
Application Note
How to Charge a Smart Battery Using MCU in Between to
Translate SMBus or I2C

Jibin Biju

ABSTRACT

When creating a Battery Management System (BMS), and the charger and gauge uses different communication
protocols, such as Inter-Integrated Circuit (I2C) and System Management Bus (SMBus), the microcontroller unit
(MCU) needs to interface between chargers and gauges, or needs a system that has different communication
protocols for each device. This application note illustrates the use of MCU for a Smart Battery System (SBS)
where the MCU polls the SMBus gauge, translates the received data to be compatible with the I2C charger
(based on I2C specifications), and transmits to the I2C charger.

Table of Contents
1 Introduction...2
2 The Role of MCU in Smart Battery System...2
3 Application Example Using BQ25750, BQ40z80, and MSPM0L1306... 3

3.1 Gauge Setup.. 3
3.2 Charger Setup..4
3.3 MCU Setup...6
3.4 Communication Protocol.. 6
3.5 MCU Code Example.. 7
3.6 Data Collected..10

4 Summary... 12
5 References.. 12

List of Figures
Figure 2-1. Conventional Battery Management System Configuration..2
Figure 3-1. Charging Profile Using Advanced Charging Algorithm..3
Figure 3-2. Typical Application Block Diagram of the BQ25750.. 4
Figure 3-3. Resistor Divider Setting Feedback Voltage... 5
Figure 3-4. Typical Application block diagram of the MSPM0L1306... 6
Figure 3-5. Code Example For Polling ChargingVoltage()...7
Figure 3-6. SMBus function call for ChargingCurrent()..8
Figure 3-7. Converting ChargingCurrent() Before Transmission To Charger.. 8
Figure 3-8. Transmission of Data To The Charger Through I2C.. 9
Figure 3-9. Converting ChargingVoltage() Before Transmission To Charger.. 10
Figure 3-10. Transmission of Gauge Data to MCU through SMBus..10
Figure 3-11. Transmission of Charger Data from MCU through I2C.. 10
Figure 3-12. Charging Profile Using the MCU..11

List of Tables
Table 3-1. Simplified Gauge Settings...3
Table 3-2. Charging Current Register Settings in BQ25750.. 5
Table 3-3. Charging Voltage Register Settings in BQ25750.. 5

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLUAAX5 – AUGUST 2024
Submit Document Feedback

How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

1 Introduction
The SBS specifications are a set of standards that allow the system host to interface between Smart Battery
Chargers, Smart Batteries, and other SMBus devices through the SMBus interface. The SBS has a set of
features such as error detection, error signaling, and pre-defined commands from the System Management
Specifications. These pre-defined commands are standardized functions that either read or write a 2-byte word
with a minimum accuracy, range, granularity, and an invalid detection indication. These features and other
specifications have to be met to be SBS compliant.

For this application note, the SBS specifications of interest are the charging voltage and current registers.
The gauge is required to transmit ChargingVoltage() and ChargingCurrent() to the 0x15 and 0x14 commands
respectively. The SBS Specification states the ChargingVoltage() data range is from 0 to 65,534 mV in
voltage regulation while there is a good power supply attached. The ChargingCurrent() has the data range
from 0 to 65,534 mA. For more information on exceptions, refer to the ChargingCurrent() (0x14) section and
ChargingVoltage() (0x15) section of the SBS Specification.
2 The Role of MCU in Smart Battery System
The MCU allows SBS capabilities to be expanded where the MCU can configure advanced features of chargers.
The MCU can translate between different communication protocols of components, allowing different SBS
configurations to work regardless of communication compatibilities of individual devices. The MCU can also
allow the user to implement charging algorithms beyond what is offered by chargers and smart battery packs.
For most BMS systems, having an MCU act as the controller provides ease of use, more flexibility, more control,
and facilitate troubleshooting.

The MCU for Smart Battery BMS system receives information from the gauge and transmits that data to the
charger, or performs data modifications based on system need before transmission to the charger. In SBS, there
is a broadcast mode where the gauge can transmit data to the charger without a host. In broadcast mode, the
gauge transmits ChargingVoltage(), CharingCurrent(), and AlarmWarning() to the charger, but this is not always
an option if there is a difference in communication protocols between charger and gauge. As a result, translation
of the gauge data based on the communication protocol and charger properties is necessary. For this application
note, the MCU polls the gauge to read ChargingVoltage() and ChargingCurrent(). Before translating from SMBus
to I2C, translation of gauge data is then performed by the MCU. Finally, the MCU transmits data to program the
charger by I2C.

Battery Gauge

Battery Charger

PACK+

PACK-

BAT

GND

GND

SYS

Power

Supply GND

VBUS System

Load

SDA

GND

SCL

SMBDGND SMBC

1N

1P

2P

3P

5P

V_PULL_UP

MCU SMBC

SMBD

GND

6P

4P

SCL

SDA

V_PULL_UP

P
u
ll-

U
p
1

P
u
ll-

U
p
1

Pull-Up2

Pull-Up2

Figure 2-1. Conventional Battery Management System Configuration

Introduction www.ti.com

2 How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

SLUAAX5 – AUGUST 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://sbs-forum.org/specs/sbc110.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

3 Application Example Using BQ25750, BQ40z80, and MSPM0L1306
The gauge and charger are set up as per the data sheets. Gauge parameters such as charging currents,
charging voltages, and temperatures ranges have been changed. The only charger parameter changed was
feedback voltage (based on the MCU algorithm).

3.1 Gauge Setup
The gauge was set up such that using advanced charging algorithm and that the charging profile is similar to
Figure 3-1.

Changes based on T1-T6

Low Voltage Medium Voltage High Voltage
Pre-charge

CC CV

Charge Termination

C
u
rr

e
n
t

V
o
lt
a
g
e

Figure 3-1. Charging Profile Using Advanced Charging Algorithm

The thresholds for each parameter within constant current (CC) mode, constant voltage (CV), and pre-charge
can be modified following The Advanced Charge Algorithm Application Report. The parameters for this example
were chosen for the sole purpose of clear transitions in the charging profile. The gauge is connected to a 6S4P
Li-on battery.

Although BQ40z80 offers much more options, these are the simplified settings relevant for the application note
and validate the charging profile. These settings are for each cell in the pack; there is another setting for the
number of cells in series is programmed.

Table 3-1. Simplified Gauge Settings
Standard High Temp Charging Value Units

Max charge voltage 4100 mV

Low voltage threshold 2900 mV

Medium voltage threshold 3600 mV

High voltage threshold 3900 mV

Current at low voltage 1750 mA

Current at medium voltage 2250 mA

Current at high voltage 2100 mA

Termination current 300 mA

www.ti.com Application Example Using BQ25750, BQ40z80, and MSPM0L1306

SLUAAX5 – AUGUST 2024
Submit Document Feedback

How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/an/slua875/slua875.pdf?ts=1720819735719
https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

3.2 Charger Setup

ICHG

CSYS

BATTERY

+

ACP

BATDRV

SRP

SRN

HIDRV2
LODRV2

HIDRV1
LODRV1

ACDRV

DRV_SUP

PGND

BTST1 BTST2

FSW_SYNC

VAC

ACN

SW1 SW2

BATSRC

SYS

ACUV

REGN

TS

STAT1

PG

INT

SCL

CE

SDA

PGND AGND

FB

ILIM_HIZ

STAT2
BQ25750

ACOV

REGN

Q1 Q2

Q3

Q4

Q5

Q6 Q7

Q8

47nF 47nF

2m�

5m�

1000k�

22.5k�

250k�

RBOTTOM

13.3k� 5.24k�

30.31k�

3.3k�

4.2k	

80k

L1

RAC_SNS

RBAT_SNS

DRV_SUP DRV_SUP

2�

2.2µF

80µF

80µF

Host

4.7µF

BUCK
SYS 5V – 10V

10� 10

2x 100nF

10�

10�

2x 100nF

470nF

470nF

Figure 3-2. Typical Application Block Diagram of the BQ25750

TI provides a wide portfolio of chargers which are I2C only, and SMBus only. Table 3-2 is the typical application
of using the BQ25750 which is an I2C based charger. For this application note, the only configuration changed
from the above-mentioned block diagram is the bottom resistor (RBOTTOM) of the voltage divider that determines
the feedback voltage. The feedback voltage is then scaled to determine the desired battery regulation voltage.
The resistor divider must be chosen such that the divider covers the different ranges of charging voltage
requested from the gauge. In BQ25750, the resistor divider first sets the desired target battery voltage and then
feedback voltage can be changed (through register 0x00).

For this example, the range of charging voltages from the gauge is 6×Voltage at different temperature ranges
per cell. Depending on the temperature ranges, the low voltage, medium voltage, high voltage, and max charge
voltage changes (set by user). Using the value in Table 3-1, users can determine the highest requested charging
voltage is 6×4.1 V. After determining the range of charging voltage of the gauge, 16.7kΩ resistor is chosen for
RBOTTOM to cover 23.97V to 24.96V (3.995/cell to 4.16/cell) following the BQ25756 Design Calculator. If the
range requested by the gauge is below the minimum value, then set to the lowest feedback voltage by the MCU.
For more information on the BQ25750 or other charger setup and configuration, refer to the data sheet and user
guide.

The charging current must be written to the Charge_Current_Limit 16 bit register at 0x02 address. The register
has a range from 400mA-20000mA, the bitstep of 50mA, and only 9 bits out of the 16 bits are read by the
charger to represent the charging current (only bits 10:2, the rest of the bits are reserved). See the Charge
Charge_Current_Limit register section of the BQ25750: Standalone/I2C Controlled, 1- to 14-Cell Bidirectional

Application Example Using BQ25750, BQ40z80, and MSPM0L1306 www.ti.com

4 How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

SLUAAX5 – AUGUST 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/download/BQ25756-DESIGN-CALC/V01X
https://www.ti.com/lit/gpn/bq25750
https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

Buck-Boost Battery Charge Controller with Direct Power Path Control data sheet for more information on the
details and refer to Section 3.5 for the exact formatting of the charging current.

Table 3-2. Charging Current Register Settings in BQ25750
Bit Field Type Reset Notes Description

15:11 RESERVED R 0x0 Reserved

10:2 ICHG_REG R/W 0x190
Reset by:

REG_RESET
WATCHDOG

Fast Charge Current Regulation Limit with 5mΩ
RBAT_SNS:
Actual charge current is the lower of ICHG_REG and ICHG pin
POR: 20000mA (190h)
Range: 400mA-20000mA (8h-190h)
Clamped Low
Clamped High
Bit Step: 50mA

The charging voltage must be written to the Charge_Voltage_Limit 16 bit register at 0x00 address. The register
has a range from 1504mV-1566mV, the offset of 1504mV, the bit step of 2mV, and the only the last 5 bits are
read by the charger to represent the charging voltage. See the Charge Charge_Voltage_Limit register section of
the BQ25750: Standalone/I2C Controlled, 1- to 14-Cell Bidirectional Buck-Boost Battery Charge Controller with
Direct Power Path Control data sheet for more information on the details and refer to Section 3.5 for the exact
formatting of the charging voltage.

Table 3-3. Charging Voltage Register Settings in BQ25750
Bit Field Type Reset Notes Description

15:5 RESERVED R 0x0 Reserved

4:2 VFB_REG R/W 0x10 Reset by:
REG_RESET

FB voltage regulation limit:
POR: 1536mV (10h)
Range: 1504mV-1566mV (0h-1Fh)
Bit Step: 2mV
Offset: 1054mV

Figure 3-3. Resistor Divider Setting Feedback Voltage

Note
The charge voltage written to the register is the feedback voltage. The battery regulation voltage is the
set by feedback voltage divided by the resistor divider.

VBAT = FB × RBOTTOM+ R28RBOTTOM (1)

www.ti.com Application Example Using BQ25750, BQ40z80, and MSPM0L1306

SLUAAX5 – AUGUST 2024
Submit Document Feedback

How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/gpn/bq25750
https://www.ti.com/lit/gpn/bq25750
https://www.ti.com/lit/gpn/bq25750
https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

3.3 MCU Setup

0.1 �F10 �F

1.62 - 3.6 V

ROSC

100 k�

±0.1% ±25ppm

10nF

0.47 �F

VDD

VSS

VCORE

MSPM0 MCU

4
7
 k

�

SWDIO

SWCLK

Debug interface

5V-tolerant open

drain pins Pull-

up resistors are

required for

output high

Debug tool

P
U

2

P
U

2

PA2/ROSC

The NRST pullup

resistor and capacitor

are optional, but

NRST must be pulled

high to VDD for the

device to start.

P
U

1

P
U

1

PA16 (I2C)

PA15 (I2C)

PA0 (SMBus)

PA1 (SMBus)NRSTNRST

3.3V

Figure 3-4. Typical Application block diagram of the MSPM0L1306

The block diagram shown above is the typical application of using the MSPM0L1306. For this application note,
PA0, PA1, PA15 and P16 were used as I2C and SMBus lines. Those ports have to be configured either through
sysconfig file provided by TI or manually defining before compile time. The clock speeds for both were 100kHz.

To verify normal operation of MCU, refer to the MSPM0L1306 LaunchPad Development Kit (LP‑MSPM0L1306)
user's guide. TI has an extensive device driver library with multiple examples and use cases for different
communication protocols. TI also provides an integrated development environment (IDE) to develop and debug
code for the MCU, available through the cloud and on desktops. Applications using TI’s MSP MCU can leverage
SMBus library and I2C library to interface with multiple devices with only the device addresses.

Once data can be transmitted and received by the MCU through TI’s function calls, the MCU has to translate
such that the data can be sent through different communication protocols. Code executed on the MCU has to
be mindful of the endianness of the data, and scaling of data based on the device properties (reserved bits in
registers, bit step, and range). The functionality of the MCU can also be scaled to more than translating between
communication protocols with the help of TI's extensive library and products.

3.4 Communication Protocol
Using the register bit definitions outlined in the data sheet of the charger, the charge current and voltage
writes can be verified using a logic analyzer or oscilloscope. For the BQ40Z80 and other SMBus devices, the
communications in broadcast mode can be Packet Error Checking (PEC) enabled with the SBS configuration
[CPE] bit. If both SBS configuration [HPE] and SBS configuration [CPE] are disabled, then the gauge does not
transmit a PEC byte during any communication. The current and voltage are transmitted from the gauge in little
endian, so the format of transmission is the following when the SBS configuration [CPE] bit is set:

Target address (write) -> SMBus Command-> Least significant byte -> Most significant byte -> PEC Byte.

For the I2C-based system, the package structure is the same, except the PEC byte is not used for I2C-based
systems as there is no PEC enable options for the BQ25750 and no command (rather a register address).

Target address (write) -> Register Address-> Least significant byte -> Most significant byte.

I2C requires a register address whereas SMBus requires an SMBus command that implicitly addresses the
correct registers. For multiple byte reads and writes, the SMBus requires the byte count to be transmitted (from
target for reads and from host for writes) while I2C only requires the register address and data is transmitted
or received (dependent on the read or write bit) until the stop condition. If the device has an 8-bit address and
uses TI functions to read and write in I2C or SMbus, then a right shift by one needs to be performed. For more
differences such as the clock speeds, data hold times, and DC specifications, refer to the SMBus Compatibility
with an I2C Device Application Report.

Application Example Using BQ25750, BQ40z80, and MSPM0L1306 www.ti.com

6 How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

SLUAAX5 – AUGUST 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slau869
https://www.ti.com/lit/an/sloa132/sloa132.pdf
https://www.ti.com/lit/an/sloa132/sloa132.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

3.5 MCU Code Example
The code for the MCU to poll the gauge for ChargingVoltage() is shown below.

while(1)

 {

 //Checking for the Charging voltage from the Gauge

ret = SMBus_controllerReadByteWord(&sSMBController,// SMB struct

 TARGET_ADDRESS, // Target Addr

 0x15,//SMB Command for charging voltage

 voltage, // ResponsePtr

 2); // 2 bytes expected

 RXExpected = true; // Response expected

 if(ret == SMBUS_RET_OK) //error checking

 {

 // If the command was sent to target, wait for completion

 if(SMBus_controllerWaitUntilDone (&sSMBController,

 DEMO_TIMEOUT) != SMBUS_RET_OK)

 {

 ret = DEMO_TIMEOUT_ERROR;

 //Timeout detected in App but not by SCL line, restart interface

 SMBus_controllerReset(&sSMBController);

 }

 else

 {

 ret = sSMBState;

 }

 // If we are waiting for a response, check if we got it

 if((ret == SMBus_State_OK) && (RXExpected == true))

 {

 // Get the length of payload for response

 RespLen = SMBus_getRxPayloadAvailable(&sSMBController);

 if(RespLen >= 1)

 {

 ret = DEMO_NO_ERROR_DATA_AVAIL; // Data Received OK

 }

 else

 {

 ret = DEMO_RX_ERROR; // RX Data size Error

 }

 }

 }

 sSMBController.status.u8byte = 0x00; // repeated for ChargingCurrent()

Figure 3-5. Code Example For Polling ChargingVoltage()

www.ti.com Application Example Using BQ25750, BQ40z80, and MSPM0L1306

SLUAAX5 – AUGUST 2024
Submit Document Feedback

How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

From TI’s SMBus Library, a predefined function is called to communicate with the gauge through SMBus. The
target address is the device address, and the result of the request is stored in the voltage array. The same
sequence is repeated for the ChargingCurrent() where the SMBus command is 0x14.

//Checking for the Charging current from the Gauge

ret = SMBus_controllerReadByteWord(&sSMBController,// SMB struct

 TARGET_ADDRESS, // Target Addr

 0x14,//SMB Command for charging current

 voltage, // ResponsePtr

 2); // 2 bytes expected

Figure 3-6. SMBus function call for ChargingCurrent()

The code to translate ChargingCurrent () is such to be compatible with the charger.

//the ChargingCurrent() data is received in little endian

Chr_current [0] = (current[1]<<8) | current[0];

 if(Chr_current [0] < 400){

 //send 400mA to charger using I2C

 c = 400 ; //default is 400mA, when charging current is < 400mA

 uint32_t mask = 0x07FC;

 c = (c<<2) & mask; //ensures correct formatting

}

else {

 //Convert charge current to 50 mA

 c = Chr_current[0] / 50 ; //the bit step is 50mA

 uint32_t mask = 0x07FC;

 c = (c<<2) & mask; //ensures correct formatting
}

Figure 3-7. Converting ChargingCurrent() Before Transmission To Charger

Application Example Using BQ25750, BQ40z80, and MSPM0L1306 www.ti.com

8 How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

SLUAAX5 – AUGUST 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

From TI’s I2C Library, a predefined function is called to communicate with the charger through I2C. The
endianness of the data must be considered during transmission. The I2C_TARGET_ADDRESS is the charger
address shown below.

//send c to charger using I2C, send it in little endian

 /* Data sent to the Target */

 uint8_t gTxPacket[I2C_TX_PACKET_SIZE] = {

 0x02, (c & 0xFF), ((c>>8) & 0xFF)};//the charge current register address

 is 0x02

 /*

 * Fill FIFO with data. This example will send a MAX of 8 bytes since it

 * doesn't handle the case where FIFO is full

 */

 DL_I2C_fillControllerTXFIFO(I2C_INST, &gTxPacket[0], I2C_TX_PACKET_SIZE);

 /* Wait for I2C to be Idle */

while (!(DL_I2C_getControllerStatus(I2C_INST) &

DL_I2C_CONTROLLER_STATUS_IDLE));

 /* Send the packet to the controller.

 * This function will send Start + Stop automatically.

 */

 DL_I2C_startControllerTransfer(I2C_INST, I2C_TARGET_ADDRESS,

 DL_I2C_CONTROLLER_DIRECTION_TX, I2C_TX_PACKET_SIZE);

 /* Poll until the Controller writes all bytes */

 while (DL_I2C_getControllerStatus(I2C_INST) &

DL_I2C_CONTROLLER_STATUS_BUSY_BUS)

;

 /* Trap if there was an error */

 if (DL_I2C_getControllerStatus(I2C_INST) &

 DL_I2C_CONTROLLER_STATUS_ERROR) {

 /* LED will remain high if there is an error */

 __BKPT(0);

 }

 /* Wait for I2C to be Idle */

 while (!(

 DL_I2C_getControllerStatus(I2C_INST) &

 DL_I2C_CONTROLLER_STATUS_IDLE));

 /* Add delay between transfers */

 delay_cycles(1000);

Figure 3-8. Transmission of Data To The Charger Through I2C

www.ti.com Application Example Using BQ25750, BQ40z80, and MSPM0L1306

SLUAAX5 – AUGUST 2024
Submit Document Feedback

How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

The code to translate ChargingVoltage() is such to be compatible with the charger.

//the ChargingVoltage() data is received in little endian

Chr_voltage [0] = (voltage[1]<<8) | voltage[0];

//From the application note

float R_div = 0.06285284;

uint32_t FB = ((float) Chr_voltage[0]) * R_div;

if (FB<1504) {

 //set FB to min

 FB = 1504;

 //send FB to charger using I2C

 /* Data sent to the Target */

 uint8_t gTxPacket[I2C_TX_PACKET_SIZE] = {

0x00, (FB & 0xFF),((FB>>8) & 0xFF)}; //the charge voltage register address is 0x0

}

 else {

 uint32_t v = FB;

 v -= 1504; // this is the offset

 v /=2; //the bit step is 2mV

 uint32_t mask = 0x001F;
 v = v & mask;

 //send v to charger using I2C

 /* Data sent to the Target */

 uint8_t gTxPacket[I2C_TX_PACKET_SIZE] = {

0x00, (v & 0xFF), ((v>>8) & 0xFF)}; //the charge voltage register address is 0x0
}

Figure 3-9. Converting ChargingVoltage() Before Transmission To Charger

Then, the same TI function shown in Figure 3-8 is called to communicate with the charger.

3.6 Data Collected
All the data collected was using the BQ40Z80 device, which follows the SBS guidelines, BQ25750 device with
the I2C protocol, and MSPM0L1306 in between to translate.

The MCU polling the gauge is shown below.

Figure 3-10. Transmission of Gauge Data to MCU through SMBus

The SMBus structure observed follows the structure in Section 3.4. Also note that the data received is little
endian. Charging Voltage: 0x6018 = 24600mV and Charging Current: 0x0866 = 2150mA. Note: This is before
the gauge settings were changed to what is shown in Figure 3-2.

The MCU sending ChargingVoltage() and ChargingCurrent() to the charger is shown below.

Figure 3-11. Transmission of Charger Data from MCU through I2C

Application Example Using BQ25750, BQ40z80, and MSPM0L1306 www.ti.com

10 How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

SLUAAX5 – AUGUST 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

The I2C structure observed follows the structure in Section 3.4. Also note that the data transmitted is little
endian. 24600mV ChargingVoltage() is scaled to 31 = 0x001F for the charger FB regulation target (following the
logic in MCU Code Example) and charging current: 2150mA is scaled to 172 = 0x00AC. The address registers
for the voltage and current are 0x00 and 0x02, respectively.

The complete charging profile can be seen below.

Figure 3-12. Charging Profile Using the MCU

Figure 3-12 illustrates the test result using test set up discussed in the previous section. The result follows
the gauge setting detailed in Table 3-1 and charge profile in Figure 3-1. Charge current is first regulated to
the charging current at low voltage setting. Once the battery voltage reaches the Medium Voltage Threshold
setting, charge current is increased to charging current at medium voltage. Then, current drops to charging
current at high voltage once the battery voltage is increased to High Voltage Threshold. Then, the charger enters
constant voltage mode once the battery reaches the Max Charge Voltage. In constant voltage mode, the current
tapers until the current reaches Termination current. The termination in this application is handled by the charger
because, once the charger reaches termination current, the charger disables the charge. The termination can
by handled by the gauge and MCU if needed, which can be done by disabling the enable termination bit in
BQ25750.

Note
The PFM was disabled according data sheet of BQ25750 since the termination current was below 2A
and the watchdog was disabled as the PFM was not needed.

www.ti.com Application Example Using BQ25750, BQ40z80, and MSPM0L1306

SLUAAX5 – AUGUST 2024
Submit Document Feedback

How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

4 Summary
The MCU provides flexibility in SBS and allows the user to make the SBS as complex or simple as needed. The
MCU allows for flexibility of part selections that others are incompatible together due to differing communication
protocols. This application note illustrates the setup of SBS where the MCU polls charging current and charging
voltage from the gauge and transmits to the charger, but more alerts and functionality can be added based on
user needs. Rather than polling, interrupts must be implemented for efficiency and settings need to be chosen
carefully so that the parts work in unison.

5 References
1. SBS Smart Battery System, Smart Battery Charger Specification
2. Texas Instruments, Advanced Charge Algorithm Application Report
3. Texas Instruments, BQ25756 Design Calculator
4. Texas Instruments, BQ25750: Standalone/I2C Controlled, 1- to 14-Cell Bidirectional Buck-Boost Battery

Charge Controller with Direct Power Path Control Data Sheet
5. Texas Instruments, MSPM0L1306 LaunchPad Development Kit (LP‑MSPM0L1306) User's Guide
6. Texas Instruments, SMBus Compatibility with an I2C Device Application Report

Summary www.ti.com

12 How to Charge a Smart Battery Using MCU in Between to Translate SMBus or
I2C

SLUAAX5 – AUGUST 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

http://sbs-forum.org/specs/sbc110.pdf
https://www.ti.com/lit/pdf/SLUA875
https://www.ti.com/tool/download/BQ25756-DESIGN-CALC/V01X
https://www.ti.com/lit/gpn/bq25750
https://www.ti.com/lit/gpn/bq25750
https://www.ti.com/lit/pdf/slau869
https://www.ti.com/lit/an/sloa132/sloa132.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SLUAAX5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLUAAX5&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 The Role of MCU in Smart Battery System
	3 Application Example Using BQ25750, BQ40z80, and MSPM0L1306
	3.1 Gauge Setup
	3.2 Charger Setup
	3.3 MCU Setup
	3.4 Communication Protocol
	3.5 MCU Code Example
	3.6 Data Collected

	4 Summary
	5 References

