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Neural Network Applications

• Stock Prediction:  Currency, Bonds, S&P 500 and Natural Gas
• Business:  Direct mail, Credit Scoring, Appraisal and Summoning Juries
• Medical:  Breast Cancer, Heart Attack Diagnosis and ER Test Ordering
• Sports:  Horse and Dog Racing
• Science:  Solar Flares, Protein Sequencing, Mosquito ID and Weather
• Manufacturing:  Welding Quality, Plastics or Concrete Testing
• Pattern Recognition:  Speech, Article Class. and Chem. Drawings
• No Optical Applications—We are starting with Boolean
• most from www.calsci.com/Applications.html



Optical Computing & Neural Networks

• Optical Parallel Processing Gives Speed
– Lenslet’s Enlight 256—8000 Giga Multiply and 

Accumulate per second
– Order 1011 connections per second possible with 

holographic attenuators
• Neural Networks

– Parallel versus Serial
– Learn versus Program
– Solutions beyond Programming
– Deal with Ambiguous Inputs
– Solve Non-Linear problems
– Thinking versus Constrained Results



Optical Neural Networks

• Sources are modulated light beams (pulse or 
amplitude)

• Synaptic Multiplications are due to attenuation of 
light passing through an optical medium (30 fs)

• Geometric or Holographic
• Target neurons sum signals from many source 

neurons.
• Squashing by operational-amps or nonlinear 

optics



Standard Neural Net Learning
• We use a Training or Learning algorithm to adjust 

the weights, usually in an iterative manner.
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FWL-NN is equivalent to a standard Neural 
Network + Learning Algorithm
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Optical Recurrent Neural Network
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Definitions

• Fixed-Weight Learning Neural Network (FWL-NN) – A 
recurrent network that learns without changing synaptic 
weights

• Potency – A weight signal
• Tranapse – A Potency modulated synapse
• Planapse – Supplies Potency error signal
• Zenapse – Non-Participatory synapse
• Recurron – A recurrent neuron
• Recurral Network – A network of Recurrons



Optical Fixed-Weight Learning Synapse
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Page Representation of a Recurron
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Optical Neural Network Constraints

• Finite Range Unipolar Signals [0,+1]
• Finite Range Bipolar Attenuation[-1,+1]
• Excitatory/Inhibitory handled separately
• Limited Resolution Signal
• Limited Resolution Synaptic Weights
• Alignment and Calibration Issues



Optical System

DMD or 
DLP®



Optical Recurrent Neural Network
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Design Details and Networks

• Digital Micromirror Device  
• 35 mm slide Synaptic Media
• CCD Camera 
• Synaptic Weights - Positionally Encoded

- Digital Attenuation
• Allows flexibility for evaluation.

Recurrent AND
Unsigned Multiply
FWL Recurron



DMD/DLP®—A Versatile Tool

• Alignment and Distortion Correction
– Align DMD/DLP® to CCD——PEGS
– Align Synaptic Media to CCD——HOLES
– Calculate DMD/DLP® to Synaptic Media 

Alignment——Putting PEGS in HOLES
– Correct projected DMD/DLP® Images

• Nonlinearities
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Where We Are and 
Where We Want to Be
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DMD Dots Image (pegs)
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CCD Image of Known DLP® Positions
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Slide Dots Image (holes)
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ZOOM OF DIFFRACTION PATTERN #1. Click on center
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Options for Automatic Alignment

• Make holes larger so diffraction is reduced
– A single large Peg might illuminate only one Hole at a 

time
– Maximum intensity would mark Hole location

• Fit ellipse to 1st minimum— Ax2+Bxy+Cy2+Dx+Ey+1 = 0
– Find its center— xc=(BE-2CD)/(4AC-B2),     yc=(BD-

2AE)/(4AC-B2) – Hole location



Changeable center and orientation parameters
4 3 theta

-4 2 0.523598767 0.5 0.523598767

x 4 -4 0 0
y 0 0 3 -3

-2 2
x' -0.535898367 -7.464101633 -5.5 -2.5 -2 -2 -1.663745 -7.464101615 -3.369187 -6.322583664
y' 3.999999969 3.09401E-08 4.598076 -0.598076 5.12147 -0.270636326 0 0 -1 -1

-4 0 -4 0

General Equation resulting from rotating and translating x 2̂/16 + y 2̂/9 = 1 by h, k, and theta.
A B C D E F

10.75 -6.062177764 14.25000005 98.12436 -81.24871 133.497
0 0 0 0 0 0 0 0 0 0

Recovered center and orientation parameters
h k theta

-4 2 0.523598767
4 4 2.768049 55.71281292 11.35142 39.97506419

-10.2429 0.541272651 0 0 3.369187 6.322583664
26.2294 0.073244021 0 0 1 1

-2 -2 -1.663745 -7.464101615 -3.369187 -6.322583664
Gaussian Elimination Below 5.12147 -0.270636326 0 0 -1 -1

4 -10.24293658 26.22943744 -2 5.121468 -1
4 0.541272651 0.073244021 -2 -0.270636 -1

2.76805 0 0 -1.663745 0 -1
55.7128 0 0 -7.464102 0 -1
11.3514 3.369186883 1 -3.369187 -1 -1

1 -2.560734145 6.557359359 -0.5 1.280367 -0.25
0 10.78420923 -26.15619342 0 -5.392105 0
0 7.088237103 -18.15109078 -0.279721 -3.544119 -0.30799
0 142.6657023 -365.3289352 20.3923 -71.33285 12.9282
0 32.43715631 -73.43534183 2.306523 -15.53398 1.83786

1 0 0.34651384 -0.5 0 -0.25
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Slide Dots Image (holes)
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Eighty-four Clicks Later

C' = M ● C

M = C' ● CP
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D' =                
H-1●M-1●H●D

and

C' = H ● D'



Nonlinearities
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Neural Networks and Results

• Recurrent AND
• Unsigned Multiply
• Fixed Weight Learning Recurron
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Synaptic Weight Slide

Weights
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Recurrent AND Demo

• MATLAB
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Synaptic Weight Slide
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Page Representation of a Recurron
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FWL Recurron Synaptic Weight Slide



Optical Fixed-Weight Learning 
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Future:  Integrated Photonics

• Photonic (analog)
• i. Concept
• α. Neuron
• β. Weights
• γ. Synapses

Photonics Spectra and Luxtera



Continued

• ii. Needs
• α. Laser
• β. Amplifier (detectors and control)
• γ. Splitters
• δ. Waveguides on Two Layers
• ε. Attenuators
• ζ. Combiners
• η. Constructive Interference
• θ. Destructive Interference
• ι. Phase

Photonics Spectra 
and Luxtera



Interest Generated?

• We wish to implement Optical Neural Networks in 
Silicon—Including Fixed Weight Learning.

• To do so, we need Collaborators.
• Much research remains, but an earlier start means an 

earlier finish.
• Please contact me if interested.
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