TI Developer Conference March 7-9, 2007 • Dallas, TX

TEXAS INSTRUMENTS

DLP® Technology-Driven, Optical **Neural Network Results and Future Design**

Emmett Redd Professor **Missouri State** University

Technology for Innovators[™]

Neural Network Applications

- Stock Prediction: Currency, Bonds, S&P 500 and Natural Gas
- Business: Direct mail, Credit Scoring, Appraisal and Summoning Juries
- Medical: Breast Cancer, Heart Attack Diagnosis and ER Test Ordering
- Sports: Horse and Dog Racing
- Science: Solar Flares, Protein Sequencing, Mosquito ID and Weather
- Manufacturing: Welding Quality, Plastics or Concrete Testing
- Pattern Recognition: Speech, Article Class. and Chem. Drawings
- No Optical Applications—We are starting with Boolean
- most from <u>www.calsci.com/Applications.html</u>

Minds in Motion

Optical Computing & Neural Networks

- Optical Parallel Processing Gives Speed
 - Lenslet's Enlight 256—8000 Giga Multiply and Accumulate per second
 - Order 10¹¹ connections per second possible with holographic attenuators
- Neural Networks
 - Parallel versus Serial
 - Learn versus Program
 - Solutions beyond Programming
 - Deal with Ambiguous Inputs
 - Solve Non-Linear problems
 - Thinking versus Constrained Results

Minds in Motion

TEXAS INSTRUMENTS

Technology for Innovators[™]

Optical Neural Networks

- Sources are modulated light beams (pulse or amplitude)
- Synaptic Multiplications are due to attenuation of light passing through an optical medium (30 fs)
- Geometric or Holographic
- Target neurons sum signals from many source neurons.
- Squashing by operational-amps or nonlinear optics

Minds in Motion

Standard Neural Net Learning

• We use a Training or Learning algorithm to adjust the weights, usually in an iterative manner.

FWL-NN is equivalent to a standard Neural Network + Learning Algorithm

TI Developer Conference Optical Recurrent Neural Network Signal Source (Layer Input)

Definitions

- Fixed-Weight Learning Neural Network (FWL-NN) A recurrent network that learns without changing synaptic weights
- Potency A weight signal
- Tranapse A Potency modulated synapse
- Planapse Supplies Potency error signal
- Zenapse Non-Participatory synapse
- Recurron A recurrent neuron
- Recurral Network A network of Recurrons

Optical Fixed-Weight Learning Synapse

Technology for Innovators[™]

W Texas Instruments

Page Representation of a Recurron

Optical Neural Network Constraints

- Finite Range Unipolar Signals [0,+1]
- Finite Range Bipolar Attenuation[-1,+1]
- Excitatory/Inhibitory handled separately
- Limited Resolution Signal
- Limited Resolution Synaptic Weights
- Alignment and Calibration Issues

Minds in Motion

Optical System

DMD or DLP[®]

Minds in Motion

Technology for Innovators[™]

TI Developer Conference Optical Recurrent Neural Network Signal Source (Layer Input)

Design Details and Networks

- Digital Micromirror Device
- 35 mm slide Synaptic Media
- CCD Camera
- Synaptic Weights Positionally Encoded

- Digital Attenuation

Allows flexibility for evaluation.

Recurrent AND Unsigned Multiply FWL Recurron

Minds in Motion

😼 Texas Instruments

Technology for Innovators[™]

DMD/DLP[®]—A Versatile Tool

- Alignment and Distortion Correction
 - Align DMD/DLP[®] to CCD—PEGS
 - Align Synaptic Media to CCD——HOLES
 - Calculate DMD/DLP[®] to Synaptic Media
 Alignment—Putting PEGS in HOLES
 - Correct projected DMD/DLP[®] Images
- Nonlinearities

Minds in Motion

Stretch, Squash, and Rotate

 $D = \begin{bmatrix} x_1 & \cdots & x_P \\ y_1 & \cdots & y_P \\ x_1^2 & \cdots & x_P^2 \\ x_1y_1 & \cdots & x_Py_P \\ y_1^2 & \cdots & y_P^2 \\ 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} 1 & \text{None} \\ \mathbf{x}^1\mathbf{y}^0 \ \mathbf{x}^0\mathbf{y}^1 & \text{Linear} \\ \mathbf{x}^2\mathbf{y}^0 \ \mathbf{x}^1\mathbf{y}^1 \ \mathbf{x}^0\mathbf{y}^2 & \text{Quadratic} \\ \mathbf{x}^3\mathbf{y}^0 \ \mathbf{x}^2\mathbf{y}^1 \ \mathbf{x}^1\mathbf{y}^2 \ \mathbf{x}^0\mathbf{y}^3 & \text{Cubic} \\ \mathbf{etc.} & \mathbf{etc.} \end{bmatrix}$

Minds in Motion

Technology for Innovators[™]

🥠 Texas Instruments

Where We Are and Where We Want to Be

TI Developer Conference CCD Image of Known DLP® Positions

DMD Dots Image (pegs)

Technology for Innovators[™]

CCD Image of Holes in Slide Film

Slide Dots Image (holes)

Manually **Click on** Interference to Zoom In

Technology for Innovators[™]

🖑 Texas Instruments

Mark the Center

ZOOM OF DIFFRACTION PATTERN #1. Click on center

Technology for Innovators[™]

Options for Automatic Alignment

- Make holes larger so diffraction is reduced
 - A single large Peg might illuminate only one Hole at a time
 - Maximum intensity would mark Hole location
- Fit ellipse to 1^{st} minimum— $Ax^2+Bxy+Cy^2+Dx+Ey+1 = 0$
 - Find its center— x_c =(BE-2CD)/(4AC-B²), y_c =(BD-2AE)/(4AC-B²) Hole location

Minds in Motion

Ellipse Fitting

Minds in Motion

Technology for Innovators[™]

Eighty-four Clicks Later TI Developer Conference

Slide Dots Image (holes)

$C' = M \bullet C$ $\mathbf{M} = \mathbf{C'} \bullet \mathbf{C}^{\mathsf{P}}$

Technology for Innovators[™]

🦊 Texas Instruments

TI Developer Conference DLP® Projected Regions of Interest

Technology for Innovators[™]

Nonlinearities

Technology for Innovators[™]

🤣 Texas Instruments

Neural Networks and Results

- Recurrent AND
- Unsigned Multiply
- Fixed Weight Learning Recurron

Technology for Innovators[™]

V Texas Instruments

Recurrent AND Neural Network

Technology for Innovators[™]

TI Developer Conference Synaptic Weight Slide

Minds in Motion

Technology for Innovators[™]

W Texas Instruments

Recurrent AND Demo

• MATLAB

Minds in Motion

Technology for Innovators[™]

TI Developer Conference Pulse Image (Regions of Interest)

Technology for Innovators[™]

TI Developer Conference Output Swings Larger than Input

Technology for Innovators[™]

TI Developer Conference Synaptic Weight Slide

Minds in Motion

Technology for Innovators[™]

TI Developer Conference Unsigned Multiply Results

Page Representation of a Recurron

Minds in Motion

Technology for Innovators[™]

TI Developer Conference Optical Recurrent Neural Network Signal Source (Layer Input)

Future: Integrated Photonics

- Photonic (analog)
- i. Concept
- α. Neuron
- β. Weights
- γ. Synapses

Photonics Spectra and Luxtera

Minds in Motion

W Texas Instruments

Continued

- ii. Needs
- α. Laser

- β. Amplifier (detectors and control)
- γ. Splitters
- δ. Waveguides on Two Layers
- ε. Attenuators
- ζ. Combiners
 - η. Constructive Interference
- θ. Destructive Interference
- I. Phase

Photonics Spectra and Luxtera

Minds in Motion

Technology for Innovators[™]

🜵 Texas Instruments

Interest Generated?

- We wish to implement Optical Neural Networks in Silicon—Including Fixed Weight Learning.
- To do so, we need Collaborators.
- Much research remains, but an earlier start means an earlier finish.
- Please contact me if interested.

Minds in Motion

TI Developer Conference March 7-9, 2007 • Dallas, TX

DLP®-Driven, Optical Neural Network Results and Future Design

Emmett Redd & A. Steven Younger Missouri State University EmmettRedd@MissouriState.edu

Minds in Motion

Technology for Innovators[™]

🖑 Texas Instruments

Source Pulse

Technology for Innovators[™]