

TS5A23159

SCDS201H-AUGUST 2005-REVISED FEBRUARY 2015

TS5A23159 1-Ω 2-Channel SPDT Analog Switch 5-V / 3.3-V 2-Channel 2:1 Multiplexer / Demultiplexer

Features

- Isolation in Power-Down Mode, $V_{CC} = 0$
- Specified Break-Before-Make Switching
- Low ON-State Resistance (1 Ω)
- Control Inputs are 5.5-V Tolerant
- Low Charge Injection
- **Excellent ON-State Resistance Matching**
- Low Total Harmonic Distortion (THD)
- Supports Analog and Digital Signals
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

Applications

- Cell Phones
- **PDAs**
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communication Circuits
- Modems
- **Hard Drives**
- Computer Peripherals
- Wireless Terminals and Peripherals

3 Description

The TS5A23159 is a bidirectional 2-channel singlepole double-throw (SPDT) switch that is designed to operate from 1.65 V to 5.5 V. The device offers low ON-state resistance and excellent **ON-state** resistance matching with the break-before-make feature which prevents signal distortion during the transferring of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for a wide variety of portable applications including cell phones, audio devices, and instrumentation.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
T05 100150	VSSOP (10)	3.00 mm × 3.00 mm
TS5A23159	UQFN (10)	1.50 mm × 2.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

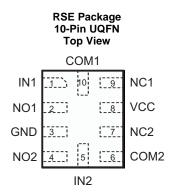
	Factoria		8.1 Overview	24
1	Features 1			
2	Applications 1		8.2 Functional Block Diagram	
3	Description 1		8.3 Feature Description	21
4	Revision History2		8.4 Device Functional Modes	21
5	Pin Configuration and Functions	9	Application and Implementation	22
6	Specifications		9.1 Application Information	22
U	•		9.2 Typical Application	22
	6.1 Absolute Maximum Ratings	10	Power Supply Recommendations	
	6.2 ESD Ratings	11	Layout	
	6.4 Thermal Information		11.1 Layout Guidelines	
			11.2 Layout Example	
	6.5 Electrical Characteristics for 5-V Supply	12	Device and Documentation Support	
	6.6 Electrical Characteristics for 3.3-V Supply	12	12.1 Trademarks	
	6.7 Electrical Characteristics for 2.5-V Supply9			
	6.8 Electrical Characteristics for 1.8-V Supply 11		12.2 Electrostatic Discharge Caution	
	6.9 Typical Characteristics		12.3 Glossary	25
7	Parameter Measurement Information 16	13	Mechanical, Packaging, and Orderable	25
8	Detailed Description 21		Information	25

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision G (August 2013) to Revision H

Page


Added ESD Ratings table, Recommended Operating Conditions table, Thermal Information table, Feature
Description section, Device Functional Modes, Application and Implementation section, Power Supply
Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,
Packaging, and Orderable Information section

Changes from Revision F (September 2010) to Revision G

Page

5 Pin Configuration and Functions

Pin Functions

Р	IN	I/O	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	IN1	I	Digital control to connect COM to NO or NC
2	NO1	I/O	Normally open
3	GND	_	Ground
4	NO2	I/O	Normally open
5	IN2	1	Digital control to connect COM to NO or NC
6	COM2	I/O	Common
7	NC2	I/O	Normally closed
8	VCC	_	Power supply
9	NC1	I/O	Normally closed
10	COM1	I/O	Common

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽³⁾		-0.5	6.5	V
$V_{NC} V_{NO} V_{COM}$	Analog voltage ⁽³⁾ (4) (5)		-0.5	V _{CC} + 0.5	V
I _K	Analog port diode current	V_{NC} , V_{NO} , $V_{COM} < 0$	-50		mA
I _{NC}	On-state switch current		-200	200	
I _{NO} I _{COM}	On-state peak switch current ⁽⁶⁾	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-400	400	mA
V _{IN}	Digital input voltage (3) (4)		-0.5	6.5	V
I _{IK}	Digital input clamp current	V _I < 0	-50		mA
Icc	Continuous current through V _{CC}	•		100	mA
I _{GND}	Continuous current through GND		-100	100	mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

3) All voltages are with respect to ground, unless otherwise specified.

- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (5) This value is limited to 5.5 V maximum.
- 6) Pulse at 1-ms duration < 10% duty cycle

Submit Documentation Feedback

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Supply LC Voltage	0	5.5	
$V_{NC} \ V_{NO} \ V_{COM}$	Analog voltage	0	V _{CC}	V
V_{IN}	Digital input voltage range	0	V_{CC}	

6.4 Thermal Information

		TS5A23159				
	THERMAL METRIC ⁽¹⁾	DGS (VSSOP)	RSE (UQFN)	UNIT		
		10 PINS	10 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	203.9	180.8			
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	88.3	117.8			
$R_{\theta JB}$	Junction-to-board thermal resistance	123.9	98.6	°C/W		
ΨЈТ	Junction-to-top characterization parameter	2.1	6.8	C/VV		
ΨЈВ	Junction-to-board characterization parameter	122.5	98.4			
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	_			

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics for 5-V Supply

 $V_{cc} = 4.5 \text{ V}$ to 5.5 V. $T_{b} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDI	TIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SW	ITCH								
V _{COM} V _{NO}	Analog signal range					0		V _{CC}	٧
V _{NC}	Peak ON	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$	Switch ON	25°C			0.8	1.1	
R _{peak}	resistance	$I_{\text{COM}} = -100 \text{ mA},$	See Figure 14	Full	4.5 V		0.0	1.5	Ω
D	ON-state	V_{NO} or $V_{NC} = 2.5 \text{ V}$,	Switch ON,	25°C	4.5 V		0.7	0.9	Ω
R _{on}	resistance	$I_{COM} = -100 \text{ mA},$	See Figure 14	Full	4.5 V			1.1	12
ΔR_{on}	ON-state resistance match between channels	V_{NO} or $V_{NC} = 2.5 \text{ V}$, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 14	25°C Full	4.5 V		0.05	0.1	Ω
	ON state	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 14	25°C			0.15		
R _{on(flat)}	ON-state resistance	V_{NO} or $V_{NC} = 1 \text{ V}, 1.5$	0 11 011	25°C	4.5 V		0.1	0.25	Ω
(22)	flatness	V, 2.5 V, I _{COM} = -100 mA,	Switch ON, See Figure 14	Full				0.25	
		V_{NC} or $V_{NO} = 1 V$,		25°C		-20	2	20	
	NC, NO OFF leakage current	$V_{COM} = 1 \text{ V to } 4.5 \text{ V},$ or V_{NC} or $V_{NO} = 4.5 \text{ V},$ $V_{COM} = 1 \text{ V to } 4.5 \text{ V},$	Switch OFF, See Figure 15	Full	5.5 V	-100		100	nA
	OFF leakage culterit	V_{NC} or $V_{NO} = 0$ to 5.5	Switch OFF,	25°C		-1	0.2	1	
I _{NC(PWROFF)} , I _{NO(PWROFF)}		$V_{COM} = 5.5 \text{ V to } 0,$	See Figure 15	Full	0 V	-20		20	μΑ
I _{NO(ON)} ,	NC, NO ON leakage current	V_{NC} or $V_{NO} = 1 V$, $V_{COM} = Open$, or	Switch ON, See Figure 16	25°C	5.5 V	-20	2	20	nA
I _{NC(ON)}		V_{NC} or $V_{NO} = 4.5 \text{ V}$, $V_{COM} = \text{Open}$,	IO = 4.5 V,	Full		-100		100	
l	COM OFF leakage	V_{NC} or $V_{NO} = 0$ to 5.5 V ,	Switch OFF,	25°C	0 V	-1	0.1	1	μA
COM(PWROFF)	current	$V_{COM} = 5.5 \text{ V to } 0,$	See Figure 15	Full	O V	-20		20	μΛ
	COM	V_{NC} or V_{NO} = Open,		25°C		-20	2	20	
I _{COM(ON)}	COM ON leakage current	$V_{COM} = 1 \text{ V},$ or $V_{NC} \text{ or } V_{NO} = \text{Open},$ $V_{COM} = 4.5 \text{ V},$	Switch ON, See Figure 16	Full	5.5 V	-100		100	nA
DIGITAL CON	ITROL INPUTS (IN1, IN2)(2)								
V _{IH}	Input logic high			Full		2.4		5.5	V
V _{IL}	Input logic low			Full		0		8.0	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 5.5 V or 0		25°C Full	5.5 V	-2 -100		100	nA
DYNAMIC				1	I				
				25°C	5 V	1	8	13	
t _{ON}	Turnon time	$V_{COM} = V_{CC},$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 18	Full	4.5 V to 5.5 V	1		16.5	ns
				25°C	5 V	1	5	8	
t _{OFF}	Turnoff time	$V_{COM} = V_{CC},$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 18	Full	4.5 V to 5.5 V	1		8	ns

 ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Electrical Characteristics for 5-V Supply (continued)

 V_{CC} = 4.5 V to 5.5 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST COND	OITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
				25°C	5 V	1	5.5	13	
t _{BBM}	Break-before-make time	$V_{NC} = V_{NO} = V_{CC},$ $R_L = 50 \Omega,$	$C_L = 35 \text{ pF},$ See Figure 19	Full	4.5 V to 5.5 V	1		14	ns
Q _C	Charge injection	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF, See Figure 23	25°C	5 V		-7		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 17	25°C	5 V		18		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 17	25°C	5 V		55		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 17	25°C	5 V		54.5		pF
C _I	Digital input capacitance	$V_{IN} = V_{CC}$ or GND,	See Figure 17	25°C	5 V		2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	5 V		100		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, $f = 1 MHz$,	Switch OFF, See Figure 21	25°C	5 V		-64		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, f = 1 MHz,	Switch ON, See Figure 22	25°C	5 V		-64		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 50 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 24	25°C	5 V	0.0	04%		
SUPPLY								<u></u>	
1	Positive	$V_{IN} = V_{CC}$ or GND,	Switch (INLOR		10	50	nA		
Icc	supply current	VIN = VCC OF GIAD,	OFF	Full	5.5 V			750	ПА

Submit Documentation Feedback

Copyright © 2005–2015, Texas Instruments Incorporated

6.6 Electrical Characteristics for 3.3-V Supply

	AMETER	to 85°C (unless otherwis		т	V	MIN	TYP	MAX	UNIT
		TEST CONL	DITIONS	T _A	V _{cc}	IVIIN	ITP	WAX	UNII
ANALOG SWI									
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V _{CC}	V
R _{peak}	Peak ON resistance	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 14	25°C	3 V		1.3	1.6	Ω
				Full 25°C			1.2	2	
R _{on}	ON-state resistance	V_{NO} or $V_{NC} = 2 V$, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 14	Full	3 V		1.2	1.5	Ω
	ON-state			25°C			0.1	0.15	
ΔR_{on}	resistance match between channels	V_{NO} or $V_{NC} = 2 \text{ V}$, 0.8 V, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 14	Full	3 V		0.2		Ω
	ON-state	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 14	25°C			0.15		
$R_{on(flat)}$	resistance flatness	V_{NO} or $V_{NC} = 2 \text{ V}, 0.8 \text{ V},$	Switch ON,	25°C	3 V				Ω
	nati icos	$I_{COM} = -100 \text{ mA},$	See Figure 14	Full					
		V_{NC} or $V_{NO} = 1 V$,		25°C		-20	2	20	
I _{NO(OFF)} , I _{NC(OFF)}	NC, NO OFF leakage current	$\begin{split} &V_{COM} = 1 \text{ V to 3 V,}\\ &\text{or}\\ &V_{NC} \text{ or } V_{NO} = 3 \text{ V,}\\ &V_{COM} = 1 \text{ V to 3 V,} \end{split}$	Switch OFF, See Figure 15	Full	3.6 V	-50		50	nA
I _{NC(PWROFF)} ,	Garrone	V_{NC} or $V_{NO} = 0$ to 3.6 V,	Switch OFF,	25°C	0 V	-1	0.2	1	
I _{NO(PWROFF)}		$V_{COM} = 3.6 \text{ V to 0},$	See Figure 15	Full	0 0	-15		15	μA
		V_{NC} or $V_{NO} = 1 V$,		25°C		-10	2	10	
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	$V_{COM} = Open,$ or V_{NC} or $V_{NO} = 3 V,$ $V_{COM} = Open,$	Switch ON, See Figure 16	Full	3.6 V	-20		20	nA
	COM		Switch OFF,	25°C		-1	0.2	-	
I _{COM(PWROFF)}	OFF leakage current	V_{NC} or $V_{NO} = 3.6 \text{ V to } 0$, $V_{COM} = 0 \text{ to } 3.6 \text{ V}$,	See Figure 15	Full	0 V	-15		15	μA
		V _{NC} or V _{NO} = Open,		25°C		-10	2	10	
I _{COM(ON)}	COM ON leakage current	$\begin{split} &V_{COM} = 1 \ V, \\ ∨ \\ &V_{NC} \ or \ V_{NO} = Open, \\ &V_{COM} = 3 \ V, \end{split}$	Switch ON, See Figure 16	Full	3.6 V	-20		20	nA
DIGITAL CON	TROL INPUTS (IN	1, IN2) ⁽²⁾							
V _{IH}	Input logic high			Full		2		5.5	V
V_{IL}	Input logic low			Full		0		8.0	V
I _{IH} , I _{IL}	Input leakage	V _{IN} = 5.5 V or 0		25°C	3.6 V	-2		2	nA
'IH' 'IL	current	VIN = 5.5 V 61 6		Full	3.0 V	-20		20	ш
DYNAMIC									
	_	$V_{COM} = V_{CC}$	$C_L = 35 \text{ pF},$	25°C	3.3 V	5	11	19	
t _{ON}	Turnon time	$R_L = 50 \Omega$,	See Figure 18	Full	3 V to 3.6 V	3		22	ns
			25°C	3.3 V	1	5	9		
		$V_{COM} = V_{CC}$	$C_{L} = 35 \text{ pF},$		3 V to				ns
t _{OFF}	Turnoff time	$R_L = 50 \Omega$,	See Figure 18	Full	3.6 V	1		9	
t _{OFF}	Turnoff time Break-before-	$R_L = 50 \Omega$, $V_{NC} = V_{NO} = V_{CC}$,	See Figure 18 C _L = 35 pF,	Full 25°C		1	7	9 17	

 ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Electrical Characteristics for 3.3-V Supply (continued)

 V_{CC} = 3 V to 3.6 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PA	RAMETER	TEST COND	TIONS	TA	V _{CC}	MIN TYP M	AX UNIT
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	3.3 V	-4	рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 17	25°C	3.3 V	18	pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 17	25°C	3.3 V	56	pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 17	25°C	3.3 V	56	pF
C _I	Digital input capacitance	$V_{IN} = V_{CC}$ or GND,	See Figure 17	25°C	3.3 V	2	pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	3.3 V	100	MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 1 MHz,	Switch OFF, See Figure 21	25°C	3.3 V	-64	dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, f = 1 MHz,	Switch ON, See Figure 22	25°C	3.3 V	-64	dB
THD	Total harmonic distortion	$R_L = 600 \ \Omega,$ $C_L = 50 \ pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	3.3 V	0.01%	
SUPPLY				•			*
loo	Positive supply	$V_{IN} = V_{CC}$ or GND,	Switch ON or OFF	25°C	3.6 V		25 nA
I _{CC}	current	VIN - VCC OI OIND,	GWILCH CIV OF OFF	Full	5.0 V	1	150

Submit Documentation Feedback

Copyright © 2005–2015, Texas Instruments Incorporated

6.7 Electrical Characteristics for 2.5-V Supply⁽¹⁾

	AMETER	C to 85°C (unless otherwi		TA	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SWI		1201 00110	1110110	'A	• 66	10.1114		ШАХ	Oitii
V _{COM} , V _{NO} ,	Analog signal								
V _{NC}	range					0		V_{CC}	V
D	Peak ON	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC}$	Switch ON,	25°C	221/		1.8	2.5	Ω
R _{peak}	resistance	$I_{COM} = -8 \text{ mA},$	See Figure 14	Full	2.3 V			2.7	12
D	ON-state	V_{NO} or $V_{NC} = 1.8 \text{ V}$,	Switch ON,	25°C	2.3 V		1.5	2	Ω
R _{on}	resistance	$I_{COM} = -8 \text{ mA},$	See Figure 14	Full	2.5 V			2.4	32
	ON-state			25°C			0.15	0.2	
ΔR_{on}	resistance match between channels	V_{NO} or V_{NC} = 1.8 V, 0.8 V, I_{COM} = -8 mA,	Switch ON, See Figure 14	Full	2.3 V			0.2	Ω
5	ON-state	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 14	25°C	- 001/		0.6		0
$R_{on(flat)}$	resistance flatness	V_{NO} or $V_{NC} = 0.8 \text{ V}$, 1.8 V,		25°C	2.3 V		0.6	1	Ω
	ı	$I_{COM} = -8 \text{ mA},$	See Figure 14	Full				1	
		V_{NC} or $V_{NO} = 0.5 \text{ V}$,		25°C		-20	2	20	
I _{NO(OFF)} , I _{NC(OFF)}	NC, NO OFF leakage current	$V_{COM} = 0.5 \text{ V to } 2.3 \text{ V,}$ or V_{NC} or $V_{NO} = 2.2 \text{ V,}$ $V_{COM} = 0.5 \text{ V to } 2.3 \text{ V,}$	Switch OFF, See Figure 15	Full	2.3 V	-50		50	nA
I _{NC(PWROFF)} ,	Garrone	V_{NC} or $V_{NO} = 0$ to 2.7 V,	Switch OFF,	25°C	0 V	-1	0.1	1.0	μA
I _{NO(PWROFF)}		$V_{COM} = 2.7 \text{ V to } 0,$	See Figure 15	Full	U V	-10		10	h., ,
	NO NO	V_{NC} or $V_{NO} = 0.5 \text{ V}$,		25°C		-10	2	10	nA
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	$V_{COM} = Open,$ or V_{NC} or $V_{NO} = 2.2 V,$ $V_{COM} = Open,$	Switch ON, See Figure 16	Full	2.7 V	-20		20	
	COM	V_{NC} or $V_{NO} = 2.7 \text{ V to } 0$,	Switch OFF,	25°C		-1	0.1	1	
I _{COM(PWROFF)}	OFF leakage current	$V_{COM} = 0 \text{ to } 2.7 \text{ V},$	See Figure 15	Full	0 V	-10		10	μA
		V _{NC} or V _{NO} = Open,		25°C		-10	2	10	
I _{COM(ON)}	COM ON leakage current	$\begin{split} &V_{COM} = 0.5 \text{ V},\\ &\text{or}\\ &V_{NC} \text{ or } V_{NO} = \text{Open},\\ &V_{COM} = 2.2 \text{ V}, \end{split}$	Switch ON, See Figure 16	Full	2.7 V	-20		20	nA
DIGITAL CON	TROL INPUTS (IN	1, IN2) ⁽²⁾							
V_{IH}	Input logic high			Full		1.8		5.5	V
V _{IL}	Input logic low			Full		0		0.6	V
I _{IH} , I _{IL}	Input leakage	V _{IN} = 5.5 V or 0		25°C	2.7 V	-2		2	nA
	current	· IIV		Full		-20		20	
DYNAMIC									
tau	Turnon time	$V_{COM} = V_{CC}$	$C_L = 35 pF,$	25°C	2.5 V	5	15	28	ns
t _{ON}	rumon time	$R_L = 50 \Omega$,	See Figure 18	Full	2.3 V to 2.7 V	5		32	115
				25°C	2.5 V	2	6	9	
t _{OFF}	Turnoff time	$V_{COM} = V_{CC},$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 18	Full	2.3 V to 2.7 V	2		10	ns
	Drook bafara	V V	0 25 -5	25°C	2.5 V	1	10	27	
t _{BBM}	Break-before- make time	$\begin{aligned} &V_{NC} = V_{NO} = V_{CC}, \\ &R_L = 50 \ \Omega, \end{aligned}$	C _L = 35 pF, See Figure 19	Full	2.3 V to 2.7 V	1		30	ns
		i .		1	1				

 ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Electrical Characteristics for 2.5-V Supply⁽¹⁾ (continued)

 V_{CC} = 2.3 V to 2.7 V, T_A = -40°C to 85°C (unless otherwise noted)

PARAMETER		TEST COND	ITIONS	TA	V _{CC}	MIN TYP	MAX	UNIT
$Q_{\mathbb{C}}$	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	2.5 V	-3		рС
$\begin{array}{c} C_{NC(OFF)}, \\ C_{NO(OFF)} \end{array}$	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 17	25°C	2.5 V	18.5		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 17	25°C	2.5 V	56.5		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 17	25°C	2.5 V	56.5		pF
C _I	Digital input capacitance	$V_{IN} = V_{CC}$ or GND,	See Figure 17	25°C	2.5 V	2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	2.5 V	100		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 1 MHz,	Switch OFF, See Figure 21	25°C	2.5 V	-64		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, f = 1 MHz,	Switch ON, See Figure 22	25°C	2.5 V	-64		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	2.5 V	0.02%		
SUPPLY								
la a	Positive supply	$V_{IN} = V_{CC}$ or GND,	Switch ON or OFF	25°C	2.7 V	10	25	nA
I _{CC}	current	AIM - ACC OL CLAD	GWILLII ON OI OIT	Full	Z.1 V		100	ш

Submit Documentation Feedback

Copyright © 2005–2015, Texas Instruments Incorporated

6.8 Electrical Characteristics for 1.8-V Supply

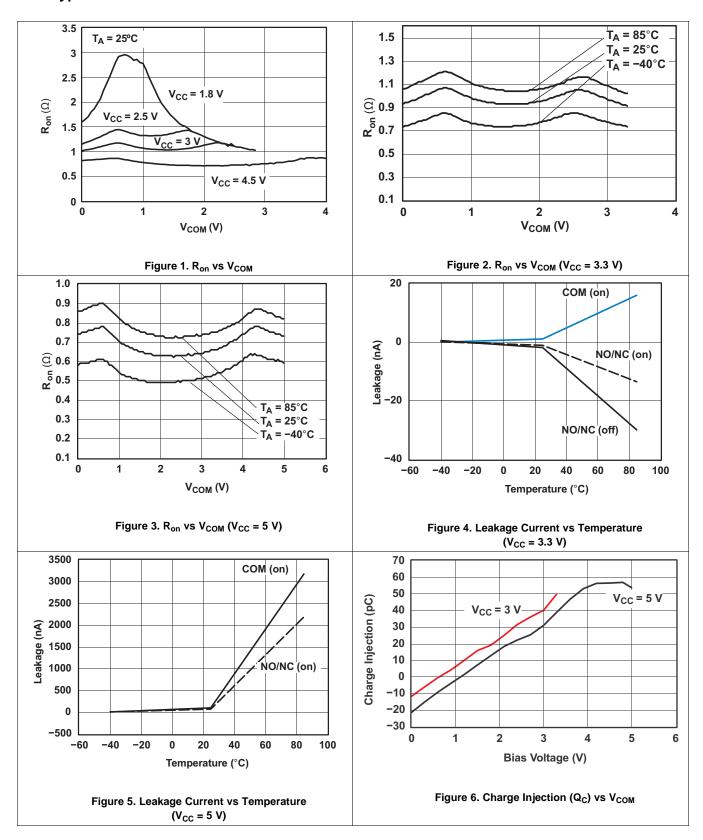
 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PAR	AMETER	TEST COND	TIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
ANALOG SWI	тсн	•							
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V_{CC}	V
R _{peak}	Peak ON resistance	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -2 \text{ mA},$	Switch ON, See Figure 14	25°C Full	1.65 V		5	15	Ω
R _{on}	ON-state resistance	V_{NO} or $V_{NC} = 1.5 \text{ V}$, $I_{COM} = -2 \text{ mA}$,	Switch ON, See Figure 14	25°C Full	1.65 V		2	2.5	Ω
	ON-state			25°C			0.15	0.4	
ΔR_{on}	resistance match between channels	V_{NO} or $V_{NC} = 0.6 \text{ V}$, 1.5 V, $I_{COM} = -2 \text{ mA}$,	Switch ON, See Figure 14	Full	1.65 V		0.10	0.4	Ω
	ON-state	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -2 \text{ mA},$	Switch ON, See Figure 14	25°C	4.05.1/		5		•
$R_{on(flat)}$	resistance flatness	V_{NO} or $V_{NC} = 0.6 \text{ V}$, 1.5 V,		25°C	1.65 V		4.5		Ω
		$I_{COM} = -2 \text{ mA},$	See Figure 14	Full					
		V_{NC} or $V_{NO} = 0.3 \text{ V}$,		25°C		-20	2	20	
I _{NO(OFF)} , I _{NC(OFF)}	NC, NO OFF leakage	$V_{COM} = 0.3 \text{ V to } 1.65 \text{ V},$ or V_{NC} or $V_{NO} = 1.65 \text{ V},$ $V_{COM} = 0.3 \text{ V to } 1.65 \text{ V}$	Switch OFF, See Figure 15	Full	1.65 V	-50		50	nA
hio(purposs)	nc(pwroff), no(pwroff)	V_{NC} or $V_{NO} = 0$ to Switch OFF,	25°C		-1	0.1	1		
I _{NO(PWROFF)}		1.95 V, $V_{COM} = 1.95 V \text{ to } 0$,	See Figure 15	Full	0 V	- 5		5	μΑ
		V_{NC} or $V_{NO} = 0.3 \text{ V}$,		25°C		-5	2	5	
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	V_{COM} = Open, or V_{NC} or V_{NO} = 1.65 V, V_{COM} = Open,	Switch ON, See Figure 16	Full	1.95 V	-20		20	nA
	COM	V_{NC} or $V_{NO} = 1.95 \text{ V to } 0$,	Switch OFF, See Figure 15	25°C		-1	0.1	1	
I _{COM(PWROFF)}	OFF leakage current	$V_{\text{COM}} = 0 \text{ to } 1.95 \text{ V},$		Full	0 V	-5		5	μΑ
		V_{NC} or V_{NO} = Open,		25°C		-10	2	10	
I _{COM(ON)}	COM ON leakage current	$V_{COM} = 0.3 \text{ V},$ or $V_{NC} \text{ or } V_{NO} = \text{Open},$ $V_{COM} = 1.65 \text{ V},$	Switch ON, See Figure 16	Full	1.95 V	-20		20	nA
DIGITAL CON	TROL INPUTS (IN	1, IN2)							
V_{IH}	Input logic high			Full		1.5		5.5	V
V_{IL}	Input logic low			Full		0		0.6	V
L. L.	Input leakage	V _{IN} = 5.5 V or 0		25°C	1.95 V	-2		2	nA
I _{IH} , I _{IL}	current	VIN = 5.5 V 01 0		Full	1.95 V	-20		20	IIA
DYNAMIC					T T			-	
		.,		25°C	1.8 V	10	27.5	48.5	
t _{ON}	Turnon time	$V_{COM} = V_{CC},$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 18	Full	1.65 V to 1.95 V	10		55	ns
				25°C	1.8 V	2	6.5	11	
t _{OFF}	Turnoff time	$\begin{aligned} &V_{COM} = V_{CC}, \\ &R_L = 50~\Omega, \end{aligned}$	C _L = 35 pF, See Figure 18	Full	1.65 V to 1.95 V	2		12	ns

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

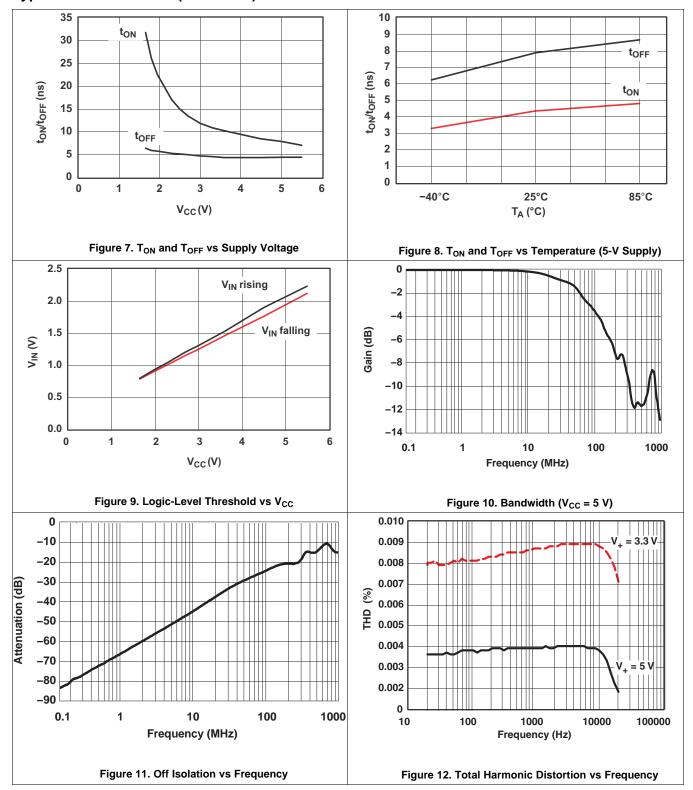
Electrical Characteristics for 1.8-V Supply (continued)

 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾


PA	RAMETER	TEST CON	NDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
				25°C	1.8 V	1	18	50	
t _{BBM}	Break-before- make time	$\begin{aligned} V_{NC} &= V_{NO} = V_{CC}, \\ R_L &= 50 \ \Omega, \end{aligned}$	C _L = 35 pF, See Figure 19	Full	1.65 V to 1.95 V	1		55	ns
$Q_{\mathbb{C}}$	Charge injection	V _{GEN} = 0, R _{GEN} = 0,	$C_L = 1 \text{ nF},$ See Figure 23	25°C	1.8 V		2		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V _{NC} or V _{NO} = V _{CC} or GND, Switch OFF,	See Figure 17	25°C	1.8 V		18.5		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 17	25°C	1.8 V		56.5		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 17	25°C	1.8 V		56.5		pF
C _I	Digital input capacitance	$V_{IN} = V_{CC}$ or GND,	See Figure 17	25°C	1.8 V		2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	1.8 V		105		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 1 MHz,	Switch OFF, See Figure 21	25°C	1.8 V		-64		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, f = 1 MHz,	Switch ON, See Figure 22	25°C	1.8 V		-64		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	1.8 V		0.06%		
SUPPLY					'			'	
1	Positive supply	$V_{IN} = V_{CC}$ or GND. Switch ON or OFF		25°C	1.95 V		10	25	nA
I _{CC}	current	$V_{IN} = V_{CC}$ or GND,	SWILCH ON OF OFF	Full	1.95 V			ш	

Submit Documentation Feedback

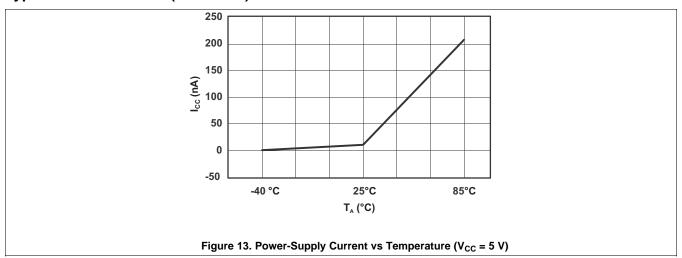
Copyright © 2005–2015, Texas Instruments Incorporated



6.9 Typical Characteristics

TEXAS INSTRUMENTS

Typical Characteristics (continued)



Submit Documentation Feedback

Copyright © 2005–2015, Texas Instruments Incorporated

Typical Characteristics (continued)

Copyright © 2005–2015, Texas Instruments Incorporated

7 Parameter Measurement Information

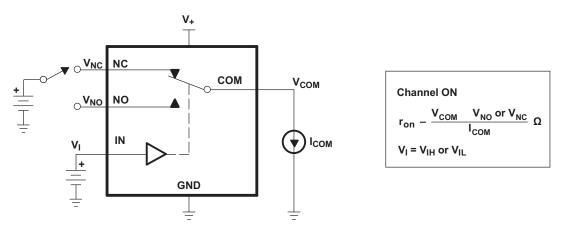


Figure 14. ON-State Resistance (Ron)

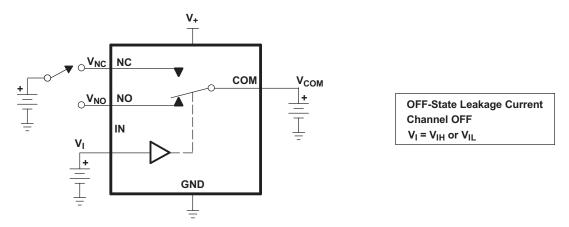


Figure 15. OFF-State Leakage Current (I_{NC(OFF)}, I_{NC(PWROFF)}, I_{NO(OFF)}, I_{NO(PWROFF)}, I_{COM(PWROFF)})

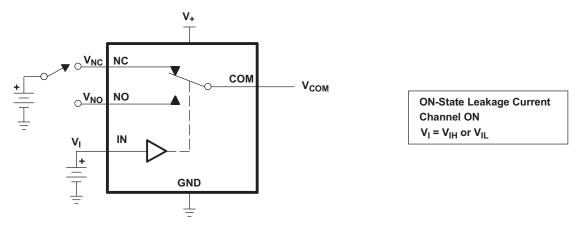


Figure 16. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NC(ON)}$, $I_{NO(ON)}$)

Submit Documentation Feedback

Parameter Measurement Information (continued)

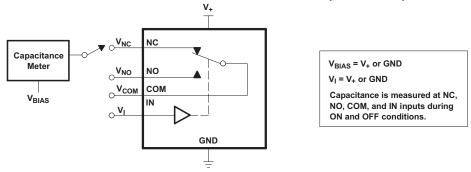
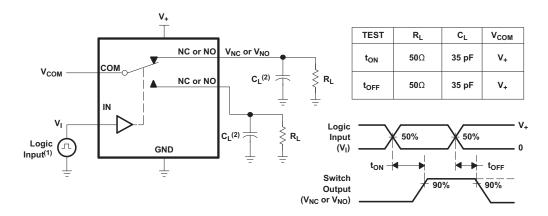
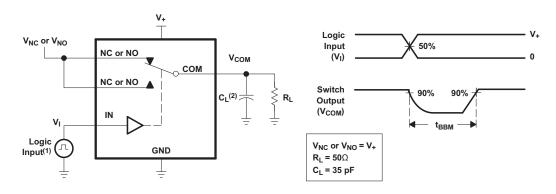
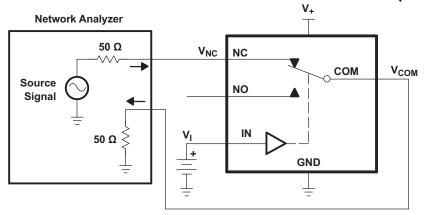




Figure 17. Capacitance (C_I, $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NO(OFF)}$, $C_{NC(ON)}$, $C_{NO(ON)}$)

- 1. All input pulses are supplied by generators having the following characteristics:
- PRR 3 10 MHz, Z_{O} = 50 Ω , t_{r} < 5 ns, t_{f} < 5 ns.
- 2. C_L includes probe and jig capacitance.

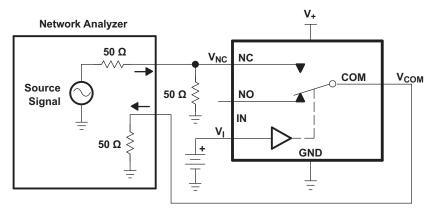
Figure 18. Turnon (T_{ON}) and Turnoff Time (T_{OFF})



- 1. All input pulses are supplied by generators having the following characteristics:
- PRR 3 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- 2. C_L includes probe and jig capacitance.

Figure 19. Break-Before-Make Time (T_{BBM})

Parameter Measurement Information (continued)

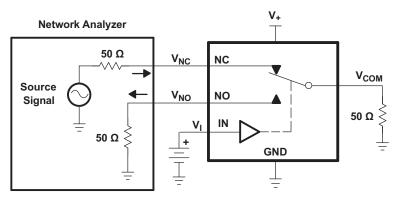

Channel ON: NC to COM $V_I = V_+$ or GND

Network Analyzer Setup

Source Power = 0 dBm(632-mV P-P at $50-\Omega \text{ load}$)

DC Bias = 350 mV

Figure 20. Bandwidth (Bw)


Channel OFF: NC to COM $V_I = V_+$ or GND

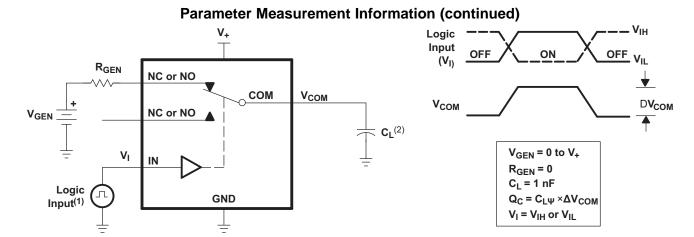
Network Analyzer Setup

Source Power = 0 dBm(632-mV P-P at $50-\Omega \text{ load}$)

DC Bias = 350 mV

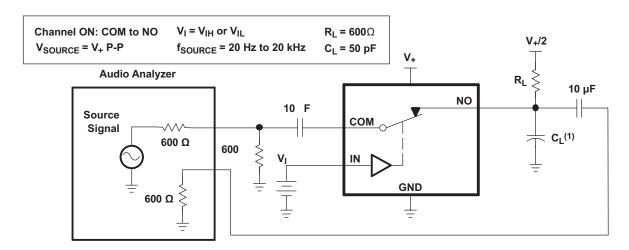
Figure 21. Off Isolation (O_{ISO})

Channel ON: NC to COM
Channel OFF: NO to COM
V_I = V₊ or GND


Network Analyzer Setup

Source Power = 0 dBm (632-mV P-P at $50-\Omega$ load)

DC Bias = 350 mV


Figure 22. Crosstalk (X_{TALK})

- 1. All input pulses are supplied by generators having the following characteristics: PRR 3 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- 2. C_L includes probe and jig capacitance.

Figure 23. Charge Injection (Q_C)

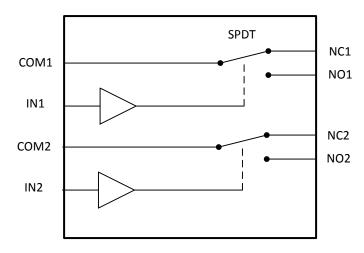
1. C_L includes probe and jig capacitance.

Figure 24. Total Harmonic Distortion (THD)

Parameter Measurement Information (continued) Table 1. Parameter Description

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NC}	Voltage at NC
V _{NO}	Voltage at NO
R _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON
R _{peak}	Peak on-state resistance over a specified voltage range
ΔR_{on}	Difference of R _{on} between channels in a specific device
R _{on(flat)}	Difference between the maximum and minimum value of R _{on} in a channel over the specified range of conditions
I _{NC(OFF)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions
I _{NC(PWROFF)}	Leakage current measured at the NC port during the power-down condition, $V_{CC} = 0$
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions
I _{NO(PWROFF)}	Leakage current measured at the NO port during the power-down condition, $V_{CC} = 0$
I _{NC(ON)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open
I _{COM(PWROFF)}	Leakage current measured at the COM port during the power-down condition, $V_{CC} = 0$
V_{IH}	Minimum input voltage for logic high for the control input (IN)
V_{IL}	Maximum input voltage for logic low for the control input (IN)
V _{IN}	Voltage at the control input (IN)
I_{IH} , I_{IL}	Leakage current measured at the control input (IN)
t _{ON}	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning ON.
t _{OFF}	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning OFF.
t _{BBM}	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$. C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage.
C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{NC(ON)}	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON
C _I	Capacitance of control input (IN)
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state.
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic.
I _{CC}	Static power-supply current with the control (IN) pin at V _{CC} or GND

Submit Documentation Feedback



8 Detailed Description

8.1 Overview

The TS5A23159 is a bidirectional 2-channel single-pole double-throw (SPDT) switch that is designed to operate from 1.65 V to 5.5 V. The device offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature which prevents signal distortion during the transferring of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for a wide variety of portable applications including cell phones, audio devices, and instrumentation.

8.2 Functional Block Diagram

8.3 Feature Description

The TS5A23159 is a bidirectional device that has two single-pole, double-throw switches. The two channels of the switch are contorled independently by two digital signals; one digital control for each single-pole, double-throw switch.

8.4 Device Functional Modes

Table 2. Function Table

IN	NC to COM, COM to NC	NO to COM, COM to NO
L	ON	OFF
Н	OFF	ON

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

9.2 Typical Application

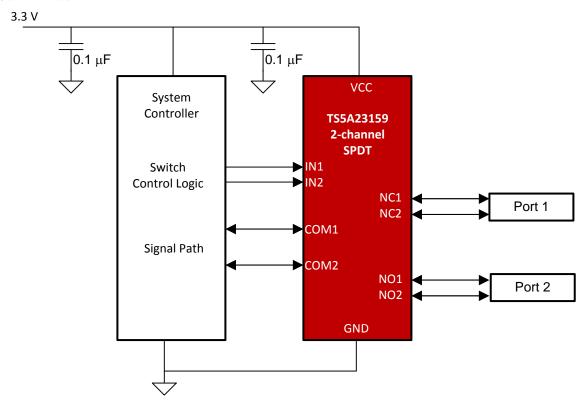


Figure 25. Typical Application Diagram

9.2.1 Design Requirements

Ensure that all of the signals passing through the switch are within the specified ranges in the recommended operating conditions to ensure proper performance.

9.2.2 Detailed Design Procedure

The TS5A23159 can be properly operated without any external components. However, TI recommends connecting unused pins to ground through a $50-\Omega$ resistor to prevent signal reflections back into the device. TI also recommends that the digital control pins (INX) be pulled up to VCC or down to GND to avoid undesired switch positions that could result from the floating pin.

Typical Application (continued)

9.2.3 Application Curve

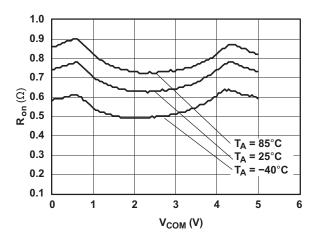


Figure 26. R_{on} vs V_{COM} ($V_{CC} = 5$ V)

10 Power Supply Recommendations

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence VCC on first, followed by NO, NC, or COM. Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the VCC supply to other components. A 0.1-µF capacitor, connected from VCC to GND, is adequate for most applications.

11 Layout

11.1 Layout Guidelines

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

11.2 Layout Example

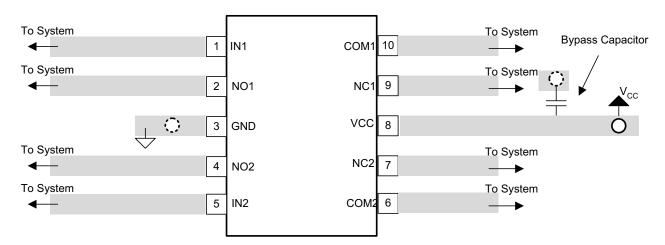


Figure 27. Layout Recommendation

4 Submit Documentation Feedback

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 6-Jan-2025

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS5A23159DGSR	ACTIVE	VSSOP	DGS	10	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JEQ, JER)	Samples
TS5A23159DGST	OBSOLETE	VSSOP	DGS	10		TBD	Call TI	Call TI	-40 to 85	JER	
TS5A23159RSER	ACTIVE	UQFN	RSE	10	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(JE7, JEO, JER, JE V)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

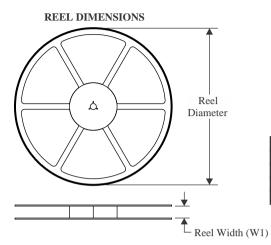
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

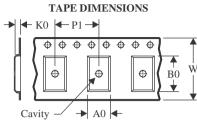
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM


www.ti.com 6-Jan-2025


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

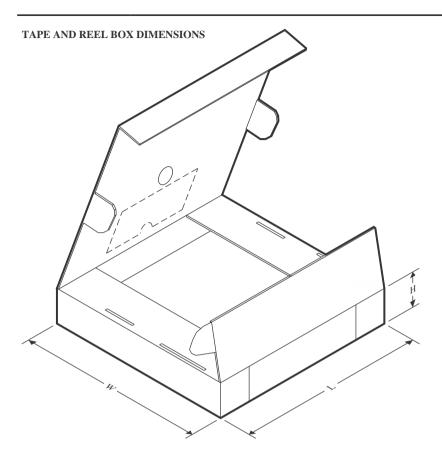
PACKAGE MATERIALS INFORMATION

www.ti.com 14-Dec-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

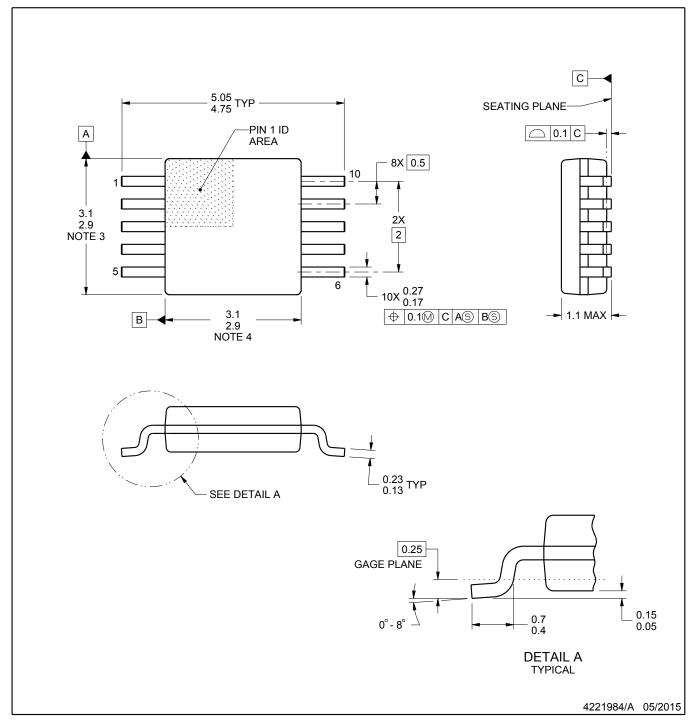
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A23159DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS5A23159RSER	UQFN	RSE	10	3000	180.0	9.5	1.7	2.2	0.75	4.0	8.0	Q1
TS5A23159RSER	UQFN	RSE	10	3000	180.0	9.5	1.7	2.3	0.75	4.0	8.0	Q1

www.ti.com 14-Dec-2024

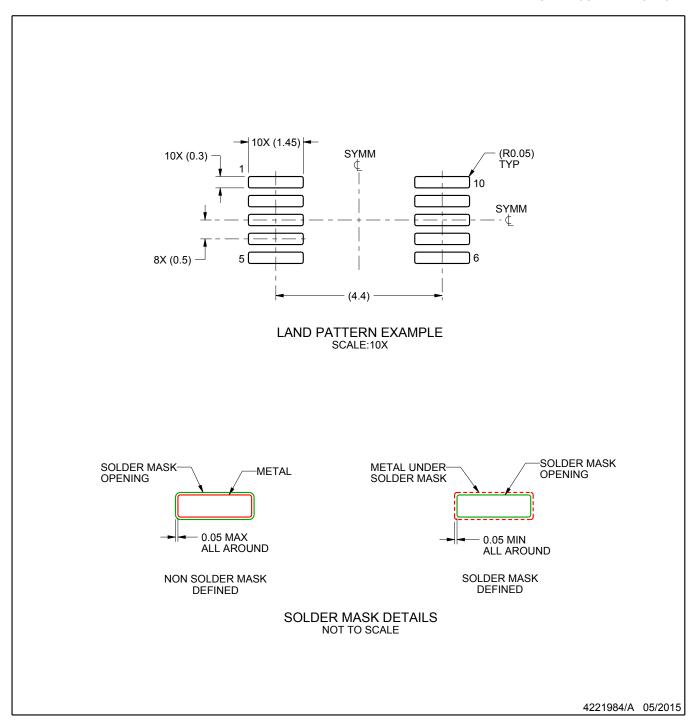


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A23159DGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0
TS5A23159RSER	UQFN	RSE	10	3000	189.0	185.0	36.0
TS5A23159RSER	UQFN	RSE	10	3000	184.0	184.0	19.0

SMALL OUTLINE PACKAGE

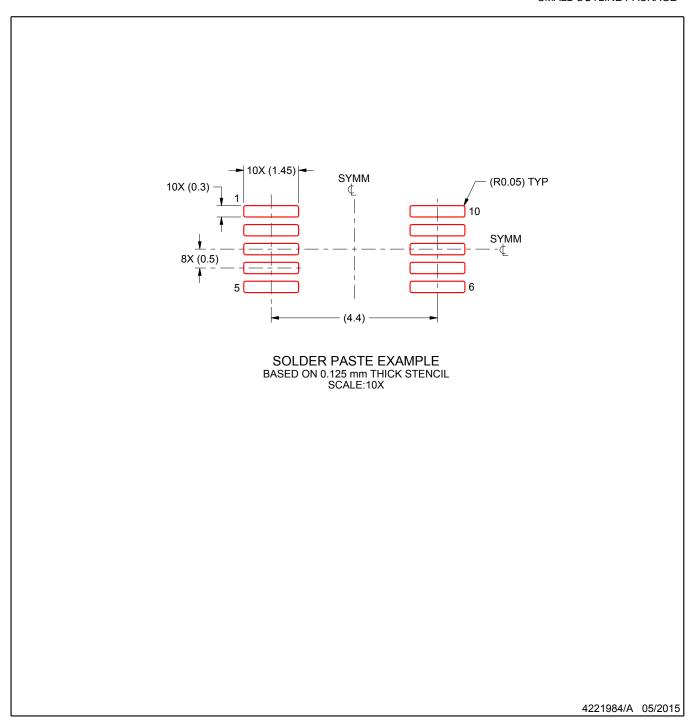
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

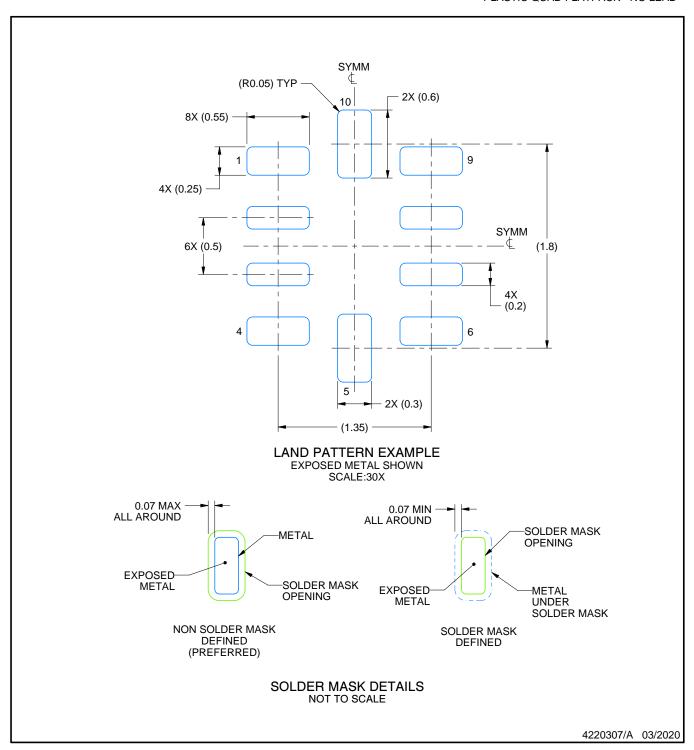
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

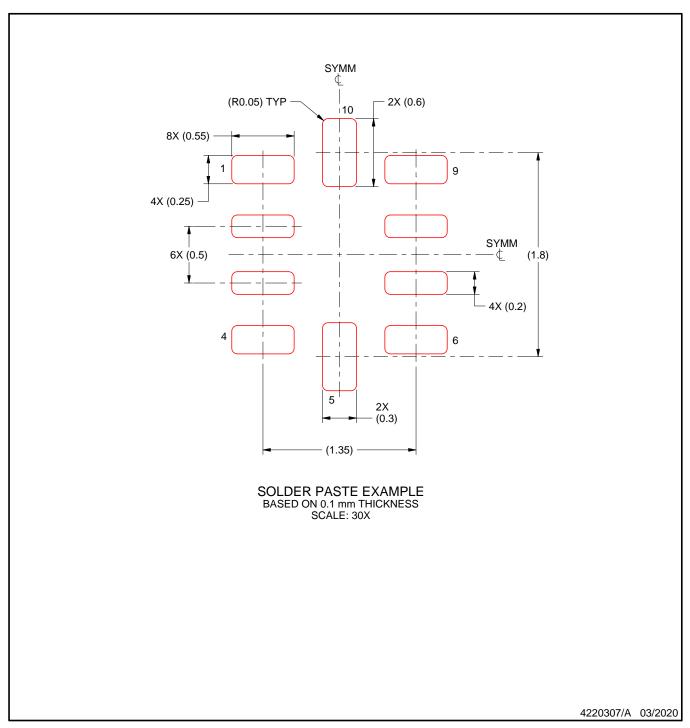
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated