

SN54AC244, SN74AC244

SCAS514H - JUNE 1995 - REVISED MARCH 2024

SNx4AC244 Octal Buffers or Drivers with 3-State Outputs

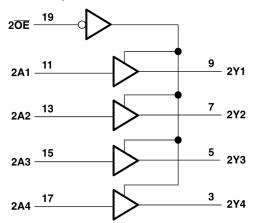
1 Features

- Operation of 2V to 6V V_{CC}
- Inputs accept voltages to 6V
- Max t_{pd} of 7.5ns at 5V

2 Applications

- Servers and network switches
- LED displays
- Telecom infrastructure
- Motor-drive control boards

18 1Y1 <u>16</u> 1Y2 12 1Y4


3 Description

These octal buffers and line drivers are designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)	BODY SIZE(3)	
	DB (SSOP, 20)	7.2mm × 7.8mm	7.2mm × 5.3mm	
	DGS (VSSOP, 20)	5.1mm × 4.9mm	5.1mm × 3mm	
	DW (SOIC, 20)	12.8mm × 10.3mm	12.8mm × 7.5mm	
SN74AC244	N (PDIP, 20)	24.33mm × 9.4mm	24.33mm × 6.35mm	
	NS (SOP, 20)	12.6mm × 7.8mm	12.6mm × 5.3mm	
	PW (TSSOP, 20)	6.5mm × 4.4mm	6.5mm × 4.4mm	
	RKS (VQFN, 20)	4.5mm × 2.5mm	4.5mm × 2.5mm	
	J (CDIP, 20)	24.2mm x 7.62mm	24.2mm × 6.92mm	
SN54AC244	W (CFP, 20)	13.09mm x 8.13mm	13.09mm × 6.92mm	
	FK (LCCC, 20)	8.89mm × 8.89mm	8.89mm × 8.89mm	

- For more information, see Section 11.
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.
- The body size (length × width) is a nominal value and does not include pins.

Logic Diagram (Positive Logic)

Table of Contents

1 Features1	7.2 Functional Block Diagram8
2 Applications	7.3 Device Functional Modes8
3 Description	8 Application and Implementation9
4 Pin Configuration and Functions3	8.1 Power Supply Recommendations9
5 Specifications4	8.2 Layout9
5.1 Absolute Maximum Ratings4	9 Device and Documentation Support10
5.2 Recommended Operating Conditions4	9.1 Receiving Notification of Documentation Updates10
5.3 Thermal Information5	9.2 Support Resources10
5.4 Electrical Characteristics5	9.3 Trademarks10
5.5 Switching Characteristics, V _{CC} = 3.3 V ± 0.3 V6	9.4 Electrostatic Discharge Caution10
5.6 Switching Characteristics, V _{CC} = 5 V ± 0.5 V6	9.5 Glossary10
5.7 Operating Characteristics6	10 Revision History10
6 Parameter Measurement Information7	11 Mechanical, Packaging, and Orderable
7 Detailed Description8	Information10
7.1 Overview8	

4 Pin Configuration and Functions

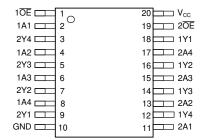


Figure 4-1. SN54AC244 J or W Package; SN74AC244 DB, DGS, DW, N, NS, or PW Package (Top View)

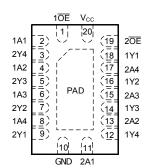


Figure 4-2. SN74AC244 RKS Package (Top View)

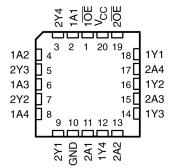


Figure 4-3. SN54AC244 FK Package (Top View)

Tahl	le 4-1	l Di	n F	iinc	·tin	ne
Iau	IE 4-	I. PI	и г	unc	шo	115

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
1A1	2	I	Input
1A2	4	I	Input
1A3	6	I	Input
1A4	8	I	Input
1 OE	1	I	Output enable
1Y1	18	0	Output
1Y2	16	0	Output
1Y3	14	0	Output
1Y4	12	0	Output
2A1	11	I	Input
2A2	13	I	Input
2A3	15	I	Input
2A4	17	I	Input
2 OE	19	I	Output enable
2Y1	9	0	Output
2Y2	7	0	Output
2Y3	5	0	Output
2Y4	3	0	Output
GND	10	_	Ground
V _{CC}	20	_	Power pin
Thermal Pad(2)	_	The thermal pad can be connected to GND or left floating. Do not connect to any other signal or supply.

- (1) Signal Types: I = Input, O = Output, I/O = Input or Output
- (2) RKS package only

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range	Supply voltage range			
V _I ¹	Input voltage range	Input voltage range			
V _O ¹	Output voltage range	-0.5	V _{CC} +0.5	V	
I _{IK}	Input clamp current	$(V_I < 0 \text{ or } V_I > V_{CC})$		±20	mA
I _{OK}	Output clamp current,	$(V_O < 0 \text{ or } V_O > V_{CC})$		±20	mA
Io	Continuous output current	$(V_O = 0 \text{ or } V_{CC})$		±50	mA
	Continuous current through V _{CC} or		±200	mA	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 Recommended Operating Conditions

over recommended operating free-air temperature range (unless otherwise noted)¹

			SN54A0	SN54AC244		SN74AC244		
			MIN	MAX	MIN	MAX	UNIT	
V _{CC}	Supply voltage		2	6	2	6	V	
		V _{CC} = 3 V	2.1		2.1			
V _{IH}	High-level input voltage	V _{CC} = 4.5 V	3.15		3.15		V	
		V _{CC} = 5.5 V	3.85		3.85			
		V _{CC} = 3 V		0.9		0.9		
V _{IL}	Low-level input voltage	V _{CC} = 4.5 V		1.35		1.35	V	
		V _{CC} = 5.5 V		1.65		1.65		
VI	Input voltage	·	0	V _{CC}	0	V _{CC}	V	
Vo	Output voltage		0	V _{CC}	0	V _{CC}	V	
		V _{CC} = 3 V		-12		-12		
I _{OH}	High-level output current	V _{CC} = 4.5 V		-24		-24	mA	
		V _{CC} = 5.5 V		-24		-24		
		V _{CC} = 3 V		12		12		
I _{OL}	Low-level output current	V _{CC} = 4.5 V		24		24	mA	
		V _{CC} = 5.5 V		24		24		
Δt/Δν	Input transition rise or fall rate			8		8	ns/V	
T _a	Operating free-air temperature		-55	125	-40	85	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND for proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

Product Folder Links: SN54AC244 SN74AC244

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

5.3 Thermal Information

THERMAL METRIC(1)		SNx4AC244							
		DB (SSOP)	DGS (VSSOP)	DW (SOIC)	N (PDIP)	NS (SOP)	PW (TSSOP)	RKS (VQFN)	UNIT
		20 PINS							
$R_{\theta JA}$	Junction-to-ambient thermal resistance	70	123.5	101.2	69	106.2	126.2	67.7	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

5.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	ARAMETER	TEST CONDITIONS	V	1	T _A = 25°C		SN54A	C244	SN74AC244		UNIT	
P	AKAWEIEK	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII	
			3 V	2.9			2.9		2.9			
		I_{OH} = -50 μ A	4.5 V	4.4			4.4		4.4			
			5.5 V	5.4			5.4		5.4			
,		I _{OH} = -12 mA	3 V	2.56			2.4		2.46		V	
V _{OH}		I = 24 m A	4.5 V	3.86			3.7		3.76		V	
		I _{OH} = -24 mA	5.5 V	4.86			4.7		4.76			
		$I_{OH} = -50 \text{ mA}^{(1)}$	5.5 V				3.85					
		$I_{OH} = -75 \text{ mA}^{(1)}$	5.5 V						3.85			
			3 V			0.1		0.1		0.1	V	
		$I_{OL} = 50 \mu A$	4.5 V			0.1		0.1		0.1		
			5.5 V			0.1		0.1		0.1		
,		I _{OL} = 12 mA	3 V			0.36		0.5		0.44		
V _{OL}			4.5 V			0.36		0.5		0.44		
		I _{OL} = 24 mA	5.5 V			0.36		0.5		0.44		
		I _{OL} = 50 mA ⁽¹⁾	5.5 V					1.65				
		$I_{OL} = 75 \text{ mA}^{(1)}$	5.5 V							1.65		
	Data inputs	V _I = V _{CC} or GND				±0.1		±1	-	±1		
l _l	Control inputs	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1	μА	
I _{OZ}	1	$V_O = V_{CC}$ or GND, $V_I(OE)$ = V_{IL} or V_{IH}	5.5 V			±0.25		±5		±2.5	μA	
I _{CC}		$V_1 = V_{CC}$ or $I_O = 0$	5.5 V			4		80		40	μA	
Ci		V _I = V _{CC} or GND	5 V		2.5						pF	

⁽¹⁾ Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

5.5 Switching Characteristics, V_{CC} = 3.3 V ± 0.3 V

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 6-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TA	T _A = 25°C		SN54AC244		SN74AC244		UNIT
PARAMETER FRO	PROW (INPUT)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
t _{PLH}	A	V	2	6.5	9	1	12.5	1.5	10	ns
t _{PHL}		1	2	6.5	9	1	12	2	10	115
t _{PZH}	- ŌĒ	V	2	6	10.5	1	11.5	1.5	11	ns
t _{PZL}	OL	Y	2.5	7.5	10	1	13	2	11	115
t _{PHZ}	- OE	V	3	7	10	1	12.5	1.5	10.5	ns
t _{PLZ}		ı	2.5	7.5	10.5	1	13	2.5	11.5	115

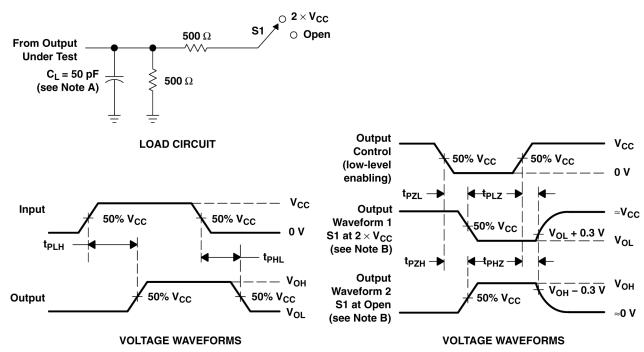
5.6 Switching Characteristics, V_{CC} = 5 V ± 0.5 V

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Figure 6-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Т	A = 25°C	·	SN54A	C244	SN74A	C244	UNIT
PARAWETER	PROW (INPUT)	10 (001701)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONIT
t _{PLH}	Α		1.5	5	7	7	9.5	1	7.5	ns
t _{PHL}	A	T .	1.5	5	7	7	9	1	7.5	
t _{PZH}	ŌĒ	Y	1.5	5	7	7	9	1.5	8	no
t _{PZL}	OE .		1.5	5.5	8	8	10.5	1.5	8.5	ns
t _{PHZ}	ŌĒ	Y	2.5	6.5	9	9	10.5	1	9.5	no
t _{PLZ}			2	6.5	9	9	11	2	9.5	ns

5.7 Operating Characteristics

 V_{CC} = 5 V, T_A = 25°C


PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance per buffer/driver	$C_1 = 50 \text{ pF}, f = 1 \text{ MHz}$	45	pF

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

6 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq 2.5$ ns, $t_f \leq 2.5$ ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 6-1. Load Circuit and Voltage Waveforms

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	2 × V _{CC}
t _{PHZ} /t _{PZH}	Open

7 Detailed Description

7.1 Overview

The 'AC244 devices are organized as two 4-bit buffers or drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes non-inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

For the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

7.2 Functional Block Diagram

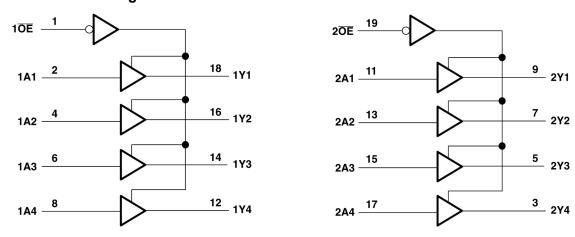


Figure 7-1. Logic Diagram (Positive Logic)

7.3 Device Functional Modes

Table 7-1. Function Table (Each Buffer)

INPUTS	OUTPUT	
ŌĒ	Α	Υ
L	Н	Н
L	L	L
Н	Х	Z

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Absolute Maximum Ratings* section. Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor; if there are multiple V_{CC} terminals, then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for best results.

8.2 Layout

8.2.1 Layout Guidelines

Reflections and matching are closely related to the loop antenna theory but are different enough to be discussed separately from the theory. When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self-inductance of the trace, which results in the reflection. Not all PCB traces can be straight; therefore, some traces must turn corners. Layout example for SNx4AC244 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

8.2.1.1 Layout Example

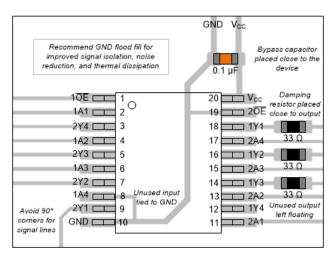


Figure 8-1. Layout Example for the SNx4AC244 in the PW Package

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision G (August 2023) to Revision H (March 2024)	Page
•	Added DGS package to Device Information table, Pin Configuration and Functions section and Thermal	I
	Information table; Updated J and W package sizes in Device Information table	1
•	Updated RθJA values: DW = 58 to 101.2, NS = 60 to 106.2, PW = 83 to 126.2, all values in °C/W	5
	Added Application and Implementation section	

С	hanges from Revision F (May 2023) to Revision G (August 2023)	Page
•	Updated the Device Information table to include package lead size	······································
•	Added RKS package information	
•	Updated high-level input voltage values in Recommended Operating Conditions table	4

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN54AC244 SN74AC244

www.ti.com 30-Jul-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-87552012A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87552012A SNJ54AC 244FK	Samples
5962-8755201RA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8755201RA SNJ54AC244J	Samples
5962-8755201SA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8755201SA SNJ54AC244W	Samples
5962-8755201VRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8755201VR A SNV54AC244J	Samples
5962-8755201VSA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8755201VS A SNV54AC244W	Samples
SN74AC244DBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC244	Samples
SN74AC244DGSR	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		AC244	Samples
SN74AC244DW	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI	-40 to 85	AC244	
SN74AC244DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC244	Samples
SN74AC244N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74AC244N	Samples
SN74AC244NE4	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74AC244N	Samples
SN74AC244NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC244	Samples
SN74AC244PW	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI	-40 to 85	AC244	
SN74AC244PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC244	Samples
SN74AC244RKSR	ACTIVE	VQFN	RKS	20	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AC244	Samples
SNJ54AC244FK	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87552012A SNJ54AC 244FK	Samples

PACKAGE OPTION ADDENDUM

www.ti.com 30-Jul-2024

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54AC244J	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8755201RA SNJ54AC244J	Samples
SNJ54AC244W	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8755201SA SNJ54AC244W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 30-Jul-2024

OTHER QUALIFIED VERSIONS OF SN54AC244, SN54AC244-SP, SN74AC244:

Catalog: SN74AC244, SN54AC244

• Automotive : SN74AC244-Q1, SN74AC244-Q1

• Enhanced Product : SN74AC244-EP, SN74AC244-EP

Military: SN54AC244

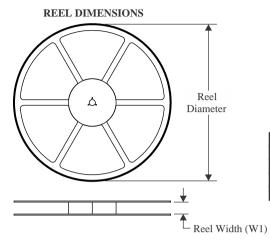
• Space : SN54AC244-SP

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

• Enhanced Product - Supports Defense, Aerospace and Medical Applications


• Military - QML certified for Military and Defense Applications

• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

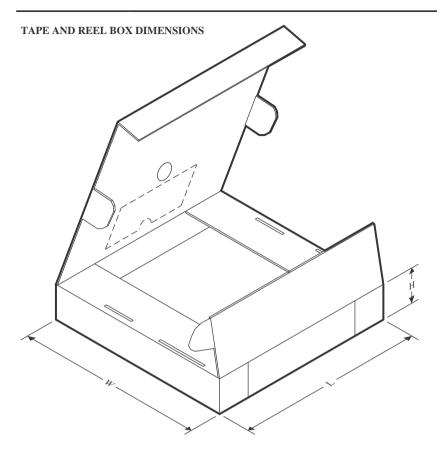
www.ti.com 23-Nov-2024

TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

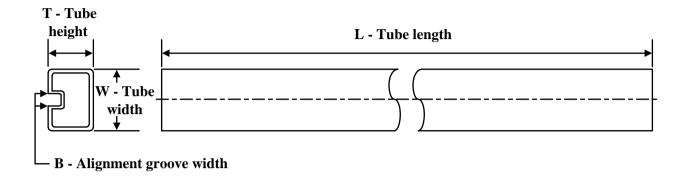
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AC244DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74AC244DGSR	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
SN74AC244DWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74AC244DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74AC244NSR	so	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74AC244NSR	so	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74AC244PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74AC244PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74AC244RKSR	VQFN	RKS	20	3000	180.0	12.4	2.8	4.8	1.2	4.0	12.0	Q1

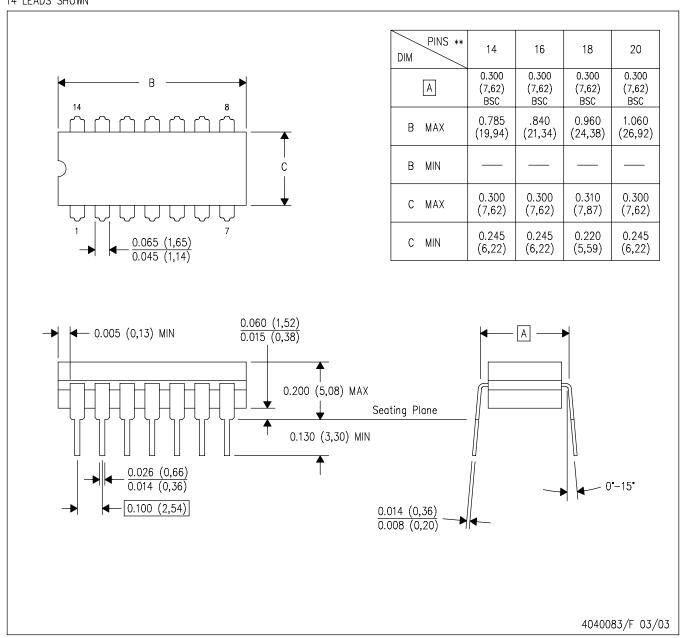
www.ti.com 23-Nov-2024


*All dimensions are nominal

7 III dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AC244DBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74AC244DGSR	VSSOP	DGS	20	5000	353.0	353.0	32.0
SN74AC244DWR	SOIC	DW	20	2000	356.0	356.0	45.0
SN74AC244DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74AC244NSR	so	NS	20	2000	367.0	367.0	45.0
SN74AC244NSR	so	NS	20	2000	356.0	356.0	45.0
SN74AC244PWR	TSSOP	PW	20	2000	353.0	353.0	32.0
SN74AC244PWR	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74AC244RKSR	VQFN	RKS	20	3000	210.0	185.0	35.0

PACKAGE MATERIALS INFORMATION

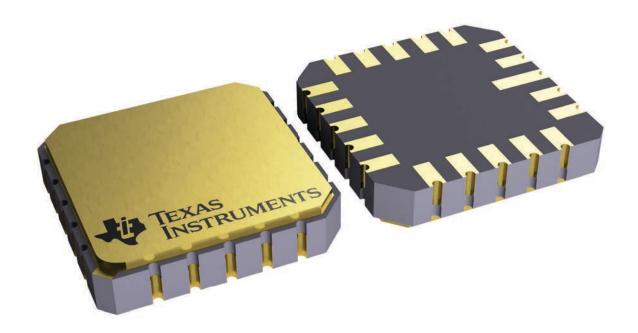
www.ti.com 23-Nov-2024


TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-87552012A	FK	LCCC	20	55	506.98	12.06	2030	NA
5962-8755201SA	W	CFP	20	25	506.98	26.16	6220	NA
5962-8755201VSA	W	CFP	20	25	506.98	26.16	6220	NA
SN74AC244N	N	PDIP	20	20	506	13.97	11230	4.32
SN74AC244NE4	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54AC244FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54AC244W	W	CFP	20	25	506.98	26.16	6220	NA

14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

8.89 x 8.89, 1.27 mm pitch

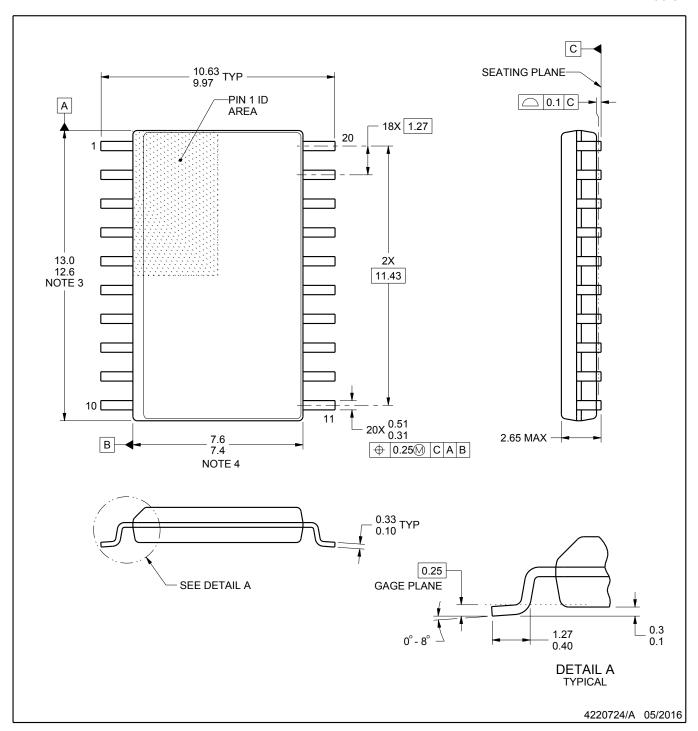
LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

N (R-PDIP-T**)

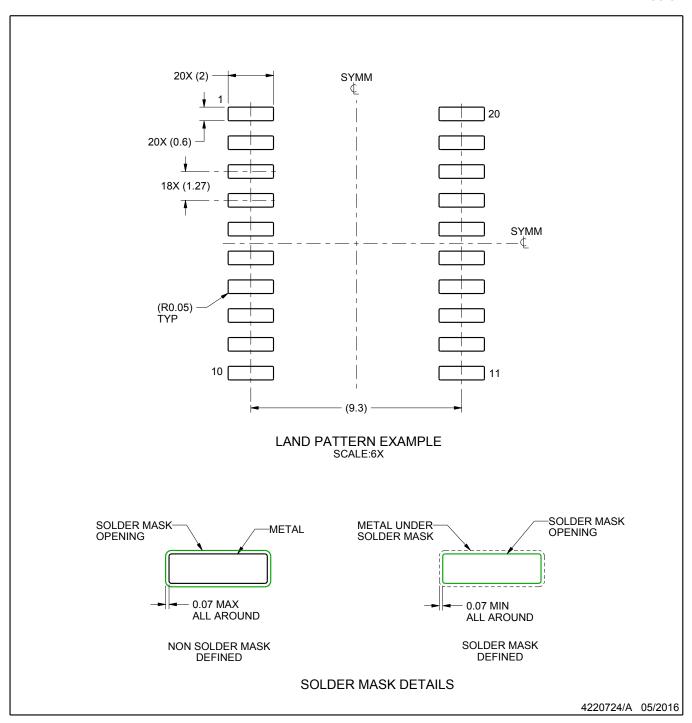
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

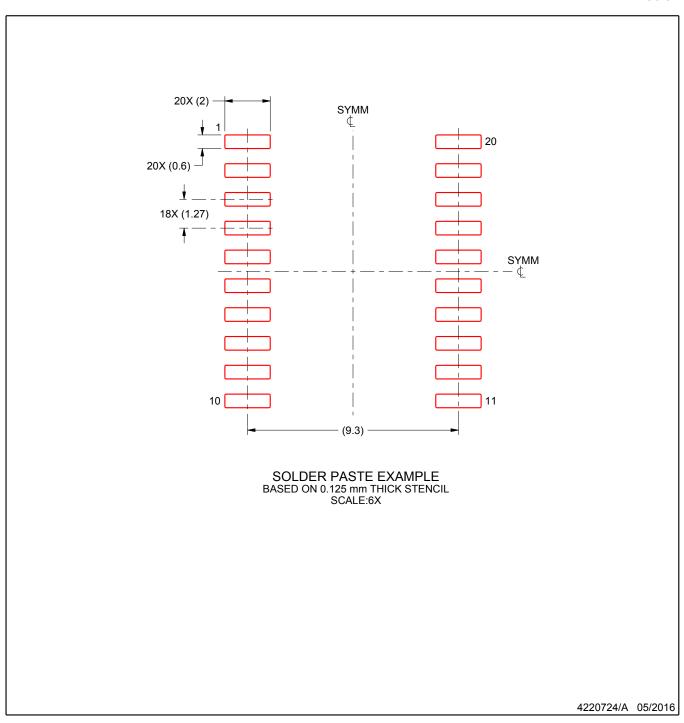
SOIC


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

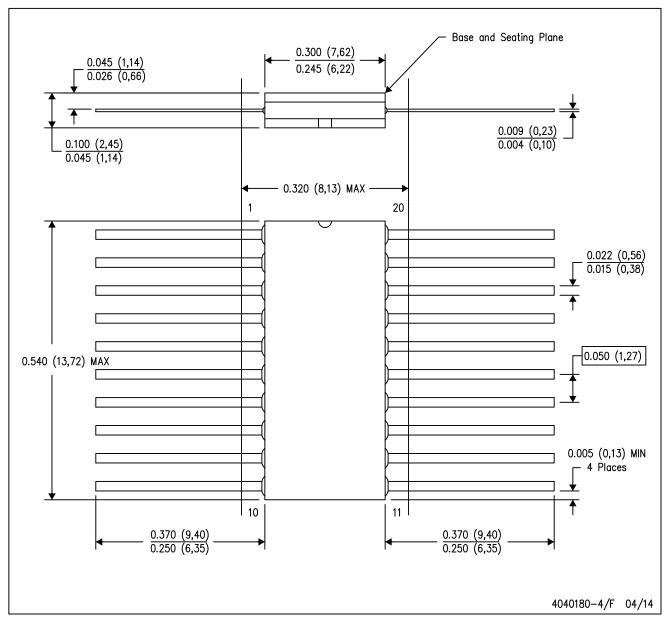
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

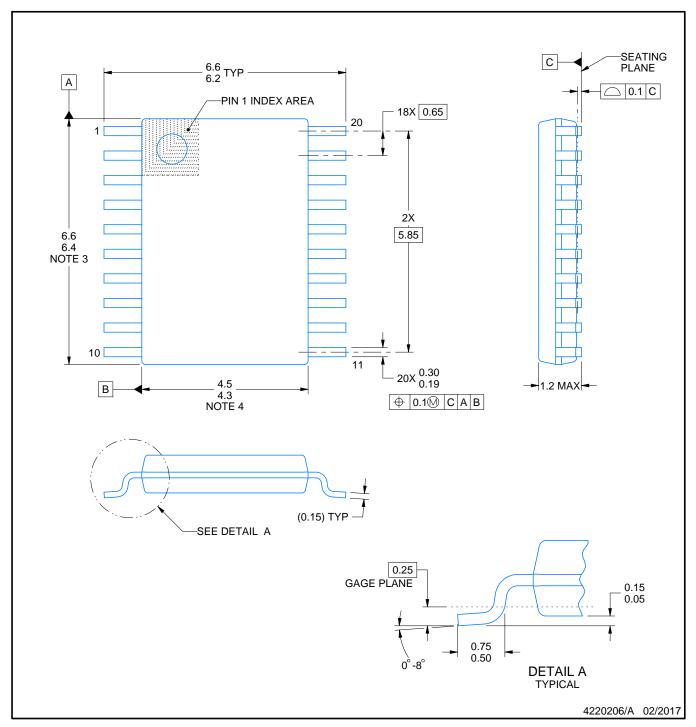
SOIC


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

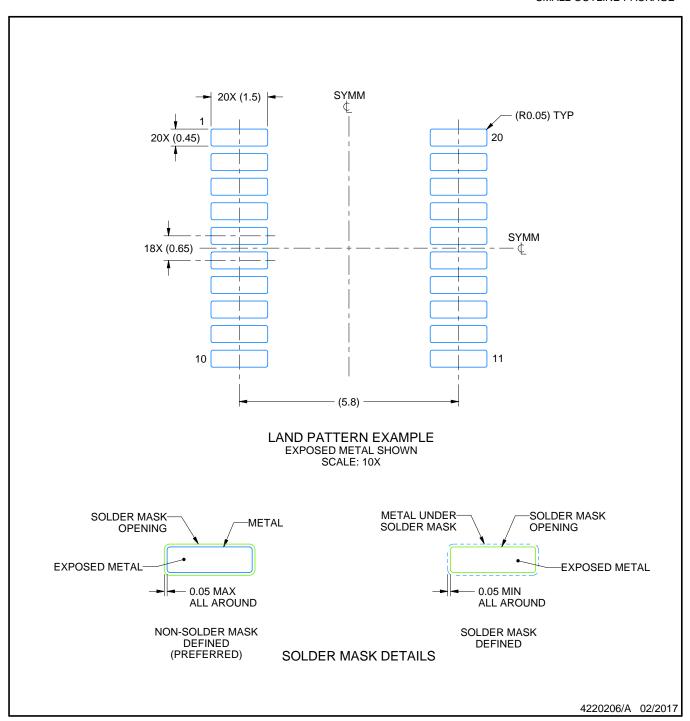
W (R-GDFP-F20)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.

 D. Index point is provided on cap for terminal identification only.

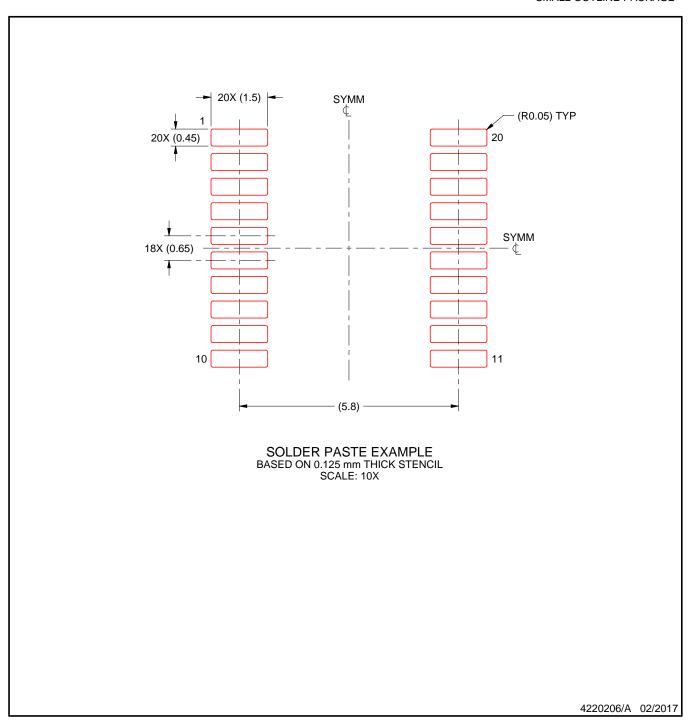
 E. Falls within Mil—Std 1835 GDFP2—F20



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

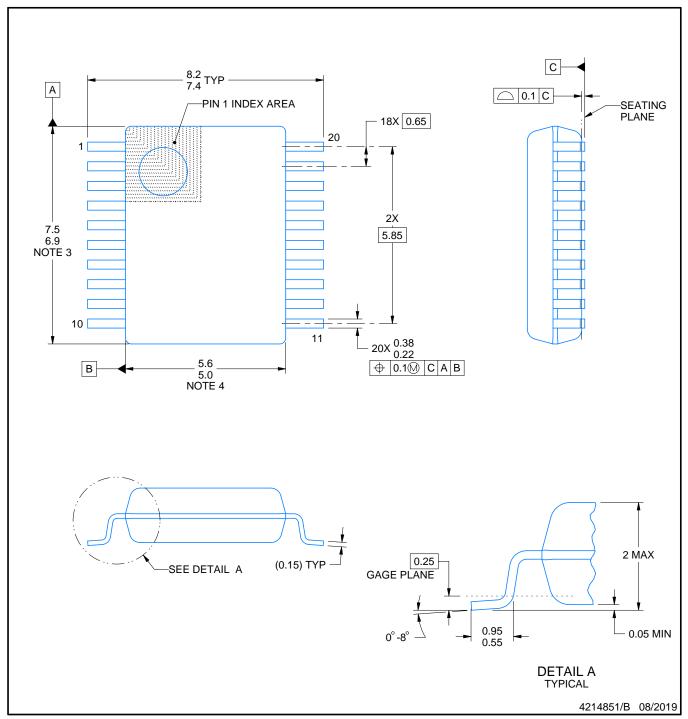
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

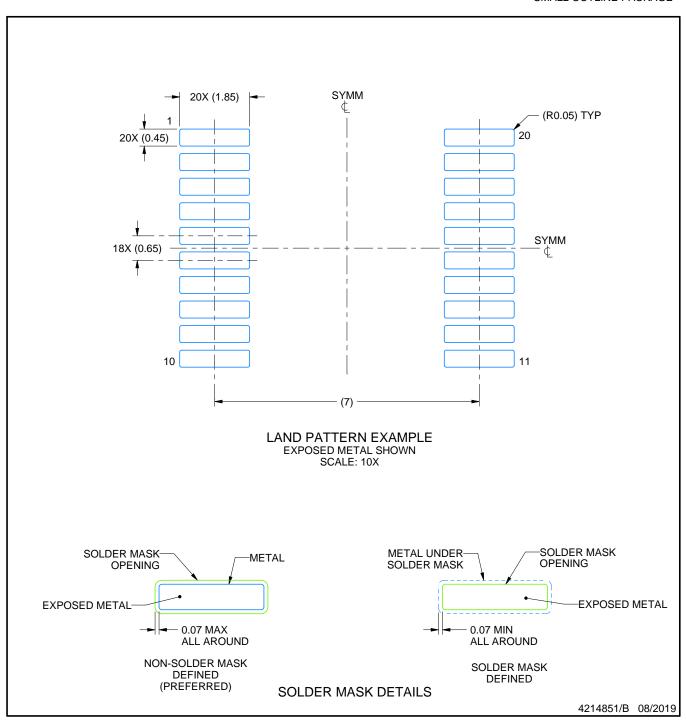
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

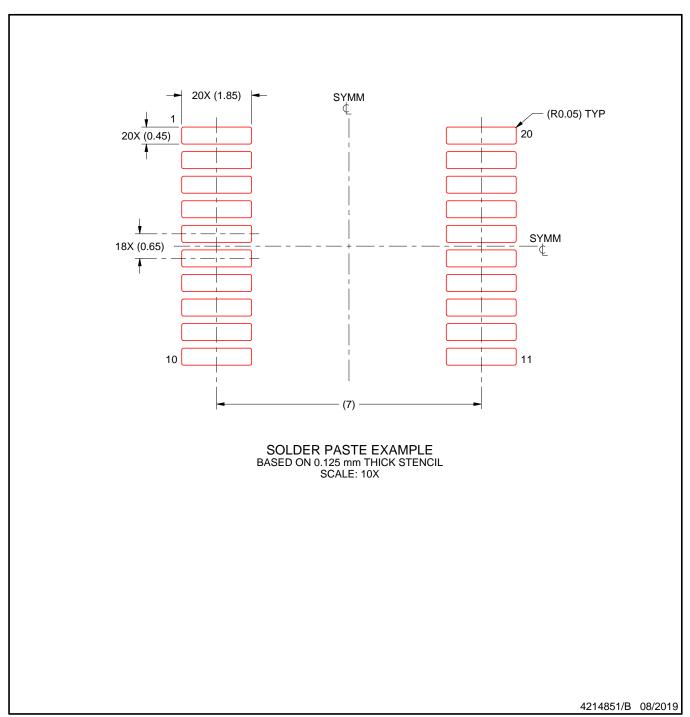
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

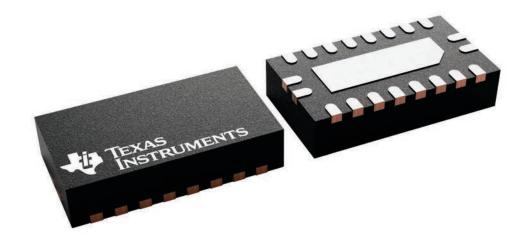


NOTES: (continued)

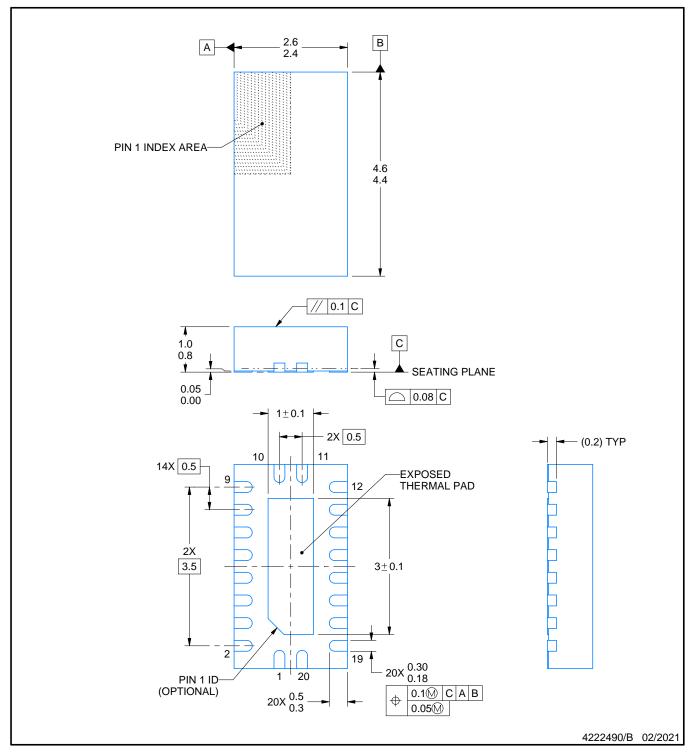
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

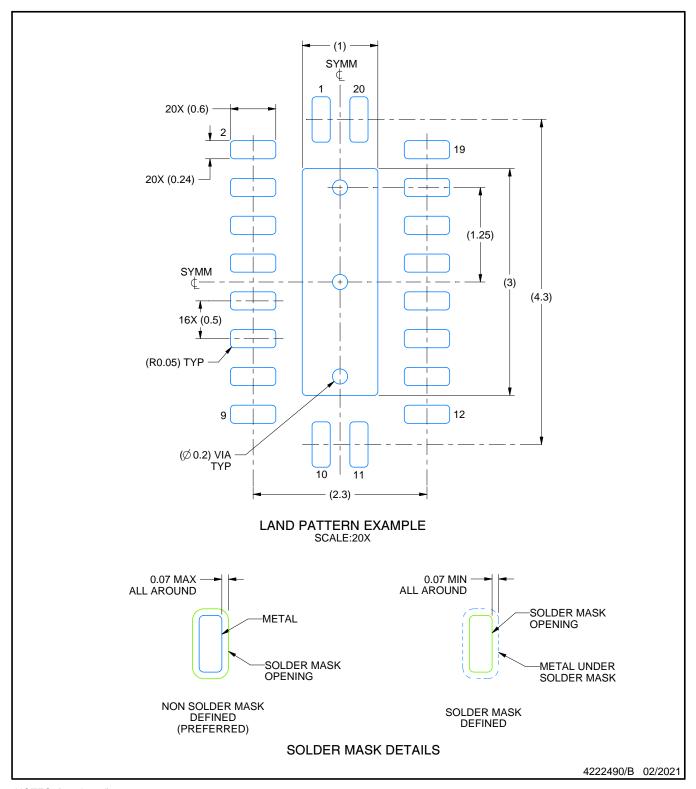
NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

2.5 x 4.5, 0.5 mm pitch

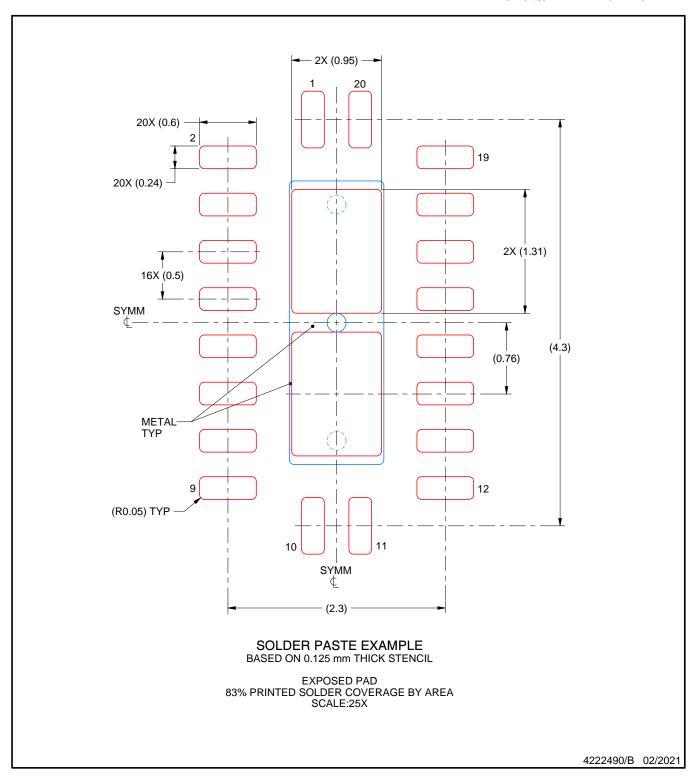

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


PLASTIC QUAD FLATPACK - NO LEAD

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



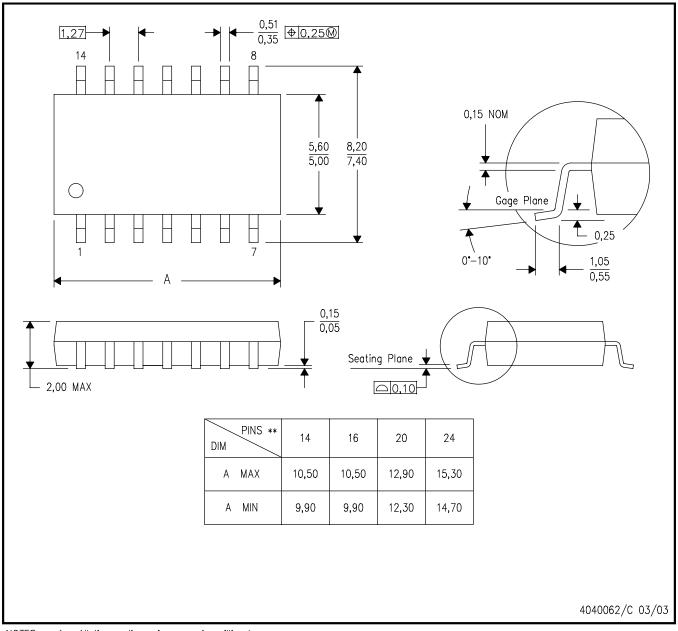
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated