

LM324-N-MIL

SNOSD66 - JUNE 2017

LM324-N-MIL Low-Power, Quad-Operational Amplifier

Features

- Internally Frequency Compensated for Unity Gain
- Large DC Voltage Gain 100 dB
- Wide Bandwidth (Unity Gain) 1 MHz (Temperature Compensated)
- Wide Power Supply Range:
 - Single Supply 3 V to 32 V
 - or Dual Supplies ±1.5 V to ±16 V
- Very Low Supply Current Drain (700 μA) -Essentially Independent of Supply Voltage
- Low Input Biasing Current 45 nA (Temperature Compensated)
- Low Input Offset Voltage 2 mV and Offset Current: 5 nA
- Input Common-Mode Voltage Range Includes Ground
- Differential Input Voltage Range Equal to the Power Supply Voltage
- Large Output Voltage Swing 0 V to V⁺ 1.5 V

Advantages:

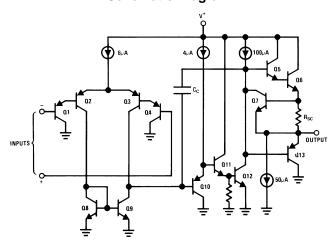
- Eliminates Need for Dual Supplies
- Four Internally Compensated Op Amps in a Single Package
- Allows Direct Sensing Near GND and Vout also Goes to GND
- Compatible With All Forms of Logic
- Power Drain Suitable for Battery Operation
- In the Linear Mode the Input Common-Mode. Voltage Range Includes Ground and the **Output Voltage**
- Can Swing to Ground, Even Though Operated from Only a Single Power Supply Voltage
- Unity Gain Cross Frequency is Temperature Compensated
- Input Bias Current is Also Temperature Compensated

Applications

- **Transducer Amplifiers**
- DC Gain Blocks
- Conventional Op Amp Circuits

3 Description

LM324-N-MIL device consists high-gain, internally independent. frequency compensated operational amplifiers designed to operate from a single power supply over a wide range of voltages. Operation from split-power supplies is also possible and the low-power supply current drain is independent of the magnitude of the power supply voltage.


Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM324-N-MIL device can directly operate off of the standard 5-V power supply voltage which is used in digital systems and easily provides the required interface electronics without requiring the additional ±15 V power supplies.

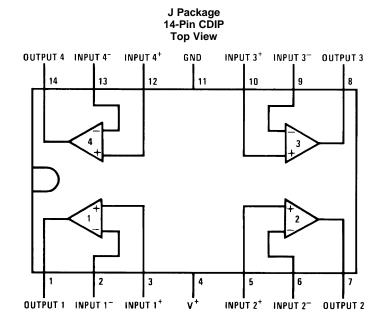
Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	CDIP (14)	19.56 mm × 6.67 mm		
LM324-N-MIL	PDIP (14)	19.177 mm × 6.35 mm		
	SOIC (14)	8.65 mm × 3.91 mm		
	TSSOP (14)	5.00 mm × 4.40 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Schematic Diagram

Table of Contents


1	Features 1	7.4 Device Functional Modes	8
2	Applications 1	8 Application and Implementation	10
3	Description 1	8.1 Application Information	10
4	Revision History	8.2 Typical Applications	10
5	Pin Configuration and Functions	9 Power Supply Recommendations	20
6	Specifications	10 Layout	20
•	6.1 Absolute Maximum Ratings	10.1 Layout Guidelines	20
	6.2 ESD Ratings	10.2 Layout Example	20
	6.3 Recommended Operating Conditions	11 Device and Documentation Support	21
	6.4 Thermal Information	11.1 Receiving Notification of Documentatio	n Updates 21
	6.5 Electrical Characteristics5	11.2 Community Resources	21
	6.6 Typical Characteristics	11.3 Trademarks	21
7	Detailed Description 8	11.4 Electrostatic Discharge Caution	21
-	7.1 Overview 8	11.5 Glossary	21
	7.2 Functional Block Diagram 8	12 Mechanical, Packaging, and Orderable	
	7.3 Feature Description 8	Information	21

4 Revision History

DATE	REVISION	NOTES
June 2017	*	Initial release.

www.ti.com SNOSD66 – JUNE 2017

5 Pin Configuration and Functions

Pin Functions

P	PIN		DESCRIPTION				
NAME	NO.	ITPE	DESCRIPTION				
OUTPUT1	1	0	Output, Channel 1				
INPUT1-	2	1	nverting Input, Channel 1				
INPUT1+	3	1	oninverting Input, Channel 1				
V+	4	Р	Positive Supply Voltage				
INPUT2+	5	I	onnverting Input, Channel 2				
INPUT2-	6	I	nverting Input, Channel 2				
OUTPUT2	7	0	Output, Channel 2				
OUTPUT3	8	0	Output, Channel 3				
INPUT3-	9	I	Inverting Input, Channel 3				
INPUT3+	10	I	Noninverting Input, Channel 3				
GND	11	Р	Ground or Negative Supply Voltage				
INPUT4+	12	I	Noninverting Input, Channel 4				
INPUT4-	13	I	Inverting Input, Channel 4				
OUTPUT4	14	0	Output, Channel 4				

Copyright © 2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings

See (1).

			MIN	MAX	UNIT
Supply Voltage, V ⁺				32	V
Differential Input Voltage				32	V
Input Voltage			-0.3	32	V
Input Current (V _{IN} < −0.3	V) ⁽²⁾			50	mA
Power Dissipation ⁽³⁾	PDIP			1130	mW
	CDIP			1260	mW
	SOIC Package		800	mW	
Output Short-Circuit to GI Amplifier) ⁽⁴⁾	ND (One	V ⁺ ≤ 15 V and T _A = 25°C	Contir	nuous	
Soldering Information	Dual-In-Line Package	Soldering (10 seconds)		260	°C
Soldering information	Small Outline	Vapor Phase (60 seconds)		215	°C
	Package	Infrared (15 seconds)		220	°C
Storage temperature, T _{sto}	1		-65	150	°C

- (1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
- (2) This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V⁺voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than −0.3 V (at 25°C).
- (3) For operating at high temperatures, the LM324-N-MIL must be derated based on a 125°C maximum junction temperature and a thermal resistance of 88°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The dissipation is the total of all four amplifiers—use external resistors, where possible, to allow the amplifier to saturate of to reduce the power which is dissipated in the integrated circuit.
- (4) Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V⁺. At values of supply voltage in excess of 15 V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Supply Voltage (V ⁺ - V ⁻)	3	32	V
Operating Input Voltage on Input pins	0	V+	V
Operating junction temperature, T _J	0	70	°C

6.4 Thermal Information

		LM324-N-MIL	
	THERMAL METRIC ⁽¹⁾	D/SOIC	UNIT
		14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	88	°C/W

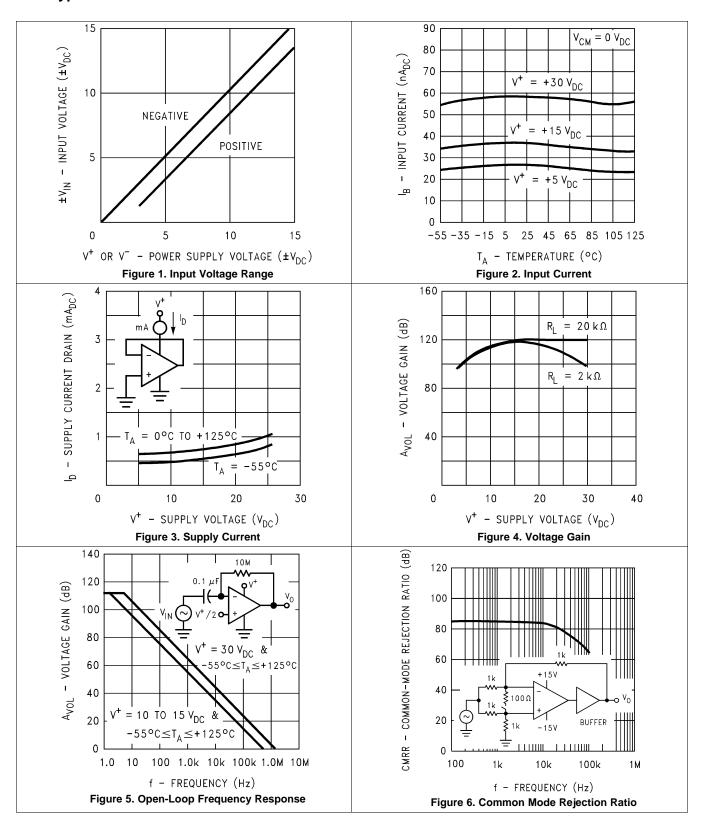
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: LM324-N-MIL

www.ti.com

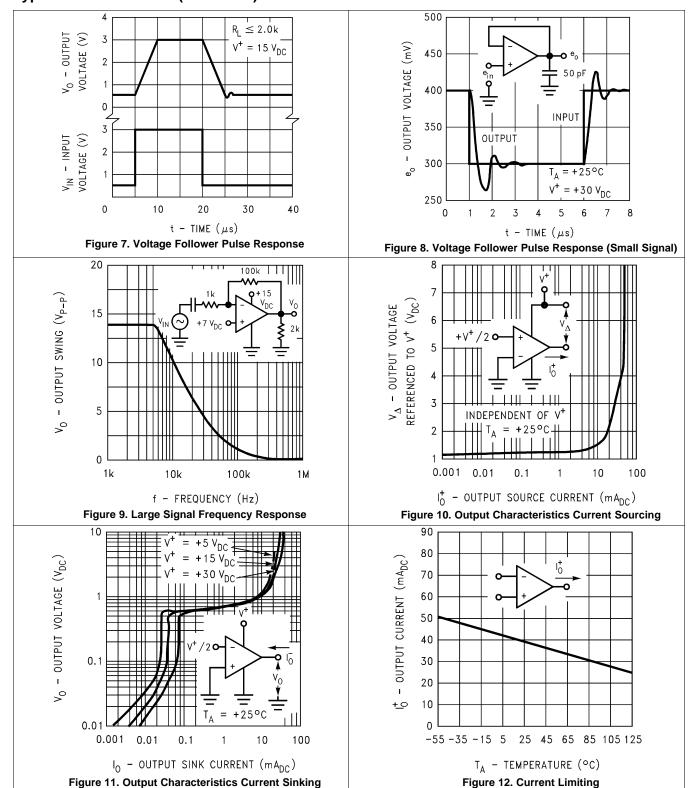
6.5 Electrical Characteristics

 $V^+ = +5.0V$, (1), unless otherwise stated


PAI	RAMETER	TEST CO	MIN	TYP	MAX	UNIT		
Input Offset Voltage	je	T _A = 25°C ⁽²⁾			2	7	mV	
Input Bias Current	(3)	$I_{IN(+)}$ or $I_{IN(-)}$, $V_{CM} = 0$ V, $T_A = 25^{\circ}$ C	;		45	250	nA	
Input Offset Curre	nt	$I_{IN(+)}$ or $I_{IN(-)}$, $V_{CM} = 0$ V, $T_A = 25^{\circ}$ C			5	50	nA	
Input Common-Mo	de Voltage Range ⁽⁴⁾	V ⁺ = 30 V, T _A = 25°C		0		V ⁺ -1.5	V	
Supply Current		Over Full Temperature Range $R_L = \infty$ On All Op Amps, $V^+ = 30 \text{ V}$			1.5	3 mA		
		V ⁺ = 5 V			0.7	1.2		
Large Signal Volta	ge Gain	V^+ = 15V, R _L ≥ 2 kΩ, (V _O = 1 V to 11 V), T _A = 25°C		25	100		V/mV	
Common-Mode Re	ejection Ratio	DC, $V_{CM} = 0 \text{ V to V}^+ - 1.5 \text{ V}$, $T_A =$	25°C	65	85		dB	
Power Supply Rej	ection Ratio	V ⁺ = 5 V to 30 V, T _A = 25°C		65	100		dB	
Amplifier-to-Amplifier Coupling ⁽⁵⁾		f = 1 kHz to 20 kHz, T _A = 25°C (Input Referred)		-120		dB		
Source		$V_{IN}^{+} = 1 \text{ V}, V_{IN}^{-} = 0 \text{ V},$ $V^{+} = 15 \text{ V}, V_{O} = 2 \text{ V}, T_{A} = 25^{\circ}\text{C}$	20	40		mA		
Output Current	Circle	$V_{IN}^- = 1 \text{ V}, V_{IN}^+ = 0 \text{ V},$ $V^+ = 15 \text{ V}, V_O = 2 \text{ V}, T_A = 25^{\circ}\text{C}$	10	20		mA		
	Sink	$V_{IN}^- = 1 \text{ V}, V_{IN}^+ = 0 \text{ V},$ $V^+ = 15 \text{ V}, V_O = 200 \text{ mV}, T_A = 25^\circ$	12	50		μА		
Short Circuit to Gr	ound	V ⁺ = 15 V, T _A = 25°C ⁽⁶⁾		40	60	mA		
Input Offset Voltage	je	See (2)			9	mV		
V _{OS} Drift		$R_S = 0 \Omega$		7		μV/°C		
Input Offset Curre	nt	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0 \text{ V}$			150	nA		
I _{OS} Drift		$R_S = 0 \Omega$		10		pA/°C		
Input Bias Current		I _{IN(+)} or I _{IN(-)}	I _{IN(+)} or I _{IN(-)}			500	nA	
Input Common-Mo	de Voltage Range ⁽⁴⁾	V ⁺ = 30 V				V+-2	V	
Large Signal Volta	ge Gain	$V^+ = 15 \text{ V } (V_O \text{Swing} = 1 \text{ V to } 11 \text{ V}),$ $R_L \ge 2 \text{ k}\Omega$	15			V/mV		
	V	\/t 00\/	$R_L = 2 k\Omega$	26				
Output Voltage Swing	V _{OH}	V ⁺ = 30 V	$R_L = 10 \text{ k}\Omega$	27	28		V	
O.VIIIg	V _{OL}	$V^{+} = 5 \text{ V}, \text{ R}_{\text{L}} = 10 \text{ k}\Omega$	$V^{+} = 5 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$		5	20	mV	
	Source	V _O = 2 V	$V_{IN}^{+} = 1 \text{ V},$ $V_{IN}^{-} = 0 \text{ V},$ $V^{+} = 15 \text{ V}$	10	20		mA	
Output Current	Sink		$V_{IN}^{-} = 1 \text{ V},$ $V_{IN}^{+} = 0 \text{ V},$ $V^{+} = 15 \text{ V}$	5	8		mA	

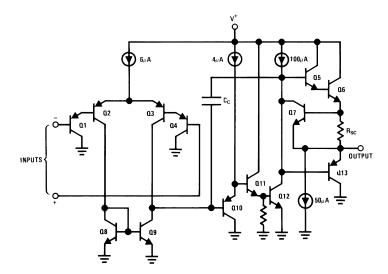
- (1) The LM324-N-MIL temperature specifications are limited to $0^{\circ}\text{C} \le T_{A} \le +70^{\circ}\text{C}$.
- (2) $V_O \approx 1.4V$, $R_S = 0$ Ω with V^+ from 5 V to 30 V.
- (3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- (4) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at 25°C). The upper end of the common-mode voltage range is V⁺ 1.5 V (at 25°C), but either or both inputs can go to 32 V without damage, independent of the magnitude of V⁺.
- (5) Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
 (6) Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground,
- (6) Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V⁺. At values of supply voltage in excess of 15 V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Copyright © 2017, Texas Instruments Incorporated


TEXAS INSTRUMENTS

6.6 Typical Characteristics

Typical Characteristics (continued)


TEXAS INSTRUMENTS

7 Detailed Description

7.1 Overview

The LM324-N-MIL device is an op amp which operates with only a single power supply voltage, has true-differential inputs, and remains in the linear mode with an input common-mode voltage of 0 V_{DC}. This amplifier operates over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 V_{DC}.

7.2 Functional Block Diagram

7.3 Feature Description

The LM324-N-MIL provides a compelling balance of performance versus current consumption. The 700 μ A of supply current draw over the wide operating conditions with a 1-MHz gain-bandwidth and temperature compensated bias currents makes the LM324-N-MIL an effective solution for large variety of applications. The input offset voltage of 2 mV and offset current of 5 nA, along with the 45n-A bias current across a wide supply voltage means a single design can be used in a large number of different implementations.

7.4 Device Functional Modes

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3~V_{DC}$ (at $25^{\circ}C$). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion.

Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

www.ti.com

Device Functional Modes (continued)

The bias network of the LM324-N-MIL establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 3 V_{DC} to 30 V_{DC} .

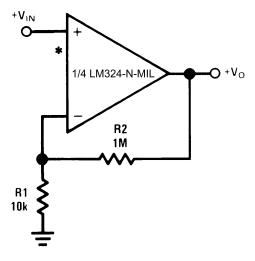
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see *Typical Characteristics*) than a standard IC op amp.

TEXAS INSTRUMENTS

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.


8.1 Application Information

The LM324-N-MIL amplifier is specified for operation from 3 V to 32 V (±1.5 V to ±16 V). Many of the specifications apply from -40°C to 125°C. Parameters that can exhibit significant variance with regards to operating voltage or temperature are presented in *Typical Characteristics*.

8.2 Typical Applications

Figure 13 emphasizes operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V⁺/2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

8.2.1 Non-Inverting DC Gain (0 V Input = 0 V Output)

^{*}R not needed due to temperature independent I_{IN}

Figure 13. Non-Inverting Amplifier with G = 100

8.2.1.1 Design Requirements

For this example application, the required signal gain is a non-inverting 100x±5% with a supply voltage of 5 V.

8.2.1.2 Detailed Design Procedure

Using the equation for a non-inverting gain configuration, Av = 1+R2/R1. Setting the R1 to 10 k Ω , R2 is 99 times larger than R1, which is 990 k Ω . A 1M Ω is more readily available, and provides a gain of 101, which is within the desired specification.

www.ti.com

Typical Applications (continued)

The gain-frequency characteristic of the amplifier and its feedback network must be such that oscillation does not occur. To meet this condition, the phase shift through amplifier and feedback network must never exceed 180° for any frequency where the gain of the amplifier and its feedback network is greater than unity. In practical applications, the phase shift should not approach 180° since this is the situation of conditional stability. Obviously the most critical case occurs when the attenuation of the feedback network is zero.

8.2.1.3 Application Curve

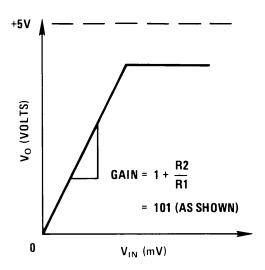
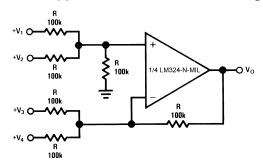
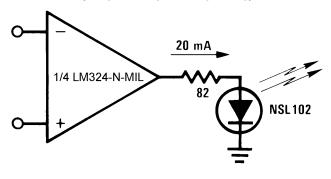
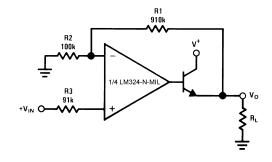



Figure 14. Non-Inverting Amplified Response Curve

TEXAS INSTRUMENTS


Typical Applications (continued)


8.2.2 Other Application Circuits at $V^+ = 5.0 V_{DC}$

Where:
$$V_0 = V_1 + V_2 - V_3 - V_4$$

 $(V_1 + V_2) \ge (V_3 + V_4)$ to keep $V_0 > 0$ V_{DC}

Figure 15. DC Summing Amplifier $(V_{\text{IN'S}} \ge 0 \ V_{\text{DC}} \ \text{And} \ V_{\text{O}} \ge V_{\text{DC}})$

Where: $V_0 = 0 V_{DC}$ for $V_{IN} = 0 V_{DC}$ $A_V = 10$

Figure 16. Power Amplifier

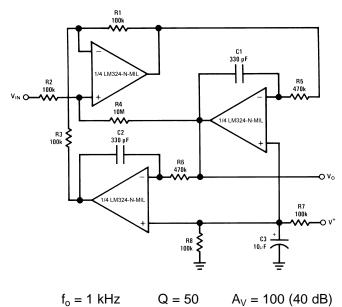
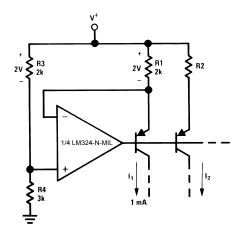
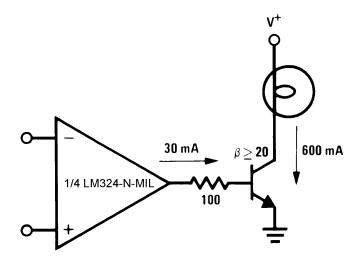
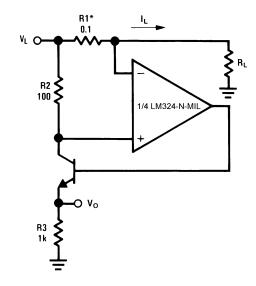



Figure 17. LED Driver


Figure 18. "BI-QUAD" RC Active Bandpass Filter



$$I_2 = \left(\frac{R1}{R2}\right)I_1$$

Figure 19. Fixed Current Sources

*(Increase R1 for I_L small)

Figure 20. Lamp Driver

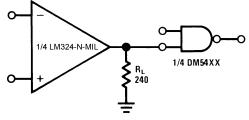


Figure 22. Driving TTL

Figure 21. Current Monitor

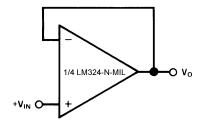


Figure 23. Voltage Follower

TEXAS INSTRUMENTS

Typical Applications (continued)

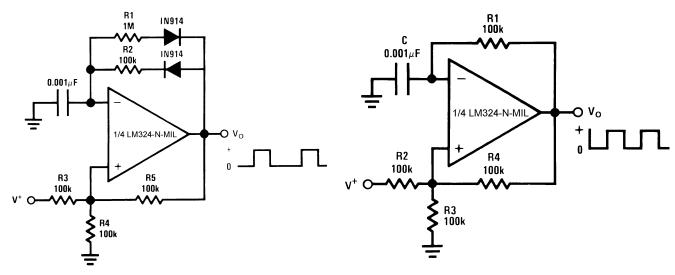


Figure 24. Pulse Generator

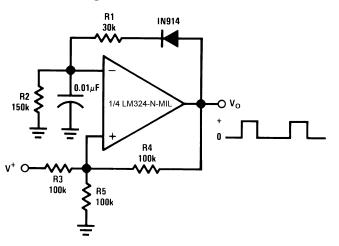
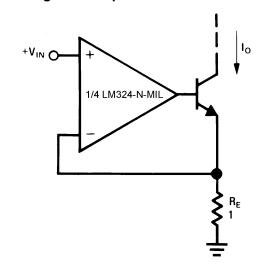



Figure 25. Squarewave Oscillator

 $I_O = 1$ amp/volt V_{IN} (Increase R_E for I_o small)

Figure 26. Pulse Generator

Figure 27. High Compliance Current Sink

O Vo

www.ti.com

Typical Applications (continued)

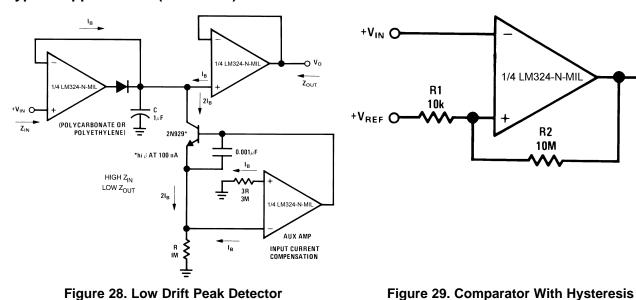
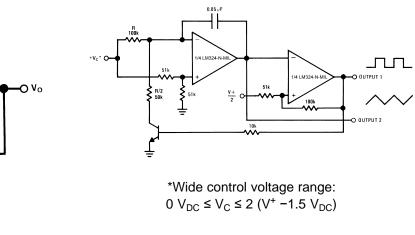



Figure 28. Low Drift Peak Detector

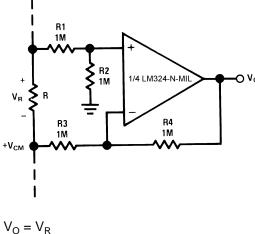


Figure 30. Ground Referencing a Differential Input **Signal**

Figure 31. Voltage Controlled Oscillator Circuit

Copyright © 2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Typical Applications (continued)

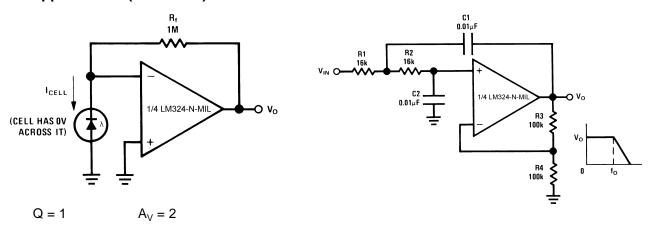


Figure 32. Photo Voltaic-Cell Amplifier

Figure 33. DC Coupled Low-Pass RC Active Filter

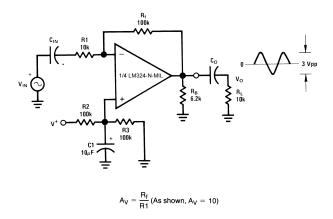


Figure 34. AC Coupled Inverting Amplifier

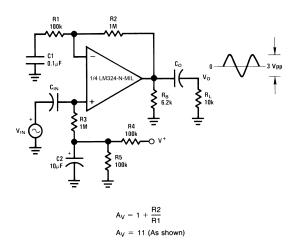


Figure 35. AC Coupled Non-Inverting Amplifier

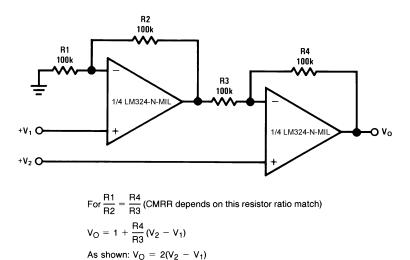


Figure 36. High Input Z, DC Differential Amplifier

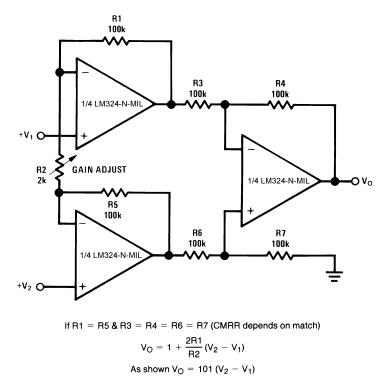


Figure 37. High Input Z Adjustable-Gain DC Instrumentation Amplifier

Copyright © 2017, Texas Instruments Incorporated

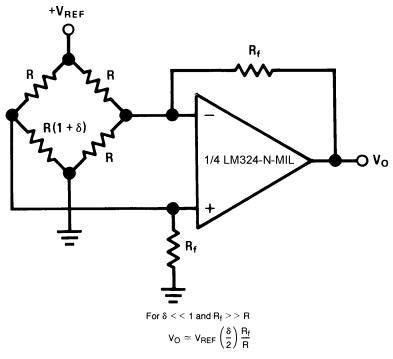


Figure 38. Bridge Current Amplifier

Figure 39. Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

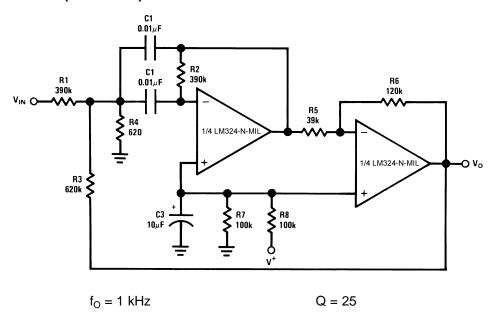


Figure 40. Bandpass Active Filter

9 Power Supply Recommendations

The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14).

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

10 Layout

10.1 Layout Guidelines

The V + pin should be bypassed to ground with a low-ESR capacitor. The optimum placement is closest to the V + and ground pins.

Take care to minimize the loop area formed by the bypass capacitor connection between V + and ground.

The ground pin should be connected to the PCB ground plane at the pin of the device.

The feedback components should be placed as close to the device as possible minimizing strays.

10.2 Layout Example

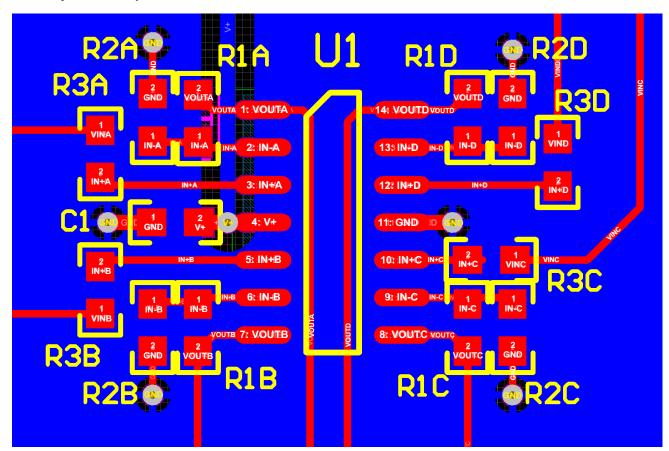


Figure 41. Layout Example

20

11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 28-Jun-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM324J	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	Call TI	Level-1-NA-UNLIM	0 to 70	LM324J	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

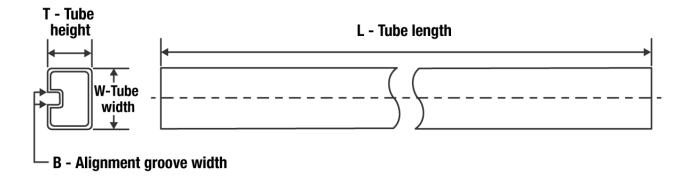
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

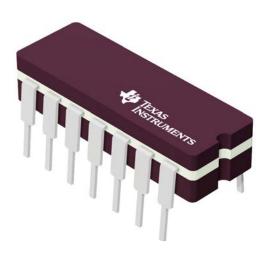
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

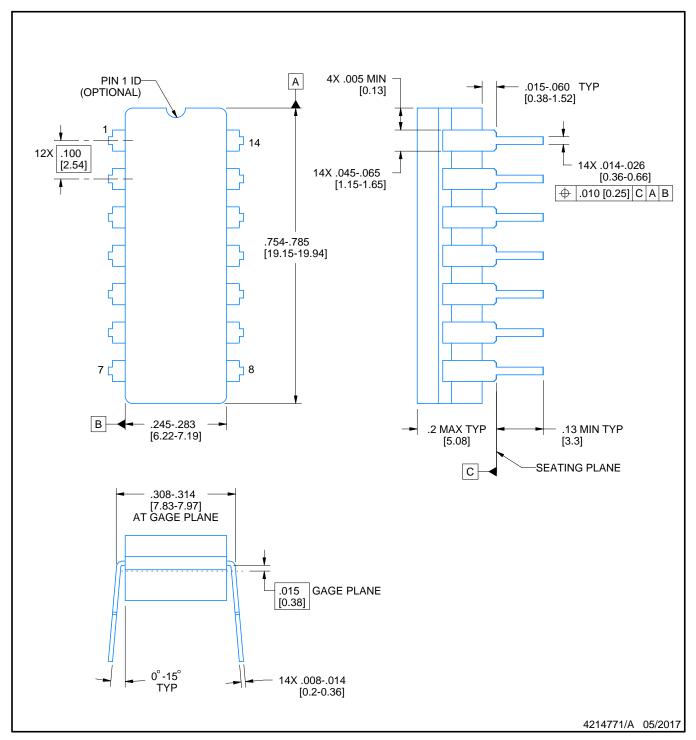
www.ti.com 5-Jan-2022


TUBE

*All dimensions are nominal

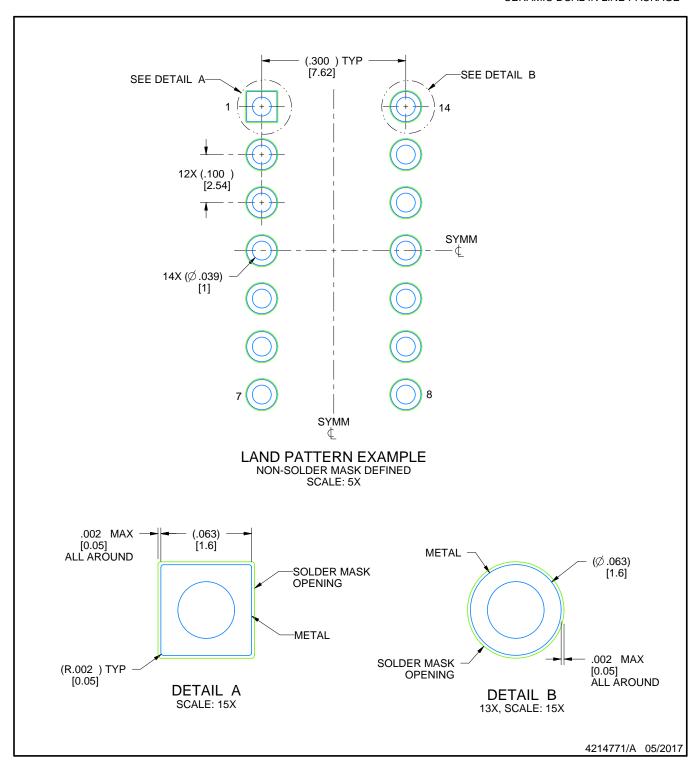
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
LM324J	J	CDIP	14	25	502	14	11938	4.32

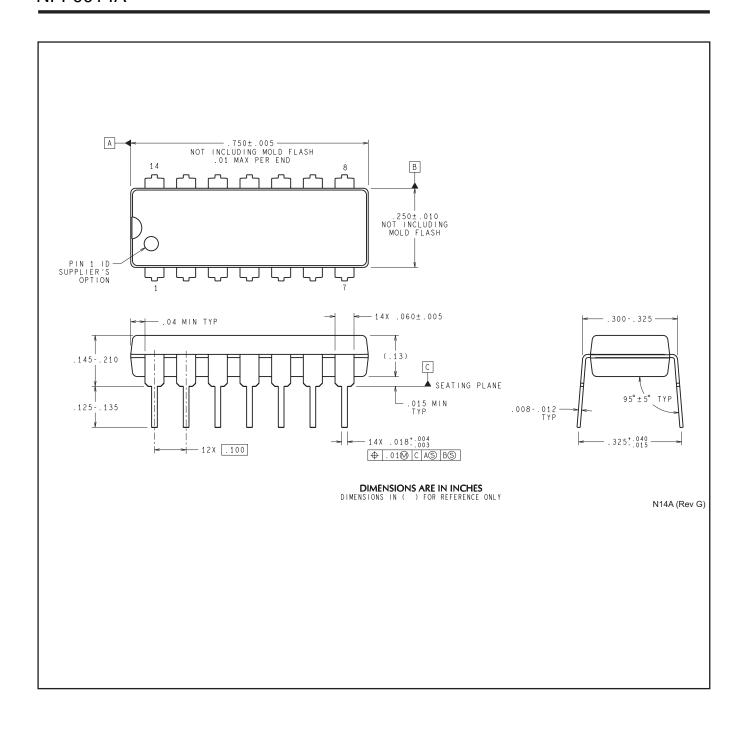
CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

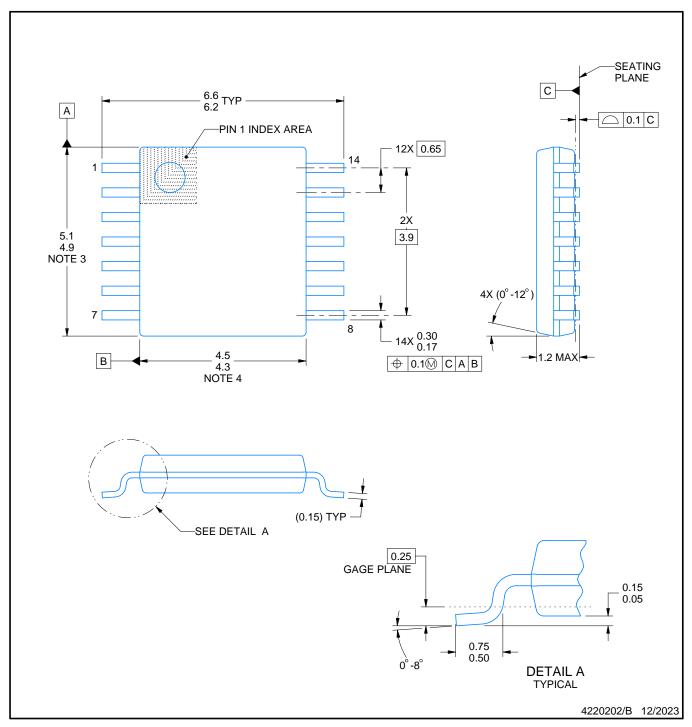
4040083-5/G

CERAMIC DUAL IN LINE PACKAGE



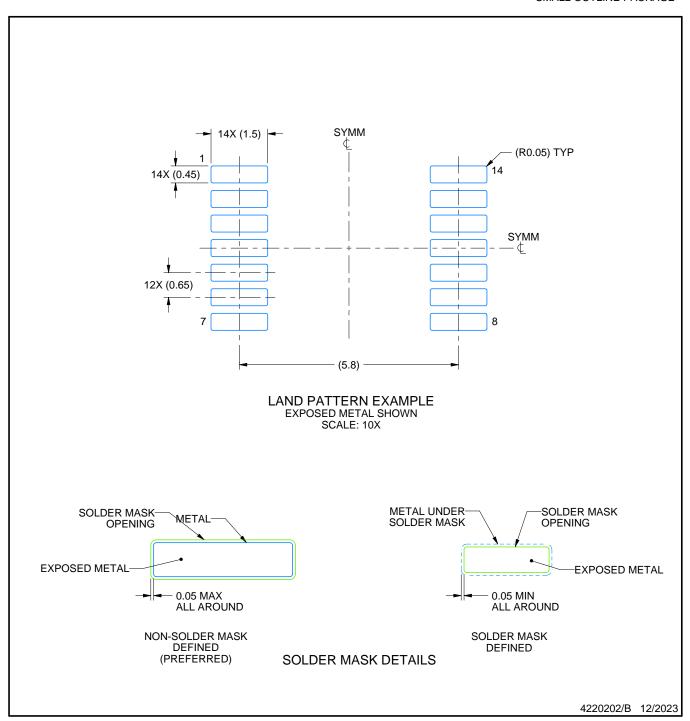

NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.


CERAMIC DUAL IN LINE PACKAGE

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

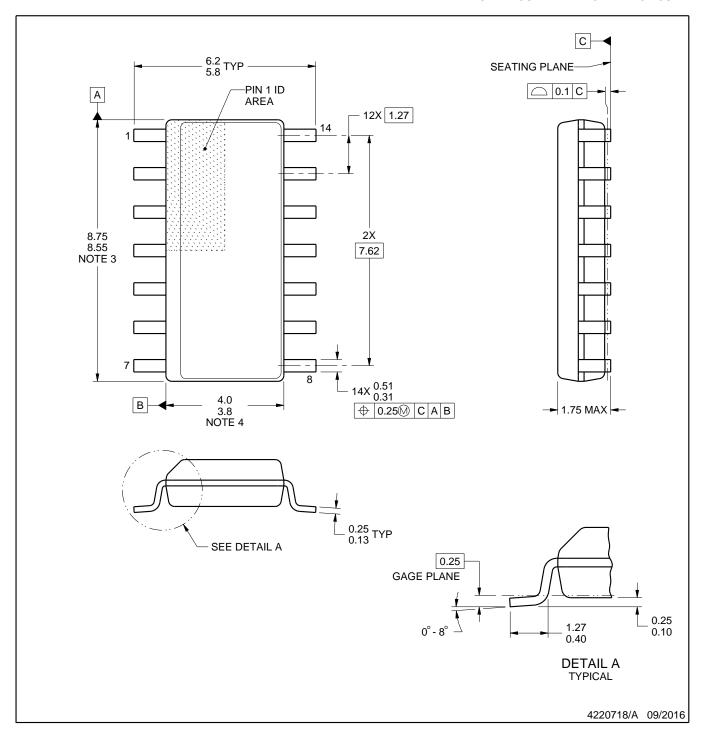
SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

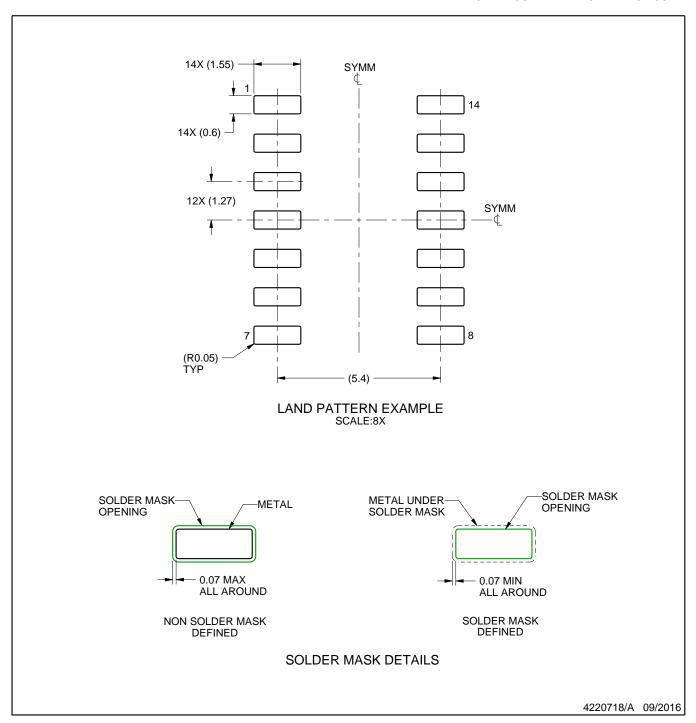
SMALL OUTLINE PACKAGE


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE INTEGRATED CIRCUIT

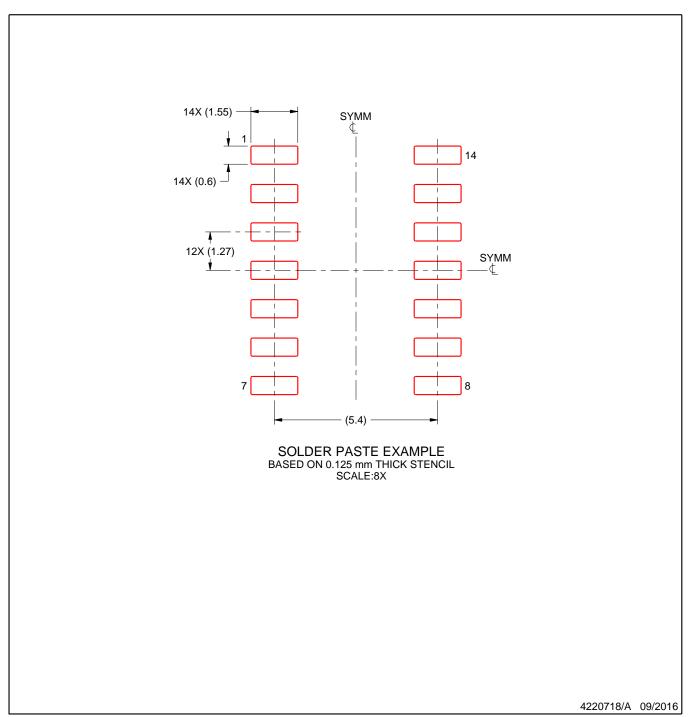
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated