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Agenda

• Why is an integrated driver necessary for high-frequency design?

• What’s GaN direct-drive structure?

– Direct drive vs. Cascode

• Does GaN have a body diode?

– Third quadrant conduction

• How to minimize GaN’s 3rd quadrant conduction losses?

• How can integrated smart features and protection in GaN simplify design and enhance 

robustness? 

• What are GaN FET package variants and cooling strategies?

– Bottom vs. top side cooled device

• How can GaN can reduce overall system cost?
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Why is an integrated driver necessary for high-
frequency design?

• Introduction to parasitic inductances
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• Parasitic inductances cause switching loss, ringing and reliability 

issues, especially at higher frequencies

GaN FET

Gate Driver
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Why is an integrated driver necessary for high-
frequency design?

• Common Source inductance reduces 

the di/dt during turn-on and turn-off. 

– Increases power dissipated during the 

di/dt ramp

• 5nH common source inductance 

increases turn-on loss by 60%

High-side turn on versus common-source inductance: 

red = 0 nH, green = 1 nH, blue = 5 nH

86uJ
53uJ



Why is an integrated driver necessary for high-
frequency design?
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Low-side hold-off versus gate-loop inductance

red = 2 nH, green = 4 nH, blue = 10 nH

• Gate loop inductance increases the 

impedance between the gate and the 

driver. 

– Limits the ability to hold off the GaN device 

during the Vds ramp 

– Shoot through increases the power 

dissipated in the high-side device and can 

cause it to fail due to SOA. 

• Gate loop inductance increases ringing

– Higher stress on gate

– Ringing can cause the device to turn-on/off

– Loop resistance is required to dampen 

ringing

Shoot-
through
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Integrated driver: lowest parasitic

• Integrating the driver eliminates common-source inductance and 

significantly reduces the inductance the driver output and GaN FET

GaN FET/Driver Integrated Package
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Equivalent Electrical Circuit 
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Application Note: Optimizing GaN performance with an integrated driver

https://www.ti.com/lit/pdf/SLYY085


What’s GaN direct-drive structure?

• Advantages of direct-drive structure:

• Zero reverse recovery (Qrr = 0 nC)

• Low gate charge of GaN

• No LV MOSFET switching loss

• Integrated gate driver can be engineered with programmable dv/dt (EMI vs efficiency)

• MOSFET is a current sensor, can be used for overcurrent protection
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✓

Cascode: Gate of GaN
connected to Source of 
MOSFET; MOSFET Gate 
driven by gate driver

Direct Drive: Gate of GaN
driven directly by gate driver; 
MOSFET is always On when 
VDD > UVLO

• Application Note: Direct-drive configuration for GaN devices 
(Rev. A)

GaN FET is 
driven directly

Silicon FET is 
used as an 
“enable” switch

Direct Drive Approach

https://www.ti.com/lit/pdf/SLPY008


Does GaN have a body diode?
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Application Note: Does GaN Have a Body Diode? –
Understanding the Third Quadrant Operation of GaN

Simplified behavior of GaN in the first and third quadrants

Understanding the third quadrant operation of GaN

• GaN FETs have no body diode yet capable of reverse conduction

• The symmetry of the device helps conduct in the third quadrant 

with diode-like behavior in OFF state

– Unlike cascode, the silicon FET is always ON

– No reverse recovery time and reverse recovery loss Qrr

• Reverse voltage drop starts ~5V with TI GaN

https://www.ti.com/lit/an/snoaa36/snoaa36.pdf?ts=1613963767419&ref_url=https://www.google.com/#:~:text=In%20third%20quadrant%20operation%2C%20the,conduction%20without%20a%20body%20diode.&text=When%20Vgs%20is%20smaller%20than,flow%20in%20the%20third%20quadrant.


Does GaN have a body diode?

• It is recommended not to add an antiparallel diode with the 

GaN FET to conduct the reverse current

– Adding an antiparallel diode adds output capacitance to the 
switch node and increases switching losses

• The third quadrant losses can be minimized by optimizing 

the dead time

– Adaptive dead time by controller

– Ideal Diode Mode with TI GaN
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Totem-pole PFC with GaN for 
high-frequency FETs

Understanding the third quadrant operation of GaN



How to minimize GaN’s 3rd quadrant conduction 
losses?
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• Ideal diode mode is triggered by the 
detection of negative VDS (±150mV) and 
when IN signal is low

• Once triggered the GaN FET is turned 
on within ~35ns

• A built-in blanking period is provided to 
prevent shoot-through

• Saves designer’s effort to fine tune the 
dead time

• Application Note: Maximizing the 
Performance of GaN with Ideal Diode 
Mode

Boost Converter 

Example

https://www.ti.com/lit/snoa932


How to minimize GaN’s 3rd quadrant conduction 
losses?
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LS_IN

HS_IN

LS_GATE

HS_GATE

V_SW

𝑡3𝑟𝑑𝐵𝑙𝑎𝑛𝑘Boost Converter Example



What are the integrated smart features for TI GaN?
• Adjustable turn-on slew rate

– Helps to balance between the switching losses and ringing

– Can be fine tuned for EMI

150 V/ns 20 V/ns

Buck converter switch node waveform:
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What are the integrated smart features for TI GaN?
• <100 ns overcurrent protection with zero external components 

• Cycle-by-cycle feature allows system to ride through transients

• Abnormal short circuit conditions are latched off for system intervention

• dI/dt used to differentiate between CBC & SCP modes

* Typical Values

[schedule, specs, features & pinouts subject to change without prior notice.]

50 mΩ 30 mΩ Action

Overcurrent 
Protection*

50A 70A Cycle-by-cycle

Short-circuit 
Protection*

75A 95A Latched-off ID

ITRIP,SC

IN

Cycle by cycle OCP Latched SCP

OC

ITRIP,OC

tcur, OCdly

tcur, SCdly

Overcurrent detection vs. Short-circuit detection
13



What are the integrated smart features for TI GaN?

• Cycle-by-cycle overcurrent protection (OCP)

• Boost converter configuration, and the current builds up when the low-side device in on

• When current builds up to ~75 A, a cycle-by-cycle OCP is triggered. The fault is reset in 

each switching cycle.
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𝑽𝒅𝒔
(100V/div)

Low Side PWM Input  

(5V/div)

𝑰𝑳
(20A/div)

Low Side Fault (5V/div)

𝒅𝑰𝑫𝑺/𝒅𝒕~10A/usec



What are the integrated smart features for TI GaN?

• Latched short-current protection (SCP)

• The high-side device is shorted to the high voltage bus. A short circuit is induced when the 

low-side device is turned on, and the current increases quickly

• A short circuit event is detected at “cursor A”, and Soft turn-off action is taken within 78 ns 

(“cursor B”)
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𝑽𝒅𝒔 (100V/div)

𝑰𝑳 (20A/div)

Low Side Fault (5V/div)

Inverse of Low Side 

PWM Input  (5V/div)

𝒅𝑰𝑫𝑺/𝒅𝒕~718A/usec



What are the integrated smart features for TI GaN?

• The latched fault can be reset by keeping the IN pin low for >350 µs.

• This multi-use of IN pin helps to save isolation channels, and two-channel (one input for IN 

and one output for Fault) isolators like ISO7721 can be used for cost reduction.
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𝑽𝒅𝒔 (100V/div)

𝑰𝒅 (50A/div)

Low Side Fault (5V/div)

Inverse of Low Side 

PWM Input  (5V/div)

𝑽𝒅𝒔 (100V/div)

𝑰𝒅 (50A/div)

Inverse of Low Side 

PWM Input  (5V/div)

Low Side Fault (5V/div)

Zoom-in of short-circuit protection Fault Reset

394 µs



What are the integrated smart features for TI GaN?

• Digital TEMP feature eliminates the need for external temperature sensors and 

provides ±3ºC accuracy

• Digital fault outputs provide a simple interface to the host controller

[schedule, specs, features & pinouts subject to change without prior notice.]

3% duty Cycle at 25 ºC 80% duty Cycle at 150 ºC

f =11kHz

Normal
operation

UVLO or 
Over-temperature

Overcurrent Short-circuit

FAULT pin High Low High Low

OC pin High High Low Low



What are GaN FET package variants and cooling 
strategies?
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150mΩ <1kW
LMG341xR150

70mΩ 1kW
LMG341xR070

50mΩ 2.1kW
LMG341xR050

50mΩ- 3kW
LMG32xR050

30mΩ - 4kW
LMG342xR030

30mΩ - 6kw
LMG352xR030-Q1

2x 

the power AECQ-100

8x8 mm

12x12 mm bottom-

side cooled

12x12 mm

top-side cooled
6 devices in 

mass production

Gen-I 
(LMLG341x)

Gen-II 
(LMG342x, 

600V)

Gen-II
Automotive 
(LMG352x, 

650V)

Samples: Available Now

Samples: Available Now 
https://www.ti.com/product/LMG3522R030-Q1

https://www.ti.com/product/LMG3422R030

http://www.ti.com/product/LMG3411R150
http://www.ti.com/product/lmg3410r070
http://www.ti.com/product/LMG3410R050
https://www.ti.com/product/LMG3522R030-Q1
https://www.ti.com/product/LMG3422R030


Top vs. bottom-side cooled package
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Package type QFN

Package size (X/Y/Z) 12mm/12mm/0.9mm

Exposed thermal Pad Bottom side (Connected to Source)

Exposed pad size (mm2) 79

Minimum creepage (mm) 2.75

Package Type QFN w ith w ettable f lanks

Package Size (X/Y/Z) 12mm/12mm/0.9mm

Exposed Pad Direction Top side (Connected to Source)

Exposed Pad Size (mm2) 63

Minimum Creepage (mm) 2.75mm (bottom)



Bottom-side cooled device
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Bottom-side cooled device with heatsink

• Thermal pad on the bottom of the device

• Heat dissipated through thermal vias on PCB

• Thermal interface material (TIM) example: GR80A 

• Example calculation:

– 55°C ambient

– 125°C max junction temperature

– 4°C/W junction to ambient thermal impedance 

(1.8°C/W for heatsink)

– Allowed loss: 𝑃 =
125−55

4
= 17.5𝑊

• Application Note: Thermal Performance of QFN12x12 
Package for 600V, GaN Power Stage

Thermal Vias for heat dissipation through PCB

https://www.ti.com/lit/pdf/SNOAA61


Top-side cooled device
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Top-side cooled device with heatsink

Top-side cooled device with coldplate• Thermal pad on top side of the device

• For thermal design with heatsink

‒ One heatsink cover multiple 

devices with TIM

‒ Individual heatsink with solder

• For thermal design with coldplate

– Gap filler gel

– Gap filler pad

– Ceramic substrate with thermal grease



Top-side cooled device
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• Top-side cooling device with heatsink:

– 55°C ambient

– 125°C max junction temperature

– 3.2°C/W junction to heatsink thermal 
impedance

– Allowed loss: 𝑃 =
125−55

3.2
= 21.9𝑊

• Top-side cooling device with coldplate:
– 55°C ambient
– 125°C max junction temperature
– 2°C/W junction to coldplate thermal impedance

– Allowed loss: 𝑃 =
125−55

2
= 35𝑊

Examples of thermal interface materials (TIM)
Thermal pad TIM example: GR80A Link
Gel TIM example: TIA282GF Link

https://www.fujipoly.com/usa/products/sarcon-thermal-management-components/thermal-gap-filler-products/high-performance-gap-filler/gr80a.html
https://www.momentive.com/en-us/categories/thermal-management/thermally-conductive-gap-filler/thermally-conductive-gap-fillers-products


Thermal interface material for coldplate

Advantage Disadvantage

Gap filler gel • Minimal normal stress applied on 

the package and solder joints

• Excellent conformability and 

good tolerance in component 

height variance and surface 

planarity

• Need customized coldplate

• Relative high thermal impedance

Gap filler pad • Lower thermal impedance 

compared to gel

• Pressure applied on 

package/solder joints

Ceramic substrate with 

thermal grease

• The best thermal performance

• Best isolation property

• Pressure applied on 

package/solder joints

• Higher cost
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How can GaN reduce overall system cost?
• GaN is a new topology enabler – totem-pole PFC
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SiC

Sj
Si

Dual-boost PFC 
Totem-pole PFC ➢ SJ Mosfet has large 

reverse recovery loss

❖ Shoot-through risk 

due to insufficient 

dead time

➢ GaN FET with 0 Qrr is ideal 

for totem-pole PFC

98.0% 98.8%

Efficiency

Power stage cost parity with 

super junction MOSFET 

Components Quantity

SJ MOSFETs

IPW60R037P7

2

SiC Diodes

C3D16060D

2

Diode Bridges

GBJ25V08

2

Gate Drivers

UCC27511DBV

2

Inductors 2

Components Quantity

Estimated Cost

GaN FETs

LMG3422R030

2

Diode Bridges

GBJ25V08

2

HS isolator

ISO6721QDR

2

Inductor 1



How can GaN reduce overall system cost?

• GaN reduces system-level cost by going to higher switching frequency

• Reduced size and cost of magnetics
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23.24mm

Inductor volume 

43952mm3

100-kHz CCM PFC 
inductor
(1000 W)

63mm

35mm

Inductor volume 

138915mm3

40-kHz CCM PFC 
inductor
(1000 W) 3.2x reduction in 

inductor volume

Reduced cost
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