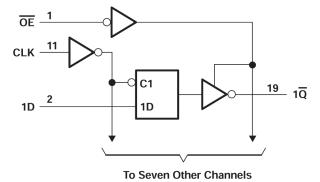


SCAS551F – NOVEMBER 1995 – REVISED FEBRUARY 2024

SN74AC564 Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs

1 Features

- Operation of 2V to 6V V_{CC}
- · Inputs accept voltages to 6V
- Max t_{pd} of 9ns at 5V
- · 3-state inverting outputs drive bus lines directly
- Full parallel access for loading
- · Flow-through architecture to optimize PCB layout


2 Description

The 'AC564 devices are octal D-type edge-triggered flip-flops that feature inverting 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)	BODY SIZE(3)
	DB (SSOP, 20)	7.2mm x 7.8mm	7.2mm x 5.30mm
SN74AC564	DW (SOIC, 20)	12.80mm x 10.3mm	12.80mm x 7.50mm
	N (PDIP, 20)	24.33mm x 9.4mm	24.33mm x 6.35mm
	PW (TSSOP, 20)	6.50mm x 6.4mm	6.50mm x 4.40mm

- (1) For more information, see Section 10.
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.
- (3) The body size (length × width) is a nominal value and does not include pins.

Table of Contents

1 Features1	6.2 Functional Block Diagram8
2 Description1	6.3 Device Functional Modes8
3 Pin Configuration and Functions3	7 Application and Implementation9
4 Specifications4	7.1 Power Supply Recommendations9
4.1 Absolute Maximum Ratings4	7.2 Layout9
4.2 Recommended Operating Conditions4	8 Device and Documentation Support10
4.3 Thermal Information4	8.1 Documentation Support (Analog)10
4.4 Electrical Characteristics5	8.2 Receiving Notification of Documentation Updates10
4.5 Timing Requirements, V _{CC} = 3.3 V ± 0.3 V5	8.3 Support Resources10
4.6 Timing Requirements, V _{CC} = 5 V ± 0.5 V5	8.4 Trademarks10
4.7 Switching Characteristics, V _{CC} = 3.3 V ± 0.3 V5	8.5 Electrostatic Discharge Caution10
4.8 Switching Characteristics, V _{CC} = 5 V ± 0.5 V6	8.6 Glossary10
4.9 Operating Characteristics6	9 Revision History10
5 Parameter Measurement Information7	10 Mechanical, Packaging, and Orderable
6 Detailed Description8	Information11
6.1 Overview8	

3 Pin Configuration and Functions

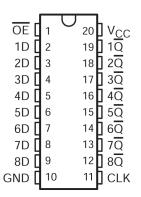


Figure 3-1. SN74AC564 DB, DW, N, NS, or PW Package (Top View)

Table 3-1. Pin Functions

P	IN	1/0	DESCRIPTION
NAME	NO.	_ I/O	DESCRIPTION
ŌĒ	1	Input	Output enable for all channels, active low
D1	2	Input	Input for channel 1
D2	3	Input	Input for channel 2
D3	4	Input	Input for channel 3
D4	5	Input	Input for channel 4
D5	6	Input	Input for channel 5
D6	7	Input	Input for channel 6
D7	8	Input	Input for channel 7
D8	9	Input	Input for channel 8
GND	10	_	Ground
CLK	11	Input	Clock input for all channels, rising edge triggered
Q8	12	Output	Output for channel 8
Q7	13	Output	Output for channel 7
Q6	14	Output	Output for channel 6
Q5	15	Output	Output for channel 5
Q4	16	Output	Output for channel 4
Q3	17	Output	Output for channel 3
Q2	18	Output	Output for channel 2
Q1	19	Output	Output for channel 1
V _{CC}	20	_	Positive supply

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)¹

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
V _I ²	Input voltage range		-0.5	V _{CC} + 0.5	V
V _O ²	Output voltage range		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	$(V_I < 0 \text{ or } V_I > V_{CC})$		±20	mA
I _{OK}	Output clamp current	$(V_O < 0 \text{ or } V_O > V_{CC})$		±20	mA
Io	Continuous output current	$(V_O = 0 \text{ to } V_{CC})$		±50	mA
	Continuous current through V_{CC} or GND			±200	mA
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

4.2 Recommended Operating Conditions

(over operating free-air temperature range (unless otherwise noted)¹

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		2	6	V	
		V _{CC} = 3 V	2.1			
V_{IH}	High-level input voltage	V _{CC} = 4.5 V	3.15		V	
		V _{CC} = 5.5 V	3.85			
		V _{CC} = 3 V		0.9		
V_{IL}	Low-level input voltage	V _{CC} = 4.5 V		1.35	V	
		V _{CC} = 5.5 V		1.65		
V _I	Input voltage		0	V _{CC}	V	
Vo	Output voltage		0	Vcc	V	
		V _{CC} = 3 V		-12		
I _{OH}	High-level output current	V _{CC} = 4.5 V		-24	mA	
		V _{CC} = 5.5 V		-24		
		V _{CC} = 3 V		12		
l _{OL}	Low-level output current	V _{CC} = 4.5 V		24	mA	
		V _{CC} = 5.5 V		24		
Δt/Δv	Input transition rise or fall rate			8	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

All unused inputs of the device must be held at V_{CC} or GND for proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

4.3 Thermal Information

		SN74AC564					
	THERMAL METRIC ⁽¹⁾	DB (SSOP)	DW (SOIC)	N (PDIP)	NS (SOP)	PW (TSSOP)	UNIT
		20 PINS					
$R_{\theta JA}$	Junction-to-ambient thermal resistance	70	58	69	60	126.2	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

Product Folder Links: SN74AC564

Submit Document Feedback

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

4.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V	T _A =	= 25°C	SN74A	C564	UNIT
PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP MAX	MIN	MAX	UNII
		3 V	2.9		2.9		
	I _{OH} = -50 μA	4.5 V	4.4		4.4		
V _{OH}		5.5 V	5.4		5.4		.,
	I _{OH} = −12 mA	3 V	2.56		2.46		V
	I _{OH} = -24 mA	4.5 V	3.86		3.76		
		5.5 V	4.86		4.76		
	Ι _{ΟL} = 50 μΑ	3 V		0.1		0.1	
		4.5 V		0.1		0.1	
N/		5.5 V		0.1		0.1	V
V _{OL}	I _{OL} = 12 mA	3 V		0.36		0.44	V
	I _{OL} = 24 mA	4.5 V		0.36		0.44	
	10L - 24 11IA	5.5 V		0.36		0.44	
I _I	V _I = V _{CC} or GND	5.5 V		±0.1		±1	μΑ
I _{OZ}	V _O = V _{CC} or GND	5.5 V		±0.5		±5	μΑ
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V		4		40	μΑ
Ci	V _I = V _{CC} or GND	5 V		4.5			pF

4.5 Timing Requirements, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

		T _A = 25	5°C	SN74AC	SN74AC564		
		MIN MAX		MIN	MAX	UNIT	
f _{clock}	Clock frequency		75		60	MHz	
t _w	Pulse duration, CLK high or low	6		7		ns	
t _{su}	Setup time, data before CLK↑	2.5		3		ns	
t _h	Hold time, data after CLK↑	2		2		ns	

4.6 Timing Requirements, $V_{CC} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

		T _A = 25°C		SN74AC564		UNIT
		MIN	MAX	MIN	MAX	ONII
f _{clock}	Clock frequency		95		85	MHz
t _w	Pulse duration, CLK high or low	4		5		ns
t _{su}	Setup time, data before CLK↑	2		2.5		ns
t _h	Hold time, data after CLK↑	2		2		ns

4.7 Switching Characteristics, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTBUT)	TA	= 25°C		SN74A	C564	UNIT
PARAMETER	PROW (INPUT)	TO (OUTPUT)	MIN	TYP	MAX	MIN	MAX	Z UNII
f _{max}			75			60		MHz

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	T _A = 25°C			SN74A	C564	UNIT
PARAMETER	FROW (INFOT)		MIN	TYP	MAX	MIN	MAX	OMIT
t _{PLH}	CLK	Q -	3.5	8.1	14	3.5	15.5	⊣ ns l
t _{PHL}	CLK		3.5	8.2	12.5	3.5	14	
t _{PZH}	ŌĒ	Q -	2.5	7.2	11.5	2.5	12.5	ne
t _{PZL}	OL		3	7.7	11	3.5	12	ns
t _{PHZ}	ŌĒ	Q	4	8.6	12.5	4.5	13.5	no
t _{PLZ}		l Q	2	7.3	9.5	2.5	10.5	ns

4.8 Switching Characteristics, V_{CC} = 5 V ± 0.5 V

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	T	T _A = 25°C			SN74AC564	
PARAMETER	PROM (INPUT)	10 (001701)	MIN	TYP	MAX	MIN	MAX	UNIT
f _{max}			95			85		MHz
t _{PLH}	CLK	Q	2	4.9	10.5	2	11.5	20
t _{PHL}		Q	2	5	9.5	2	10.5	ns
t _{PZH}	OF	Q	2	5.1	9	2	9.5	no
t _{PZL}	ŌĒ	Q	1.5	5.2	8.5	2	9.5	ns
t _{PHZ}	OF.	Q	2	5.7	10.5	2	11.5	
t _{PLZ}	ŌĒ	Q	1.5	4.8	8	1.5	9	ns

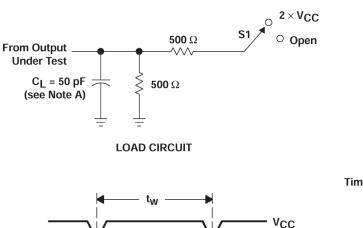
4.9 Operating Characteristics

 V_{CC} = 5 V, T_A = 25°C

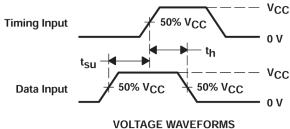
PARAMETER		TEST CONDITIONS	TYP	UNIT
(C _{pd} Power dissipation capacitance	C _L = 50 pF, f = 1 MHz	50	pF

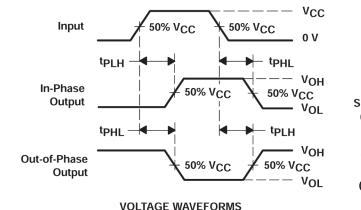
Submit Document Feedback

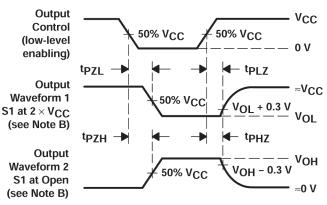
Copyright © 2024 Texas Instruments Incorporated



Input


5 Parameter Measurement Information


50% V_{CC}


VOLTAGE WAVEFORMS

50% V_{CC}

VOLTAGE WAVEFORMS

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq 2.5$ ns, $t_f \leq 2.5$ ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 5-1. Load Circuit and Voltage Waveforms

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	2 × V _{CC}
t _{PHZ} /t _{PZH}	Open

6 Detailed Description

6.1 Overview

On the positive transition of the clock (CLK) input, the $\overline{\mathbb{Q}}$ outputs are set to the inverse logic levels set up at the data (D) inputs.

A buffered output-enable (\overline{OE}) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

 $\overline{\text{OE}}$ does not affect internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

For the specified high-impedance state during power up or power down, $\overline{\text{OE}}$ must be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

6.2 Functional Block Diagram

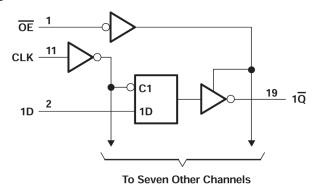


Figure 6-1. Logic Diagram (Positive Logic)

6.3 Device Functional Modes

Table 6-1. Function Table (Each Flip-flop)

INPUTS	OUTPUT Q					
ŌĒ	CLK	D	JOIN Q			
L	1	Н	L			
L	1	L	Н			
L	H or L	Х	Q_0			
Н	Х	Х	Z			

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Absolute Maximum Ratings* section. Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor; if there are multiple V_{CC} terminals, then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for best results.

7.2 Layout

7.2.1 Layout Guidelines

Reflections and matching are closely related to the loop antenna theory but are different enough to be discussed separately from the theory. When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self-inductance of the trace, which results in the reflection. Not all PCB traces can be straight; therefore, some traces must turn corners. Layout example for the SN74AC564 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

7.2.2 Layout Example

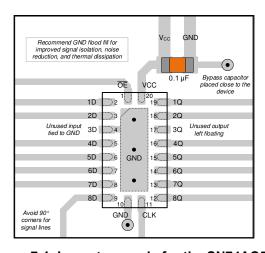


Figure 7-1. Layout example for the SN74AC564

8 Device and Documentation Support

8.1 Documentation Support (Analog)

8.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
SN74AC564	Click here	Click here	Click here	Click here	Click here	

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (August 2023) to Revision F (February 2024)							
• Updated RθJA value: PW = 83 to 126.2, all values in °C/W	4						
Changes from Revision D (October 2003) to Revision E (August 2023)	Page						
Added Package Information table, Pin Functions table, Thermal Information table, Device and Documentation Support section, and Mechanical, Packaging, and Orderab	rice Functional Modes,						
section	1						

Product Folder Links: SN74AC564

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

www.ti.com 30-Jul-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AC564DBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC564	Samples
SN74AC564DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC564	Samples
SN74AC564DWG4	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC564	Samples
SN74AC564N	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74AC564N	Samples
SN74AC564PW	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI	-40 to 85	AC564	
SN74AC564PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC564	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

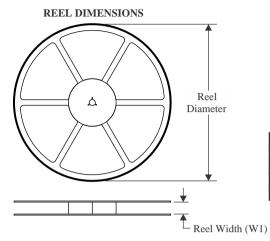
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

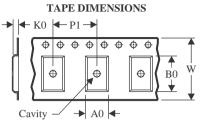
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM


www.ti.com 30-Jul-2024


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

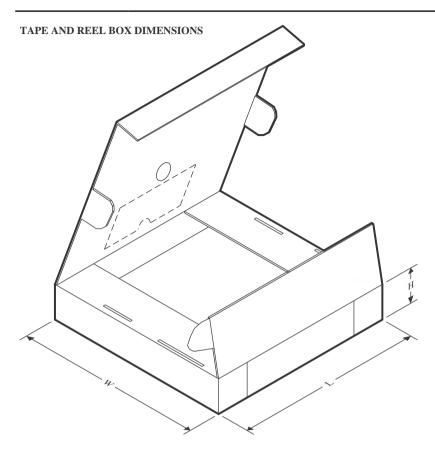
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 25-Sep-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

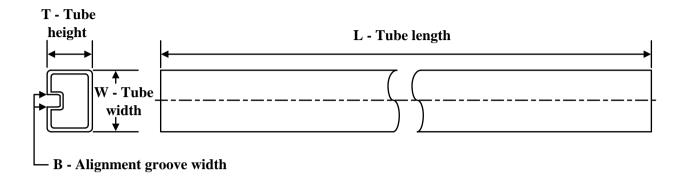
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AC564DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74AC564PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74AC564PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

www.ti.com 25-Sep-2024


*All dimensions are nominal

Device	Package Type Package Drawing F		Pins SPQ L		Length (mm)	Width (mm)	Height (mm)	
SN74AC564DBR	SSOP	DB	20	2000	356.0	356.0	35.0	
SN74AC564PWR	TSSOP	PW	20	2000	353.0	353.0	32.0	
SN74AC564PWR	TSSOP	PW	20	2000	356.0	356.0	35.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2024

TUBE

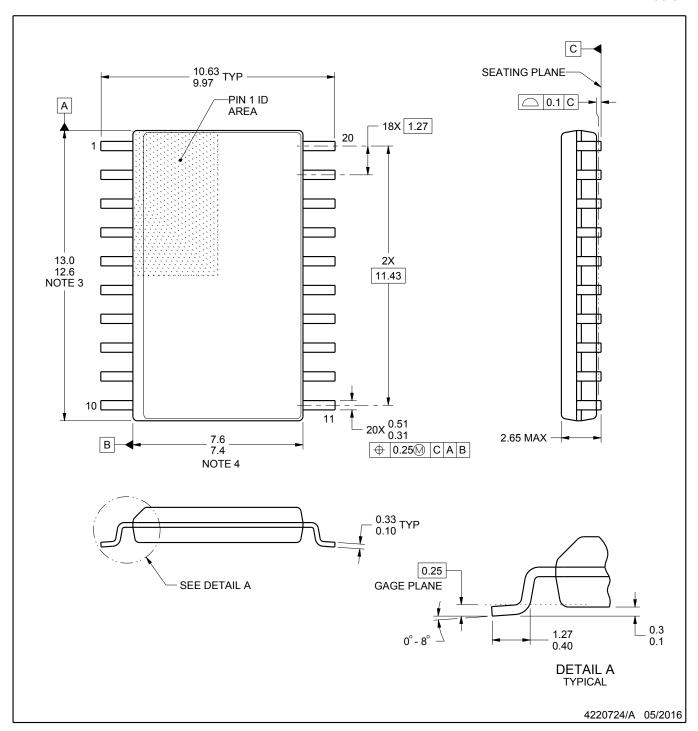
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74AC564DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74AC564DWG4	DW	SOIC	20	25	507	12.83	5080	6.6
SN74AC564N	N	PDIP	20	20	506	13.97	11230	4.32

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

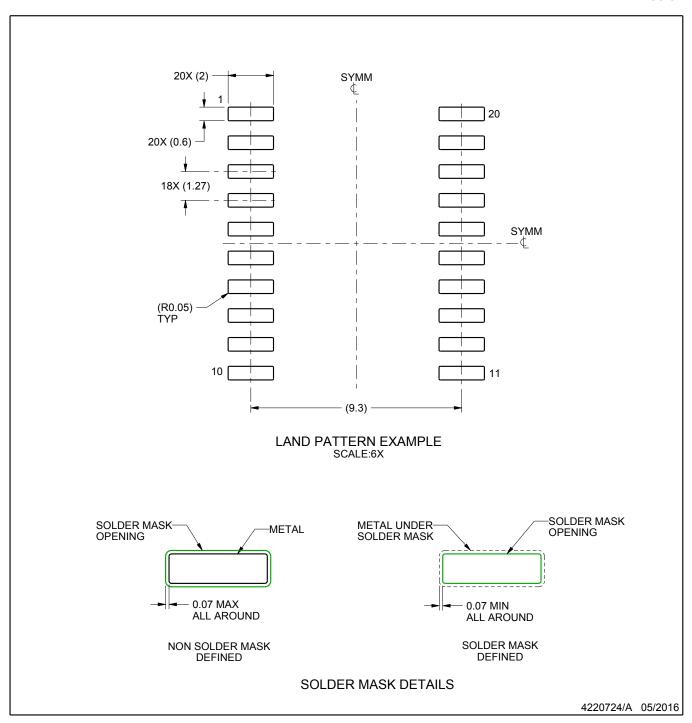
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOIC

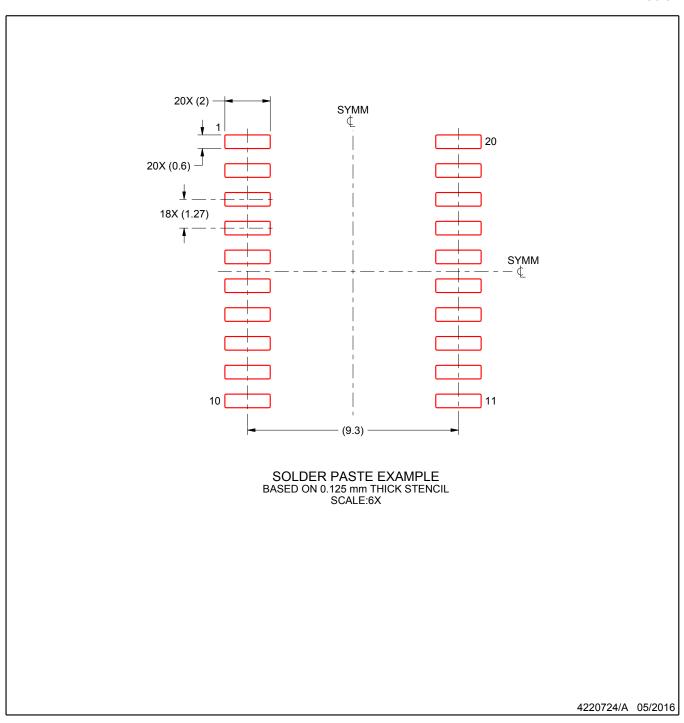
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

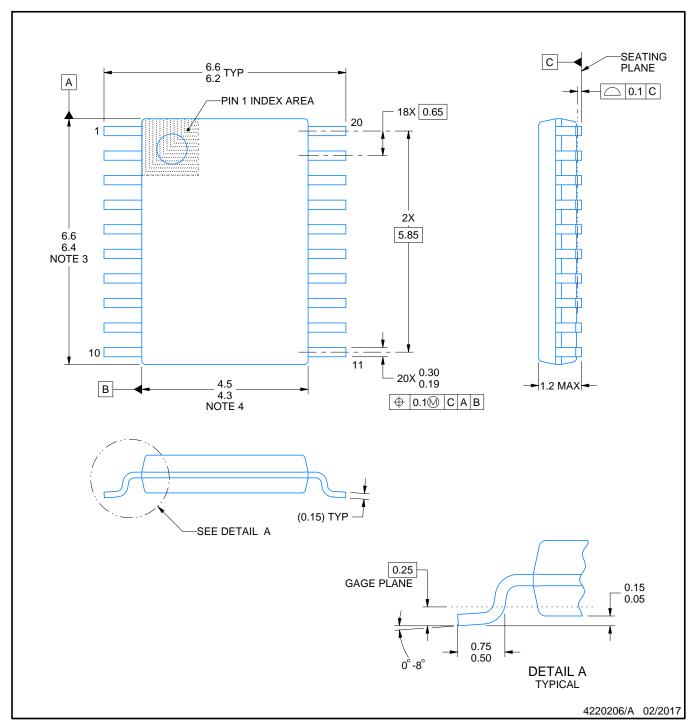
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

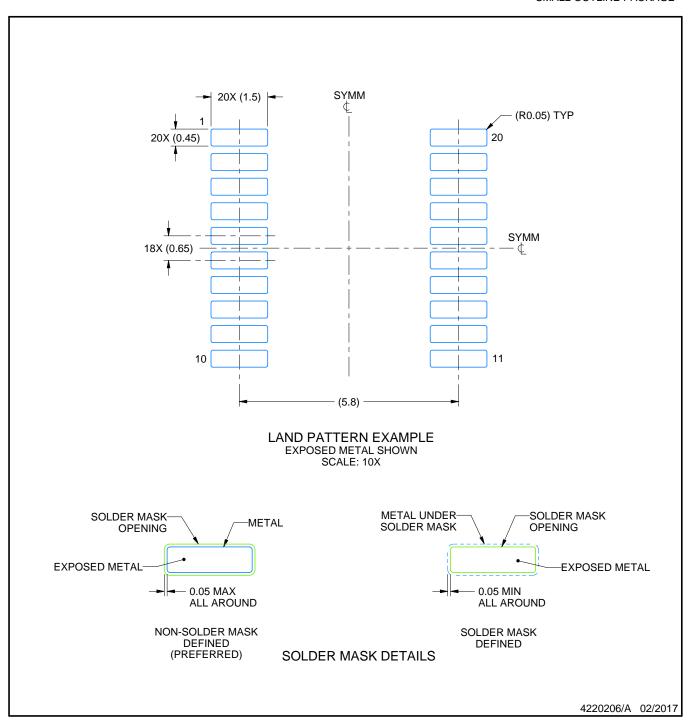
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC



NOTES: (continued)

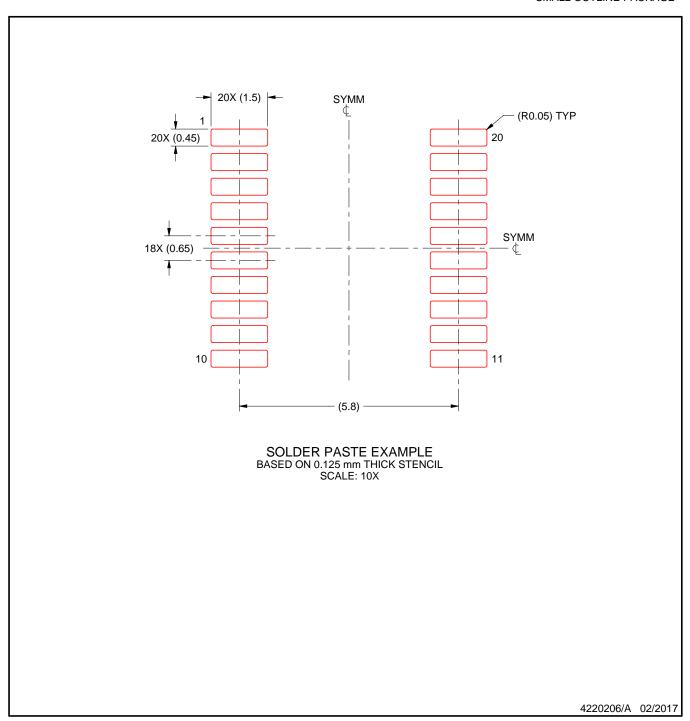
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

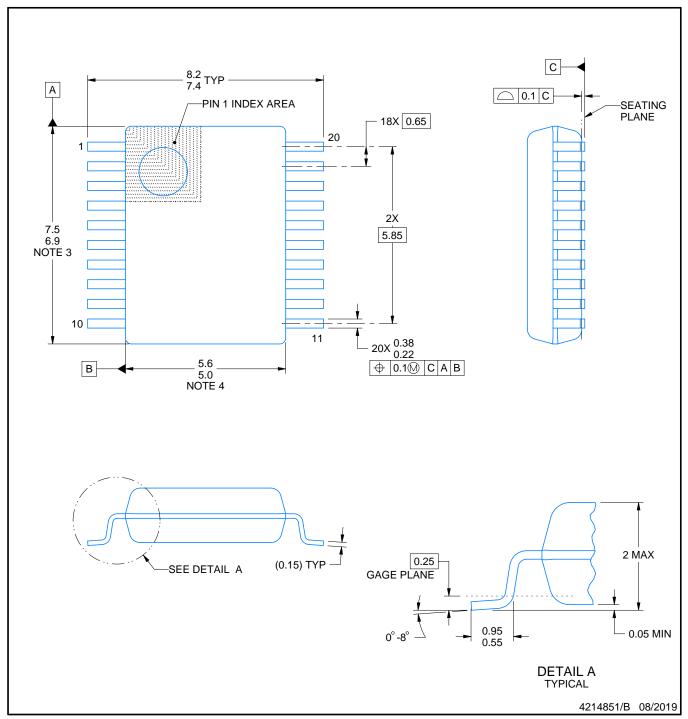
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

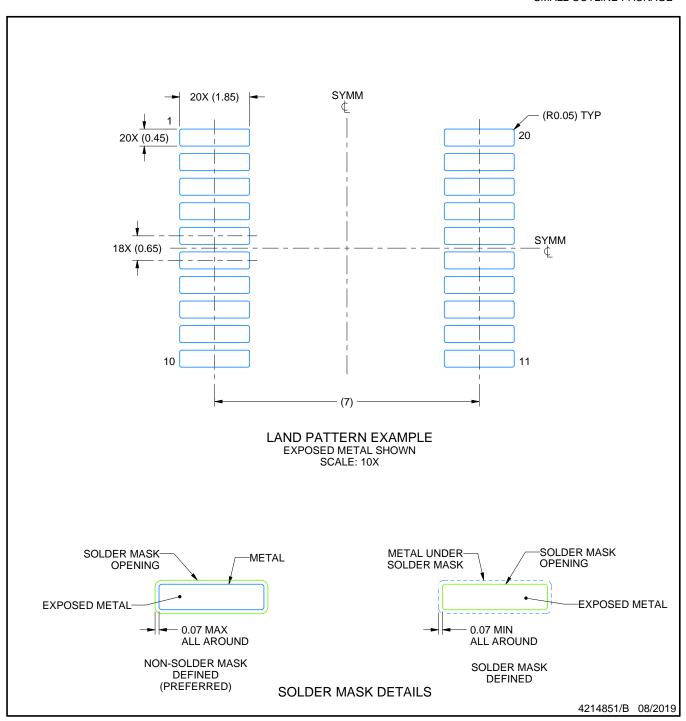
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

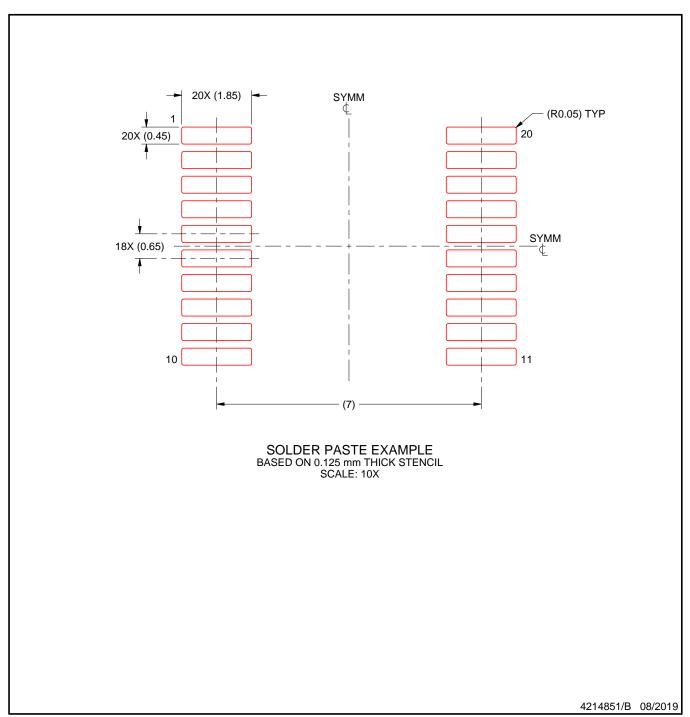
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated