Webinar

Today's solution for tomorrow's energy conversion systems

🛃 Texas Instruments

Olivier Monnier

Product marketing director, C2000 MCU portfolio

Agenda

- C2000[™] real-time Microcontrollers portfolio
- New F28P65x and targeted applications
- F28P65x block diagram and new features
 - Analog
 - CPU
 - PWM
 - Communication
- Applications examples
- Getting started

C2000 MCUs | leading the way to energy efficiency

MOTOR DRIVES & APPLIANCE

SOLAR & EV CHARGING

TEST & MEASUREMENT

HEV, EV & POWERTRAIN SYSTEMS

C2000[™] real-time microcontrollers | overview

Scalable, ultra-low latency, real-time controller platform designed for efficiency in power electronics, such as high power density, high switching frequencies, GaN and SiC technologies

- 12-/16-bit ADCs, up to 24 channels
- Full analog comparators with built-in DACs
- Quadrature Encoder and Capture Logic Highly flexible, High-resolution PWMs:
- Up to 32 outputs
- Tightly coupled with Sensing domain for fast response time
- Buffered Output DACs

Expertise and support:

Softw are libraries, reference designs, and functional safety-compliant devices.

Functional Safety:

All Safety integrity levels for Automotive and Industrial

1.2-V core, 3.3-V I/O design

C2000 Real-Time MCU

Over 1 billion units shipped for industrial and automotive applications with compatible software

C2000 | Designed with real-time algorithms in mind

Output

- Real-time is defined by the latency between the Sample and output
- Latency = time spent for Sensing + Processing + Control [1 to 5]
- C2000 did perform real-time application benchmarks (example: <u>ACI –</u> <u>3-phase electrical motors</u>)

Number of cycles per function	F28004x (100MHz)	ARM M7 based device	Equivalent ARM M7 MHz (eMHZ) to achieve the same latency
Single PID	39	64	196 MHz
Dual PID	88	108	150 MHz
SV Gen	66	85	154 MHz
PARK + iPARK	26	50	230 MHz
Full ACI benchmark	529	1100	200 MHz

- In order to achieve the same latency [ADC/CPU/PWM] (1 to 5), a Cortex-M7 based device needs to run at 200MHz compared to a F28004x running at 100MHz (200MHz equivalent M7 MHz (eMHZ))
- C28x core: 2x times better then Cortex M7
- CLA core: 40% better than Cortex M7

New F28P65x | PWM and Analog innovation, system cost reduction

Key points

- Up to 40 16/12-bit ADC channels
- New ADC HW oversampling feature
- 36 High Resolution (150ps) ePWM enabling advanced switching techniques, complex topologies & protection mechanisms for increased efficiency and power density
- Highly connected with ECAT, CAN-FD, USB, EMIF, CLB, FSI options
- Smallest real-time MCU with integrated EtherCat in a 9x9mm package
- Easier safety implementation with periodic HWBIST, ECC/ parity, CPU lock-step core
- · Available in industrial and automotive qual
- 1KU price starting at \$5.85 USD

Flash size

Entry level to high-end software compatible, scalable platform

Production Sampling

F28P65x real-time control applications

Robotics

- Robot Servo Drive
- Robot sensing module
- Robot Comm Module
- AGV/ AMR Robots
- Encoders and Advanced Sensing
- Surgical Robots

Industrial Power

- Solar (String inverter)
- Energy storage systems
- EV charging Station
- UPS

Industrial Motor

- Single Axis Servo Drives (w and w/o FPGA, w and w/o Ethercat
- Dual Axis Servo Drives
- Single/ dual axis stepper closed loop

- OBC + DC/DC single chip solution (11kW)
- High end HVAC pump
- High end Lighting

Automotive

F28P65x | PWM and Analog innovation, system cost reduction

Analog

- -3 x 12-bit or 16-bit ADC up to 3.5 MSPS
- -Up to 40 ADC channels available
- -HW post processing

-New HW ADC oversampling mechanism for better control and 54% improvement on code size and cycles

-11 comparators: protect more signals at the same time, Support for dual ramp generation (easier implementation of hysteretic, peak current mode control with lower latency) and more

Signal capture & generation:

-16xSDFM to support up to 3 axis -6x Quadrature encoder interface:

-7x capture modules with 2 High Res

-Embedded pattern generator (EPG)

-6 TilesCLB for encoder implementation. PWM

protection, FPGA/ CPLD removal

Memory:

-248kB RAM with Parity

-1.25 MB Flash (ECC)

-Multi-bank support with banks allocable to either CPU statically optimizing mem usage and for easier Live Firm ware Upgrade

Real-time Processing Performance:

2x 200 MHz F28x DSP core + FPU64 + TMU + 1x 200 MHz CLA CPU

Option for lock-step core, increased RAM support for CLA (64kB)

F28P65x		Temperatures		125C Ambient	Q100-Grade-1
Sensing	Processing			Actuation	
ADC1: 16b-1MSPS /12-bit, 3.45 MSPS	C28x™DSP core	C28x™ DSP core		18x ePWM M	odules (36x High-Res) Type 5
ADC2: 16b-1MSPS /12-bit, 3.45 MSPS	200 MHz	200 MHz	1		type-0
ADC3: 16b-1MSPS /12-bit, 3.45 MSPS	FPU, FastDIV, FPU64	FPU, FPU64 🔒		Fau	t Thp Zones
11x Windowed Comparators w/	VCRC,TMU	VCRC,TMU		2x	12-bit DAC
2x Integrated 12-bit DAC	6ch DMA	6ch DMA		Cor	nectivity
16x Sigma Delta Channels	192 interrupt PIE	192 interrupt PIE		2x SCI. 2	LIN. 2 x UARTHS
Temperature Sensor	CLA Core 200MHz. FPU			2x 12C	1x True PMBus
6x eQEP	Manager		i	$4 \times \text{SPI} = \text{SPI}(2 \times 4 \text{Pv})$	
7 x eCAP (2 HR)	Memory				
Embedded Pattern Generator	256KB * 5 Flash (5WS) +ECC				
	248 kB SRAM + Parity				IERCAT, IX USB
Configurable Logic Block	ROM + Secure ROM			Power	· & Clocking
6 Tiles	Sec AFS + JTAG LOO	urity: CK + Secure BOOT		2x 10	VIHz 0-pin OSC
	FI	//F	1	1	2V VREG
System Modules	Livin			POR/E	OR Protection
3x 32-bit CPU Timers	Debug				
NMI Watchdog Timer	cJTAG / Real-time JTAG				
	Embedded Real -time Analysis and Diagnostic unit (ERAD)				

Package & Pin Information:

New small 169-pin BGA/ 0.65mmp 9x9mm for space constrained applications

New 256-pin BGA/ 0.8mmp/ 13x13mm supporting 40 ADC channels and many GPIO/ APGIO leading to similar count as 337 BGA from F2837x/ F2828x

100-pin LQFP/ 0.5mmp/ 16x16mm and 176-pin LQFP/ 0.5mmp/ 26x26mm

Actuation

-36 high resolution PWM channels

-Type 5 PWM support, Multi-threshold compare, PWM HW sync., diode emulation mode, Minimum Deadband, Illegal combo logic support, digital compare edge detection, Muticompare operation within one period

-PWMs designed for future of power electronics with Matrix Converters, Multi Level Converters, Dual Active Bridge and Resonant Converters.

Connectivity

EtherCAT, CAN-FD, CAN, USB, 200 Mbps FSI, multiple serial ports, 25MbpsHi-speed UART with DAM, EMIF, many I/Os and AGPIO

Security

Dual-zone code security, unique ID, secure boot, JTAG lock, HW AES

Safety (ASIL-B/ SIL-2)

Easier implementation with Reciprocal comparison, lock-step core, Periodic HWBIST, 2 DCSM zones, RAM with Parity, Flash all ECC, 2*APLL, BOR, Redundant interrupt vector RAM, better PWM safety with Minimum Deadband, Illegal combologic support and digital edge detection

F28P65x | PWM and Analog innovation, system cost reduction

Analog

- -3 x 12-bit or 16-bit ADC up to 3.5 MSPS
- -Up to 40 ADC channels available
- -HW post processing

-New HW ADC oversampling mechanism for better control and 54% improvement on code size and cycles

-11 comparators: protect more signals at the same time, Support for dual ramp generation (easier implementation of hysteretic, peak current mode control with lower latency) and more

Signal capture & generation:

-16xSDFM to support up to 3 axis

- -6x Quadrature encoder interface;
- -7x capture modules with 2 High Res
- -Embedded pattern generator (EPG)

-6 TilesCLB for encoder implementation, PWM

protection, FPGA/ CPLD removal

Memory:

-248kB RAM with Parity

-1.25 MB Flash (ECC)

-Multi-bank support with banks allocable to either CPU statically optimizing mem usage and for easier Live Firm ware Upgrade

Real-time Processing Performance:

2x 200 MHz F28x DSP core + FPU64 + TMU + 1x 200 MHz CLA CPU

Option for lock-step core, increased RAM support for CLA (64kB)

F28P65x		Temperatures	,	125C Ambient	Q100-Grade-1
Sensing	Processing			Actuation	
ADC1: 16b-1MSPS /12-bit, 3.45 MSPS	C28x™DSP core	C28x™DSP core		18x ePWM M	odules (36x High-Res)
ADC2: 16b-1MSPS /12-bit, 3.45 MSPS	200 MHz	200 MHz 🔓	1		туре-о
ADC3: 16b-1MSPS /12-bit, 3.45 MSPS	FPU, FastDIV, FPU64	FPU, FPU64 🔒	1	Fau	t Inp Zones
11x Windowed Comparators w/	VCRC,TMU	VCRC,TMU		2x	12-bit DAC
2x Integrated 12-bit DAC	6ch DMA	6ch DMA 🔒		Cor	nectivity
16x Sigma Delta Channels	192 interrupt PIE	192 interrupt PIE		2x SCI, 2x	LIN, 2 x UARTHS
Temperature Sensor	CLA Core 200MHz, FPU			2x I2C,	1x True PMBus
6x eQEP	Momory			4x SPL FSI(2-Tx , 4-Rx)	
7 x eCAP (2 HR)				2x CAN-FD. 1x CAN 2.0B	
Embedded Pattern Generator	256KB * 5 Flash (5WS) +ECC			1 x EtherCAT_1x LISB	
	248 KB SF	(AIVI + Parity			
Configurable Logic Block	ROM + S	ROM + Secure ROM		Power	& Clocking
6 Tiles	Sec AES + JTAG LOO	urity: CK + Secure BOOT		2x 10 I	VIHz 0-pin OSC
	FN	ЛЕ			2V VREG
System Modules				POR/E	OR Protection
3x 32-bit CPU Timers	Debug				
NMI Watchdog Timer	cJTAG / Real-time JTAG				
	Embedded Real -time Analysis and Diagnostic unit (ERAD)				

Package & Pin Information:

New small 169-pin BGA/ 0.65mmp 9x9mm for space constrained applications

New 256-pin BGA/ 0.8mmp/ 13x13mm supporting 40 ADC channels and many GPIO/ APGIO leading to similar count as 337 BGA from F2837x/ F2828x

100-pin LQFP/ 0.5mmp/ 16x16mm and 176-pin LQFP/ 0.5mmp/ 26x26mm

Actuation

-36 high resolution PWM channels

-Type 5 PWM support, Multi-threshold compare, PWM HW sync., diode emulation mode, Minimum Deadband, Illegal combo logic support, digital compare edge detection, Muticompare operation within one period

-PWMs designed for future of power electronics with Matrix Converters, Multi Level Converters, Dual Active Bridge and Resonant Converters.

Connectivity

EtherCAT, CAN-FD, CAN, USB, 200 Mbps FSI, multiple serial ports, 25Mbps Hi-speed UART with DAM, EMIF, many I/Os and AGPIO

Security

Dual-zone code security, unique ID, secure boot, JTAG lock, HW AES

Safety (ASIL-B/ SIL-2)

Easier implementation with Reciprocal comparison, lock-step core, Periodic HWBIST, 2 DCSM zones, RAM with Parity, Flash all ECC, 2*APLL, BOR, Redundant interrupt vector RAM, better PWM safety with Minimum Deadband, Illegal combologic support and digital edge detection

Oversampling overview

- Oversampling is a technique used to achieve higher effective number of bits (ENOB) than the base hardware provides, by performing multiple samples of the same signal back-to-back.
- Software oversampling requires use of redundant SOCs and post-conversion CPU processing to accumulate results
- The new ADC introduces a very flexible hardware oversampling
 - Up to 128x oversampling
 - Variable frequency oversampling
 - Period averaging
 - Undersampling/ trigger decimation
 - Precise trigger positioning
 - Trigger spread, multi-ADC interleaving

11

Hardware oversampling | Performance benefits

Use multiple SOCs Software Accumulation Multiple interrupts required when higher factors required

Use a single SOC Hardware accumulation & averaging Zero software overhead 36% Improvement CPU Cycles + Code size

4x oversampling example (single channel)

Existing: 605 cycles

with New Method: 387 cycles

ADC hardware oversampling

Oversampling can be used for noise rejection, increasing ENOB beyond the base capability of the ADC.

New ADC (Type 4) adds the following features to enable oversampling

- Trigger repeater: Generate up to 128 samples from a single trigger
- Configurable trigger spread: Add delays between retriggered samples if desired
- Post Processing Block
 - 24-bit hardware accumulator to automatically sum oversampled conversions
 - · Shift function for averaging
 - · Dedicated oversampling interrupt signal
 - Max/min sample calculation in hardware for outlier rejection
- Shadow register updates to reconfigure trigger repeater while current source trigger is still processing conversions.

* ADC Post-Processing Block 13

Oversampling | Example

🔱 Texas Instruments

14

Oversampling spread | Example

15

Avoid switching noise in variable frequency converters

F28P65x PWM and Analog innovation, system cost reduction

Analog

-3 x 12-bit or 16-bit ADC up to 3.5 MSPS

-Up to 40 ADC channels available

-HW post processing

-New HW ADC oversampling mechanism for better control and 54% improvement on code size and cycles

-11 comparators: protect more signals at the same time, Support for dual ramp generation (easier implementation of hysteretic, peak current mode control with lower latency) and more

Signal capture & generation:

-16xSDFM to support up to 3 axis -6x Quadrature encoder interface:

-7x capture modules with 2 High Res

-Embedded pattern generator (EPG)

-6 TilesCLB for encoder implementation, PWM protection. FPGA/ CPLD removal

Memory:

-248kB RAM with Parity

-1.25 MB Flash (ECC)

-Multi-bank support with banks allocable to either CPU statically optimizing mem usage and for easier Live Firm ware Upgrade

Real-time Processing Performance:

2x 200 MHz F28x DSP core + FPU64 + TMU + 1x 200 MHz CLA CPU

Option for lock-step core, increased RAM support for CLA (64kB)

F28P65x		Temperatures		125C Ambient	Q100-Grade-1
Sensing	Processing			Actuation	
ADC1: 16b-1MSPS /12-bit, 3.45 MSPS	C28x™DSP core	C28x™ DSP core		18x ePWM M	odules (36x High-Res) Type 5
ADC2: 16b-1MSPS /12-bit, 3.45 MSPS	200 MHz	200 MHz		Fou	+ Trip. Zo poo
ADC3: 16b-1MSPS /12-bit, 3.45 MSPS	FPU, FastDIV, FPU64	FPU, FPU64 🔒		Fau	
11x Windowed Comparators w/	VCRC,TMU	VCRC,TMU		2X	12-dit DAC
2x Integrated 12-bit DAC	6ch DMA	6ch DMA 🧯		Cor	nnectivity
16x Sigma Delta Channels	192 interrupt PIE	192 interrupt PIE		2x SCI, 2	x LIN, 2 x UARTHS
Temperature Sensor	CLA Core 200MHz, FPU			2x I2C	,1x True PMBus
6x eQEP	Memory		1	4x SPI, FSI(2-Tx , 4-Rx)	
7 x eCAP (2 HR)	256KB * 5 Elest (5\\\S) +ECC		2x CAN-	FD, 1x CAN 2.0B	
Embedded Pattern Generator	230KB S Flash (SWS) FECC			1 x Ett	nerCAT, 1x USB
	248 KB SRAW + Party				
Configurable Logic Block	ROW + S	ROM + Secure ROM		Power	r & Clocking
6 Tiles	AES + JTAG LOO	unty: CK + Secure BOOT		2x 10	MHz 0-pin OSC
	EN	ЛЕ	1	1	.2V VREG
System Modules			i I	POR/E	BOR Protection
3x 32-bit CPU Timers	Debug				
NMI Watchdog Timer	cJTAG / Real-time JTAG				
	Embedded Real-time Analysis and Diagnostic unit (ERAD)				

Package & Pin Information:

New small 169-pin BGA/ 0.65mmp 9x9mm for space constrained applications

New 256-pin BGA/ 0.8mmp/ 13x13mm supporting 40 ADC channels and many GPIO/ APGIO leading to similar count as 337 BGA from F2837x/ F2828x

100-pin LQFP/ 0.5mmp/ 16x16mm and 176-pin LQFP/ 0.5mmp/ 26x26mm

Actuation

-36 high resolution PWM channels

-Type 5 PWM support, Multi-threshold compare, PWM HW sync., diode emulation mode, Minimum Deadband, Illegal combo logic support, digital compare edge detection, Muticompare operation within one period

-PWMs designed for future of power electronics with Matrix Converters, Multi Level Converters, Dual Active Bridge and Resonant Converters.

Connectivity

EtherCAT, CAN-FD, CAN, USB, 200 Mbps FSI, multiple serial ports, 25Mbps Hi-speed UART with DAM, EMIF, many I/Os and AGPIO

Security

Dual-zone code security, unique ID, secure boot, JTAG lock, HW AES

Safety (ASIL-B/ SIL-2)

Easier implementation with Reciprocal comparison, lock-step core, Periodic HWBIST, 2 DCSM zones, RAM with Parity, Flash all ECC, 2*APLL, BOR, Redundant interrupt vector RAM, better PWM safety with Minimum Deadband, Illegal combologic support and digital edge detection

Enhancing performance | Control Law Accelerator (CLA)

- Execute time-critical control loops concurrently with the main CPU and free it up to perform other required tasks.
- Independent access to peripheral registers
- Designed for math intensive computations.
- Minimal latency → where the time delay between sampling, processing, and outputting must fit within a tight time window in order to meet performance objectives.

CLA Math Library Functions

Arc-Cosine	Exponential rasied to a Ratio
Arc-Sine	Exponential(Base 10)
Arc-Tangent of a ratio	Inverse Square Root
Arc-Tangent of a Ratio per Unit	Natural Logarithm
Arc-Tangent	Logarithm(Base 10)
Cosine	Sine
Cosine Per-Unit	Sine Per-Unit
Divide	Square Root
Exponential	

* fully software programmable solution-> CLA Math lib -> C2000ware

	Number of Exe		
	CPU	CLA	
Application	Min/Max	Min/Max	Improvement
Motor AC Induction	888/952	639/694	1.39x (vs CPU)
Power CNTL 2p2z	48	39	1.23x (vs CPU)
Power CNTL 3p3z	68	52	1.31x (vs CPU)

Enhancing performance | Trigonometric math unit

Key points

- <u>TMU</u>: Many common mathematical techniques in real-time control rely on the use of trigonometric functions: sine, cosine, and arc tangent are all examples
- Cycles taken for each instruction are listed below. The test showing 85% improvement is based on a simple Park Transform

Operation	C Equivalent Operation	C28x Pipeline Cycles
Multiply by 2*pi	a = b * 2pi	2 cycles + Sine/Cosine function
Divide by 2*pi	a = b / 2pi	2 cycles + Sine/Cosine function
Divide	a = b / c	5 cycles
Square Root	a = sqrt(b)	5 cycles
Sin Per Unit	a = sin(b*2pi)	4 cycles
Cos Per Unit	a = cos(b*2pi)	4 cycles
Arc Tangent Per Unit	a = atan(b)/2pi	4 cycles
Arc Tangent 2 and Quadrant Operation	Operation to assist in calculating ATANPU2	5 cycles

Equation in Floating-Point C: PARK Transform
#include "math.h"
#define TWO_PI 6.28318530717959
<pre>void park_calc(PARK *v)</pre>
{
<pre>float cos_ang , sin_ang;</pre>
<pre>sin_ang = sin(TWO_PI * v->ang);</pre>
cos_ang = cos(TWO_PI * v->ang);
v->de = (v->ds * cos_ang) + (v->qs * sin_ang);
v->qe = (v->qs * cos_ang) - (v->ds * sin_ang);
1

F28P65x | PWM and Analog innovation, system cost reduction

Analog

-3 x 12-bit or 16-bit ADC up to 3.5 MSPS -Up to 40 ADC channels available -HW post processing -New HW ADC oversampling mechanism for better control and 54% improvement on code size and cycles -11 comparators: protect more signals at the same time, Support for dual ramp generation (easier implementation of hysteretic, peak current mode control with

Signal capture & generation:

low er latency) and more

-16xSDFM to support up to 3 axis -6x Quadrature encoder interface; -7x capture modules with 2 High Res -Embedded pattern generator (EPG) -6 Tiles CLB for encoder implementation, PWM protection, FPGA/ CPLD removal

Memory:

-248kB RAM with Parity

-1.25 MB Flash (ECC)

-Multi-bank support with banks allocable to either CPU statically optimizing mem usage and for easier Live Firmw are Upgrade Real-time Processing Performance:

2x 200 MHz F28x DSP core + FPU64 + TMU + 1x 200 MHz CLA CPU Option for lock-step core, increased RAM support for CLA (64kB)

F28P65x		Temperatures	1	25C Ambient	Q100-Grade-1
Sensing	Proce	essing		Actuation	
ADC1: 16b-1MSPS /12-bit, 3.45 MSPS	C28x™ DSP core	C28x™DSP core		18x ePWM M	odules (36x High-Res)
ADC2: 16b-1MSPS /12-bit, 3.45 MSPS	200 MHz	200 MHz 🔓	1		Type-5
ADC3: 16b-1MSPS /12-bit, 3.45 MSPS	FPU, FastDIV, FPU64	FPU, FPU64 🔒	1	Faul	t Inp Zones
11x Windowed Comparators w/	VCRC,TMU	VCRC,TMU		2x 1	12-bit DAC
2x Integrated 12-bit DAC	6ch DMA	6ch DMA		Con	inectivity
16x Sigma Delta Channels	192 interrupt PIE	192 interrupt PIE		2x SCI, 2>	LIN, 2 x UARTHS
Temperature Sensor	CLA Core 200MHz, FPU			2x I2C.	1x True PMBus
6x eQEP	Momory			4x SPL FSI(2-Tx_4-Rx)	
7 x eCAP (2 HR)			2x CAN-FD_1x CAN 2 0B		
Embedded Pattern Generator	256KB * 5 Flash (5WS) +ECC			1 x EtherCAT 1x LISB	
	248 kB SF	RAM + Parity		I X LU	
Configurable Logic Block	ROM + Secure ROM			Power	& Clocking
6 Tiles	Sec AFS + JTAG L OC	urity: CK + Secure BOOT		2x 10 I	VIHz 0-pin OSC
	FI	EMIE		1.	2V VREG
System Modules				POR/B	OR Protection
3x 32-bit CPU Timers	De	bug	l '		
NMI Watchdog Timer	cJTAG / Re	al-time JTAG			
	Embedded Real-time Ar (ER	nalysis and Diagnostic unit RAD)			

Package & Pin Information:

New small 169-pin BGA/ 0.65mmp 9x9mm for space constrained applications New 256-pin BGA/ 0.8mmp/ 13x13mm supporting 40 ADC channels and many GPIO/ APGIO leading to similar count as 337 BGA from F2837x/ F2828x 100-pin LQFP/ 0.5mmp/ 16x16mm and 176-pin LQFP/ 0.5mmp/ 26x26mm

Actuation

-36 high resolution PWM channels -Type 5 PWM support, Multi-threshold compare, PWM HW sync., diode emulation mode, Minimum Deadband, Illegal combo logic support, digital compare edge detection, Muti-compare operation within one period -PWMs designed for future of pow er electronics with Matrix Converters, Multi Level Converters, Dual Active Bridge and Resonant Converters.

Connectivity

EtherCAT, CAN-FD, CAN, USB, 200 Mbps FSI, multiple serial ports, 25Mbps Hi- speed UART with DAM , EMIF, many VOs and AGPIO

Security

Dual-zone code security, unique ID, secure boot, JTAG lock, HW AES

Safety (ASIL-B/ SIL-2)

Easier implementation with Reciprocal comparison, lock-step core, Periodic HWBIST, 2 DCSM zones, RAM with Parity, Flash all ECC, 2*APLL, BOR, Redundant interrupt vector RAM, better PWM safety with Minimum Deadband, Illegal combo logic support and digital edge detection

PWM new feature set

- XCMP Complex Waveform Generator
- Diode Emulation Submodule
- Minimum Dead-Band & Illegal Combo Logic Submodule
- Digital Compare Event Detection

XCMP complex waveform generator | Overview

Generate up to four pulses within one EPWM period

Benefits

- ✓ Generate complex waveforms without the need of complex logic within code
- ✓ Useful for High Frequency Resonant Topologies

Highlights

- 8 Comparator values (XCMP1-8)
- 3 sets of shadows for each XCMP value
 - Action qualifier event for each XCMP value, same shadow scheme
- 8 XCMP values can be allocated to CMPA or 4 to CMPA and 4 to CMPB
- XTBPRD, XCMPC, and XCMPD have 3 sets of shadows

* XCMP Mode can only be used in up-count mode 22

XCMP complex waveform generator | Example

Minimum dead-band & illegal combo logic | Overview

Insert a configurable amount of minimum delay between EPWM modules

Set output low or high if undesired output state across modules occurs

Benefits:

- Safety feature from power topology perspective to prevent short from supply to ground
- ✓ Prevent unwanted output combinations

Functionality (MINDB)

A blocking signal is generated to prevent both EPWM outputs switching at the same time

Functionality (ICL)

Logic table based on EPWM outputs is configured to setup "illegal" combos

Minimum dead-band & illegal combo logic | Example

Minimum Dead-Band

Programmable delay (DelayA and Delay B in sysclk cycles) is added to ensure there is always a minimum amount of delay between outputs

Illegal Combol ogic		Input2	Input3	Output
illegal combo Logic	0	0	0	1
Based on the truth table, output of EPWMA/EPWMB	0	0	1	1
are configured high or low	0	1	0	1
	0	1	1	0
		0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	0

Digital compare | Event capture

Detect a missing edge event in a configured time window

Benefit:

 ✓ Generate a trip or interrupt if edge is not detected

Functionality:

- 1. Define Min value
- 2. Define Max value
- 3. Select *CAPEVT* as trip or interrupt source

*Min and Max values are also shadowed (3 sets)

F28P65x | On-board charger integration capabilities example

Power stage Topology (up to 22kW, 3Ph)

- PFC: 2-Ph Totempole per phase
- DCDC: 2xCLLLC

F28P65x - PWM and Analog resources

	Power Stage Requirements	F28P65x
PWM Channels	30	Up to 36
ADC Instances	3	3
ADC Channels	23	Up to 40
Comparators	8-11	11

F28P65x - CPU resources

CPU1-C28	CPU1.CLA	CPU2-C28 (Lock Step)
PFC	2xCLLLC	House keeping Safety function

F28P65x | PWM and Analog innovation, system cost reduction

Analog

-3 x 12-bit or 16-bit ADC up to 3.5 MSPS -Up to 40 ADC channels available -HW post processing -New HW ADC oversampling mechanism for better control and 54% improvement on code size and cycles -11 comparators: protect more signals at the same time, Support for dual ramp generation (easier implementation of hysteretic, peak current mode control w ith

Signal capture & generation:

low er latency) and more

-16xSDFM to support up to 3 axis -6x Quadrature encoder interface; -7x capture modules with 2 High Res -Embedded pattern generator (EPG) -6 Tiles CLB for encoder implementation, PWM protection, FPGA/ CPLD removal

Memory:

-248kB RAM with Parity

-1.25 MB Flash (ECC)

-Multi-bank support with banks allocable to either CPU statically optimizing mem usage and for easier Live Firmw are Upgrade

Real-time Processing Performance:

2x 200 MHz F28x DSP core + FPU64 + TMU + 1x 200 MHz CLA CPU Option for lock-step core, increased RAM support for CLA (64kB)

F28P65x		Temperatures		125C Ambient	Q100-Grade-1
Sensing	Processing			Actuation	
ADC1: 16b-1MSPS /12-bit, 3.45 MSPS	C28x™DSP core	C28x™DSP core		18x ePWM Modules (36x High-Res)	
ADC2: 16b-1MSPS /12-bit, 3.45 MSPS	200 MHz	200 MHz	1	lype-5	
ADC3: 16b-1MSPS /12-bit, 3.45 MSPS	FPU, FastDIV, FPU64	FPU, FPU64 🔒		Fault Trip Zones	
11x Windowed Comparators w/	VCRC,TMU	VCRC,TMU		2X	12-DIT DAC
2x Integrated 12-bit DAC	6ch DMA	6ch DMA 🔒		Connectivity	
16x Sigma Delta Channels	192 interrupt PIE	192 interrupt PIE		2x SCI, 2>	LIN, 2 x UARTHS
TemperatureSensor	CLA Core 200MHz, FPU			2x I2C,	1x True PMBus
6x eQEP	Memory		i	4x SPI, FSI(2-Tx , 4-Rx)	
7 x eCAP (2 HR)	256KB * 5 Elach (5WS) +ECC			2x CAN-FD, 1x CAN 2.0B	
Embedded Pattern Generator	230KB 31 (3NG) + 200			1 x EtherCAT, 1x USB	
Configurable Logic Block	ROM + Secure ROM			Power & Clocking	
6 Tiles	Security: AFS + JTAG L OCK + Secure BOOT			2x 10 I	viHz0-pinOSC
	FMIF			1.2V VREG	
System Modules			i	POR/BOR Protection	
3x 32-bit CPU Timers	Debug				
NMI Watchdog Timer	cJTAG / Real-time JTAG				
	Embedded Real -time Analysis and Diagnostic unit (ERAD)				

Package & Pin Information:

New small 169-pin BGA/ 0.65mmp 9x9mm for space constrained applications New 256-pin BGA/ 0.8mmp/ 13x13mm supporting 40 ADC channels and many GPIO/ APGIO leading to similar count as 337 BGA from F2837x/ F2828x 100-pin LQFP/ 0.5mmp/ 16x16mm and 176-pin LQFP/ 0.5mmp/ 26x26mm

Actuation

-36 high resolution PWM channels -Type 5 PWM support, Multi-threshold compare, PWM HW sync., diode emulation mode, Minimum Deadband, Illegal combo logic support, digital compare edge detection, Muti-compare operation w ithin one period -PWMs designed for future of pow er electronics w ith Matrix Converters, Multi Level Converters, Dual Active Bridge and Resonant Converters.

Connectivity

EtherCAT, CAN-FD, CAN, USB, 200 Mbps FSI, multiple serial ports, 25Mbps Hi- speed UART with DAM , EMIF, many VOs and AGPIO

Security

Dual-zone code security, unique ID, secure boot, JTAG lock, HW AES

Safety (ASIL-B/ SIL-2)

Easier implementation with Reciprocal comparison, lock-step core, Periodic HWBIST, 2 DCSM zones, RAM with Parity, Flash all ECC, 2*APLL, BOR, Redundant interrupt vector RAM, better PWM safety with Minimum Deadband, Illegal combo logic support and digital edge detection

F28P65x single chip servo drive + EtherCat

EtherCAT Training: https://training.ti.com/ethercat-protocol-c2000-real-time-controller-training-series

C2000 | Easy migration across devices with One-Click

- C2000 Universal Project Structure with Advanced Migration Support
- <u>One-Click & In-Place</u> (within the same CCS project/no copy needed) migration of the <u>Code Composer Studio properties and</u> <u>SysConfig</u> from one C2000 device family to another
- Identify the changes introduced by the migration including:
 - o Changes in the generated code
 - Changes in the GUI device configuration (PinMux, Resource Management, etc.)
- Customers who utilize this new project structure can migrate across device families at any point in their development with <u>one-click</u>
- Errors and warnings are generated for unsupported features, unavailable resources
- Automatic SW diff generation for the device configuration changes caused by the migration

This project can be migrated across C2000 device families with JUST one click

Development resources

You can start evaluating this device leveraging the following:

Content type	Content title	Link to content or more details
Product information	Data-sheet, migration guide, pin-mux, tools	TMS320F28P65DK Product Page TMS320F28P65DK-Auto Product Page F28P65x product brief Technical blog
Training	New to C2000? On-demand training, examples, and videos	C2000 Five Minute Overview C2000 Academy
Development tools to be aware of	C2000Ware Motor Control SDK Digital Power SDK Universal Motor Control Project Guide One-click set-up, pin-mux, device configuration Both Control Card and LaunchPad™ development kit will be supported	www.ti.com/tool/c2000ware www.ti.com/tool/c2000ware-motorcontrol-sdk www.ti.com/tool/c2000ware-digitalpower-sdk www.ti.com/lit/spruj26 C2000 SysConfig F28P65x ControlCard F28P65x LaunchPad

New F28P65x recap

- New PWM generation
- New ADC features
- More integration
- System cost reduction

www.ti.com/c2000

© Copyright 2023 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

Questions?

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated