

LP8762-Q1 Four-Phase, 12A Buck Converter With Integrated Switches

1 Features

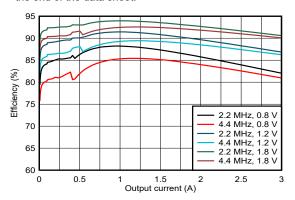
- AEC-Q100 qualified with the following results:
 - Input voltage: 2.8V to 5.5V
 - Device temperature grade 1: -40°C to +125°C ambient operating temperature range
 - Device HBM ESD classification Level 2
 - Device CDM ESD classification Level C4B
- Functional safety-compliant
 - Developed for functional safety applications
 - Documentation available to aid ISO 26262 system design up to ASIL-D
 - Documentation available to aid IEC 61508 system design up to SIL-3
 - Systematic capability up to ASIL-D
 - Hardware integrity up to ASIL-D
 - Windowed voltage and over-current monitors
 - Watchdog with selectable trigger / Q&A mode
 - Level or PWM error signal monitoring (ESM)
 - Thermal monitoring with high temperature warning and thermal shutdown
 - Bit-integrity (CRC) error detection on configuration registers and non-volatile memory
- Four high-efficiency step-down DC/DC converters:
 - Output voltage: 0.3V to 3.34V (0.3V to 1.9V for multi-phase outputs)
 - Maximum output current: 3A per phase, up to 12A with 4-phase configuration
 - Programmable output voltage slew-rate: 0.5mV/µs to 33mV/µs
 - Switching frequency: 2.2MHz or 4.4MHz
- Ten configurable general purpose I/O (GPIO)
- SPMI interface for multi-PMIC synchronization
- Input overvoltage monitor (OVP) and undervoltage lockout (UVLO)

Simplified Schematic

2 Applications

- Advanced driver assistance systems (ADAS)
- Front camera
- Surround view system ECU
- Long range radar
- Sensor fusion
- Domain controller

3 Description


The LP8762-Q1 device is designed to meet the power management requirements of the latest processors and platforms in various safety-relevant automotive and industrial applications. The device has four stepdown DC/DC converter cores, that are configurable for five different phase configurations from one 4phase output to four 1-phase outputs. The device settings can be changed by I²C-compatible serial interface or by a SPI serial interface.

The automatic PFM/PWM (AUTO mode) operation together with the automatic phase adding and phase shedding maximizes efficiency over a wide outputcurrent range. The LP8762-Q1 device supports remote differential voltage sensing for multiphase outputs to compensate IR drop between the regulator output and the point-of-load (POL) that improves the accuracy of the output voltage. The switching clock can be forced to PWM mode and the phases are interleaved. The switching can be synchronized to an external clock and spread-spectrum mode can be enabled to minimize the disturbances.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
LP8762-Q1	VQFN-HR (32)	5.50mm × 5.00mm

For all available packages, see the orderable addendum at the end of the data sheet.

Efficiency vs Output Current (1-phase)

Table of Contents

1 Features1	8 Device and Documentation Support1
2 Applications1	8.1 Receiving Notification of Documentation Updates1
3 Description1	8.2 Support Resources1
4 Device Comparison Table3	8.3 Trademarks1
5 Pin Configuration and Functions4	8.4 Electrostatic Discharge Caution1
6 Specifications9	8.5 Glossary1
6.1 Absolute Maximum Ratings9	9 Revision History1
6.2 ESD Ratings9	10 Mechanical, Packaging, and Orderable
6.3 Recommended Operating Conditions10	Information1
7 Application and Implementation 11	10.1 Packaging Option Addendum1
7.1 Application Information11	10.2 Tape and Reel Information1

4 Device Comparison Table

The LP8762-Q1 device family has several sub-family variants as outlined below:

Sub-Family Variant	Orderable Part Number	DC/DC Configuration	
LP87621-Q1	LP87621xyyRQKRQ1	One 4-phase output	
LP87622-Q1	LP87622xyyRQKRQ1	One 3-phase and One 1-phase outputs	
LP87623-Q1	LP87623xyyRQKRQ1	One 2-phase and two 1-phase outputs	
LP87624-Q1	LP87624xyyRQKRQ1	Four 1-phase outputs	
LP87625-Q1	LP87625xyyRQKRQ1	Two 2-phase outputs	

Each of these sub-families have non-volatile memory (NVM) and other configuration options. The NVM option is configured by Texas Instruments, generating unique device configurations with specific orderable part numbers represented by the YY in the part numbers. Please see the Technical Reference Manual of the specific LP8762-Q1 device for the NVM configuration implemented.

The orderable part numbering of these sub-families is summarized by:

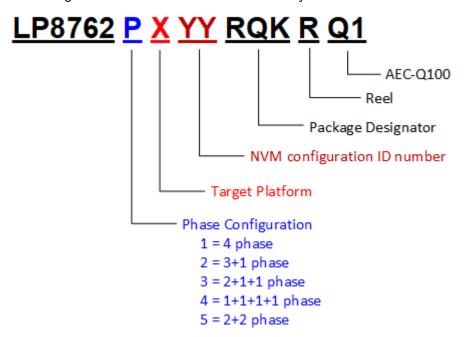


Figure 4-1. Orderable Part Numbering

5 Pin Configuration and Functions

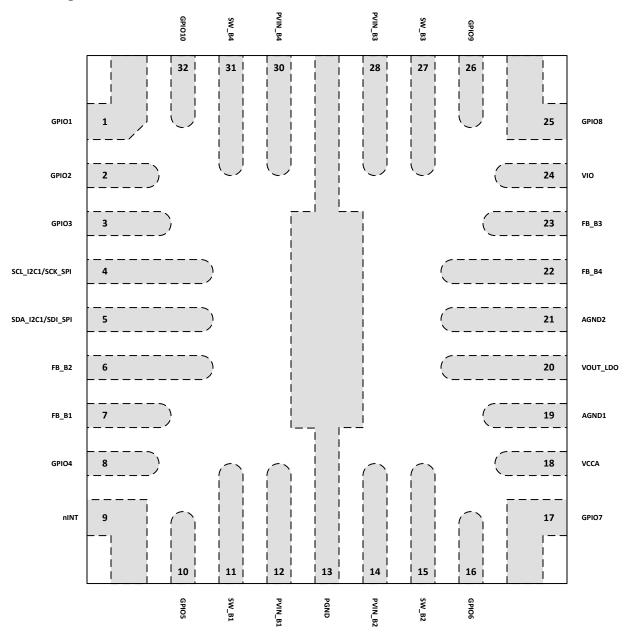


Figure 5-1. RQK Package 32-Pin VQFN-HR Top View

Table 5-1. Pin Functions

	PIN			Table 3-1. Fill Full Culous	CONNECTION IF
NO.	NAME	I/O	TYPE	DESCRIPTION	NOT USED
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		0	Digital	Alternative programmable function: EN_DRV - Enable Drive output pin to indicate the device entering safe state (set low when ENABLE_DRV bit is '0').	Floating
1	GPIO1	0	Digital	Alternative programmable function: nRSTOUT_SOC - System reset or power on reset output (low = reset).	Floating
		0	Digital	Alternative programmable function: PGOOD - Programmable Power Good indication pin.	Floating
		I	Digital	Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).	Ground
		I	Digital	Alternative programmable function: WKUP1 or WKUP2, which are the wake-up request signals for the device to go to higher power states.	Ground
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		I	Digital	Alternative programmable function: SCL_I2C2 - Serial interface clock input for I2C access.	Ground
2	GPIO2	ı	Digital	Alternative programmable function: CS_SPI - Serial interface Chip Select signal for SPI access.	Ground
		I	Digital	Alternative programmable function: TRIG_WDOG - Trigger signal for trigger mode watchdog.	Ground
		I	Digital	Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).	Ground
		I	Digital	Alternative programmable function: WKUP1 or WKUP2, which are the wake-up request signals for the device to go to higher power states.	Ground
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		I/O	Digital	Alternative programmable function: SDA_I2C2 - Serial interface data input and output for I2C access.	Ground
3	GPIO3	0	Digital	Alternative programmable function: SDO_SPI - Serial interface data output signal for SPI access.	Floating
		I	Digital	Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).	Ground
			Digital	Alternative programmable function: WKUP1 or WKUP2, which are the wake-up request signals for the device to go to higher power states.	Ground
	SCL I2C1/ I Digital If SPI is not used: SCL_I2C1 - Serial interface clock input for I2C access.		Ground		
4	SCK_SPI	I	Digital	If SPI is used: SCK_SPI - Serial interface clock input for SPI access.	Ground
5	SDA_I2C1/	I/O	Digital	If SPI is not used: SDA_I2C1 - Serial interface data input and output for I2C access.	Ground
	SDI_SPI —		Digital	If SPI is used: SDI_SPI - Serial interface data input signal for SPI access.	Ground
6	FB_B2	_	Analog	Output voltage feedback (positive) for BUCK2. Alternatively ground feedback for BUCK1 in multiphase configuration.	Ground
7	FB_B1	_	Analog	Output voltage feedback (positive) for BUCK1.	Ground

Table 5-1. Pin Functions (continued)

	PIN			Table 5-1. Fill Fullctions (continued)	CONNECTION IF
NO.	NAME	I/O	TYPE	DESCRIPTION	NOT USED
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		ı	Digital	Alternative programmable function: ENABLE - External power-on control.	Ground
0	GPIO4	ı	Digital	Alternative programmable function: TRIG_WDOG - Trigger signal for trigger mode watchdog.	Ground
8	GF104	_	Analog	Alternative programmable function: BUCK1_VMON - Voltage monitoring input for BUCK1 regulator.	Ground
		ı	Digital	Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).	Ground
		ı	Digital	Alternative programmable function: WKUP1 or WKUP2, which are the wake-up request signals for the device to go to higher power states.	Ground
9	nINT	0	Digital	Open-drain interrupt output, active LOW.	Floating
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		I	Digital	Alternative programmable function: SYNCCLKIN - External switching clock input for Buck regulators.	Ground
10	GPIO5	0	Digital	Alternative programmable function: SYNCCLKOUT - Switching clock output for external regulators.	Floating
		0	Digital	Alternative programmable function: nRSTOUT_SOC - System reset or power on reset output (low = reset).	Floating
		ı	Digital	Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).	Ground
	I		Digital	Alternative programmable function: WKUP1 or WKUP2, which are the wake-up request signals for the device to go to higher power states.	Ground
11	SW_B1	_	Analog	BUCK1 switch node.	Floating
12	PVIN_B1	_	Power	Power input for BUCK1. The separate power pins PVIN_Bx are not connected together internally – PVIN_Bx and VCCA pins must be connected together in the application and be locally bypassed.	System supply
13	PGND	_	Ground	Power ground for Buck regulators.	Ground
14	PVIN_B2	_	Power	Power input for BUCK2. The separate power pins PVIN_Bx are not connected together internally – PVIN_Bx and VCCA pins must be connected together in the application and be locally bypassed.	System supply
15	SW_B2	_	Analog	BUCK2 switch node.	Floating
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		ı	Digital	Alternative programmable function: nERR_MCU - System error count down input signal from the MCU.	Floating
16	GPIO6	0	Digital	Alternative programmable function: SYNCCLKOUT - Switching clock output for external regulators.	Floating
		0	Digital	Alternative programmable function: PGOOD - Programmable Power Good indication pin.	Floating
		I	Digital	Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).	Ground
		I	Digital	Alternative programmable function: WKUP1 or WKUP2, which are the wake-up request signals for the device to go to higher power states.	Ground

Table 5-1. Pin Functions (continued)

	PIN		TV5=	DECORPORTOR	CONNECTION IF
NO.	NAME	I/O	TYPE	DESCRIPTION	NOT USED
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		I	Digital	Alternative programmable function: nERR_MCU - System error count down input signal from the MCU.	Floating
47	CDIO7	O Analog Alternative programmable function: REFOUT - Buffered bandgap		Alternative programmable function: REFOUT - Buffered bandgap output.	Floating
17	GPIO7	I	Analog	Alternative programmable function: VMON1 - External voltage monitoring input.	Ground
		ı	Digital	Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).	Ground
		ı	Digital	Alternative programmable function: WKUP1 or WKUP2, which are the wake- up request signals for the device to go to higher power states.	Ground
18	VCCA	_	Power	Supply voltage for internal LDO. VCCA and PVIN_Bx pins must be connected together in the application and be locally bypassed.	System supply
19	AGND1	_	Ground	Ground	Ground
20	VOUT_LDO	_	Power	LDO regulator filter node. LDO is used for internal purposes.	_
21	AGND2	_	Ground	Ground	Ground
22	FB_B4	_	Analog	Output voltage feedback (positive) for BUCK4. Alternatively ground feedback for BUCK3 in dual phase configuration.	Ground
23	FB_B3	_	Analog	Output voltage feedback (positive) for BUCK3.	Ground
24	VIO	_	Power	Supply voltage for selected digital outputs.	Ground
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		I/O	Digital	Alternative programmable function: SCLK_SPMI - Multi-PMIC SPMI serial interface clock signal. This pin is an output pin for the master SPMI device, and an input pin for the slave SPMI device.	Ground
25	GPIO8	ı	Analog	Alternative programmable function: VMON2 - External voltage monitoring input.	Ground
		ı	Digital	Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).	Ground
		I	Digital	Alternative programmable function: WKUP1 or WKUP2, which are the wake-up request signals for the device to go to higher power states.	Ground
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		I/O	Digital	Alternative programmable function: SDATA_SPMI - Multi-PMIC SPMI serial interface bidirectional data signal	Floating
26	GPIO9	0	Digital	Alternative programmable function: PGOOD - Programmable Power Good indication pin.	Floating
		I	Digital	Alternative programmable function: SYNCCLKIN - External switching clock input for Buck regulators.	Ground
		I	Digital	Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).	Ground
		I	Digital	Alternative programmable function: WKUP1 or WKUP2, which are the wake-up request signals for the device to go to higher power states.	Ground
27	SW_B3	_	Analog	BUCK3 switch node.	Floating
28	PVIN_B3	_	Power	Power input for BUCK3. The separate power pins PVIN_Bx are not connected together internally – PVIN_Bx and VCCA pins must be connected together in the application and be locally bypassed.	System supply

Table 5-1. Pin Functions (continued)

	PIN	I/O	TYPE	DESCRIPTION	CONNECTION IF
NO.	NAME	1/0	ITPE	DESCRIPTION	NOT USED
30	PVIN_B4	_	Power	Power input for BUCK4. The separate power pins PVIN_Bx are not connected together internally – PVIN_Bx and VCCA pins must be connected together in the application and be locally bypassed.	System supply
31	SW_B4	_	Analog	BUCK4 switch node.	Floating
		I/O	Digital	Primary function: General Purpose Input/Output signal. When configured as an output pin, it can be included as part of the power sequencer output signal to enable an external regulator.	Input: Ground, Output: Floating
		0	Digital	Alternative programmable function: nRSTOUT - System reset or power on reset output (low = reset).	Floating
32	GPIO10	0	O Digital Alternative programmable function: nRSTOUT_SOC - System reset or power on reset output (low = reset).		Floating
	Digital Alternative programmable function: nSLEEP1 or nSLEEP2, which are the sleep request signals for the device to go to lower power states (Active Low).		Ground		
		ı	Digital	Alternative programmable function: WKLIP1 or WKLIP2, which are the wake-	

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.

POS			MIN	MAX	UNIT
M1.1	Voltage on supply input pin	VCCA	-0.3	6	V
M1.2	Voltage on all buck supply voltage input pins	PVIN_Bx	-0.3	6	V
M1.3	Voltage difference between supply input pins	Between VCCA and each PVIN_Bx	-0.5	0.5	٧
M1.4a	Voltage on all buck switch nodes	SW_Bx pins	-0.3	V _{PVIN_Bx} + 0.3 V, up to 6 V	٧
M1.4b	Voltage on all buck switch nodes	SW_Bx pins, 10-ns transient	-2	10	V
M1.5	Voltage on all buck voltage sense nodes	FB_Bx	-0.3	4	V
M1.6	Voltage on all buck power ground pins	PGND	-0.3	0.3	V
M1.7	Voltage on internal LDO output pin	VOUT_LDO	-0.3	2	V
M1.8	Voltage on I/O supply pin	VIO	-0.3	The lower of two: VCCA or 6V	٧
M1.9	Voltage on logic pins (input or output)	I ² C and SPI pins, nINT pin, and all GPIO pins	-0.3	6	V
M1.13a	V-14i	VCCA, PVIN_Bx (voltage below 2.7 V)		60	>//
M1.13b	Voltage rise slew-rate on input supply pins	VIO (only when VCCA < 2 V)		60	mV/µs
M1.10a		All pins other than power resources		20	mA
M1.10b	Peak output current	Buck regulators: PVIN_Bx, SW_Bx, and PGNDx per phase		5	Α
M1.10c		GPIOx pins, source current		3	
M1.10d	Average output current, 100 k hour, T _J =	GPIO1/3/5/8/9/10, SDA_I2C1/SDI_SPI and nINT pins, sink current		8	mA
M1.10e	— 125°C	GPIO2/4/6/7 pins, sink current		3	
M1.10f		Buck regulators		3.5	Α
M1.11	Junction temperature, T _J		-45	160	°C
M1.12	Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

POS				VALUE	UNIT
M1.13	V _(ESD)	Electrostatic discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
M1.14	V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±500	V

(1) AEC Q100-002 indicates that HBM stressing is in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.

POS			MIN	NOM	MAX	UNIT
R1.1	Voltage on supply input pin	VCCA	2.8	3.3	5.5	V
R1.2	Voltage on all buck supply input pins	PVIN_Bx	2.8	3.3	5.5	V
R1.3	Voltage difference between supply input pins	Between VCCA and each PVIN_Bx	-0.2		0.2	V
R1.4	Voltage on all buck switch nodes	SW_Bx pins	0		5.5	V
R1.5	Voltage on all buck voltage sense nodes	FB_Bx	0	,	V _{OUT(BUCKx)max}	V
R1.6	Voltage on all buck power ground pins	Between PGND and AGNDx		0		V
R1.7	Voltage on internal LDO output pin	VOUT_LDO	1.65		1.95	V
R1.8a		V _{VIO} = 1.8 V	1.7	1.8	1.9	
R1.8b	Voltage on I/O supply pin	V _{VIO} = 3.3 V	3.135	3.3	V _{VCCA} , up to 3.465V	V
R1.9	Voltage on logic pins (input) (2)		0		5.5	
R1.10a	Voltage on logic pins (output, push-pull) in VIO domain (2)		0		V _{VIO}	٧
R1.10b	Voltage on logic pins (output, push-pull) in LDOVINT domain (2)		0		V _{VOUT_LDO}	٧
R1.10c	Voltage on logic pins (output, open-drain) (2)		0		5.5	
R1.11	Voltage on logic pins (output) in VCCA domain	EN_DRV	0		V_{VCCA}	V
R1.12	Voltage on AGND ground pins	AGND1 and AGND2		0		V
R1.13	Operating free-air temperature ⁽¹⁾		-40	25	125	°C
R1.14	Junction temperature, T _J	Operational	-40	25	150	°C
	•					

⁽¹⁾ Additional cooling strategies may be necessary to keep junction temperature at recommended limits.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

⁽²⁾ Internal pull-up resistor is disabled if pin voltage is above V_{VOUT_LDO} (LDOVINT domain pins) or V_{VIO} (VIO domain pins)

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The device is a multi-phase step-down converter with four switcher cores, that can be configured to:

- Single output four-phase regulator
- · Three-phase and one-phase regulators
- · Two-phase and two one-phase regulators
- · Four one-phase regulators or
- · Two 2-phase regulators

7.1.1 Typical Applications

The five possible configurations are shown in the following figures.

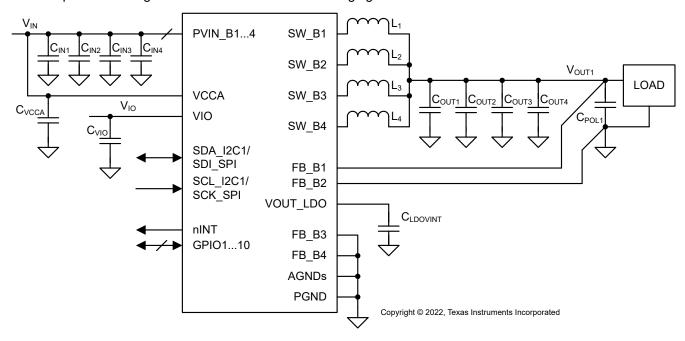


Figure 7-1. 4-Phase Configuration

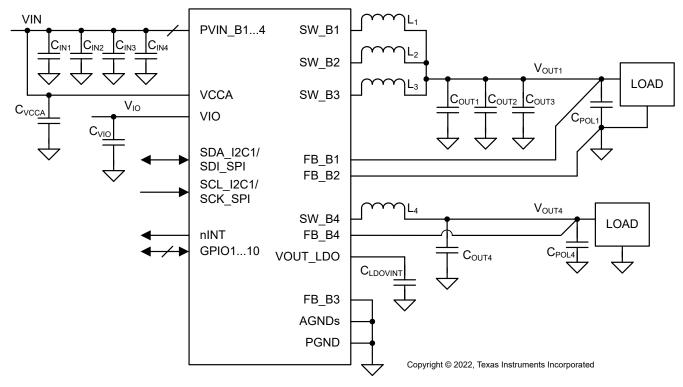


Figure 7-2. 3-Phase and 1-Phase Configuration

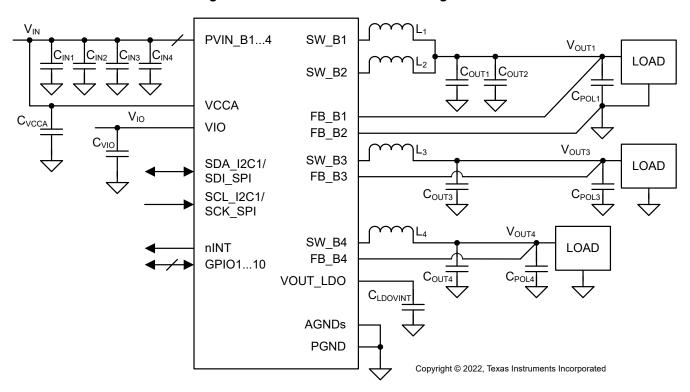


Figure 7-3. 2-Phase and Dual 1-Phase Configuration

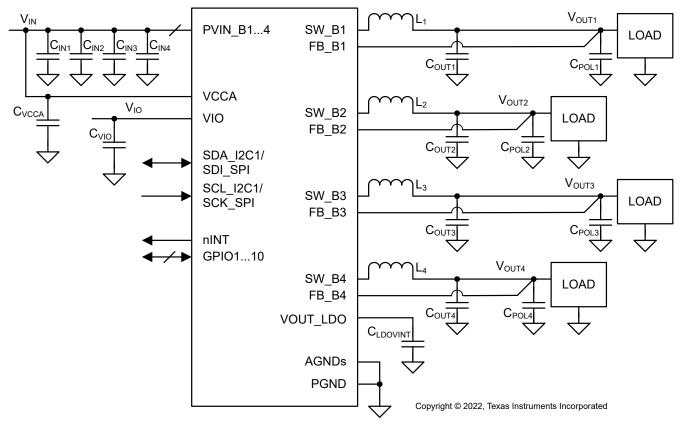


Figure 7-4. Four 1-Phase configuration

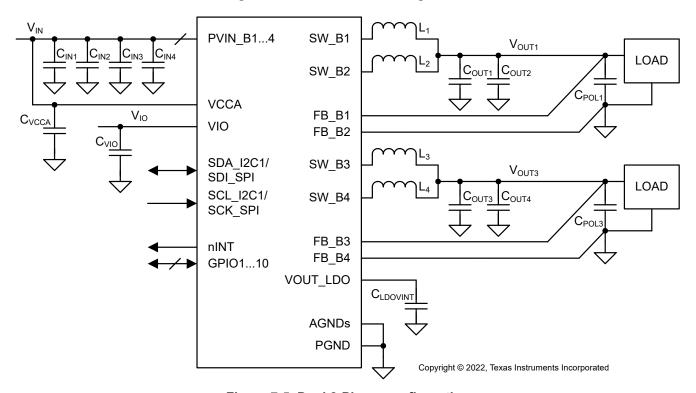


Figure 7-5. Dual 2-Phase configuration

8 Device and Documentation Support

8.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
October 2024	*	Initial release

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: *LP8762-Q1*

10.1 Packaging Option Addendum

Packaging Information

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish ⁽⁴⁾	MSL Peak Temp (3)	Op Temp (°C)	Device Marking ^{(5) (6)}
LP8762PXYYRQKRQ1	ACTIVE	VQFN-HR	RQK	32	3000	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 125	LP8762 PXYY-Q1

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

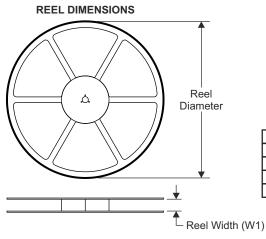
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

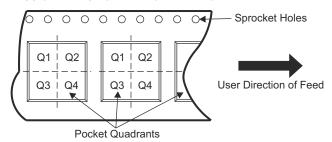
- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- (6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Copyright © 2024 Texas Instruments Incorporated

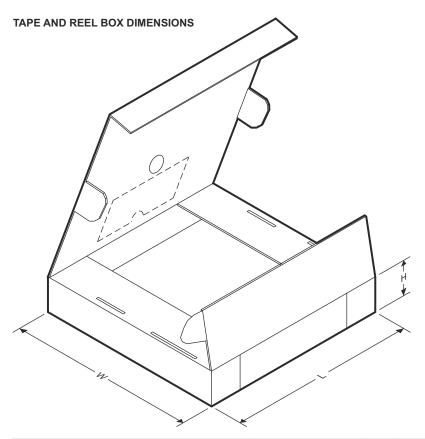
Submit Document Feedback


10.2 Tape and Reel Information

TAPE DIMENSIONS KO P1 BO W Cavity A0

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers
	·

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP8762PXYYRQKRQ1	VQFN-HR	RQK	32	3000	330.0	12.4	5.25	5.75	1.2	8.0	12.0	Q1

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP8762PXYYRQKRQ1	VQFN-HR	RQK	32	3000	346.0	346.0	35.0

PACKAGE OUTLINE

RQK0032A

VQFN-HR - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD 5.1 4.9 Α В 0.1 MIN PIN 1 IDENTIFICATION 5.6 5.4 (0.05) -**SECTION A-A** TYPICAL 1 0.8 С SEATING PLANE 0.08 C 2X 4.125 6X 1.4 1.2 PKG 4X 0.5625 $4X_{0.75}^{0.95}$ - (0.2) TYP 4X 0.575 4X 0.85 0.65 24X 0.5 2.2±0.1 28X 0.3 $\operatorname{PKG} \mathbb{Q}$ 8X 1.3 **⊕** 0.1**M** C A B 0.05**M** C 4X 0.975 -0.7±0.1 $4X_{\,\,0.325}^{\,\,0.425}$ 4X 0.85 0.65

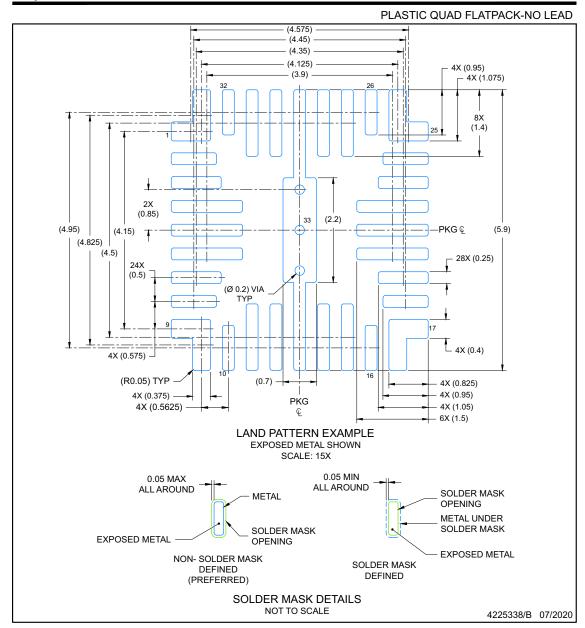
NOTES:

All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
This drawing is subject to change without notice.

0.05(M) C A B

4X 0.625±0.1

PIN 1 ID (OPTIONAL)



4225338/B 07/2020

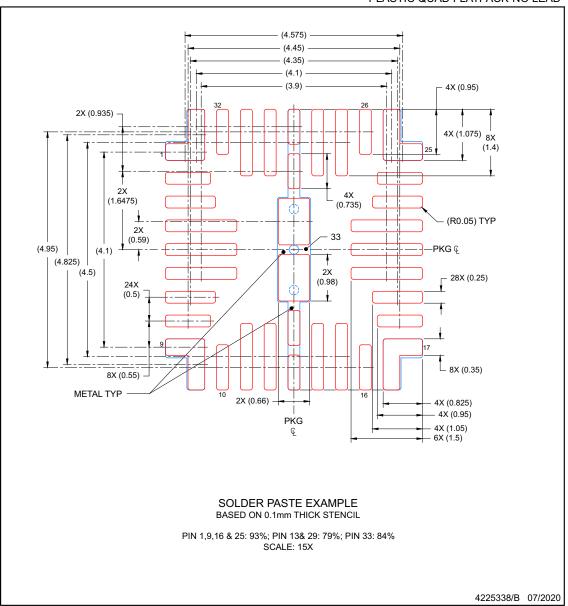
EXAMPLE BOARD LAYOUT

RQK0032A

VQFN-HR - 1 mm max height

NOTES: (continued)

- 3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



EXAMPLE STENCIL DESIGN

RQK0032A

VQFN-HR - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated