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Agenda

• Intelligent battery management system (BMS) introduction.

• Voltage (V), current (I) and insulation resistance (R) measurements.

• VI synchronization in BMSs.

• Summary.



Introduction – BMSs

• Main BMS function: monitor cell voltage (VCELL), pack voltage (VPACK) and pack current (IPACK).
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Benefits

• Eliminates numerous connections in BMU and BJB interface.

• Simplifies hardware and MCU software development.

• Synchronized VI measurements.



Comm supports both traditional and intelligent BMSs
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• Traditional UART-based communication. 

• Intelligent BMS: communication over daisy chain.

• Can also be connected in same daisy chain as cell 

monitors.  
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Voltage measurements 
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Voltage measurements:

• Indicate the status of 

contactors and fuses.

• Power calculations. 

• Temperature measurements. 

• Measure the DCFC voltage.

Key measurement properties:

• Accuracy to support <1% 

error in high-voltage 

estimations.

• All high voltages are divided 

down using resistor strings. 

• Voltage measurement inputs 

need to have extremely low 

leakage to avoid affecting 

measurements.  



Voltage measurement resource assignment
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Measurements: 

1. Pack+

2. Insulation 

3. Link +/-

4. Charge +/-

5. Fuse +
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Temperature measurements

• Simply use a pullup resistor to TSREF 

to form an NTC thermistor 

connection.

• Device supports ratiometric 

measurement through the ADC.
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Current measurements using a shunt resistor 
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Current measurements:

• Measure load currents such as current in the 

drive motor. 

• Measure the charging current. 

• Battery power calculations. 

• Cell impedance calculations. 

Key measurement properties:

• Very high accuracy (typically <0.3% error 

from measurement). 

• Conversion rates and characteristics to match 

cell voltage measurement properties (cycle 

time, filter, etc.). This helps achieve good VI 

sync between cell voltage and current, which 

helps in accurate power, cell impedance, and 

state-of-charge and state-of-health 

calculations.  



Current sensing using a Hall sensor
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• A shunt achieves higher accuracy across 

the range (mA to kA). It is also more 

immune to EMI noise compared to Hall 

sensors. 

• A Hall sensor offers flexibility of placement 

and inherent voltage isolation from 

magnetic sensing.

• The BQ’s voltage input channels can also 

measure the analog outputs from typical 

Hall-based current sensors. 



Overcurrent detection

• Bidirectional detection.

• Programmable thresholds.

• Fault signal on pin, which can 

trigger a pyro-fuse to provide 

the fastest response to 

overcurrent events. A pyro-

fuse is a one-time trigger 

chemical fuse where once 

triggered, the fuse is 

permanently open. 

• Fault response in 500 µS.

• Deglitch of 100 µS.
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Insulation resistance measurements 
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• The insulation resistance is the resistance of 

all insulation materials used to isolate the 

high-voltage battery +/- from the low-voltage 

chassis ground.

• Represented by Riso_P and Riso_N .

• Determine their values by following these 

steps:
1. SW3 open, measure voltage on GPIO1. 

Use this voltage in the circuit/network 

equation for the SW3 open circuit. 

2. SW3 closed, measure voltage on GPIO1. 

Use this voltage in the circuit/network 

equation for the SW3 closed circuit. 

3. Combine equations from steps 1 and 2 to 

solve Riso_P and Riso_N.

SW3

A GPIO2 switch prevents leakage current from flowing between chassis 

ground and PACK– during a key-off state. 



VI synchronization in BMSs
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VI synchronization in BMSs

• VCELL, VPACK and IPACK are used for:

– Battery monitoring.

– Calculations (state of charge, state of health, electrical impedance spectroscopy).

– Diagnostics (for example, comparing the pack voltage and the sum of cell voltages).

– BMS without a pack monitor → pack voltage calculated by summing all cell voltages.

• VCELL, VPACK and IPACK need correlation in time to provide the most accurate power and impedance estimates. Samples 

taken within a certain time interval → synchronization interval or VI sync time.

• Nonsynchronized data can lead to errors (1% state-of-charge error → 1% shorter vehicle range).
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Example 1: Small VI sync time
 More accurate SOC, Impedance and Power calculations.

Example 2: Large VI sync time
 Less accurate SOC, Impedance and Power calculations.



Challenges in synchronization 

• Increasingly demanding timing requirements:

– VI synchronization below 1 ms for more accurate state-of-charge, impedance and 

power calculations.

– Sample intervals down to 10 ms and below.

• Challenges/considerations:

– Nonsynchronized cell monitors.

– Measurement readout/buffering.

– Influence of the filter.

– Synchronizing cell and pack measurements.

– Command propagation delay.

– Bandwidth of the communication interface.

– Wired vs. wireless (protocol).
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VI synchronization with BQ7961x battery 
monitors
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VI synchronization in wired BMSs

• Wired BMS → all monitors connect to the BMU 

through a wired communication interface.

• BQ796xx family considered here:

– Daisy-chain communication.

• Two separate daisy chains → MCU is in charge of 

synchronizing cell and pack daisy chains.

• Example – 400-V BMS:

– 96 cells (six BQ79616s): VCELL1 … VCELL96.

– Single-pack monitor (BQ79631): VPACK, IPACK.
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Cell voltage measurement (BQ7961x) timing
• Voltage synchronization within multiple cell monitors:

– Using single conversion mode, all cell supervisor units (CSUs) can synchronously measure the cell 

voltages.

– The BQ7961x supports delayed ADC sampling in order to compensate for the CSU-to-CSU 

propagation delay when transmitting the ADC_GO command down the daisy-chain interface.
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Pack VI measurement (BQ79631) timing
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• With the appropriate settings (a 1-mS conversion in this case), for current measurement in the 

BQ79631, it is possible to synchronize current sampling to cell and pack voltage sampling 

within approximately 250 µs.

• Owing to the delay compensation, all cell and pack voltage measurements are synchronized 

within approximately 120 µs.

The MCU is in charge of synchronizing 

cell and pack daisy chains.
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BQ79631 reference board and contact 
• Available since 3Q 2020. 

• Contact Sudhir Nagaraj (BMS-BGM).
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Tools and resources

Target applications

Features

• Stackable BMS system with voltage and current

sensing and insulation resistance monitoring.

• Daisy chain to interface with other sensors and cell 

monitors in the BQ796xx family.

• Ambient temperature range: –40°C to 85°C.

Benefits

• Integrated ASIL D-based IC benefits.

• Lower bill-of-materials costs.

• Enables quick evaluation. 

• Flexible printed circuit board provided with jumpers to play 

with different configurations. 

• High-voltage battery-management control.

• Charge monitor for high-voltage battery packs.

• Current sensor for high-voltage battery packs.

• Design file, board, user guide.

• Software configuration tool.

• Insulation resistance calculation tool.



Summary

• Conclusions on VIR measurements:

– Voltage and current measurement accuracy improvements will result in 

optimal utilization of the battery. 

– Overcurrent detection and local autonomous triggering of the pyro-fuse 

enhance safety in vehicles. 

– Integrated insulation detection capability provides enhanced safety for 

operators and sensitive electronics in vehicles. 

• Conclusions on VI synchronization:

– Effective VI synchronization enables precise state-of-charge, state-of-health 

and electrical impedance spectroscopy calculations that will result in optimal 

utilization of the battery. 
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