Parameters > Interface > Software environment. This causes the support for blocks that depend on absolute
time, non-finite numbers and complex numbers. Deselecting unused configurations under the Support tab
ensures better run-time code efficiency.

Application lifetime:

Set the Application lifespan (days) field in Configuration Parameters > Math and Data Types > Advanced
parameters. This specifies how long, in days, an application that depends on elapsed time can execute before
timer overflow occurs.

3.1.1 Optimum Code Generation

The configurations showcased in the table can be manually configured by configuring each parameter in the
Hardware Settings in Simulink. To avoid manual effort, MATLAB also allows to configure settings in Simulink
through MATLAB script.

The optimized code generation configuration can also be simply parsed through a script by either including
the script in the existing model or just by running the script once to configure all settings before running the
application code. The parameter 'mdl' in the script needs to reflect the name of the model in use to correctly
configure the settings. It can be validated, if the settings are configured, by manually checking the configurations
in the Hardware Settings in Simulink window.

%% Load the model
mdl = 'TIDM_02012_F280039_MBD';%Model Name
load_system(mdl);

%% Set Build Configurations and Prioritized Objectives in Code Generation tab
set_param(mdl,'BuildConfiguration','Faster Runs') ; %Build Configurations
set_param(mdl,'ObjectivePriorities','Execution efficiency'); %Prioritized Objectives
%% Set Level, Priority in Optimization levels and enable some advanced Parameters in Optimization
tab
set_param(mdl,'OptimizationPriority','speed');%Optimization Priority

 Simulink Configuration Settings www.ti.com

12 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://mathworks.com/help/ecoder/ref/specifycustomoptimizations.html
https://mathworks.com/help/rtw/ref/defaultparameterbehavior.html
https://mathworks.com/help/rtw/ref/removecodefromfloatingpointtointegerconversionswithsaturationthatmapsnantozero.html
https://mathworks.com/help/ecoder/ref/supportabsolutetime.html
https://mathworks.com/help/ecoder/ref/supportcomlexnumbers.html
https://mathworks.com/help/ecoder/ref/supportcomlexnumbers.html
https://mathworks.com/help/simulink/gui/applicationlifespandays.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

set_param(mdl,"OptimizationCustomize","off");%Customize Optimizations Checkbox
%% TODO: Check -- updated Code Config > Optimization > default parameter behaviour to inlined
instead of tunable to make the below config work
set_param(mdl,"InlineInvariantSignals","on");%Inline Invariant Signals
set_param(mdl,"EfficientMapNaN2IntZero","on");% Removes code from float to int with saturation
mapping NaN to zero.
%% Remove support for non-finite, complex and absolute time Interface tab
set_param(mdl,"SupportAbsoluteTime","off");%Remove Absolute time support
set_param(mdl,"SupportComplex","off");%Remove Complex Number support
set_param(mdl,"SupportNonFinite","off");%Remove Non-Finite Number support
%% Application Lifetime setting
set_param(mdl,"LifeSpan","1");%Remove Absolute time support

Note
In the code block above, replace the model name with the application model name in use and run the
script before executing the code generation for the application model to incorporate all the optimized
configuration.

3.2 C2000 Specific Optimization
To ensure that the generated code is optimally executed on the C2000 MCU, compiler settings needs to
be correctly configured beyond the Simulink specific optimization, which are hardware specific to the C2000
MCUs. As discussed in Section 3.1, if the build configuration setting is correctly configured as Faster Runs, the
optimization level (-O2) will be invoked while running the code on the hardware. Additionally, if manually the
optimization level is to be changed, the Toolchain details section in the Code generation tab of hardware settings
allows you to configure the compiler settings by selecting build configuration as Specify. Compiler optimization
settings are available in the C compiler settings as shown in Figure 3-3.

Figure 3-3. Custom Compiler Optimization Configuration

www.ti.com Simulink Configuration Settings

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

3.2.1 Using TMU Through Simulink

C2000 devices also contain accelerators such as Trigonometric Math Unit (TMU) to perform floating point
trigonometric operations faster. To ensure that the generated code is using the TMU instructions, the hardware
implementation tab in the hardware settings contains the option to enable TMU. This ensures that wherever
trigonometric operations are to be performed, the TMU instructions are invoked. By default, TMU is enabled for
the devices having TMU accelerator unless manually unchecked.

While TMU can specifically be invoked by calling the intrinsic function as described in the C2000 compiler user
guide, by enabling the TMU function in the Simulink window still uses the conventional trigonometric operations
and not the TMU intrinsics. The TMU is enabled by using the appropriate compiler flag in the build configuration
and ensures that the hardware accelerator is correctly invoked for performing trigonometric operations.

Note
The look up table blocks such as sin-cosine LUT still uses the LUT-based approach even if TMU is
enabled. The sin-cosine blocks, and not the LUT blocks, from the Simulink Library needs to be used to
generate the optimized trigonometric operations.

Figure 3-4. TMU Configuration

 Simulink Configuration Settings www.ti.com

14 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/document-viewer/lit/html/SPRU514Z#GUID-E8208515-69CF-4C25-9865-843964299983/TITLE-SLAU132T365164-6
https://www.ti.com/document-viewer/lit/html/SPRU514Z#GUID-E8208515-69CF-4C25-9865-843964299983/TITLE-SLAU132T365164-6
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

3.2.2 Using Software Libraries Through Simulink

To invoke additional software libraries for faster computation, embedded coder allows to import code
replacement libraries (CRL), which replaces the conventional code generation with the library functions wherever
suitable. One such library for faster computations on fixed point arithmetic is C28x IQMath library. If the
application uses Q numbers, it is recommended to use the IQMath CRL. To invoke IQMath CRL, go to Interface
section under the Code Generation tab in the Hardware settings. Select TI C28x library as shown in the image,
which contains the code replacement libraries for IQ Math, FastIntDiv, CLA, and so forth.

Figure 3-5. Code Replacement Library configuration

Note
MATLAB versions older than 2018 do not support the TI C28x code replacement library.

Note
It is to be noted that hardware accelerator Trigonometric Math Unit (TMU) is accelerator for performing
floating point operations faster, whereas, the IQ Math library is a software library that accelerates the
fixed point computations faster.

www.ti.com Simulink Configuration Settings

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

15

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

3.2.3 Running Code From RAM

Any application code can be either placed in RAM or Flash for storage and run time execution. Placing the code
in flash memory allows to store a larger application size since flash is typically bigger than RAM in terms of
memory, but executing the code from flash invokes additional wait states while performing read-write operations.
Since executing the code from RAM becomes the faster alternative, a solution involving storage of code in flash
memory and executing the code from RAM becomes the optimal solution.

Figure 3-6. Booting From Flash

 Simulink Configuration Settings www.ti.com

16 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

If the option to boot from flash is selected as shown in Figure 3-6, the code is stored in flash. To copy and
run from RAM, by right clicking on the subsystem block and selecting Block Parameters (Subsystem). Select
the Code Generation tab and configure the Memory section for execution functions: as code_ramfuncs from the
drop-down menu as shown in Figure 3-7. It is to be noted that if the subsystem is larger than the available
memory on the device, compile time error is shown showcasing not enough memory.

Figure 3-7. Running Code From RAM

3.3 Performance Comparison
After enabling the optimizations as discussed in Section 3, performance of TIDM-02012 eCompressor model is
validated against the default configuration. Overall improvement for the fastest execution loop of FOC is around
57% whereas for the speed loop the improvement in execution performance is around 38%.

The numbers discussed in Performance Comparison are profiled using the processor-in-loop (PIL) technique,
which is discussed in Section 4.1. The default configuration still uses the C2000 hardware accelerator, that is,
TMU. The difference in the optimized configuration column is the enabling of configuration settings optimized in
MATLAB through the script shown in Section 3.1.1.

Table 3-2. Performance Comparison

Function (rate of
execution)

Default
Configuration

Execution Time (ns)

Optimized
Configuration

Execution Time (ns

Performance
Improvement
Over Default

Configuration

Default
Configuration
Average CPU

Utilization

Optimized
Configuration
Average CPU

Utilization
Current control loop
(66.67μs)

15261 6286 57.45% 22.89% 9.43%

Speed control loop
(0.67ms)

2961 1840 37.87% 0.44% 0.28%

Background
housekeeping loop
(0.1s)

260 200 23.07% 0.0003% 0.0002%

www.ti.com Simulink Configuration Settings

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

17

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

4 Profiling Using Simulink
The Embedded Coder tool allows the flexibility to profile a part of the application code, multiple blocks in the
application code or the complete application code using Simulink. There can be multiple ways to profile the code
generated by MATLAB – Processor-in-loop method on Simulink, C2000 Timer, general-purpose input/output
(GPIO)-based profiling and the CCS clock profiler tool. While there is no notable difference in terms of the
profiling data, there might be small differences due to different approach of profiling the application code.

4.1 Processor-in-Loop (PIL) Method
Simulink offers a processor-in-loop (PIL) simulation tool that allows to verify the code and profile it using the
SIL/PIL manager tool. To profile using PIL tool, the hardware settings needs to be configured. Open hardware
settings (Ctrl + E), go to Verification tab under Code Generation and enable Measure task execution time with
settings as shown in Figure 4-1 and select PIL in the Create Block section under Advanced Parameters.

Figure 4-1. Processor-in-Loop Profiling

Configure the COM port in the PIL section in Target hardware resources under the Hardware Implementation tab
as shown in Figure 4-2. Validate the serial port connection in MATLAB as per the device UART port.

To create a PIL block from a subsystem / system, right click the block to be chosen for profiling and select
Deploy subsystem to hardware in C/C++ Code. This generates the code for the chosen block and generate a
PIL block for the same. Replace the generated PIL block with the actual block. Open the SIL/PIL manager from
the APPS tab. Select SIL/PIL Simulation Only as the mode, Model blocks in SIL/PIL mode as the System Under
Test and give a reference stop time for the simulation before running the automated verification as shown in
the Figure 4-2. Once the execution is successfully completed, the code execution parameters are available in
a report available under the Results section in MATLAB. The report contains CPU utilization, execution time in
nano-seconds (avg, min and max), which can be used to compute the cycle counts based on the device in use.

While the PIL is only used for profiling a single block of code, the C2000 timer and GPIO based profiling
methods can be used to profile multiple blocks of code at a time. The advantage of PIL-based profiling is that
the profiling data is clearly stated with respect to the rate of execution. If multiple loops are operating at different
rates, PIL separates out the execution time for each of the blocks based on its rate of execution. The PIL-based
method comes with a fixed small overhead in the measurement, hence it is recommended to use the PIL-based
profiling method for profiling a block, which uses larger code size to minimize the effect of overhead.

 Profiling Using Simulink www.ti.com

18 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

Figure 4-2. PIL COM Port Configuration

Figure 4-3. PIL Configuration settings

For more information on PIL Simulation, see the PIL Simulation article.

4.2 C2000 Timer-Based Profiling
C2000 timer peripheral can also be used to get the execution time data. The timer code needs to be integrated
with the existing model for profiling making this method an intrusive profiling method. The overhead incurred by
the timer-based method can be removed by separately measuring the timer execution time. While running the
code for the application, the timer code can be removed to save on additional cycles for timer configuration and
running. Steps to be taken to profile a section or complete application code using C2000 timer peripheral are
discussed below. The current example uses Timer 2 as the profiling tool, but if the timer is already in use by the
application, then it is recommended to choose a timer that is not in use.

At the top level of the model, add the System Initialize block available in the Simulink library under Simulink
Coder > Custom Code. This block contains the timer initialization code.

www.ti.com Profiling Using Simulink

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

19

Copyright © 2024 Texas Instruments Incorporated

https://in.mathworks.com/help/ti-c2000/ug/code-verification-validation-with-pil.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

Figure 4-4. Timer Initialization Code

// Initialize C2000 Timer 2
InitCpuTimers();
CpuTimer2Regs.PRD.all = 0xFFFFFFFF; /* Max Period */
CpuTimer2Regs.TIM.all = 0xFFFFFFFF; /* Counter Configuration */
CpuTimer2Regs.TPR.all = 0x00; /* No clock prescalar configured */
StartCpuTimer2();

Add Data Store Memory blocks to the top level along with System initialize block for the blocks that need to be
profiled. Name the Data Store Memory blocks appropriately as shown in Figure 4-5. Open the Embedded Coder
application from the APPS menu. Select Code Mappings > Component Interface, navigate to Data Stores tab.
Change the storage class of variables created using Data Store Memory blocks to ExportedGlobal.

 Profiling Using Simulink www.ti.com

20 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

Figure 4-5. Storage Class for Variable

Now, within the subsystem to be profiled, add a System Outputs block from the Simulink library. If it is a
standalone block, for example, park transform block, then the block can be made a subsystem after which the
System Outputs block can be added. In the System Outputs block, add the read timer value code and store in
a temporary variable in the Function Declaration Code section and read the timer value again in the Function
Exit Code section. Compute the difference in the exit code section and store the value in global variable defined
earlier as shown in the code block.

www.ti.com Profiling Using Simulink

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

21

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

Figure 4-6. System Outputs Timer Code

To profile a block, once the subsystem is created, right click on it and navigate to Block Parameters(subsystem).
Check the treat as atomic unit checkbox. Build the model and load the generated .out file in the device using
CCS. Add the added global variables in the expressions window of CCS to watch and run the code. Open the
host control model, select the appropriate COM port and set the desired speed. Run the motor, using the toggle
switch to start the motor. This sends an enable PWM signal to the device to run the algorithm, after which the
variables in the watch window are updated with the cycle count. Observe the variation in the variables using the
Continuous refresh option in the expressions window.

/* Code block for System Output Function Declaration Code */
uint32_T timerCount1 = CpuTimer2Regs.TIM.all;
asm(" NOP");

/* Code block for System Output Function Exit Code */
asm(" NOP");
profilePark= timerCount1 - CpuTimer2Regs.TIM.all;

To remove the timer measurement overhead, a separate block of code can be added in any of the blocks with
the code mentioned in the block below. The idea to calculate the timer overhead is to do a back to back timer
read and difference between the reads will be the overhead. On execution of the code block, the overhead can
be quantified and subtracted out from the profiling data that is calculated for the other blocks. It is to be noted
that, similar to the global variables defined previously for each of the blocks, the variable corresponding to timer
overhead also has to be added.

/* Code block for calculation of timer overhead */
uint32_T overheadCount = CpuTimer2Regs.TIM.all;
asm(" NOP");

/* Code block for System Output Function Exit Code */
asm(" NOP");
profileOverhead= overheadCount - CpuTimer2Regs.TIM.all;

 Profiling Using Simulink www.ti.com

22 MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

Other than C2000 timer-based profiling, GPIO-based profiling method can also be used if an oscilloscope is
available. It is to be noted that GPIO-based profiling needs external scope to view the waveform and measure
the timings. Instead of the timer reads as discussed in this section, the GPIO can be toggled at the start and end
of the routine, which needs to be profiled. The overhead in the GPIO-based profiling method is limited to the time
taken to write to the GPIO registers.

4.3 Code Composer Studio tools
The Code Composer Studio (CCS) IDE also allows to profile the execution cycles for application code. The
clock tool available with CCS allows to get the point-to-point cycle count information. To use the CCS for
profiling, import the MATLAB generated project in the CCS environment by opening CCS and selecting Import
CCS project under the Project tab. Browse to the MATLAB project folder location and import the project. Once
imported, the project should be available in the Project Explorer in CCS window. Connect the hardware and
debug the project to load the .out file on the C2000 device.

Once the project is loaded, the clock tool can be enabled for use. Detailed description on how to use the Code
composer studio for profiling is given in the link - Profiling on C28x Targets.

5 Summary
The industrial and automotive control becoming more complex makes a clear way for the usage of minimum
code tools such as Embedded Coder by MATLAB for C2000 real time controllers. It is possible to achieve the
ease-of-use while achieving the performance entitlement for such complex time-critical control applications.

Implementation of optimized configuration over the default configurations as showcased in Table 3-1 is enough
to achieve the faster computation performance with optimized code generation. The simpler way to implement
the optimized configuration is by incorporating the code script in the MATLAB model.

6 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (07/15/2024) to Revision A (November 2024) Page
• Title of the document was updated to include Simulink..1
• Updated Section 2.. 2
• Updated Section 3.2.1.. 14

www.ti.com Profiling Using Simulink

SPRADI0A – JULY 2024 – REVISED NOVEMBER 2024
Submit Document Feedback

MATLAB® and Simulink® Model-Based Design Using C2000™ Real-Time
Microcontrollers

23

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/c2000_profiling-on-c28x-targets.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADI0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADI0A&partnum=TIDM-02012

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Getting Started

	2 Model-Based Design of eCompressor
	2.1 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
	2.2 Block Diagram
	2.3 Hardware, Software and Testing Requirements
	2.3.1 Hardware setup
	2.3.2 Software setup
	2.3.3 Test Procedure

	3 Simulink Configuration Settings
	3.1 Simulink Tool Optimization
	3.1.1 Optimum Code Generation

	3.2 C2000 Specific Optimization
	3.2.1 Using TMU Through Simulink
	3.2.2 Using Software Libraries Through Simulink
	3.2.3 Running Code From RAM

	3.3 Performance Comparison

	4 Profiling Using Simulink
	4.1 Processor-in-Loop (PIL) Method
	4.2 C2000 Timer-Based Profiling
	4.3 Code Composer Studio tools

	5 Summary
	6 Revision History

