
Application Note
Hardware Programming and Debugger Guide for MSPM0

Henry Nguyen

ABSTRACT

This application note describes the debug subsystem, resets of MSPM0, and the differences in the flashctl
between device families. The debug subsystem is an entity that is separate from the M0+ core present in the
MSPM0. Through properly utilizing the debug subsystem in the MSPM0, the user can access the M0+ core in a
low-power state and recover it in cases of misconfiguration since it is separate from the M0+ core. By acquiring
an understanding of the MSPM0's debug subsystem, flashctl, and resets you can achieve an ideal debugging
and programming environment with the MSPM0.

Table of Contents
1 Introduction to the Debug Subsystem and MSPM0...2

1.1 Access Ports of MSPM0.. 2
1.2 Behaviors With the MSPM0 in a Blank/Low-Power State.. 3

2 Proper SWD Initialization Sequence... 3
3 PWR-AP... 3

3.1 Enabling Low-Power Mode Debugging With MSPM0..4
3.2 Modifying the Reset Behavior of MSPM0.. 4
3.3 Register View... 5

4 SEC-AP.. 6
4.1 DSSM Commands..6
4.2 DSSM Flow.. 7
4.3 Register View... 8

5 Understanding Flash in MSPM0.. 9
5.1 Protection of Flash Memory Across MSPM0... 9
5.2 Clearing the STATCMD Register..9
5.3 Ideal Programming Flow for MSPM0... 10

6 The Resets of MSPM0...11
7 Summary..11
8 References...11

List of Figures
Figure 1-1. Debug Sub System Block Diagram... 2
Figure 2-1. MSPM0 SWD Initialization Sequence... 3
Figure 4-1. DSSM Command Flow..7
Figure 5-1. MSPM0 Programming Sequence..10

List of Tables
Table 3-1. DPREC0 Low-Power Mode Configuration Bits... 4
Table 3-2. RST CTL Bit Configurations..4
Table 3-3. PWR-AP Register View...5
Table 4-1. DSSM Command Table.. 6
Table 4-2. SEC-AP Register View..8
Table 5-1. Protection Registers for MSPM0 Flashctl... 9
Table 6-1. Sysctl Reset Registers.. 11

Trademarks
EnergyTrace™ is a trademark of Texas Instruments.
Arm® is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

www.ti.com Table of Contents

SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Hardware Programming and Debugger Guide for MSPM0 1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

All trademarks are the property of their respective owners.
1 Introduction to the Debug Subsystem and MSPM0
The MSPM0 is a low-power MCU that offers a dense feature set at a low cost. To balance the performance and
power consumption of the peripherals, they are separated into two separate power domains 1 known as PD0
and PD1. Peripherals within the PD1 domain consist of the CPU, memories, and high performance peripherals
and PD0 consist of the low speed, low-power peripherals. Upon entering a low-power mode stronger than
SLEEP, PD1 peripherals are disabled to decrease power consumption. This causes the AHB bus to not be
discoverable, however, within the MSPM0 contains a peripheral known as the debug subsystem that allows
the AHB to be discoverable again. By having the debug subsystem separate from the M0+ core, it provides
the debugger or programmer a method of regaining access to the device in scenarios of misconfiguration or
low-power state. Accessing the device while in a low-power state or reconfiguring it into a "known state" is done
through a set of registers known as the access ports. This application note goes in-depth with the SEC-AP and
PWR-AP specifically as they are the vital components for enabling the formerly discussed features. Alongside
the debug subsystem, the flashctl and its different protection scheme between devices families, and unique reset
via the AIRCR is discussed as well.

SEC-AP

Security

SW-DP

Debug Port

R
P

U
R

P
D

SWDIO

SWCLK

VDD

VSS

Wake

Logic

To SYSCTL

Debug Sub System (DEBUGSS)

PWR-AP

Power

CFG-AP

Configuration

AHB-AP

ARM Debug

DSSM

(Mailbox)

Processor bus

PD0 peripheral bus

ET-AP

EnergyTrace

InternalExternal

DBG RST

PWR REQ

DBGEN

CPU IRQ

ARM Debug Access Port Bus Interconnect (DAPBUSIC)

EN

CPU state

From SYSCTL

CPU sub system

debug access

Figure 1-1. Debug Sub System Block Diagram

1.1 Access Ports of MSPM0
MSPM0 devices contain a total of five access ports shown in the Figure 1-1 that the user can directly interface
with using the debug access port (DAP). Each access port has their own unique functionality that provides the
user with the ability of configuring and reading the device outside of the M0+ core.

1.1.1 Advance High-Performance Bus Access Port

Also known as the AHB-AP, this access port provides the user with a bridge from the DAP to the M0+ core that
allows the user to directly interface with the device through direct memory access.

1 For more information on power domains, see the MSPM0L110x Mixed-Signal Microcontrollers Data Sheet.

Introduction to the Debug Subsystem and MSPM0 www.ti.com

2 Hardware Programming and Debugger Guide for MSPM0 SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLASEX5
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

1.1.2 Configuration Access Port

Also known as the CFG-AP, this access port provides the user with device information and its current operation
status.

1.1.3 Security Access Port

Also known as the SEC-AP, this access port provides the user with the ability to communicate to the device
bootcode to erase Flash memory and re-enable access to the device.

1.1.4 EnergyTrace™ Access Port

Also known as the ET-AP, this access port provides the user with the ability to read the power state data.

1.1.5 Power Access Port

Also known as the PWR-AP, this access port provides users with a method of configuring the device power state
and reset behavior.

1.2 Behaviors With the MSPM0 in a Blank/Low-Power State
A consequence of putting an MSPM0 device into a low-power mode greater than SLEEP, is the AHB-AP
becoming undiscoverable. This is due to the AHB being part of PD1. Upon entering DEEPSLEEP (STOP and
STANDBY), PD1 is disabled, preventing the AHB-AP from being discoverable. Besides application code putting
the device into a low-power state, having empty flash also puts the device into STANDBY0.

When the main memory in any MSPM0 device is empty and powered on for ~5-10 seconds, bootcode comes
in and populates SRAM with content and then begins executing from it. The program that populates SRAM puts
the device into STANDBY0 and in turn revokes AHB-AP access. To allow the AHB-AP to become visible again,
the user must utilize the PWR-AP to power the device. Modifying the PWR-AP, seen in Figure 1-1, provides the
user debug access while the CPU stays in a low-power state.

2 Proper SWD Initialization Sequence
MSPM0 uses the Arm® M0+ core, allowing the user to follow the procedure described by Arm to switch the
device from JTAG to SWD.

Upon executing the described sequence by Arm to switch from JTAG to SWD, the Wake Logic unit seen in
sends a wake-up request to the device allowing the IDCODE to be read regardless of any low-power state the
device could be in and for the access ports to be available as well.

It is best practice to have the SWJ-DP state machine in a known state before beginning any operation. Before
going in between states, perform a line reset then begin the SWD to JTAG sequence, this is to ensure the lines
are in reset and have been initialized to a known state. Then perform the line reset and then JTAG to SWD
sequence, upon doing so the Wake Logic unit sends a wake-up signal to the CPU allowing the IDCODE to be
read even when the device is in SHUTDOWN mode. To see what should be done when implementing the SWD
initialization sequence, see the flow chart in Figure 2-1.

Initial State SWD � JTAG JTAG � SWD Delay Read IDCODE

Figure 2-1. MSPM0 SWD Initialization Sequence

3 PWR-AP
The PWR-AP is an access port that contains two registers known as the DPREC0 and SPREC. These registers
can be utilized to enable low-power mode debugging, modify reset behavior, and perform resets externally.

www.ti.com Introduction to the Debug Subsystem and MSPM0

SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Hardware Programming and Debugger Guide for MSPM0 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

3.1 Enabling Low-Power Mode Debugging With MSPM0
MSPM0 contains an access port known as the PWR-AP. It is utilized to re-enable the AHB-AP to regain access
to the M0+ core when the device is in a low-power state.

To access the device and maintain a connection while it is in a low-power state, the user must write a 1 to these
bits. The register view can be seen in Table 3-3.

Table 3-1. DPREC0 Low-Power Mode Configuration Bits
DPREC0 Bit Description

FRC ACT (bit 20) Forces device out of low-power mode

IHIB SLP (bit 3) Does not allow system to go into low-power mode

Writing to the FRC ACT bit forces the device out of the low-power state allowing the AHB-AP to be discoverable
again and writing to IHIB SLP maintains connection to the device even when the CPU has a request to go into
DEEPSLEEP mode. It is mandatory that these bits are enabled when adding support for MSPM0. If FRC ACT
and IHIB SLP are not written to then access to the M0+ while it is in low-power mode is not possible.

3.2 Modifying the Reset Behavior of MSPM0
With the RST CTL bits of the DPREC0 register, it is possible to modify the behavior seen post-reset. Within
Table 3-2 contains all the possible configurations of the RST CTL bits (16:14).

Table 3-2. RST CTL Bit Configurations
RST CTL Mode Bit Configuration
Wait For Debug 001b

Halt On Reset 100b

Default Reset 000b

3.2.1 Wait for Debug

Wait for debug is the most important configuration to implement when adding support for MSPM0 to any
toolchain. Any reset performed upon the device post-configuration will still reset only the peripherals defined
by the reset level, but it will remain in the reset-handler post reset. This is to ensure that the device does not
go back into the application unless the user wishes to continue with application execution. This configuration is
especially useful when flashing a device or debugging an application as it throws the device back into a known
state and halts it.

3.2.2 Halt on Reset

Halt on reset will immediately halt the device upon any form of reset performed on it post-configuration. This
is also useful in a similar manner to wait for debug but it does not force the device to remain halted at the
reset-handler.

3.2.3 INRST Behavior

When the wait for debug sequence is executed, bit 17 within DPREC0 will be set as 1 to indicate it is in wait
for debug mode. To be released from the wait for debug state the user must write a 1 to the INRST bit to be
released from the wait for debug state.

PWR-AP www.ti.com

4 Hardware Programming and Debugger Guide for MSPM0 SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

3.3 Register View
Table 3-3. PWR-AP Register View

APS
EL

AP-
NA
ME

ADD
R

BAN
K

IND
EX

REG
-NA
ME

BIT
31

BIT
30

BIT
29

BIT
28

BIT
27

BIT
26

BIT
25

BIT
24

BIT
23

BIT
22

BIT
21

BIT
20

BIT
19

BIT
18

BIT
17

BIT
16

BIT
15

BIT
14

BIT
13

BIT
12

BIT
11

BIT
10

BIT
9

BIT
8

BIT
7

BIT
6

BIT
5

BIT
4

BIT
3

BIT
2

BIT
1

BIT
0

4 PW
R

0x00 0 0 DPR
EC0

Reserved IHIB
SLP

Reserved IN
RST

RST CTL Reserved FRC
ACT

Reserved

0xF0 15 0 SPR
EC

Reserved SYS
RST

0xF
C

15 3 IDR Access point ID

www.ti.com PWR-AP

SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Hardware Programming and Debugger Guide for MSPM0 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

4 SEC-AP
When a user misconfigures their clock, disable debug access via nonmain 2, or program incorrect values
into the CRC registers of nonmain, this disables access to the MSPM0. An understanding of the SEC-AP is
vital when adding support for MSPM0 as it is utilized for device recovery in cases of peripheral or nonmain
misconfiguration. Previously said recovery is done by sending a Debug Sub-System Mailbox (DSSM) command
into the mailbox and then executing it by performing a BOOTRST. It is also possible to unlock debug access in
the scenario that it is disabled with or without a password while debug port access is still enabled.

4.1 DSSM Commands
When sending a DSSM command to the mailbox, it is serviced by the bootcode that begins executing upon
performing a BOOTRST and only a BOOTRST. If a BOR or POR is executed while a DSSM command is in
the mailbox it will be wiped out and not serviced as the reset levels will power cycle the power domains. It is
important to note that if a password is enabled for any DSSM command, it will not fully execute the command
until the password sequence has been fully executed. Once the command has been sent to the mailbox, the
user then has a window of two seconds to send the password that matches the password set within nonmain.
If successful only then the command will be fully processed. For all possible DSSM commands 3, see the Table
4-1. For the flow when implementing support for the DSSM commands and the register view, see Table 4-2.

Table 4-1. DSSM Command Table
DSSM Command DSSM Value

Factory Reset 0x020Ah

Mass Erase 0x020Ch

Password Authentication 0x030Eh

Data Exchange 0x00EEh

Wait For Debug 0x0206h

4.1.1 Factory Reset

When the value for the "Factory Reset" command is sent to the mailbox and processed. All content within the
main and nonmain memory will be wiped out, then nonmain will be re-populated with its default content.

This command is useful in the cases of:

• Nonmain misconfiguration that is not too severe.
• Disabled debug access.
• Peripheral/device misconfiguration (for example, overclocked PLL, non-serviced wwdt, or double hard-fault).

4.1.2 Mass Erase

When the value for the "Mass Erase" command is sent to the mailbox and processed. All content within the main
memory will be wiped out and nonmain remains untouched

Similar to factory reset this command is useful in the case of:

• Peripheral/device misconfiguration (for example, overclocked PLL, non-serviced wwdt, or double hard-fault).

4.1.3 Password Authentication

When the value for the "Password Authentication" command is sent to the mailbox and processed. Only after the
password has been processed, debug access will be unlocked.

4.1.4 Data Exchange

Data exchange is the only DSSM command that does not require a reset to process the command. If the
scenario (e.g factory reset, mass erase, or password authentication) requires a password. After sending the
command to the mailbox and performing a reset, the user must begin sending the password to the TXDATA
register. After each word 0x00EEh must be written to the TXCTL register.

2 For more information about nonmain, see the MSPM0 G-Series 80-MHz Microcontrollers Technical Reference Manual.
3 Mass erase, password authentication, and data exchange cannot be executed by the MSPM0C and MSPS device families.

SEC-AP www.ti.com

6 Hardware Programming and Debugger Guide for MSPM0 SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU846
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

4.1.5 Wait for Debug

When the command for the "Wait for Debug" command is sent to the mailbox and processed. Similar to wait for
debug described previously in Section 3.2, it resets the peripherals defined by the reset level and then forces the
device into the reset handler. However, when performing the wait for debug sequence via the mailbox, it requires
the INRST bit to be cleared after executing the command to fully execute the command the command.

4.1.6 Custom DSSM Command

It is also possible for the user to create their own DSSM command and have it perform actions defined by the
user. This can be done by having the debugger communicate to the M0+ core through the TXDATA and TXCTL.
The core can then receive messages from the debugger and send responses back by using the RXDATA and
RXCTL registers for the debugger to read. It is also possible to configure CPU interrupt events for activity seen
in the TX_DATA buffer, RX_DATA buffer, and DAP connection.

4.2 DSSM Flow

DSSM Command

RXCTL & RXDATAAVAIL?

Send Command:

TXCTL = command

TXDATA = 0

Force reset to run

BootCode

0

1

Response OK?

N

Password?

N

Exit OK

DATAn = 1
st
 word

Send Data:

TXDATA = DATAn

TXCTL = DATA_EXCHANGE

(0x00EEU)

TXCTL & TXDATAAVAIL?
1

4 words sent?

0

DATAn++
N

Y Y

Error

Figure 4-1. DSSM Command Flow

www.ti.com SEC-AP

SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Hardware Programming and Debugger Guide for MSPM0 7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

4.3 Register View
Table 4-2. SEC-AP Register View

AP
SE
L

AP
-N
AM
E

AD
DR

BA
NK

IN
DE
X

RE
G-
NA
ME

BIT
31

BIT
30

BIT
29

BIT
28

BIT
27

BIT
26

BIT
25

BIT
24

BIT
23

BIT
22

BIT
21

BIT
20

BIT
19

BIT
18

BIT
17

BIT
16

BIT
15

BIT
14

BIT
13

BIT
12

BIT
11

BIT
10

BIT
9

BIT
8

BIT
7

BIT
6

BIT
5

BIT
4

BIT
3

BIT
2

BIT
1

BIT
0

2 SE
C

0x0
0

0 0 TX
DA
TA

TX DATA

0x0
4

0 1 TX
CT
L

TX CONTROL TX
VL
D

0x0
8

0 2 RX
DA
TA

RX DATA

0x0
C

0 3 RX
CT
L

RESERVED RX CONTROL RX
VL
D

0xF
C

15 3 ID
R

Access point ID

SEC-AP www.ti.com

8 Hardware Programming and Debugger Guide for MSPM0 SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

5 Understanding Flash in MSPM0
Memory within MSPM0 devices are organized into banks, with each bank of memory containing sectors of
memory that are 1kB each in size. With certain variants of MSPM0 they can contain several banks of memory
as well. This is important to understand when implementing the programming algorithm for flash of MSPM0 4,
as it is vital that the nuances between devices are well understood. It is also important to isolate any flash
operation between different memory spaces such as the nonmain and main memory into their own programming
operation. This section of the application note goes into further details on how to handle flash across the MSPM0
family in regular debugging to production environment.

5.1 Protection of Flash Memory Across MSPM0
In all regions of Flash memory in MSPM0, they will have a protection register known as CMDWEPROTx. They
are dynamic registers that will unprotect sectors of memory according to which bit the user sets to zero. The
memory remains unprotected until the user performs a flash operation. Upon performing any flash operation,
the CMDWEPROTx register used automatically re-protects the memory by setting all bits back to one. Table 5-1
shows the protection registers used for all devices.

Table 5-1. Protection Registers for MSPM0 Flashctl
CMDWEPROTx

Register
MSPM0L11XX /
MSPM0L13XX

MSPM0G1X0X /
MSPM0G3X0X

MSPM0C110X /
MSPS003FX

MSPM0L122X /
MSPM0L222X

All Future MSPM0
SOCs

CMDWEPROTA x x x x

CMDWEPROTB x x x x

CMDWEPROTNM x x x x x

5.2 Clearing the STATCMD Register
As the MSPM0 device family expands with newer SOCs, the best practice when adding support for flash
evolves as well. With all variants of the MSPM0, it is best practice to clear the STATCMD register before any
flash operation is performed. The register is cleared by writing the clear status command (0x00000005h) to
the CMDTYPE register and then executing it. Upon execution of the command, any previous content in the
STATCMD register will be cleared. It is important to note that clearing the STATCMD register will also reset the
CMDWEPROTx registers previously discussed.

An example of clearing the STATCMD register when attempting to perform a sector erase can be seen in the
following steps:

1. Write the clear status (0x00000005h) command to the CMDTYPE register.
2. Execute the command by writing the execute key (0x00000001h) to the CMDEXEC register.
3. Poll for completion by checking the STATCMD register.

a. Upon completion STATCMD will be empty.
4. Unprotect the sector of memory by setting the desired bit within CMDWEPROTx to zero.
5. Set the CMDTYPE register perform an erase that is a sector in size (0x00000042h).
6. Set the CMDADDR register equal to the desired address of operation.
7. Execute the command by writing the execute key (0x00000001h) to the CMDEXEC register.
8. Poll for completion by checking the STATCMD register.

4 For a broader understanding of the flashctl and SDK for example code, see an MSPM0.

www.ti.com Understanding Flash in MSPM0

SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Hardware Programming and Debugger Guide for MSPM0 9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

5.3 Ideal Programming Flow for MSPM0
When creating the flashloader for any MSPM0 device, it is always vital that the flash algorithm performs
modifications of each memory region separately. For example, if the user's application contains content for both
the main and nonmain memory. Then the tool must take care of erasing and programming each memory region
separately. This is to limit the exposure of the nonmain region as much as possible from other factors such as
noise. Due to all the security configuration living within the region of nonmain memory, these cautions must be
taken when attempting to modify it. For the ideal flow when programming, see Figure 5-1.

Connect to M0

Erase MAIN

Memory

Program MAIN

Memory

Program

NONMAIN?

Yes

Erase NONMAIN

Program NONMAIN

Verify Content Fail Erase NONMAIN

Pass

Program Default

NONMAIN Content

No Verify Content

Pass

Fail
Erase MAIN

Memory

Report Success

Report Success

Report Success

Report Success

Figure 5-1. MSPM0 Programming Sequence

Understanding Flash in MSPM0 www.ti.com

10 Hardware Programming and Debugger Guide for MSPM0 SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

6 The Resets of MSPM0
Understanding the unique implementation of resets within MSPM0 is important when adding support. When
performing a reset via the AIRCR it performs a reset only on the CPU and no other peripherals. To perform a
system reset, it is best to utilize the SYSCTL module to execute the reset. This is done by using the Table 6-1
and following these steps:

1. Write the system level reset (0x00000000h) to the Reset Level register. This is the value for system reset.
2. Write the reset key (0xE4000001h) to the Reset Command register to execute the reset.

Adding support for is to ensure that the device is able to exit the bootcode after being empty for any period of
time. It is also possible to perform a system reset externally by writing to the SYS RST bit of the SPREC inside
the PWR-AP. The system reset performed by the SPREC is lower than a system reset via SYSCTL but higher
than a CPU reset.

Table 6-1. Sysctl Reset Registers
Register Address

Reset Level 0x400B0300h

Reset Command 0x400B0304h

7 Summary
This application note provides an introduction to the debug subsystem, flashctl, and the unique resets of
MSPM0. Through the understanding provided by the document any third-party can easily pick up MSPM0 and
implement a robust solution to their toolchain. This ensures the customer experience with the tool is as ideal as
possible.

8 References
• Texas Instruments: MSPM0L110x Mixed-Signal Microcontrollers Data Sheet
• Texas Instruments: MSPM0 G-Series 80-MHz Microcontrollers Technical Reference Manual

www.ti.com The Resets of MSPM0

SLAAEO5 – SEPTEMBER 2024
Submit Document Feedback

Hardware Programming and Debugger Guide for MSPM0 11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLASEX5
https://www.ti.com/lit/pdf/SLAU846
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEO5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEO5&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction to the Debug Subsystem and MSPM0
	1.1 Access Ports of MSPM0
	1.1.1 Advance High-Performance Bus Access Port
	1.1.2 Configuration Access Port
	1.1.3 Security Access Port
	1.1.4 EnergyTrace™ Access Port
	1.1.5 Power Access Port

	1.2 Behaviors With the MSPM0 in a Blank/Low-Power State

	2 Proper SWD Initialization Sequence
	3 PWR-AP
	3.1 Enabling Low-Power Mode Debugging With MSPM0
	3.2 Modifying the Reset Behavior of MSPM0
	3.2.1 Wait for Debug
	3.2.2 Halt on Reset
	3.2.3 INRST Behavior

	3.3 Register View

	4 SEC-AP
	4.1 DSSM Commands
	4.1.1 Factory Reset
	4.1.2 Mass Erase
	4.1.3 Password Authentication
	4.1.4 Data Exchange
	4.1.5 Wait for Debug
	4.1.6 Custom DSSM Command

	4.2 DSSM Flow
	4.3 Register View

	5 Understanding Flash in MSPM0
	5.1 Protection of Flash Memory Across MSPM0
	5.2 Clearing the STATCMD Register
	5.3 Ideal Programming Flow for MSPM0

	6 The Resets of MSPM0
	7 Summary
	8 References

