DN-105

Design Note

UCC3588 5-Bit Programmable Output BiCMOS Power Supply Controller, Evaluation Board, Schematic and List of Materials

By Brian Lynch

The UCC3588 voltage mode synchronous step down (buck) controller provides the functionality required for high efficiency, low cost, regulated power for microprocessors. A 5-bit DAC provides output voltage adjustment from 1.3 to 3.5 volts. High efficiency is obtained through the use of synchronous rectification, and tight transient response is obtained through of high speed window comparators which bypass the voltage loop in the event the output voltage exceeds its tolerance during fast load current changes.

The UCC3588 Demo board is designed in the form of a standard VRM form factor. Calculations for the design of the Demo Board, along with some helpful design tips may be found in the UCC3588 Data Sheet. A 40 pin connector provides all input and output connectivity. Specifications for the Demo Board are shown in Table 1.

Figure 1. UCC3588 evaluation board schematic.

07/99

PARAMETER		MIN	ТҮР	MAX	UNITS				
Power Input Supplied to "5 VIN"									
Voltage	Normal Operating Voltage	4.5		5.5	Volts				
Required current	At $V_{OUT} = 3.3$, $I_{OUT} = 12$ Amps		10		Amps				
Bias Power Supplied to "12 VIN"									
Voltage	Normal Operating Voltage	11		13	Volts				
Required Current				100	mA				
Power Output									
DAC Programmable Voltage Range	50mV Steps	1.3		1.75	Volts				
	100mV Steps	1.8		3.5	Volts				
Voltage Tolerance	Any Output Voltage			1	%				
Load Current	Any Output Voltage	0		12	Amps				
Short Circuit Current			20		Amps				

Table 1. Electrical characteristics.

Operating Guidelines

Refer to the module pin connection diagram to the right.

To operate the UCC3588 Demo Board, the output voltage must first be programmed through the DAC. To program a "0", tie the appropriate pin to "GND". To program a "1", leave the pin floating. NOTE: The DAC pins should ONLY be programmed from an open collector/drain source. Internal circuitry provides the necessary pull up. Refer to the UCC3588 Data Sheet for DAC programming codes.

Next, apply 12V and 5V power to the module. The IC operates from the 12V supply while power to the load is converted from the 5V supply. Lastly, apply the load.

For more complete information, pin descriptions and specifications for the UCC3855 5-Bit Programmable Output BiCMOS Power Supply Controller, please refer to the UCC3588 data sheet or contact your Unitrode Field Applications Engineer at (603) 424-2410.

Table 2. Model pin connection diagram.

PIN	ROW A	ROW B		
1	5 VIN	5 VIN		
2	5 VIN	5 VIN		
3	5 VIN	5 VIN		
4	12 VIN	12 VIN		
5	12 VIN	VOUT		
6	No Connect	ENABLE		
7	VID 0	VID 1		
8	VID 2	VID 3		
9	VID 4	PWRGD		
10	VOUT	GND		
11	GND	VOUT		
12	VOUT	GND		
13	GND	VOUT		
14	VOUT	GND		
15	GND	VOUT		
16	VOUT	GND		
17	GND	VOUT		
18	VOUT	GND		
19	GND	VOUT		
20	VOUT	GND		

Reference Designator	Qty	Description	Manufacturer	Part Number
C1,C2,C3,C4	4	1500µF, 6.3v, Aluminum Electrolytic Capacitor	Sanyo	MV-GX
C8,C9,C10, C11,C12	5	1500µF, 6.3v, Aluminum Electrolytic Capacitor	Sanyo	MV-GX
C5	1	33nF, 25V, Z5U, Ceramic Capacitor		
C6	1	220pF, 25V, X7R, Ceramic Capacitor		
C7	1	22pF, 25V, X7R, Ceramic Capacitor		
C16	1	10µF, 16V, Tantalum Capacitor		
C14,C15	2	150μF, 6V, Tantalum Capacitor		
C13	1	1000pF, 25v, X7R, Ceramic Capacitor		
L1	1	T51-52C with 5 turns #16 AWG	Micrometals	
Q1, Q2	2	N-Channel MOSFET	International Rectifier	IRL3103
R1	1	10k, 5%, 0.1w Resistor		
R2	1	47.0k, 1%, 0.1w Resistor		
R3	1	200k, 5%, 0.1w Resistor		
R4, R5	2	3.3Ω, 5%, 0.25w Resistor		
R7	1	15k, 5%, 0.1W Resistor		
R8	1	20k, 5%, 0.1W Resistor		
U1	1	UCC3588 PWM Controller		
D1,D2	2			FMKA140
J1	1	40 Pin Connector	AMP	532956-7
R6	1	$3m\Omega$ Sense Resistor (part of PCB Etch)		

Table III. List Of Materials

UNITRODE CORPORATION 7 CONTINENTAL BLVD. • MERRIMACK, NH 03054 TEL. (603) 424-2410 • FAX (603) 424-3460

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated