
Application Report
SPRA824 – June 2002

1

Memory Allocation Techniques in System with Dynamic
Swapping of Application Codes

Oh, Hong Lye SC Field Applications, Texas Instruments Singapore

ABSTRACT

This application report illustrates how to manage the code/data in a system that performs
dynamic swapping of routines on demand. This is process is achieved by following a
simple setup procedure. This method is one of many ways to implement a dynamic
swapping of applications.

The examples given in this report are simplified versions of a working code and are
specific to C55x™ family of DSPs. Using these examples on platforms other than the
C55x may require further modifications.

Contents
1 Introduction ..2
2 Basics ...2

2.1 Default Code/Data Sections...2
2.2 Assembler/Compiler directives...3
2.3 Linker Directives ..3

3 Sample Program...4
3.1 Software System Block Diagram..4
3.2 Considerations...5
3.3 Obtaining the Load Address ..6
3.4 Linker Command File...7
3.5 Swapping Code ...10

4 Conclusion ...12

Trademarks are the property of their respective owners.

SPRA824

2 Memory Allocation Techniques in System with Dynamic Swapping of Application Codes

1 Introduction

When memory becomes a limitation in developing a system, external memory must be added.
There are various forms of external memory:

• Volatile asynchronous (e.g. SRAM)

• Volatile synchronous (e.g. SDRAM)

• Non-volatile asynchronous (e.g. Flash), etc.

The speed of these types of memory will not be as fast as that of the internal memory of today’s
DSP, which typically runs at speed beyond 100MHz. In order to meet real-time requirement,
critical codes must be swapped into the internal memory when required.

2 Basics

Before illustrating an example of dynamic swapping of applications, it is important to be aware of
some basic information that explains how TI’s Assemblers, C compilers, and linkers handle
data/code.

2.1 Default Code/Data Sections

If a user does not specify any #pragma in the code, the C Compiler allocates the data/code in
the following manner:

.text => Code

.bss => Global and Static Variables

.const => Global and Static constant variables

.switch => switch statement tables

.cinit => Tables for explicitly initialized global and static variables

.cio => CIO buffers (used in printf, scanf and other I/O functions)

.stack => Primary Stack memory

.sysstack => Secondary (System) Stack memory

.sysmem => Heap memory (for malloc allocation)

Another section, .data, is not used by the C Complier, but may be used by the Assembler to
store initialized data.

For detailed information explaining the above sections, please refer to the Optimizing C/C++
Compiler User Guide (SPRU281C).

SPRA824

Memory Allocation Techniques in System with Dynamic Swapping of Application Codes 3

2.2 Assembler/Compiler directives

As stated earlier, a user can allocate data/code to user-defined sections. To allocate data/code,
use the following examples:

• Assembler

For initialized sections:

.sect “user_sections”

For un-initialized sections,

.usect “user_section”, section_size

• C Compiler

The C Compiler uses two pragmas for Code and Data sections.

For example:

#pragma CODE_SECTION (func, "user_section”) ;
int func(int x, int y)
{

…
}
#pragma DATA_SECTION (x, "user_section”) ;
int x[100];

There are instances where data sections must be aligned to specific boundaries. Alignment
can be achieved by using the DATA_ALIGN pragma.

For example,

To align x array declared above to 32-bit (double word) boundary, use:

#pragma DATA_ALIGN(x, 2);

2.3 Linker Directives

Two linker directives that are used to enable dynamic swapping are:

• UNION Directive

UNION directive allows the user to create multiple sections with same run-time address.
The example below illustrates how three user sections could be linked to run at the same
start address during run-time, while having a different load address:

UNION: run = SARAM
{
.user_section1 : load = SDRAM
.user_section2 : load = SDRAM
.user_section3 : load = SDRAM
}

The Linker does not accept load allocation for UNION e.g. UNION:
run = SARAM, load = SDRAM.

SPRA824

4 Memory Allocation Techniques in System with Dynamic Swapping of Application Codes

Module 1

• GROUP Directive

GROUP directive is used to allocate several sections contiguously in memory:
GROUP: run = SARAM
{
user_section1 : load = SDRAM
user_section2 : load = SDRAM
}

In above example, both load and run address of user_section1 and user_section2 are
allocated contiguously in SDRAM and SARAM respectively.

For more information on the use of directives and their various variants, please refer to the
Assembly Tools User Guide (SPRU280D).

3 Sample Program

In this section, a simple project is provided to aid the user with the concepts of dynamic
code/data swapping.

3.1 Software System Block Diagram

The diagram below illustrates the target system:

Figure 1. Software System Block Diagram

Module 2

Module 3a

Module 3b

Module 1, 2, 3a, 3b

Resident Code/Data

SDRAM(Load-Time)DSP(Run-Time)

Resident Data

Resident Code

Module 1

Module 3b

Module 3a

Module 2

Flash

Bootload time

SPRA824

Memory Allocation Techniques in System with Dynamic Swapping of Application Codes 5

The system above illustrates routines that share run time addresses, or utilize the same physical
memory within the DSP. The resident code is boot loaded from non-volatile memory, (i.e. Flash).
The code used to manage this transfer resides in this section.

3.2 Considerations

• General

Before you begin with the sample project, note which sections can be swapped in/out
dynamically during run-time:

– All code sections can be swapped.

– For data sections, those that can be swapped are:
 .const
 .data
 Any user defined section containing data that are not initialized during code boot-up.
 .bss can be swapped provided there are no global or static variables that are

declared with an initial value. (i.e. int x=3)

– Sections that can’t be swapped are:
 .cinit
 Any user defined sections containing global or static variables with an initial value.

– Stack specific to a particular piece of code i.e. TSK stacks can be swapped together
with the code, but the stack must be initialized to a default signature when working
under DSPBIOS environment. Failure to initialize the stack may result in the DSPBIOS
APIs, which make use of these signature stamps, to not function properly.

• .bss/.const

Based on the above considerations, if .bss is to be swapped, modifications to the existing
.code must be done. The objective is to have a .bss with no initialized variables. This is
achieved by avoiding the use of initialized global variables. It is suggested to avoid using
them altogether.

If initialized global/static variables cannot be avoided, place these variables in user defined
sections using pragma directives (C-compiler), or sect directives (Assemblers) described in
section 2.2. For data such as look-up tables, etc, declare them as .const data type (the
value doesn’t change). This insures that they are located to a .const section that can be
swapped (initialization is done within the code execution and not during C environment
initialization).

• .cinit

This section cannot be swapped because it is required during C environment initialization.
From a different perspective, this section need not be swapped since it is only used during
boot-up. After which, the space it occupies could be re-used. If you are using less expensive
memory i.e. SDRAM, consider using .cinit in its place. However, performance impact is
reduced, since this is only performed once during C code boot-up.

SPRA824

6 Memory Allocation Techniques in System with Dynamic Swapping of Application Codes

3.3 Obtaining the Load Address

Obtaining load address of libraries or C modules can be problematic. Load addresses are
obtained using “.label” directive as directed in the TMS320C55xx Assembly Language Tools
User's Guide (SPRU280D). For modules where .label directive cannot be easily inserted,
workarounds may be necessary.

One solution is to create a separate .asm file for each module/group you intend to swap. The
.label directive can be inserted into this .asm file. This helps track the load address of the
module/group concerned. The format of data and code varies slightly, as shown below:

========================== Start of <mod1_scode.asm> =========================

.def _mod1_code_load;

.sect ".mod1_code_start"

ret

.label _mod1_code_load

========================== End of <mod1_scode.asm> =========================

========================== Start of <mod1_sdata.asm> =========================

.def _mod1_data_load;

.sect ".mod1_data_start"

.word 0

.label _mod1_data_load;

========================== End of <mod1_sdata.asm> ==========================

The op code and data used are arbitrary. Any code or data can be used.

Note: When using C55x, it is suggested that an op code with an even number of bytes
be used. This prevents problems with re-aligning section boundaries during development.

Using this workaround allows the use of any module, without the need to track their load
addresses. Section 3.4 discusses the use of this workaround in linker command files.

SPRA824

Memory Allocation Techniques in System with Dynamic Swapping of Application Codes 7

3.4 Linker Command File

The linker command file to implement the system illustrated in section 3.1 is shown below:

========================== Start of Linker Command File =========================

MEMORY

{

DARAM : origin = 00100h, length = 0FF00h

SARAM : origin = 20000h, length = 20000h

SDRAM : origin = 40000h, length = 20000h

}

SECTIONS

{

/* Data */

UNION:

{

/* Module1 */

GROUP:

{

mod1_data:

{

\project\obj\mod1_sdata.obj (.mod1_data_start)

_mod1_data_run = .;

\project\lib\mod1.lib (.data, .const, .bss)

_mod1_data_length = . - _mod1_data_run;

} load = (SDRAM align 4)

.uninitialised_user_sect

}

/* Module2 and 3 */

GROUP:

{

mod2_data:

{

\project\obj\mod2_sdata.obj (.mod2_data_start)

_mod2_data_run = .;

SPRA824

8 Memory Allocation Techniques in System with Dynamic Swapping of Application Codes

\project\lib\mod2.lib (.data, .const, .bss)

_mod2_data_length = . - _mod2_data_run;

} load = (SDRAM align 4)

UNION:

{

mod3a_data:

{

\project\obj\mod3a_sdata.obj (.mod3a_data_start)

_mod3a_data_run = .;

\project\lib\mod3a.lib (.data, .const, .bss)

_mod3a_data_length = . - _mod3a_data_run;

} load = (SDRAM align 4)

mod3b_data:

{

\project\obj\mod3b_sdata.obj (.mod3b_data_start)

_mod3b_data_run = .;

\project\lib\mod3b.lib (.data, .const, .bss)

_mod3b_data_length = . - _mod3b_data_run;

} load = (SDRAM align 4)

}

}

}> DARAM /* run-time allocation */ /* DATA UNION */

/* CODE */

UNION:

{

/* Module1 */

mod1_code:

{

\project\obj\mod1_scode.obj (.mod1_code_start)

_mod1_code_run = .;

\project\lib\mod1.lib (.text, .user_code_sect1)

_mod1_code_length = . - _mod1_code_run;

} load = (SDRAM align 2)

SPRA824

Memory Allocation Techniques in System with Dynamic Swapping of Application Codes 9

/* Module2 and 3 */

GROUP:

{

mod2_code:

{

\project\obj\mod2_scode.obj (.mod2_code_start)

_mod2_code_run = .;

\project\lib\mod2.lib (.text)

_mod2_code_length = . - _mod2_code_run;

} load = (SDRAM align 2)

UNION:

{

mod3a_code:

{

\project\obj\mod3a_code.obj (.mod3a_code_start)

_mod3a_code_run = .;

\project\lib\mod3a.lib (.text)

_mod3a_code_length = . - _mod3a_code_run;

} load = (SDRAM align 2)

mod3b_code:

{

\project\obj\mod3b_scode.obj (.mod3b_code_start)

_mod3b_code_run = .;

\project\lib\mod3b.lib (.text)

_mod3b_code_length = . - _mod3b_code_run;

} load = (SDRAM align 2)

}

}

}> SARAM /* CODE UNION */

/* Resident code/data */

.resident_code :> SARAM

.resident_data :> DARAM

}/*SECTIONS*/

SPRA824

10 Memory Allocation Techniques in System with Dynamic Swapping of Application Codes

=========================== End of Linker Command File ========================

Some points to remember:

• To avoid potential issues with byte/word boundary confusion, always align code sections to
even byte boundaries. This is necessary because the C55x C-Compiler deals in word level
and it is often tedious handling code sections with odd-byte boundaries.

• For data sections, it is advisable to align code sections to 4 byte boundaries as a solution
for cases where there’s a double word variable at the front of the data section.

• Notice that un-initialized sections are included into the data section meant for swapping.
These sections are not required. They exist for maintenance purposes and/or making full
use of spare memory (the amount of memory a UNION will occupy is equal to its largest
member). i.e., there is a “.uninitialised_user_sect” declared in the first group of the first
UNION, just after mod1_data section.

• The Data and Code are separated into two big UNIONs. This is not required, but they can
be placed in the same UNION if it is required.

Note: Placing both code and data together in a user specified section will result in a
linker error.

3.5 Swapping Code

This section gives a simple example on how code swapping could be done for module 1. The
same code can be applied to swap the other modules in the system.

SPRA824

Memory Allocation Techniques in System with Dynamic Swapping of Application Codes 11

========================== Start of Sample Code ===============================

extern void *mod1_code_length;

extern void *mod1_code_load;

extern void *mod1_code_run;

extern void *mod1_data_length;

extern void *mod1_data_load;

extern void *mod1_data_run;

int swap_code()

{

int *src_ptr, *dest_ptr;

int *dsrc_ptr, *ddest_ptr;

unsigned int count, dcount;

/* Swap Module 1 Code section in */

src_ptr = (int *)((unsigned long)mod1_code_load>>1);

dest_ptr = (int *)((unsigned long)mod1_code_run >>1);

count = ((unsigned int)mod1_length+1)>>1;

memcpy(dest_ptr, src_ptr, count);

/* Swap Module 1 Data section in */

dsrc_ptr = (int *)((unsigned long) mod1_data_load);

ddest_ptr = (int *)((unsigned long)mod1_data_run);

dcount = ((unsigned int)mod1_data_length+1)>>1;

memcpy(ddest_ptr, dsrc_ptr, dcount);

}

========================== End of Sample Code ===============================

SPRA824

12 Memory Allocation Techniques in System with Dynamic Swapping of Application Codes

A few points to remember:

• The data type for the labels created in linker command files is declared as (void *).

• The address and length information of code sections are in bytes. (length+1)>>1 is used to
compute the number of words to transfer (C-compiler doesn’t work in bytes).

• Note that memcpy() can only transfer up to a maximum of 64K words. Beyond that, the user
must create a separate routine.

• The address information of data sections is in bytes, while the length computed is shown in
words.

4 Conclusion

Through usage of the UNION and GROUP linker directives, it is possible to create a structure
that allows dynamic swapping of applications during run-time. Having this capability assures that
the product can support many features without depleting limited internal memory too soon.

A successful implementation of such a system may also depend on the way the individual
modules are written. The modules should use as few global and static variables as possible.
They should be programmed on a predefined memory and MIPS budget so that they can be
easily integrated easily without the need to repeatedly swap modules.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

