

LM317L 100mA Adjustable Floating Voltage Regulator

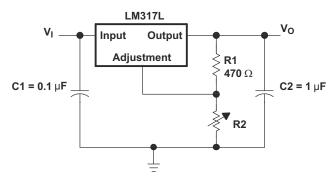
1 Features

- Output voltage range (V_O):
 - Adjustable 1.25V to 37V (for new chip)
 - Adjustable 1.25V to 32V (for legacy chip)
- Output current: Up to 100mA
- Accuracy:
 - Input regulation typically 0.01% per input voltage change
 - Output regulation typically 0.5%
- Ripple rejection typically:
 - 80 dB at 120Hz
 - 65 dB at 100kHz
- For higher output current requirements, see LM317M (500mA) and LM317 (1.5A)

2 Applications

- Electronic points of sale
- Medical, health, and fitness applications
- **Printers**
- Appliances and white goods

3 Description


The LM317L is an adjustable, 3-terminal, positivevoltage regulator capable of supplying up to 100 mA over an output-voltage range of 1.25V to 37V. The device is exceptionally easy to use and requires only two external resistors to set the output voltage.

For the legacy chip, the LM317LC series is characterized for the junction temperature range of 0°C to +125°C and the LM317LI device is characterized for the operating junction temperature range of -40°C to +125°C. For the new chip, the both LM317LC and LM317LI series are characterized for the junction temperature range of -40°C to +125°C.

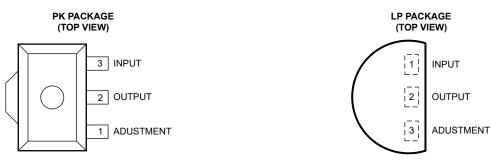
Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)
	D (SOIC, 8)	4.9mm × 6mm
LM317L	LP (TO-92, 3)	4.8mm × 3.68mm
LIVISTAL	PK (SOT-89, 3)	4.5mm × 4.095mm
	PW (TSSOP, 8)	3mm × 6.4mm

- For more information, see the Mechanical, Packaging, and Orderable Information.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Simplified Schematic

Table of Contents


1 Features	1	7.1 Application Information	9
2 Applications		7.2 Typical Application	
3 Description		7.3 System Examples	
4 Pin Configuration and Functions	3	7.4 Power Supply Recommendations	15
5 Specifications	4	7.5 Layout	
5.1 Absolute Maximum Ratings		7.6 Estimating Junction Temperature	
5.2 ESD Ratings	4	8 Device and Documentation Support	17
5.3 Recommended Operating Conditions	4	8.1 Device Support	
5.4 Thermal Information	4	8.2 Receiving Notification of Documentation Updates	s17
5.5 Electrical Characteristics	<mark>5</mark>	8.3 Support Resources	17
5.6 Typical Characteristics	6	8.4 Trademarks	17
6 Detailed Description		8.5 Electrostatic Discharge Caution	17
6.1 Overview	7	8.6 Glossary	
6.2 Functional Block Diagram	7	9 Revision History	
6.3 Feature Description	8	10 Mechanical, Packaging, and Orderable	
6.4 Device Functional Modes	8	Information	18
7 Application and Implementation	9		

4 Pin Configuration and Functions

OUTPUT terminals are all internally connected.

Table 4-1. Pin Functions

NAME	D	PW	LP	PK	TYPE ⁽¹⁾	DESCRIPTION		
ADJUSTMENT	4	4	3	1	I	Output feedback voltage		
INPUT	1	1	1	3	I	Input supply voltage		
NC	5, 8	2, 3, 5, 7, 8	_			No connect. Recommended to ground pins for improved thermal performance but not required.		
OUTPUT	2, 3, 6, 7	6	2	2 O Regulated output voltaç		Regulated output voltage		

(1) I = Input; O = Output

5 Specifications

5.1 Absolute Maximum Ratings

over operating temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V V		Legacy chip		35	
V _I – V _O Input-to-output differential voltage	New chip		40	V	
T _J Operating virtual-junction temperature			150	°C	
T _{stg} Storage temperature	Legacy chip	-65	150	°C	
	Storage temperature	New chip	-55	150	C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

				VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC	Legacy chip	±3000	
V _(ESD)	(ESD) Electrostatic discharge	JS-001, all pins ⁽¹⁾	New chip	±2000	V
(ESD)	Licensedane disentarge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾		±2000	•

- JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

	-			MIN	MAX	UNIT
V _O Output voltage			Legacy chip		32	V
		New chip	1.25	37		
V V	lament to automate valtage differential		Legacy chip	2.5	32	V
V _I – V _O Input-to-output voltage differential		IIIIai	New chip	2.5	37	V
Io	Output current			2.5	100	mA
		1.0471.0	Legacy chip	0	125	
T _J temperature	LM317LC	New chip	-40	125	°C	
	LM317LI	Legacy and new chip	-40	125		

5.4 Thermal Information

				LM317L					
THERMAL METRIC(1)		D 8 PINS		LP 3 PINS		PK 3 PINS		PW 8 PINS	UNIT
		Legacy Chip ⁽²⁾	New Chip	Legacy Chip ⁽²⁾	New Chip	Legacy Chip ⁽²⁾	New Chip	Legacy Chip ⁽²⁾	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97.1	96.5	139.5	156.7	51.5	44	149.4	
R _{0JC(top)}	Junction-to-case (top) thermal resistance		48.6		80.6		86.9		
$R_{\theta JB}$	Junction-to-board thermal resistance		34.8				8.5		
Ψ_{JT}	Junction-to-top characterization parameter		5.9		24.7		4.5		°C/W
Ψ_{JB}	Junction-to-board characterization parameter		34.2		135.8		8.5		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance						6.9		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application

Product Folder Links: LM317L

(2) Legacy chip only $R_{\theta JA}$ values reported.

5.5 Electrical Characteristics

Unless otherwise noted, specifications over recommended operating virtual-junction temperature range, $V_1 - V_0 = 5V$ and $I_0 = 40$ mA, $P \le rated$ dissipation, measured with a $0.1\mu F$ capacitor across the input and a $1\mu F$ capacitor across the output.

Т	EST CONDITIONS	S ⁽¹⁾	MIN	TYP	MAX	UNIT
	T _J = 25°C	Legacy and new chip		0.01	0.02	
$V_1 - V_0 = 5V \text{ to } 35V$	I _O = 2.5mA to 100mA	Legacy and new chip		0.02	0.05	%/V
V _O = 10V, f = 120Hz		Legacy and new chip		65		
		Legacy and new chip	66	80		dB
$V_1 - V_0 = 5V \text{ to } 35V, T_J =$	V _O ≤ 5V	Legacy and new chip		25		mV
$I_0 = 2.5$ mA to 100mA	V _O ≥ 5V	Legacy and new chip		5		mV/V
$V_1 - V_0 = 5V \text{ to } 35V,$	V _O ≤ 5V	Legacy and new chip		50		mV
I _O = 2.5mA to 100mA	V _O ≥ 5V	Legacy and new chip		10		mV/V
T _J = 0°C to 125°C		Legacy and new chip		10		mV/V
After 1000 hours at T _J = 125°C and V _I – V _O = 35V		Legacy and new chip		3	10	mV/V
$f = 10Hz$ to $10kHz$, $T_J = 25$	°C	Legacy and new chip		30		μV/V
\\. \\- = 35\\		Legacy chip		1.5	2.5	mA
VI - VO - 33V		New chip		3.5	5	IIIA
$3V \le V_I - V_O \le 13V$		Legacy and new chip	100	200		
V V - 25V		Legacy chip	100	200		mA
$V_1 - V_0 = 35V$		New chip	25	50	150	
		Legacy and new chip		50	100	μA
V _I – V _O = 5V, I _O = 40 mA		Logov and now ship		0.2	5	μA
$V_1 - V_O = 5V$, $I_O = 40 \text{ mA}$		Legacy and new chip		1.25	1.3	٧
	$V_{I} - V_{O} = 5V \text{ to } 35V$ $V_{O} = 10V, f = 120\text{Hz}$ $V_{O} = 10V, 10\mu\text{F} \text{ capacitor I}$ ADJUSTMENT and ground $V_{I} - V_{O} = 5V \text{ to } 35V, T_{J} = 25^{\circ}\text{C},$ $I_{O} = 2.5\text{mA} \text{ to } 100\text{mA}$ $V_{I} - V_{O} = 5V \text{ to } 35V,$ $I_{O} = 2.5\text{mA} \text{ to } 100\text{mA}$ $T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$ After 1000 hours at $T_{J} = 12V_{O} = 35V$ $f = 10\text{Hz} \text{ to } 10\text{kHz}, T_{J} = 25V_{O} = 35V$ $3V \le V_{I} - V_{O} \le 13V_{O} = 35V_{O} = 35V_{O}$	$V_{l} - V_{O} = 5V \text{ to } 35V \qquad \frac{T_{J} = 25^{\circ}\text{C}}{I_{O} = 2.5\text{mA to}}$ $V_{O} = 10V, \ f = 120\text{Hz}$ $V_{O} = 10V, \ 10\mu\text{F capacitor between}$ $ADJUSTMENT \ and \ ground$ $V_{l} - V_{O} = 5V \ to \ 35V, \ T_{J} = V_{O} \le 5V$ $V_{O} \ge 5V$ $V_{l} - V_{O} = 5V \ to \ 35V, \ V_{O} \ge 5V$ $V_{l} - V_{O} = 5V \ to \ 35V, \ V_{O} \ge 5V$ $V_{l} = 2.5\text{mA to } 100\text{mA} \qquad V_{O} \ge 5V$ $T_{J} = 0^{\circ}\text{C to } 125^{\circ}\text{C}$ $After \ 1000 \ hours \ at \ T_{J} = 125^{\circ}\text{C} \ and \ V_{l} - V_{O} = 35V$ $f = 10\text{Hz to } 10\text{kHz}, \ T_{J} = 25^{\circ}\text{C}$ $V_{l} - V_{O} = 35V$ $3V \le V_{l} - V_{O} \le 13V$ $V_{l} - V_{O} = 35V$ $V_{l} - V_{O} = 35V$ $V_{l} - V_{O} = 35V$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{I}-V_{O}=5V\ to\ 35V \qquad \begin{array}{ c c c c c c c c }\hline T_{J}=25^{\circ}C & \text{Legacy and new chip}\\\hline V_{I}-V_{O}=5V\ to\ 35V & \text{Legacy and new chip}\\\hline V_{O}=10V,\ f=120\text{Hz} & \text{Legacy and new chip}\\\hline V_{O}=10V,\ 10\mu\text{F capacitor between}\\\hline ADJUSTMENT\ and\ ground & \text{Legacy and new chip}\\\hline V_{I}-V_{O}=5V\ to\ 35V,\ T_{J}=& V_{O}\leq5V & \text{Legacy and new chip}\\\hline 25^{\circ}C, & \text{Legacy and new chip}\\\hline V_{I}-V_{O}=5V\ to\ 35V, & \text{V}_{O}\leq5V & \text{Legacy and new chip}\\\hline V_{I}-V_{O}=5V\ to\ 35V, & \text{Legacy and new chip}\\\hline V_{I}=2.5\text{mA to}\ 100\text{mA} & \text{V}_{O}\geq5V & \text{Legacy and new chip}\\\hline T_{J}=0^{\circ}C\ to\ 125^{\circ}C & \text{Legacy and new chip}\\\hline After\ 1000\ hours\ at\ T_{J}=125^{\circ}C\ and\ V_{I}-& \text{Legacy and new chip}\\\hline V_{I}-V_{O}=35V & \text{Legacy and new chip}\\\hline V_{I}-V_{O}=35V & \text{Legacy and new chip}\\\hline 3V\leq V_{I}-V_{O}\leq 13V & \text{Legacy and new chip}\\\hline V_{I}-V_{O}=35V & \text{Legacy and new chip}\\\hline 000000000000000000000000000000000000$	$\begin{array}{c} V_{1}-V_{0}=5 \text{V to }35 \text{V} & \begin{array}{c} T_{J}=25^{\circ}\text{C} & \text{Legacy and new chip} \\ I_{0}=2.5 \text{mA to} \\ 100 \text{mA} & \text{Legacy and new chip} \\ \end{array} & \begin{array}{c} 0.01 \\ 0.02 \\ \end{array} \\ \begin{array}{c} V_{O}=10 \text{V, f}=120 \text{Hz} \\ V_{O}=10 \text{V, 10} \text{µc capacitor between} \\ \text{ADJUSTMENT and ground} \\ \end{array} & \begin{array}{c} \text{Legacy and new chip} \\ \text{Legacy and new chip} \\ \end{array} & \begin{array}{c} 66 \\ \text{80} \\ \end{array} \\ \begin{array}{c} V_{1}-V_{0}=5 \text{V to }35 \text{V, T}_{J}=25^{\circ}\text{C} \\ \text{I}_{0}=2.5 \text{mA to }100 \text{mA} \\ \end{array} & \begin{array}{c} V_{0} \leq 5 \text{V} \\ \text{V}_{0} \geq 5 \text{V} \\ \end{array} & \begin{array}{c} \text{Legacy and new chip} \\ \end{array} & \begin{array}{c} 50 \\ \text{V}_{0} \leq 5 \text{V} \\ \end{array} \\ \begin{array}{c} \text{Legacy and new chip} \\ \end{array} & \begin{array}{c} 50 \\ \text{V}_{0} \leq 5 \text{V} \\ \end{array} \\ \begin{array}{c} \text{Legacy and new chip} \\ \end{array} & \begin{array}{c} 50 \\ \text{Legacy and new chip} \\ \end{array} \\ \begin{array}{c} 50 \\ \text{Legacy and new chip} \\ \end{array} & \begin{array}{c} 50 \\ \text{Legacy and new chip} \\ \end{array} \\ \begin{array}{c} 10 \\ \end{array} \\ \begin{array}{c} 30 \\ \text{After }1000 \text{ hours at }T_{J}=125^{\circ}\text{C and }V_{I}-100 \\ \end{array} \\ \begin{array}{c} \text{Legacy and new chip} \\ \end{array} & \begin{array}{c} 30 \\ \text{Legacy and new chip} \\ \end{array} \\ \begin{array}{c} 30 \\ \text{Legacy and new chip} \\ \end{array} \\ \begin{array}{c} 30 \\ \text{Legacy and new chip} \\ \end{array} \\ \begin{array}{c} 30 \\ \text{Legacy and new chip} \\ \end{array} \\ \begin{array}{c} 30 \\ \text{Legacy chip} \\ \end{array} \\ \begin{array}{c} 30 \\ Legac$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

⁽¹⁾ For all tests unless otherwise noted, power dissipation ≤ 1.4W in PK, D, and PW packages and ≤ 0.625W for LP package. Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

5.6 Typical Characteristics

Unless otherwise noted, specifications over recommended operating virtual-junction temperature range, $V_I - V_O = 5V$ and $I_O = 40$ mA, $P \le rated$ dissipation.

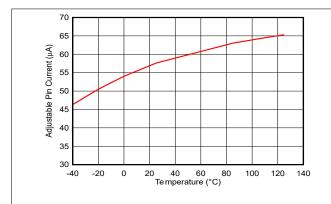


Figure 5-1. Change in Adjustment Current Over Temperature (Legacy Chip)

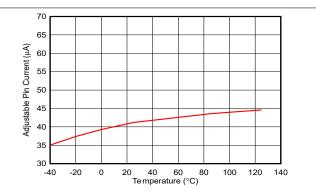


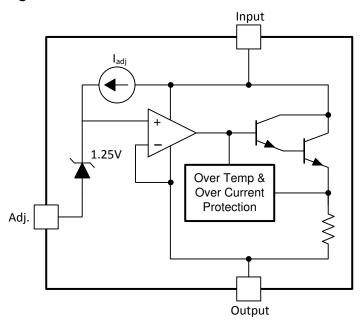
Figure 5-2. Change in Adjustment Current Over Temperature (New Chip)

6 Detailed Description

6.1 Overview

The LM317L is a 100mA linear regulator with high voltage tolerance up to 37V. The device has a feedback voltage that is relative to the output instead of ground. This ungrounded design allows the LM317L device to have superior line and load regulation. This design also allows the LM317L device to be used as a current source or current sink using a single resistor. Any output voltage from 1.25V to 32V can be obtained by using two resistors. The bias current of the device, up to 2.5mA, flows to the output; this current must be used by the load or the feedback resistors. The power dissipation is the product of pass transistor voltage and current, which is calculated as shown in Equation 1.

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$
 (1)


The application heat sink must be able to absorb the power calculated in Equation 1.

In addition to higher performance than fixed regulators, this regulator offers full overload protection, available only in integrated circuits. Included on the chip are current-limiting and thermal-overload protection. All overload-protection circuitry remains fully functional even when ADJUSTMENT is disconnected. Normally, no capacitors are needed unless the device is situated far from the input filter capacitors, in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. ADJUSTMENT can be bypassed to achieve very high ripple rejection, which is difficult to achieve with standard three-terminal regulators.

In addition to replacing fixed regulators, the LM317L regulator is useful in a wide variety of other applications. Because the regulator is floating and observes only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded. The primary application is that of a programmable output regulator, but by connecting a fixed resistor between ADJUSTMENT and OUTPUT, this device can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping ADJUSTMENT to ground, programming the output to 1.25V, where most loads draw little current.

The LM317LC is characterized for operation over the virtual junction temperature range of 0°C to 125°C. The LM317LI is characterized for operation over the virtual junction temperature range of –40°C to 125°C.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 NPN Darlington Output Drive

The NPN Darlington output topology provides naturally low output impedance and an output capacitor is optional. To support maximum current and lowest temperature, a 2.5V headroom is recommended $(V_I - V_O)$.

6.3.2 Overload Block

Overcurrent and overtemperature shutdown protects the device against overload or damage from operating in excessive heat.

6.3.3 Programmable Feedback

An op amp with a 1.25V offset input at the ADJUST pin provides easy output voltage or current (not both) programming. For current regulation applications, use a single resistor whose resistance value is $1.25V / I_{OUT}$ and power rating is greater than $(1.25V)^2 / R$. For voltage regulation applications, two resistors set the output voltage. See the *Typical Application* section for a schematic and the resistor formula.

6.4 Device Functional Modes

6.4.1 Normal operation

The device OUTPUT pin sources current necessary to make the OUTPUT pin 1.25V greater than the ADJUST terminal to provide output regulation.

6.4.2 Operation With Low Input Voltage

The device requires up to a 2.5V headroom $(V_1 - V_0)$ to operate in regulation. With less headroom, the device can drop out and the OUTPUT voltage is the INPUT voltage minus the dropout voltage.

6.4.3 Operation at Light Loads

The device passes the bias current to the OUTPUT pin. The load or feedback must consume this minimum current for regulation or the output can be too high.

6.4.4 Operation In Self Protection

When an overload occurs, the device shuts down the Darlington NPN output stage or reduces the output current to prevent device damage. The device automatically restarts when the over current is removed. The output can be reduced or cycle thermal shutdown on and off until the overload is removed.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The two output resistors are the only components required to adjust V_{OLIT}.

7.2 Typical Application

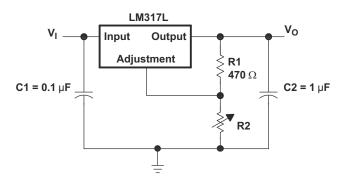


Figure 7-1. Typical Application Schematic

7.2.1 Design Requirements

- 1. Use an input bypass capacitor if the regulator is far from the filter capacitors.
- 2. For this design example, use the parameters listed in Table 7-1.
- 3. Using an output capacitor improves transient response, but is optional.

Table 7-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	(Output voltage + 2.5V) to 32V
Output voltage	$V_{REF} \times (1 + R_2 / R_1) + I_{ADJ} \times R_2$

7.2.2 Detailed Design Procedure

7.2.2.1 Input Capacitor

An input capacitor is not required, but is recommended, particularly if the regulator is not in close proximity to the power-supply filter capacitors. A $0.1\mu F$ ceramic or $1\mu F$ tantalum provides sufficient bypassing for most applications, especially when adjustment and output capacitors are used.

7.2.2.2 Output Capacitor

An output capacitor improves transient response, but is not needed for stability.

7.2.2.3 Feedback Resistors

The feedback resistor sets the output voltage using Equation 2.

$$V_{REF} \times (1 + R_2 / R_1) + I_{ADJ} \times R_2$$
 (2)

7.2.2.4 Adjustment Terminal Capacitor

The optional adjustment pin capacitor improves ripple rejection by preventing the amplification of the ripple. When this capacitor is used and $V_{OUT} > 6V$, a protection diode from adjust to output is recommended.

7.2.2.5 Design Options and Parameters

Common linear regulator designs are concerned with the following parameters:

- · Input voltage range
- · Input capacitor range
- Output voltage
- · Output current rating
- Output capacitor range
- · Input short protection
- Stability
- Ripple rejection

7.2.2.6 Output Voltage

 V_{O} is calculated as shown in Equation 3.

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_2}{R_1}\right) + \left(I_{ADJ} \times R_2\right)$$
(3)

Because I_{ADJ} typically is $50\mu A$, this parameter is negligible in most applications.

7.2.2.7 Ripple Rejection

 C_{ADJ} is used to improve ripple rejection. This capacitor prevents amplification of the ripple when the output voltage is adjusted higher. If C_{ADJ} is used, include protection diodes to prevent ADJ from reverse-biasing when VOUT collapses quickly.

7.2.2.8 Input Short Protection

If the input is shorted to ground during a fault condition, protection diodes provide measures to prevent the possibility of external capacitors discharging through low-impedance paths in the device. By providing low-impedance discharge paths for C_3 and C_2 , respectively, a protection diode across the input to the output and a protection diode across ADJ to the output prevent the capacitors from discharging into the output of the regulator.

7.2.3 Application Curve

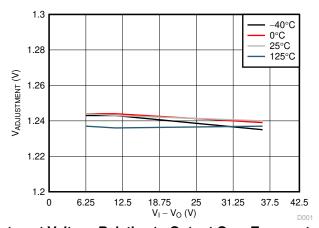


Figure 7-2. Adjustment Voltage Relative to Output Over Temperature (Legacy Chip)

Submit Document Feedback

7.3 System Examples

7.3.1 Regulator Circuit With Improved Ripple Rejection

C2 helps stabilize the voltage at the adjustment pin, which helps reject noise. Diode D1 exists to discharge C2 in case the output is shorted to ground.

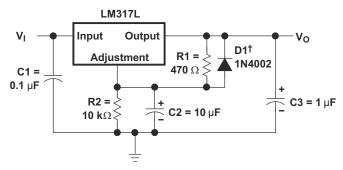


Figure 7-3. Regulator Circuit With Improved Ripple Rejection

7.3.2 0V to 30V Regulator Circuit

In the 0V to 30V regulator circuit application, the output voltage is determined by Equation 4.

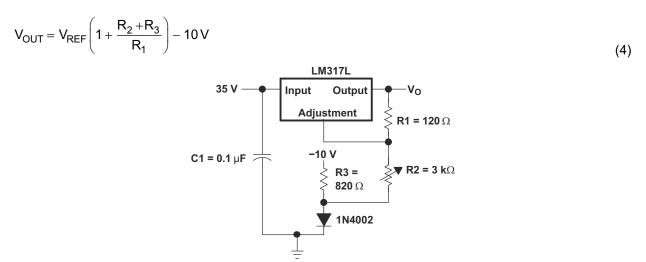


Figure 7-4. 0V to 30V Regulator Circuit

7.3.3 Precision Current-Limiter Circuit

This application limits the output current to the I_{LIMIT} shown in Figure 7-5.

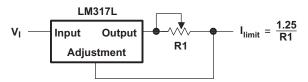


Figure 7-5. Precision Current-Limiter Circuit

7.3.4 Tracking Preregulator Circuit

The tracking preregulator circuit application keeps a constant voltage across the second LM317L in the circuit.

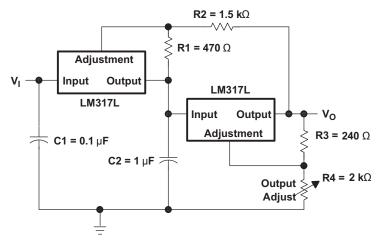


Figure 7-6. Tracking Preregulator Circuit

7.3.5 Slow-Turn On 15V Regulator Circuit

The capacitor C1, in combination with the PNP transistor, helps the circuit to slowly start supplying voltage. In the beginning, the capacitor is not charged. Therefore, output voltage starts at 1.9V, as determined by Equation 5. As the capacitor voltage rises, V_{OUT} rises at the same rate. When the output voltage reaches the value determined by R1 and R2, the PNP is turned off.

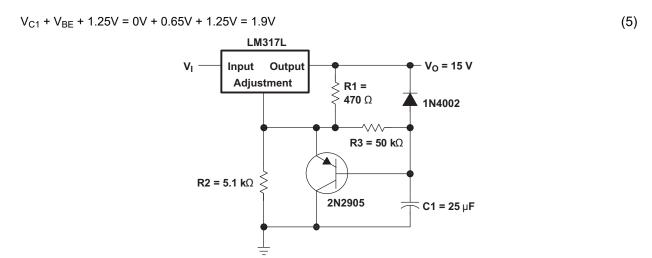


Figure 7-7. Slow-Turn On of the 15V Regulator Circuit

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

7.3.6 50mA Constant-Current, Battery-Charger Circuit

The current-limit operation mode can be used to trickle charge a battery at a fixed current as determined by Equation 6. V_I must be greater than V_{BAT} + 3.75 V_I .

$$I_{CHG} = 1.25V \div 24\Omega \tag{6}$$

 $(1.25V [V_{REF}] + 2.5V [headroom])$ (7)

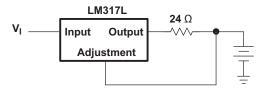


Figure 7-8. 50mA Constant-Current, Battery-Charger Circuit

7.3.7 Current-Limited 6V Charger

As the charge current increases, the voltage at the bottom resistor increases until the NPN starts sinking current from the adjustment pin. The voltage at the adjustment pin drops, and consequently the output voltage decreases until the NPN stops conducting.

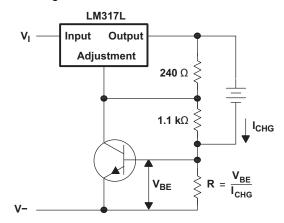


Figure 7-9. Current-Limited 6V Charger

7.3.8 High-Current Adjustable Regulator

This application allows higher currents at V_{OUT} than the LM317L can provide, while still keeping the output voltage at levels determined by the adjustment-pin resistor divider of the LM317L.

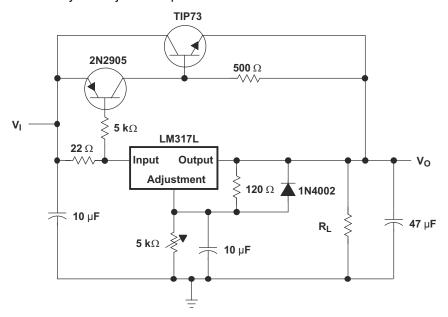


Figure 7-10. High-Current Adjustable Regulator

7.4 Power Supply Recommendations

The LM317L is designed to operate from an input voltage supply range between 2.5V to 32V greater than the output voltage. If the device is more than six inches from the input filter capacitors, an input bypass capacitor, 0.1µF or greater, of any type is needed for stability.

7.5 Layout

7.5.1 Layout Guidelines

- · Bypass the input pin to ground with a bypass capacitor.
- The optimum placement is closest to the V_{IN} of the device and the GND of the system. Care must be taken
 to minimize the loop area formed by the bypass capacitor connection, the INPUT pin, and the GND pin of the
 system.
- For operation at a full-rated load, use wide trace lengths to eliminate IR drop and heat dissipation.

7.5.2 Layout Example

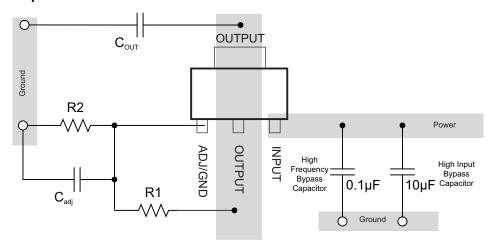


Figure 7-11. Layout Diagram

7.6 Estimating Junction Temperature

The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of the linear regulator when in circuit on a typical PCB board application. These metrics are not thermal resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi metrics are determined to be significantly independent of the copper area available for heat-spreading. The Section 5.4 table lists the primary thermal metrics, which are the junction-to-top characterization parameter (ψ_{JT}) and junction-to-board characterization parameter (ψ_{JB}) . These parameters provide two methods for calculating the junction temperature (T_J) , as described in the following equations. Use the junction-to-top characterization parameter (ψ_{JT}) with the temperature at the center-top of device package (T_T) to calculate the junction temperature. Use the junction-to-board characterization parameter (ψ_{JB}) with the PCB surface temperature 1mm from the device package (T_B) to calculate the junction temperature.

$$T_I = T_T + \Psi_{IT} \times P_D \tag{8}$$

$$T_{J} = T_{T} + \psi_{JT} \times P_{D} \tag{9}$$

where:

- P_D is the dissipated power
- T_T is the temperature at the center-top of the device package

$$T_I = T_B + \Psi_{IB} \times P_D \tag{10}$$

where:

 T_B is the PCB surface temperature measured 1mm from the device package and centered on the package edge

For detailed information on the thermal metrics and how to use them, see the *Semiconductor and IC Package Thermal Metrics* application note.

8 Device and Documentation Support

8.1 Device Support

8.1.1 Device Nomenclature

Device Nomenclature

PRODUCT ⁽¹⁾	V _{OUT}
LM317L xyyyz	 x is the operating temperature range designator. yyy is the package designator. z is the package quantity designator. Devices ship with either the legacy chip (CSO: SHE) or the new chip (CSO: TID). The reel packaging label provides CSO information to distinguish which chip is used. Device performance for new and legacy chips is denoted throughout the data sheet.

⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (October 2011) to Revision E (October 2014)

Page

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated