

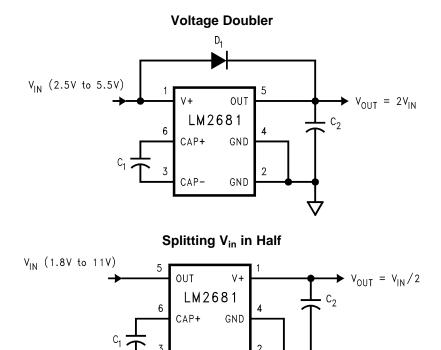
LM2681 Switched Capacitor Voltage Converter

Check for Samples: LM2681

FEATURES

- Doubles or Splits Input Supply Voltage
- SOT-23 6-Lead Package
- 15Ω Typical Output Impedance
- 90% Typical Conversion Efficiency at 20 mA

APPLICATIONS


- Cellular Phones
- Pagers
- PDAs
- Operational Amplifier Power Suppliers
- Interface Power Suppliers
- Handheld Instruments

Basic Application Circuits

DESCRIPTION

The LM2681 CMOS charge-pump voltage converter operates as a voltage doubler for an input voltage in the range of +2.5V to +5.5V. Two low cost capacitors and a diode (needed during start-up) is used in this circuit to provide up to 20 mA of output current. The LM2681 can also work as a voltage divider to split a voltage in the range of +1.8V to +11V in half.

The LM2681 operates at 160 kHz oscillator frequency to reduce output resistance and voltage ripple. With an operating current of only 550 μ A (operating efficiency greater than 90% with most loads) the LM2681 provides ideal performance for battery powered systems. The device is in a SOT-23, 6-lead package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

CAP-

GND

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾

V+ to GND Voltage OUT to GND Voltage OUT to V+ Voltage V+ and OUT Continuous Output Current Output Short-Circuit Duration to GND ⁽³⁾ Continuous Power Dissipation (T _A = 25°C) ⁽⁴⁾	
OUT to V+ Voltage V+ and OUT Continuous Output Current Output Short-Circuit Duration to GND ⁽³⁾	5.8V
V+ and OUT Continuous Output Current Output Short-Circuit Duration to GND ⁽³⁾	11.6V
Output Short-Circuit Duration to GND ⁽³⁾	5.8V
	30 mA
Continuous Power Dissipation $(T_A = 25^{\circ}C)^{(4)}$	1 sec.
	600 mW
T _{JMax} ⁽⁴⁾	150°C
$\theta_{JA}^{(4)}$	210°C/W
Operating Junction Temperature Range	−40° to 85°C
Storage Temperature Range	−65°C to +150°C
Lead Temp. (Soldering, 10 seconds)	300°C
ESD Rating	2kV

(1) Absolute maximum ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

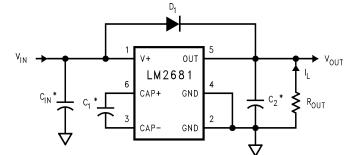
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (3) OUT may be shorted to GND for one second without damage. However, shorting OUT to V+ may damage the device and should be avoided. Also, for temperatures above 85°C, OUT must not be shorted to GND or V+, or device may be damaged.
- (4) The maximum allowable power dissipation is calculated by using $P_{DMax} = (T_{JMax} T_A)/\theta_{JA}$, where T_{JMax} is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance of the specified package.

Electrical Characteristics

Limits in standard typeface are for $T_J = 25^{\circ}$ C, and limits in **boldface** type apply over the full operating temperature range. Unless otherwise specified: V+ = 5V, C₁ = C₂ = 3.3 µF.⁽¹⁾

Symbol	Parameter	Condition	Min	Тур	Max	Units
V+	Supply Voltage		2.5		5.5	V
l _Q	Supply Current	No Load		550	1000	μA
IL	Output Current		20			mA
R _{SW}	Sum of the R _{ds(on)} of the four internal MOSFET switches	I _L = 20 mA		8	16	Ω
R _{OUT}	Output Resistance ⁽²⁾	I _L = 20 mA		15	40	Ω
f _{OSC}	Oscillator Frequency	See ⁽³⁾	80	160		kHz
f _{SW}	Switching Frequency	See ⁽³⁾	40	80		kHz
P _{EFF}	Power Efficiency	R _L (1.0k) between GND and OUT	86	93		0/
		$I_L = 20 \text{ mA to GND}$		90		%
V _{OEFF}	Voltage Conversion Efficiency	No Load	99	99.96		%

(1) In the test circuit, capacitors C_1 and C_2 are 3.3 μ F, 0.3 Ω maximum ESR capacitors. Capacitors with higher ESR will increase output resistance, reduce output voltage and efficiency.


(2) Specified output resistance includes internal switch resistance and capacitor ESR. See POSITIVE VOLTAGE DOUBLER

(3) The output switches operate at one half of the oscillator frequency, $f_{OSC} = 2f_{SW}$.

Test Circuit

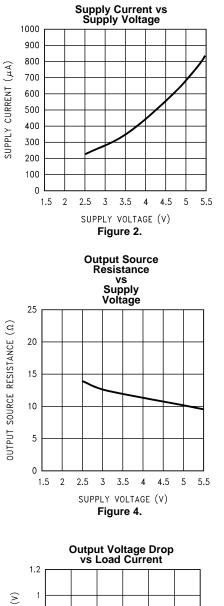
www.ti.com

* $\rm C_{IN},~\rm C_1$, and $\rm C_2$ are 3.3 $\mu\rm F$ OS-CON capacitors.

Figure 1. LM2681 Test Circuit

100

100


30

www.ti.com

SNVS042B - MARCH 1999 - REVISED MAY 2013

(Circuit of Figure 1, V+ = 5V unless otherwise specified) Supply Current vs Temperature 1500 1250 SUPPLY CURRENT (μ A) 1000 750 500 250 0 4.5 5 5.5 -25 0 25 50 75 -50 TEMPERATURE (°C) Figure 3. **Output Source** Résistance vs Temperature 30 OUTPUT SOURCE RESISTANCE (Ω) 25 20 V + = 3.0V15 10 = 5.0VV+ 5 0 4.5 5 5.5 -50 -25 0 25 50 75 TEMPERATURE (°C) Figure 5. Efficiency vs Load Current 100 V + = 5.5V92 EFFICIENCY (%) 4.5V ٧+ = 84 = 3.5V + V + = 4.5V76 V + = 2.5V68 V + = 5.5V60 20 25 30 0 5 10 15 20 25 LOAD CURRENT (mA) LOAD CURRENT (mA) Figure 7.

Typical Performance Characteristics

OUTPUT VOLTAGE DROP

0.8

0.6

0.4

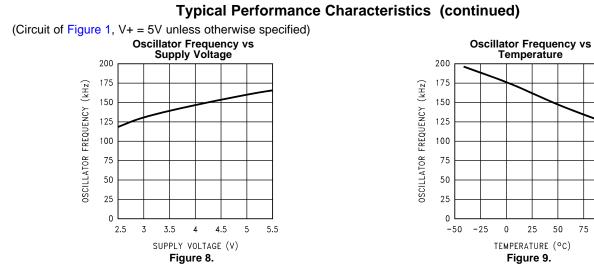
0.2

0

0 5 10 15

V+ = 2.5V

3.5V


Figure 6.

SNVS042B - MARCH 1999 - REVISED MAY 2013

75 100

www.ti.com

6 Submit Documentation Feedback

CONNECTION DIAGRAM

Figure 10. SOT-23, 6-Lead Package – Top View

Pin	Name	Function								
FIN	Name	Voltage Doubler	Voltage Split							
1	V+	Power supply positive voltage input	Positive voltage output							
2	GND	Power supply ground input	Same as doubler							
3	CAP-	Connect this pin to the negative terminal of the charge- pump capacitor	Same as doubler							
4	GND	Power supply ground input	Same as doubler							
5	OUT	Positive voltage output	Power supply positive voltage input							
6	CAP+	Connect this pin to the positive terminal of the charge-pump capacitor	Same as doubler							

PIN DESCRIPTION

Circuit Description

The LM2681 contains four large CMOS switches which are switched in a sequence to double the input supply voltage. Energy transfer and storage are provided by external capacitors. Figure 12 illustrates the voltage conversion scheme. When S_2 and S_4 are closed, C_1 charges to the supply voltage V+. During this time interval, switches S_1 and S_3 are open. In the next time interval, S_2 and S_4 are open; at the same time, S_1 and S_3 are closed, the sum of the input voltage V+ and the voltage across C_1 gives the 2V+ output voltage when there is no load. The output voltage drop when a load is added is determined by the parasitic resistance ($R_{ds(on)}$ of the MOSFET switches and the ESR of the capacitors) and the charge transfer loss between capacitors. Details will be discussed in the APPLICATION INFORMATION section.

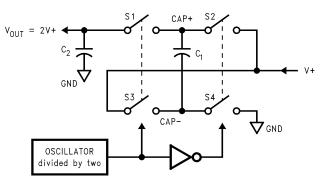


Figure 12. Voltage Doubling Principle

www.ti.com

0

Figure 11. Actual Size

Copyright © 1999–2013, Texas Instruments Incorporated

See Package Number DBV

7

Submit Documentation Feedback

SNVS042B - MARCH 1999-REVISED MAY 2013

APPLICATION INFORMATION

POSITIVE VOLTAGE DOUBLER

The main application of the LM2681 is to double the input voltage. The range of the input supply voltage is 2.5V to 5.5V.

The output characteristics of this circuit can be approximated by an ideal voltage source in series with a resistance. The voltage source equals 2V+. The output resistance Rout is a function of the ON resistance of the internal MOSFET switches, the oscillator frequency, the capacitance and ESR of C1 and C2. Since the switching current charging and discharging C1 is approximately twice as the output current, the effect of the ESR of the pumping capacitor C_1 will be multiplied by four in the output resistance. The output capacitor C_2 is charging and discharging at a current approximately equal to the output current, therefore, its ESR only counts once in the output resistance. A good approximation of Rout is:

$$R_{OUT} \simeq 2R_{SW} + \frac{2}{f_{OSC} \times C_1} + 4ESR_{C1} + ESR_{C2}$$
(1)

where R_{SW} is the sum of the ON resistance of the internal MOSFET switches shown in Figure 12.

The peak-to-peak output voltage ripple is determined by the oscillator frequency, the capacitance and ESR of the output capacitor C₂:

$$V_{\text{RIPPLE}} = \frac{I_{\text{L}}}{f_{\text{OSC}} \times C_2} + 2 \times I_{\text{L}} \times \text{ESR}_{\text{C2}}$$
(2)

High capacitance, low ESR capacitors can reduce both the output reslistance and the voltage ripple.

The Schottky diode D₁ is only needed for start-up. The internal oscillator circuit uses the OUT pin and the GND pin. Voltage across OUT and GND must be larger than 1.8V to insure the operation of the oscillator. During startup, D_1 is used to charge up the voltage at the OUT pin to start the oscillator; also, it protects the device from turning-on its own parasitic diode and potentially latching-up. Therefore, the Schottky diode D1 should have enough current carrying capability to charge the output capacitor at start-up, as well as a low forward voltage to prevent the internal parasitic diode from turning-on. A Schottky diode like 1N5817 can be used for most applications. If the input voltage ramp is less than 10V/ms, a smaller Schottky diode like MBR0520LT1 can be used to reduce the circuit size.

SPLIT V+ IN HALF

Another interesting application shown in the Basic Application Circuits is using the LM2681 as a precision voltage divider. This circuit can be derived from the voltage doubler by switching the input and output connections. In the voltage divider, the input voltage applies across the OUT pin and the GND pin (which are the power rails for the internal oscillator), therefore no start-up diode is needed. Also, since the off-voltage across each switch equals $V_{in}/2$, the input voltage can be raised to +11V.

CAPACITOR SELECTION

As discussed in the POSITIVE VOLTAGE DOUBLER section, the output resistance and ripple voltage are dependent on the capacitance and ESR values of the external capacitors. The output voltage drop is the load current times the output resistance, and the power efficiency is

$$\eta = \frac{P_{OUT}}{P_{IN}} = \frac{I_{L}^{2} R_{L}}{I_{L}^{2} R_{L} + I_{L}^{2} R_{OUT} + I_{Q} (V+)}$$
(3)

Where $I_Q(V+)$ is the quiescent power loss of the IC device, and $I_L^2 R_{out}$ is the conversion loss associated with the switch on-resistance, the two external capacitors and their ESRs.

The selection of capacitors is based on the specifications of the dropout voltage (which equals Iout Rout), the output voltage ripple, and the converter efficiency. Low ESR capacitors are recommended to maximize efficiency, reduce the output voltage drop and voltage ripple.

www.ti.com

ISTRUMENTS

Texas Instruments

|--|

(5)

Low ESR Capacitor Manufacturers									
Manufacturer	Phone	Capacitor Type							
Nichicon Corp.	(708)-843-7500	PL & PF series, through-hole aluminum electrolytic							
AVX Corp.	(803)-448-9411	TPS series, surface-mount tantalum							
Sprague	(207)-324-4140	593D, 594D, 595D series, surface-mount tantalum							
Sanyo	(619)-661-6835	OS-CON series, through-hole aluminum electrolytic							
Murata	(800)-831-9172	Ceramic chip capacitors							
Taiyo Yuden	(800)-348-2496	Ceramic chip capacitors							
Tokin	(408)-432-8020	Ceramic chip capacitors							

Other Applications

PARALLELING DEVICES

Any number of LM2681s can be paralleled to reduce the output resistance. Each device must have its own pumping capacitor C_1 , while only one output capacitor C_{out} is needed as shown in Figure 13. The composite output resistance is:

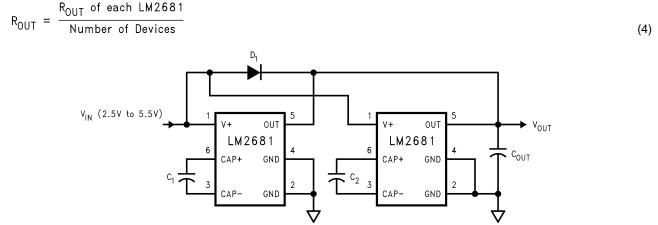
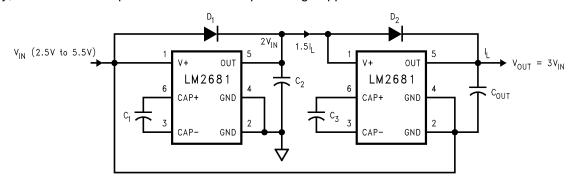


Figure 13. Lowering Output Resistance by Paralleling Devices


CASCADING DEVICES

Cascading the LM2681s is an easy way to produce a greater voltage (A two-stage cascade circuit is shown in Figure 14).

The effective output resistance is equal to the weighted sum of each individual device:

 $R_{out} = 1.5R_{out_1} + R_{out_2}$

Note that, the increasing of the number of cascading stages is practically limited since it significantly reduces the efficiency, increases the output resistance and output voltage ripple.

REGULATING VOUT

It is possible to regulate the output of the LM2681 by use of a low dropout regulator (such as LP2980-5.0). The whole converter is depicted in Figure 15.

A different output voltage is possible by use of LP2980-3.3, LP2980-3.0, or LP2980-adj.

Note that, the following conditions must be satisfied simultaneously for worst case design:

$$2V_{in_min} > V_{out_min} + V_{drop_max} (LP2980) + I_{out_max} \times R_{out_max} (LM2681)$$

$$2V_{in_max} < V_{out_max} + V_{drop_min} (LP2980) + I_{out_min} \times R_{out_min} (LM2681)$$

$$(7)$$

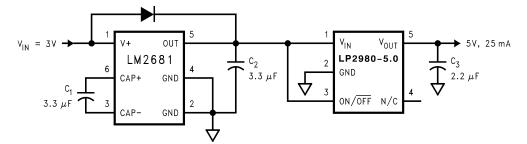


Figure 15. Generate a Regulated +5V from +3V Input Voltage

SNVS042B-MARCH 1999-REVISED MAY 2013

REVISION HISTORY

Changes from Revision A (May 2013) to Revision B

Page

www.ti.com

Copyright © 1999–2013, Texas Instruments Incorporated

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LM2681M6/NOPB	ACTIVE	SOT-23	DBV	6	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	S10A	Samples
LM2681M6X/NOPB	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	S10A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

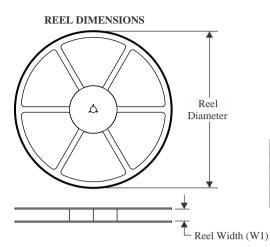
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

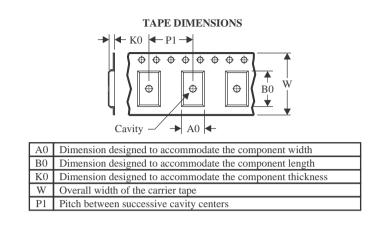
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

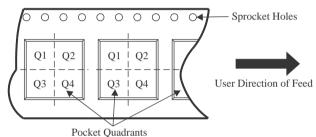
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


10-Dec-2020

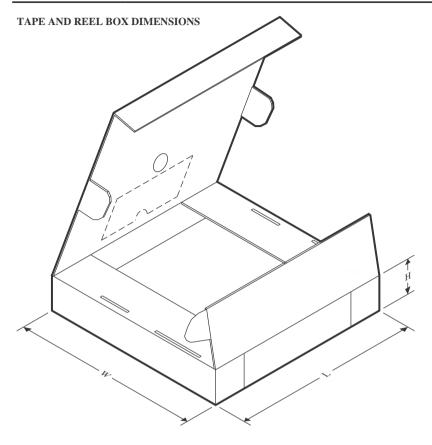


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



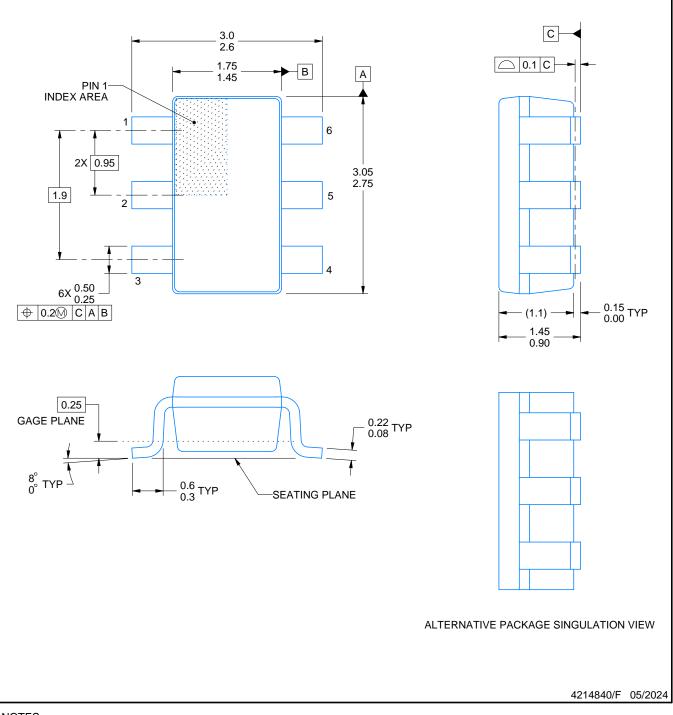
*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2681M6/NOPB	SOT-23	DBV	6	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM2681M6X/NOPB	SOT-23	DBV	6	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

9-Aug-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2681M6/NOPB	SOT-23	DBV	6	1000	210.0	185.0	35.0
LM2681M6X/NOPB	SOT-23	DBV	6	3000	210.0	185.0	35.0


DBV0006A

PACKAGE OUTLINE

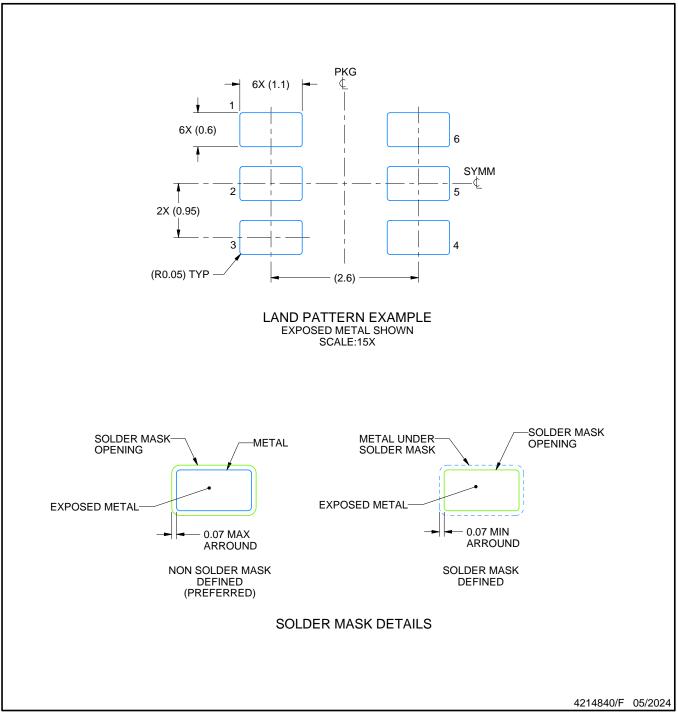
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.



DBV0006A

EXAMPLE BOARD LAYOUT

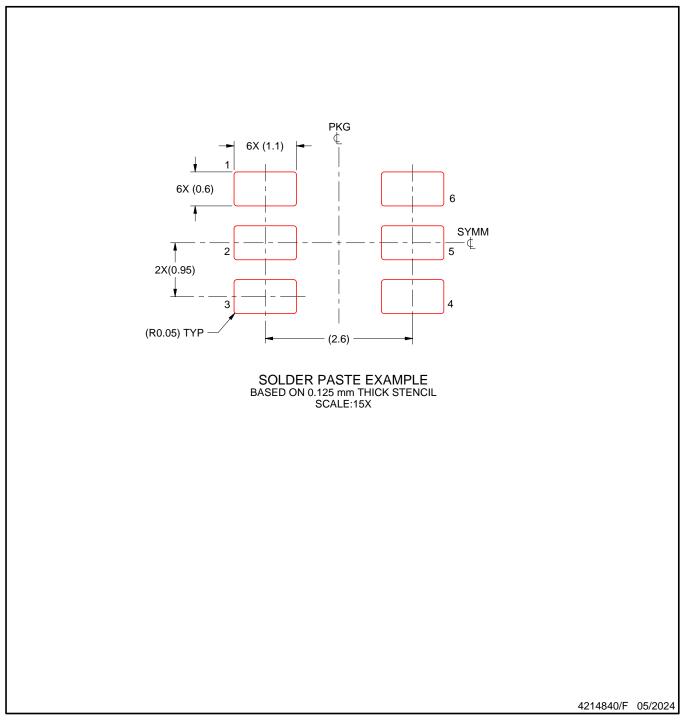
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0006A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated