

DS26LS31C, DS26LS31M

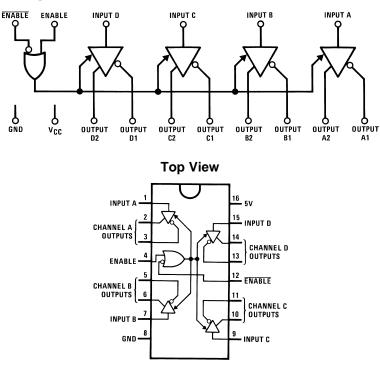
SNOSBK1C-JUNE 1998-REVISED APRIL 2013

www.ti.com

DS26LS31C/DS26LS31M Quad High Speed Differential Line Driver

Check for Samples: DS26LS31C, DS26LS31M

FEATURES


- Output Skew—2.0 ns Typical
- Input to output delay—10 ns Typical
- Operation from Single 5V Supply
- Outputs Won't Load Line when V_{CC} = 0V
- Four Line Drivers in One Package for Maximum Package Density
- Output Short-Circuit Protection
- Complementary Outputs
- Meets the Requirements of EIA Standard RS-422
- Pin Compatible with AM26LS31
- Available in Military and Commercial Temperature Range

Logic and Connection Diagrams

DESCRIPTION

The DS26LS31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26LS31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.

The circuit provides an enable and disable function common to all four drivers. The DS26LS31 features TRI-STATE outputs and logically ANDed complementary outputs. The inputs are all LS compatible and are all one unit load.

For Complete Military Product Specifications, refer to the appropriate SMD or MDS.

Figure 1. PDIP Package See Package D0016A or NFG0016E See Package Numbers NAJ0020A, NFE0016A or NAD0016A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. SNOSBK1C-JUNE 1998-REVISED APRIL 2013

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾

7V
7V
5.5V
-0.25 to 6V
1509 mW
1476 mW
1051 mW

(1) "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be verified. They are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics provide conditions for actual device operation.

(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.

(3) Derate cavity package 10.1 mW/°C above 25°C; derate molded DIP package 11.9 mW/°C above 25°C; derate SO package 8.41 mW/°C above 25°C.

Operating Conditions

	Min	Max	Units
Supply Voltage, V _{CC}			
DS26LS31M	4.5	5.5	V
DS26LS31	4.75	5.25	V
Temperature, T _A			
DS26LS31M	-55	+125	°C
DS26LS31	0	+70	°C

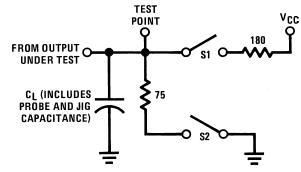
Electrical Characteristics⁽¹⁾⁽²⁾⁽³⁾

	Parameter	Test Conditions	Min	Тур	Max	Units
V _{OH}	Output High Voltage	I _{OH} = −20 mA	2.5			V
V _{OL}	Output Low Voltage	I _{OL} = 20 mA			0.5	V
V _{IH}	Input High Voltage		2.0			V
V _{IL}	Input Low Voltage				0.8	V
IIL	Input Low Current	$V_{IN} = 0.4V$		-40	-200	μA
I _{IH}	Input High Current	V _{IN} = 2.7V			20	μA
l _l	Input Reverse Current	$V_{IN} = 7V$			0.1	mA
lo	TRI-STATE Output Current	$V_{O} = 2.5V$			20	μA
		$V_{O} = 0.5V$			-20	μA
V _{CL}	Input Clamp Voltage	I _{IN} = −18 mA			-1.5	V
I _{SC}	Output Short-Circuit Current		-30		-150	mA
I _{CC}	Power Supply Current	All Outputs Disabled or Active		35	60	mA

(1) Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS726LS31M and across the 0°C to $+70^{\circ}$ C range for the DS26LS31. All typicals are given for V _{CC} = 5V and T_A = 25^{\circ}C.

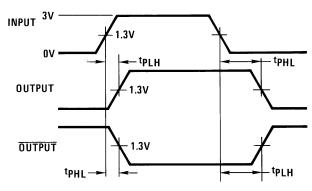
(2) All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

(3) Only one output at a time should be shorted.


SNOSBK1C-JUNE 1998-REVISED APRIL 2013

www.ti.com

Switching Characteristics

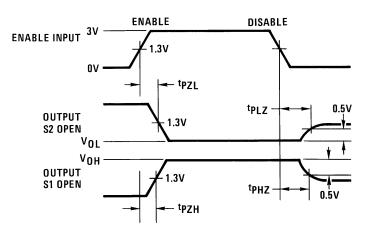

	Parameter	Test Conditions	Min	Тур	Max	Units
t _{PLH}	Input to Output	C _L = 30 pF		10	15	ns
t _{PHL}	Input to Output	C _L = 30 pF		10	15	ns
Skew	Output to Output	C _L = 30 pF		2.0	6.0	ns
t _{LZ}	Enable to Output	C _L = 10 pF, S2 Open		15	35	ns
t _{HZ}	Enable to Output	C _L = 10 pF, S1 Open		15	25	ns
t _{ZL}	Enable to Output	C _L = 30 pF, S2 Open		20	30	ns
t _{ZH}	Enable to Output	C _L = 30 pF, S1 Open		20	30	ns

AC TEST CIRCUIT AND SWITCHING TIME WAVEFORMS

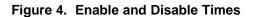
S1 and S2 of load circuit are closed except where shown.

Figure 2. AC Test Circuit

 $f = 1 \text{ MHz}, t_r \le 15 \text{ ns}, t_f \le 6 \text{ ns}$



DS26LS31C, DS26LS31M

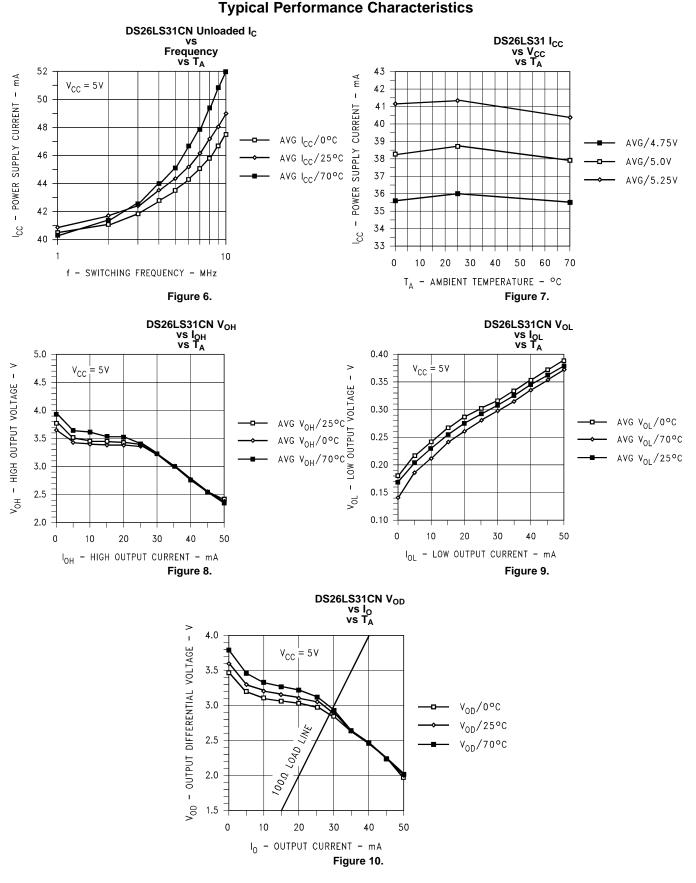


SNOSBK1C-JUNE 1998-REVISED APRIL 2013

www.ti.com

 $f = 1 \text{ MHz}, t_r \le 15 \text{ ns}, t_f \le 6 \text{ ns}$

TYPICAL APPLICATIONS

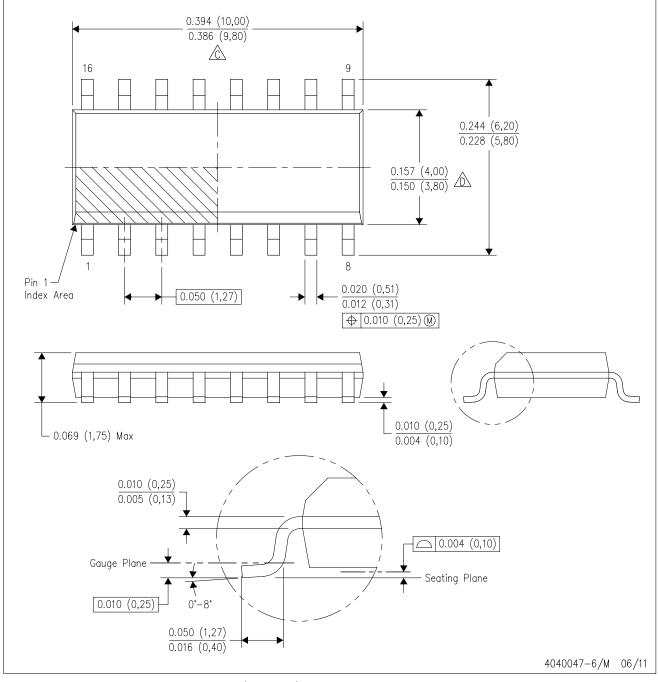

 R_T is optional although highly recommended to reduce reflection.

www.ti.com

SNOSBK1C-JUNE 1998-REVISED APRIL 2013

TEXAS INSTRUMENTS

www.ti.com


SNOSBK1C-JUNE 1998-REVISED APRIL 2013

REVISION HISTORY

Cł	nanges from Revision B (April 2013) to Revision C P	age	
•	Changed layout of National Data Sheet to TI format	5	

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated