EVM User's Guide: LMR51635EVM LMR51635 Buck Evaluation Module

Description

The Texas Instruments LMR51635EVM evaluation module (EVM) helps designers evaluate the operation and performance of the LMR51635 wide-input synchronous buck regulator. The LMR51635 is a wide-V_{IN}, easy-to-use synchronous buck converter. With the wide operating input voltage range of 4.3V to 60V, the device is designed for a wide range of industrial applications for power conditioning from an unregulated source. The LMR51635 operates at 400kHz and 1.1MHz switching frequency to support use of relatively small inductors for an optimized design size. The LMR51635 supports up to 3.5A continuous output current.

Features

- 4.3V to 60V input voltage range
- Default 5V output
- · 3.5A continuous output current capability
- 400kHz switching frequency
- · Hiccup mode short-circuit protection
- Frequency spread spectrum

Applications

- Major appliance
- PLC, DCS, and PAC
- Smart meters
- General purposes wide V_{IN} power supplies

LMR51635EVM Hardware Top View

1

1 Evaluation Module Overview

1.1 Introduction

The LMR51635EVM evaluation module (EVM) is a single, synchronous buck converter providing 5V at 3.5A output from 6V to 60V input. Table 1-1 shows the rated input voltage and output current ranges for the evaluation module.

Table 1-1. Input Voltage and Output Current Summary

EVM	Input Voltage (V _{IN}) RANGE	OUTPUT CURRENT (I _{OUT}) RANGE
LMR51635EVM	6V to 60V	0A to 3.5A

This user's guide contains information for the LMR51635 as well as support documentation for the LMR51635EVM evaluation module. This user's guide includes the performance specifications, schematic, and the bill of materials of the LMR51635EVM.

1.2 Kit Contents

- LMR51635EVM Circuit Board
- EVM Disclaimer Read Me
- Prototype EVM Disclaimer Read Me

1.3 Specification

A summary of the LMR51635EVM performance specifications is provided in Table 1-2. Specifications are given for an input voltage of V_{IN} = 24V and an output voltage of 5V, unless otherwise noted. The ambient temperature is 25°C for all measurement, unless otherwise noted.

Table 1-2. LMR51035EVM Ferrormance Specifications Summary				
TEST CONDITIONS	MIN	TYP	MAX	UNIT
	6	24	60	V
		5		V
V _{IN} = 24V, I _{OUT} = 3.5A		400		kHz
	0		3.5	А
V _{IN} = 24V, I _{OUT} = 3.5A		25		mV _{PP}
V _{IN} = 24V, I _{OUT} = 3.5A		90		%
	TEST CONDITIONS VIN = 24V, IOUT = 3.5A VIN = 24V, IOUT = 3.5A	TEST CONDITIONS MIN 6 6 V _{IN} = 24V, I _{OUT} = 3.5A 0 V _{IN} = 24V, I _{OUT} = 3.5A 0	TEST CONDITIONS MIN TYP 6 24 5 5 V _{IN} = 24V, I _{OUT} = 3.5A 400 0 25	TEST CONDITIONS MIN TYP MAX 6 24 60 5 5 V _{IN} = 24V, I _{OUT} = 3.5A 400 0 3.5 V _{IN} = 24V, I _{OUT} = 3.5A 25

Table 1-2. LMR51635EVM Performance Specifications Summary

1.4 Device Information

The purpose of LMR51635EVM is to showcase the typical application of the LMR51635 device.

2 Hardware Setup and Test Resutis

This section describes the jumpers and connectors on the EVM and how to properly connect, set up, and use the LMR51635EVM. The section also includes test results of output voltage ripple and start-up.

2.1 Setup

2.1.1 Input and Output Connector Description

- V_{IN} Terminal TP2 Power input terminal for the converter. Adjacent to this terminal is the GND reference ground. Use this terminal to attach the EVM to a cable harness.
- V_{OUT} Terminal TP4– Regulated output voltage for the converter. Adjacent to this terminal is the GND reference ground.
- **GND** Terminal TP3, TP5 Ground reference for the converter. Use these terminals to attach the EVM to a cable harness.
- Enable Setting Jumper JP1 Used to configure the enable circuit. Leave the pins open or short Pin2 with pin3 enables the circuit, short Pin2 to Pin1 disables the circuit. See Table 2-1 for details.

EN Connection	Configuration
Leave all pins of JP1 open	Enable, EN connect to V_{IN} through a pullup resistor
Short Pin2 with pin3, leave Pin1 open	Enable, Programmable system UVLO by EN divider
Short Pin2 with pin1	Disable, EN connect to GND directly

- Table 2-1. EN Connections
- Test point TP6, TP7, TP8, TP9, TP10, TP11 are test points. See Table 2-2 for details.

Table 2-2. Test Point connections

Reference Designator	Function
TP6(VIN_SNS)	Test point for V _{IN}
TP7(EN)	Test point for EN
TP8(INJ)	Test point for loop response measurement
T9(VOUT_SNS)	Test point for V _{OUT}
T10, TP11(GND_SNS)	Test point for GND

2.1.2 Adjusting the Output Voltage

To change the output voltage of the EVMs, change the value of resistor R_4 (R_{FB_TOP}) and resistor R_5 (R_{FB_BOT}). The value of R_4 and R_5 for a specific output voltage can be calculated using Equation 1.

 $V_{OUT} = 0.8 \times \left(1 + \frac{R4}{R5}\right)$

(1)

2.2 Test Results

2.2.1 Output Voltage Ripple

The following images show the LMR51635EVM output voltage ripple waveforms. The output currents are as indicated.

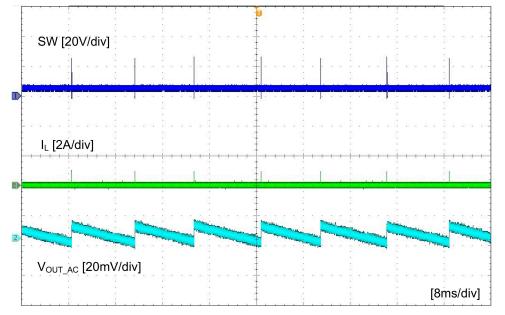


Figure 2-1. LMR51635EVM Output Voltage Ripple, V_{IN} = 24V, I_{OUT} = 0A

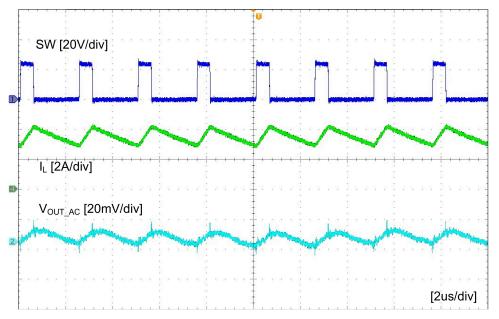


Figure 2-2. LMR51635EVM Output Voltage Ripple, V_{IN} = 24V, I_{OUT} = 3.5A

2.2.2 Start-Up Relative to VIN

The following figure shows the LMR51635EVM start-up waveform relative to V_{IN} .

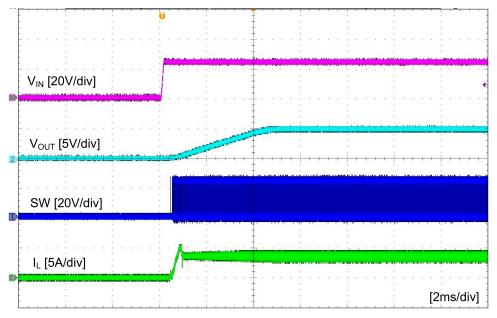
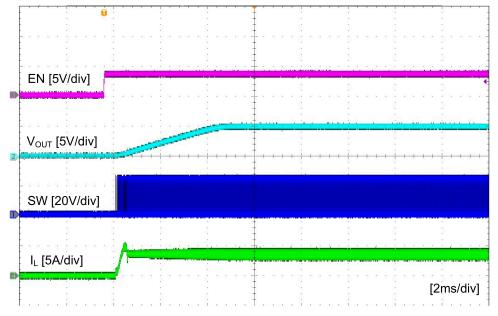
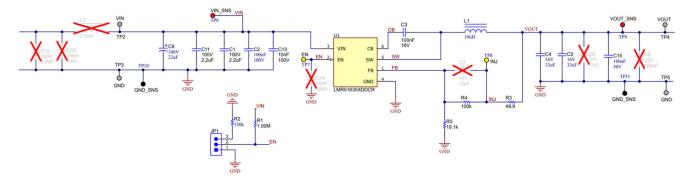



Figure 2-3. LMR51635EVM Start-Up Relative to V_{IN}, I_{OUT} = 3.5A

2.2.3 Start-Up Relative to EN

The following figure shows the LMR51635EVM start-up waveform relative to VIN.



3 Hardware Design Files

3.1 Schematic

Figure 3-1 is the schematic for the LMR51635EVM.

3.2 PCB Layouts

This section provides a description of the LMR51635EVM, board layout, and layer illustrations.

The board images are shown in Figure 3-2 and Figure 3-3. The board layouts are shown in Figure 3-4 to Figure 3-7. The PCB consists of a 4-layer design. The board size is 55mm × 57mm. 2OZ copper planes are applied on top and bottom layers, 1OZ copper planes are applied on middle layers.

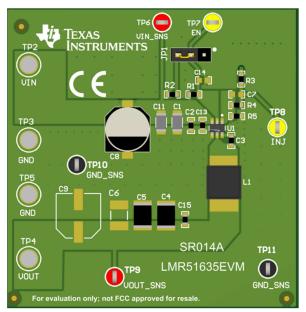


Figure 3-2. LMR51635EVM Top View

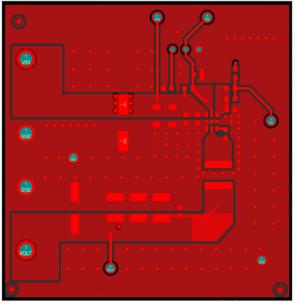


Figure 3-4. Top Layer

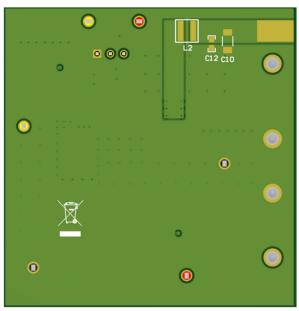


Figure 3-3. LMR51635EVM Bottom View

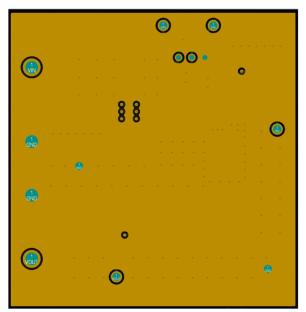


Figure 3-5. Middle Layer 1

7

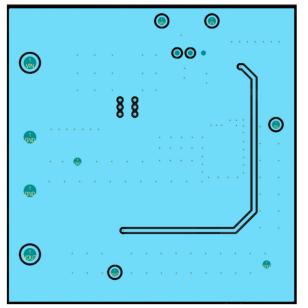


Figure 3-6. Middle Layer 2

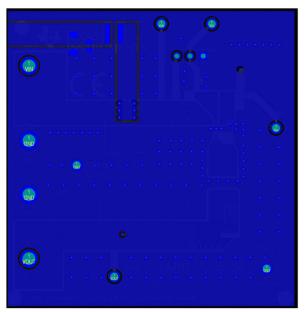


Figure 3-7. Bottom Layer

3.3 Bill of Materials

Table 3-1. Bill of Material

Designator	QTY	Description	Part Number	Manufacturer
РСВ	1	Printed circuit board, 2165mil × 2244mil	SR014	_
C1, C11	2	Capacitor, Ceramic, 2.2uF, 100V, X7S, 1206	C3216X7S2A225K160AB	ТDК
C2	1	Capacitor, Ceramic, 0.1uF, 100V, X7R, 0603	GRM188R72A104KA35J	MuRata
C3	1	Capacitor, Ceramic, 0.1µF, 16V, X7R, AEC-Q200 Grade 1, 0603	0603YC104K4T4A	AVX
C4, C5	2	Capacitor, Ceramic, 22uF, 25V, X7R, AEC-Q200 Grade 1,	CGA8P1X7R1E226M250KC	ток
C8	1	Capacitor, Aluminum, 22uF, 100V, 1.3Ω, AEC-Q200 Grade 2, SMD	EEE-FK2A220P	Panasonic
C13	1	Capacitor, Ceramic, 0.01uF, 100V, X7R, 0603	GRM188R72A103KA01D	MuRata
C15	1	Capacitor, Ceramic, 0.1uF, 50V, X7R, 0603	C1608X7R1H104K080AA	ТDК
JP1	1	Header, 100mil, 3x1, Tin, TH	PEC03SAAN	Sullins Connector Solutions
L1	1	Inductor, Shielded, Hyperflux, 10μH, 5A, 0.02915Ω, SMD	74439346100	Wurth Elektronik
R1	1	Resistor, 1.00MΩ, 1%, 0.1W, 0603	RC0603FR-071ML	Yageo
R2	1	Resistor, 178kΩ, 1%, 0.1W, 0603	CRCW0603178KFKEA	Vishay-Dale
R3	1	Resistor, 49.9Ω, 1%, 0.1W, 0603	RC0603FR-0749R9L	Yageo
R4	1	Resistor, 100kΩ, 1%, 0.1W, 0603	RC0603FR-07100KL	Yageo
R5	1	Resistor, 19.1kΩ, 1%, 0.1W, 0603	RC0603FR-0719K1L	Yageo
SH-JP1	1	Shunt, 100mil, Gold plated, Black	SNT-100-BK-G	Samtec
TP2, TP3, TP4, TP5	4	Terminal, Turret, TH, DO1502-2	1502-2	Keystone
TP6, TP9	2	Test Point, Multipurpose, Red, TH	5010	Keystone
TP7, TP8	2	Test Point, Multipurpose, Yellow, TH	5014	Keystone
TP10, TP11	2	Test Point, Multipurpose, Black, TH	5011	Keystone
U1	1	IC, LMR51635X, 60V, 3.5A, Synchronous Buck Converter in a SOT-23 Package	LMR51635XDDCR	Texas Instruments

4 Additional Information

4.1 Trademarks

All trademarks are the property of their respective owners.

5 Related Documentation

Texas Instruments, LMR51635 4.3V to 60V, 3.5A Synchronous Buck Converter data sheet

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	Changes from Revision * (August 2024) to Revision A (November 2024)	
•	Updated the hardware figure	
	Added the Kit Contents section	
•	Updated Figure 3-1	6
	Updated Figure 3-2 through Figure 3-7	
	Updated the BOM list	

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated