{? TEXAS Application Report
INSTRUMENTS SLAA083 - December 1999

Implementing a UART Function With the 8-Bit Interval
Timer/Counter

Mark E. Buccini Mixed Signal Products

ABSTRACT

This application report describes the implementation of a hardware/software universal
asynchronous receiver transmitter (UART) function on the MSP430x31x, MSP430x32x, and
MSP430x33x families of 16-bit RISC-like mixed-signal processors using the integrated 8-bit
interval timer/counter (8-bit T/C). The UART function described in this report is half-duplex,
event-driven, and supports an 8N1 protocol using an RS232 interface. Baud rates from
1,200-115,200 baud are possible.

Contents
INErOdUCHION .. 2
Theory of Operation 2
2.1 MSPA430X3XX ReSOUICES USEdo e e e 3
2.2 External Hardware DesCriptionttt e e 5
2.3 Baud Rate Calculation 5
3 Software Description Listing tC_uartl.asm ... i . 6. .
3.1 Software Overhead for the UART Function i, 7
3.2 Use of Tl Standard Peripheral Definitions i e 8
4 Using the UART Function in Ultra-Low Power Applications 8..
4.1 Using LPM3 and MCLK for Baud Rate Generationouiiiiiiniennaennnn. 9
4.2 Using LPM3 and ACLK for Baud-Rate Generationcoiiiiiiiinnannn.n. 9
D SUMIMIAIY .o e 9
B REIEIBNCES 9
Appendix A Software Listing tC_uartl.asm 10
Appendix B Software Listing tC_uart2.asm 13
Appendix C Software Listing tC_uartd.asm 17

1 MSP430x3XX UART FUNCHON e e e et et et et et e e et et 2
2 MSP430x31x UART Function Test CirCUItttt e e e e 4
3 UART BNL CharaCterot e e e e e e e e e e e 5
4 UART Function Software in Listing tC_uartl.asmiuiinei e 7

{'? TEXAS

SLAA083 INSTRUMENTS

1

Introduction

Many applications require serial communications between two systems. The implementation of a
hardware/software UART function using the 8-bit T/C peripheral integrated into the MSP430x3xx
families allows easy serial-communication operation (see Figure 1). While it is not always
obvious that the flexible 8-bit T/C peripheral on the MSP430x3xx can be configured as a UART,
this peripheral, when combined with software, provides all the major requirements to implement
a complete, ultra-low power, and cost effective UART solution. The 8-bit T/C UART function
described in this report offers the following key features:

e Automatic start-bit detect even from ultra-low power modes
e Hardware baud-rate generation and latching of RXD and TXD data
* Baud rates of 1,200 to 115,200 baud are possible

PC Serial Communication MSP430x3xx

P P0.2
Serial | J
PO0.1
Por p1 RXTXData
A
o —
BitCount

Figure 1. MSP430x3xx UART Function

Theory of Operation

IMPORTANT:

Review the current MSP430x31x, MSP430x32x, and MSP430x33x-family data
sheets, and the MSP430 Family Architecture and Module Guide for exact MSP430
device specifications and module descriptions.

The MSP430x3xx communicates serially with a PC in this report. Characters are exchanged
between the two systems over a receive/transmit line. The character protocol used is the
common 8N1: 8 data bits, no parity, and one stop bit. Data is transferred between the MSP430
and the PC at 9,600-baud over an RS232 connection. Other protocols and baud rates can be
implemented, including parity and 9th-bit addressing. The UART function specifically described
uses the 8-bit T/C and port pins P0.1 and P0.2. Inspection of the 8-bit T/C reveals that on all
MSP430x3xx family members, P0.1 is multiplexed into a receive-data flip-flop (RXD_FF), and
P0.2 is multiplexed into a transmit-data flip-flop (TXD_FF). Data latched in RXD_FF and
TXD_FF are readable in the 8-bit T/C control register (TCCTL) as bits RXD and TXD,
respectively. When enabled, the overflow of the 8-bit T/C automatically latches RXD in and TXD
out irrespective of other hardware and software execution. Therefore, software and interrupt
latency associated with the UART function is not of great concern because the 8-bit T/C
hardware does the actual transfer of RXD and TXD bits using the exact timing.
UART-application software is responsible for preparing the RXD after latching and the TXD bits
before latching. In this report, CPU register R5 is used for RXTXData, a buffer that holds the
data being received or transmitted. Register R6 is used for BitCnt, a bit-tracking register. The
selection of R5 and R6 is arbitrary—any CPU registers or RAM bytes can be used.

Implementing a UART Function With the 8-Bit Interval Timer/Counter

{9 TEXAS
INSTRUMENTS SLAA083

2.1

In receive mode, the 8-bit T/C is configured such that the falling edge of P0.1 automatically
enables the 8-bit timer independent of real time software—the falling edge of P0.1 indicates a
start bit. A single interrupt vector is used for the 8-bit T/C overflow and P0.1—in this example,
this interrupt is enabled by the 8-bit T/C overflow. The MSP430x3xx can be idle or performing
other tasks while the UART function is ready to receive data. No CPU resources are exercised
until after the 8-bit timer has automatically been enabled and the first overflow occurs latching
the first data bit, specifically from P0.1 into RXD—an interrupt is then issued to the CPU. The
8-bit T/C will continue to count, reloading a prescale value from the timer/counter preload
register (TCPLD). The next 8-bit T/C overflow occurs in the middle of the next data bit. Software
receives each RXD bit into the RXTXData buffer after the bit has been latched.

In transmit mode, each data bit from the RXTXData buffer is moved by software to TXD, which
transmits specifically on pin P0.2. The overflow of the 8-bit T/C automatically latches out the
TXD data on P0.2. The 8-bit T/C is reloaded automatically from TCPLD and continues to count.
With the 8-bit T/C hardware automatically outputting TXD bits, interrupt latency and bit-timing
concerns associated with pure software UARTSs are largely eliminated.

MSP430x3xx Resources Used

MSP430x3xx provides several features to support the UART function:

* Port pin P0O.1 used to receive data, and pin P0.2 used to transmit data

* An 8-bit T/C peripheral

* RXTXData register to buffer RXD and TXD serial data

e BitCnt register to track the progress of bits being received or transmitted

Implementing a UART Function With the 8-Bit Interval Timer/Counter 3

{'.f TEXAS

SLAA083 INSTRUMENTS
Reset
1
? MSP430P315SIDL
TPS76033
1 5 7 10
IN ouT ® ' ® v Xin
3 cc 1
EN —)
GND 2.2 yF un T
> 100 kQ Xout
10kQ 4
® RST/NMI
DB9 O 10kQ TXD 13
2N3906 P0.2/TXD
O—_
2
RX O 10kQ
7
o————@
3 RXD 12 /
® P0.1/RXD
TXO 1N4148
© N 2.2kQ
4 2N3904
° 1 .
| 0.1pF 2 2.2kQ
T, T :
GND O % ° Vss

Figure 2. MSP430x31x UART Function Test Circuit

The 8-bit T/C peripheral is configured using TCCTL. Additionally, TCPLD is loaded with the
exact timer interval to generate the required baud rate. TCPLD automatically loads and reloads
the actual 8-bit timer/count data (TCDAT). To configure PO0.1 to falling-edge enable (a typical
start-bit condition), bit POIES_1 is set in the PO interrupt-edge-select register (POIES), and P0.1
interrupt enable (POIEL) is set in interrupt-enable register 1 (IE1).

Two dedicated software registers are required to support the UART function, RXTXData and
BitCnt. RXTXData is basically a shift register used to buffer the data being received or
transmitted—any available CPU register or RAM byte/word can be used. In this report, the same
register is used for both receive and transmit. BitCnt is a register used to determine what bit is
being received or transmitted. The software provided in listings tc_uartl.asm and tc_uart2.asm
uses BitCnt as an autoincrement indirect pointer to an exact transmit or receive interrupt-service
routine. With this method, the software does not have to determine what bit is being transmitted
or received, saving CPU cycles and reducing time spent in the interrupt-service routine. BitCnt
must be a CPU register during execution, as required by the auto-increment indirect addressing
used. The software in listing tc_uart4.asm uses BitCnt as a simple counter to determine the
status of the bit transmission. Autoincrement addressing is not used in this example, so BitCnt is
just a RAM location. In the same fc_uart4.asm listing, RXTXData is a RAM location, not a CPU
register as in the other examples.

4 Implementing a UART Function With the 8-Bit Interval Timer/Counter

{9 TEXAS
INSTRUMENTS SLAA083

2.2

2.3

External Hardware Description

All the external hardware required is for line-level translation associated with the RS232
interface to the PC. With RS232, a logic 1 is transmitted as less than -3 V, and a logic 0 as
greater than 3 V. To perform RS232 line-level translation, integrated circuits such as TI's
MAX232 provide a compliant solution. A simple low-cost, low-power solution is offered in

Figure 2 using the MSP430P315SIDL configuration. For normal operation, the reset pin of the
MSP430 must be pulled high. In this example, reset is pulled high through a 100 kQ resistor, and
a switch to ground is added for a hard reset if required. Vcc can be supplied from a battery. Due
to the ultra-low power of the MSP430, the system is powered directly from the RS232 interface
and regulated using a TPS76033. A 32,768-Hz watch crystal is used for the auxiliary clock
(ACLK) generation. The master clock (MCLK) is user-programmable and generated from the
MSP430x3xx digitally-controlled oscillator (DCO).

Baud Rate Calculation

The 8-bit T/C is configured for baud-rate generation. Based on the baud rate required, an
interval bitime is calculated. Bitime is the length, in 8-bits, that T/C counts between individual
bits. Bitime is the interval during which an 8-bit T/C will latch RXD and TXD data bits, and is
simply the 8-bit T/C-clock source divided by the baud rate (see Figure 3). The calculated bitime
is loaded into TCPLD, which automatically loads the 8-bit T/C counter. The MSP430x3xx MCLK
is used on high-speed UARTSs.

Transmit Sequence

\ \
Bitime —t4—¥ \ \

\ \ \ \
A 4 y y y
| I
Idle | Start | DO D1 D2 D3 D4 D5 D6 D7 |Stop Idle
\ 4

A A A A A
\ \ \ \ \
Bitimel_5 —‘H—N‘ fd—N‘— Bitime }

Receive Sequence

Figure 3. UART 8N1 Character

Example 1: 9,600-baud, MCLK at 1,048,576 Hz, and the 8-bit T/C clock source
Bitime= 109.2267 = 1,048,576 / 9,600 = clock source / baud rate

Use 109 for bitime

Actual baud rate = 1,048,576 / 109= 9,619 baud

Only an integer value of bitime can be moved to TCPLD for bit timing. The value 109 is used for
bitime, assuming 9,600-baud and a 1,048,576-Hz MCLK clock source. The error of rounding
bitime to the nearest integer is insignificant if the clock source is sufficiently large. In this
example, the actual baud rate has an error of less than 0.2% per bit. If a different clock source or
baud rate is required, bitime can be recalculated using the previous formula.

Implementing a UART Function With the 8-Bit Interval Timer/Counter 5

{'? TEXAS

SLAA083 INSTRUMENTS

6

Let us look at another example of bitime calculation:

Example 2: 115,200-baud, MCLK at 3,244,032 Hz, and the 8-bit T/C clock source:
Bitime = 3,244,032 / 115,200 = 28.16 = clock source / baud rate

Use 28 for bitime

Actual baud rate = 3,244,032 / 28 = 115,858 baud

The firmware engineer can adjust MCLK from the default of 1,048,576 HZ as multiples of ACLK.
In Example 2, MCLK is adjusted to 3,244,032 Hz (99 x 32,768). The system-clock
frequency-control register (SCFQCTL) is loaded with the appropriate ACLK clock multiplier. It is
possible that the nominal frequency bits (FN_2, FN_3, and FN_4) in the system-clock
frequency-integrator register 0 (SCFI0) may also require modification to insure that the DCO is
operating at a center tap. FN_2 is used when MCLK operates at approximately 2 MHz, FN_3 is
used for MCLK operation at approximately 3 MHz, and FN_4 is used for MCLK operation in the
4-MHz range.

Software Description Listing tc_uartl.asm
Software Listing tc_uartl.asm is divided in several subroutines.
e Init_Sys initializes the MSP430

* TX_ byte, when called, starts the UART to transmit one byte from RXTXData buffer. As
coded, TX_byte will not return from the call until a complete byte is transmitted from
RXTXData. This prevents the accidental overruns of starting a transmission while the UART
is still actively transmitting previous data. Other polling techniques can be used.

e RX_ready, when called, gets the UART ready to receive one byte into the RXTXData buffer.
Once readied, the CPU and the system are free for other tasks. The UART automatically
receives data sent to RXTXData.

On RESET, an Init_Sys subroutine is called to initialize the system. Mainloop sends a > prompt
to the PC and then waits to receive a character from the PC, which is echoed back (see

Figure 4). The prompt is first sent to the PC by placing > in RXTXData and calling the TX_Byte
subroutine. Next, the UART is placed in receive mode by calling the RX_Byte subroutine. The
MSP430 waits in LPMO by turning off the CPU. mainloop program execution holds at this point,
but the UART is ready. On reception of a complete character into RXTXData, the UART
software, as implemented, reactivates the CPU in the mainloop. The mainloop then calls

TX _Byte to echo back the exact same character still in RXTXData. To transmit, the software
simply moves the character to be transferred to RXTXData and calls the TX_Byte subroutine. To
receive a data character, the RX_Byte subroutine is simply called to ready the UART function.
Complete software is provided in software listing tc_uartl.asm.

Implementing a UART Function With the 8-Bit Interval Timer/Counter

{9 TEXAS
INSTRUMENTS SLAA083

3.1

Call Init_Sys
Initialize System

A\

Call TX_Byte
Send >

A 4

A\

Call RX_Byte
RX Ready

v

Enter LPMO

RX_Comp
Exit LPMO

A\

Exit LPMO

v

Call TX_Byte
Send RXTX Data

\ 4

Figure 4. UART Function Software in Listing tc_uartl.asm

Software Overhead for the UART Function

A firmware engineer might be concerned by the system overhead of using a hardware/software
UART. The function described in this report requires some CPU resources. The most important
point is that no CPU resources are required when the UART function is ready to receive—even
though the hardware/software UART is completely ready. Superfluous scanning for a start-bit
condition is not required—the 8-bit T/C will automatically be enabled in the receive mode on a
start-bit condition. In both received and transmit modes, the 8-bit T/C hardware also latches data
bits being transferred.

Example: CPU overhead at 9,600-baud using a 1,048,576-Hz 8-bit T/C clock source during the

actual data transfers:

15.6% receive mode—17 CPU-cycles are required to receive a bit.

18.3% transmit mode—20 CPU-cycles are required to transmit a bit.

The software in listing tc_uartl.asm uses autoincrement indirect addressing in the UART ISR:
mov @BitCnt+,PC ; Branch To Routine

Implementing a UART Function With the 8-Bit Interval Timer/Counter 7

{'? TEXAS

SLAA083 INSTRUMENTS

3.2

8

Autoincrement indirect addressing allows immediate determination of the status of the UART
ISR (that is, RX_Edge, Rx_Bit, and TX_Bit). The software does not have to determine its
location in the receive or transmit sequence. CPU cycles spent in the UART ISR are greatly
reduced, allowing time for other tasks. Based on the previous example, the firmware engineer
must ensure that, if the UART function is to be available, the burden on the CPU does not
exceed 82% at any point during real-time code execution. When the UART function
(9,600-baud) is used with a 1,048,576 MCLK, approximately 859,532 16-bit operations per
second remain available for other real-time activities.

Use of Tl Standard Peripheral Definitions

All examples in this report use TI MSP430 standard peripheral definitions. The file std_def.asm
is included with the ADT430 simulation environment, or it is available from TI's web site
(www.ti.com). The file std_def.asm should be in the same working directory as the source-code
examples included when compiled. The following assembler directive copies std_def.asm into
the source:

.include "STD_DEF.ASM” ; Standard Definitions Used

Tl encourages programmers to use Tl standard peripheral definitions to promote commonality
with the MSP430 Architecture Guide and Module Library and to simplify code debugging.

Using the UART Function in Ultra-Low Power Applications

It is possible to use the MSP430x3xx 8-bit T/C UART function during MSP430 advanced
ultra-low power modes. It is also possible to generate high-baud rates when using only a
low-frequency 32,768-Hz watch crystal. The MSP430’s unigue on-chip high-speed DCO
generates the high speed MCLK, which is digitally stabilized automatically in MSP430x3xx
family to a software-selectable multiple of the 32,768-Hz watch crystal using the on-chip
frequency locked loop (FLL). The default MCLK on the MSP430x3xx has a frequency of
1,048,576 Hz, which is the frequency used in this report. The MCLK can be used for baud
generation when selected as the clock source for the 8-bit T/C. The DCO starts and becomes
stable in less than 6 ps. With a fast DCO start, baud rate generation is possible in ultra-low
power modes, even with the DCO initially off—the falling edge of a start bit can automatically
start the DCO and UART functions.

Implementing a UART Function With the 8-Bit Interval Timer/Counter

{9 TEXAS
INSTRUMENTS SLAA083

4.1

4.2

Using LPM3 and MCLK for Baud Rate Generation

A solution using the MCLK for baud rate generation is provided in software listing ftc_uart2.asm,
with the MSP430 normally running in LPM3 and requiring a 9,600-baud UART. It is assumed
that a 32,768-Hz watch crystal is used for XTAL, and that the default MCLK is 1,048,576-Hz. In
this example, mainloop waits in LPM3 and the UART is ready to receive at 9,600 baud. What is
different about this example is the initialization of the UART in the receive mode. Prior to
entering the LPM3, when the RX_Ready subroutine is called to prepare the UART, P0.1 is
configured as a pin-interrupt source—not as the 8-bit T/C overflow. This ensures that if the
MCLK (DCO) is off (which occurs during LPM3), it will be restarted on a P0.1 edge, and the 8-bit
T/C, which is clocked by MCLK, starts. Any accepted Interrupt starts the DCO. The edge-detect
logic is still used (TCRXACT in TCCTL), so the 8-bit TC continues to start automatically on the
falling edge of P0.1. After the first interrupt on P0.1, with the 8-bit T/C now counting, the P0.1 /
8-bit T/C interrupt source is reconfigured to that of the 8-bit T/C overflow, and the MCLK is set to
remain on for the remainder of the received character. A compensation of about 6 ps is factored
into bitimel_5 (timed from start-bit edge to the middle of the first data bit) to allow for DCO start.
The subsequent data bits are hardware-latched as before.

Using LPM3 and ACLK for Baud-Rate Generation

In this application the MSP430x3xx runs normally in LPM3 and the ACLK (32,768-Hz watch
crystal) is used as the clock source for the 8-bit T/C. If the LPM3 ACLK remains active, no
software modifications are required for start bit detect. The 8-bit TC edge-detect logic on P0.1
automatically starts the 8-bhit TC with ACLK as the timer clock. With the timer clocked by a
relatively-slow clock, only low baud rates are possible (less than 4,800) to prevent bit timing
errors. A solution for a 1,200-baud UART is provided in software listing tc_uart4.asm. For
illustrative purposes, this example uses RAM locations for RXTXData and BitCnt, as opposed to
the CPU registers used in the previous examples. An additional subroutine is also provided
which sends a Ready> prompt to the PC, replacing the > used in the other examples. Sending
Ready> illustrates a method of sending a sting from a buffer.

Summary

Even though the 8-bit T/C is not a dedicated serial port, it is easy to emulate such a function
without excessively burdening the CPU. The unique DCO and MSP430x3xx FLL provide a
high-speed stable-clock source usable for serial communication even when only a 32,768-Hz
XTAL is used in the application. The 8-bit T/C has powerful hardware features that enable a
UART and other functions not possible with simple timers. With true asynchronous capability,
modern event-driven and multitasking-programming techniques can be exercised with the
MSP430. External and internal events steer program flow reducing CPU overhead.

References

1. MSP430x31x data sheet, 1999, literature number SLAS165C

2. MSP430x32x data sheet, 1999, literature number SLAS219A

3. MSP430x33x data sheet, 1999, literature number SLAS163

4. MSP430 Family Architecture and Module Library, 1996, literature number SLAUE10B

Implementing a UART Function With the 8-Bit Interval Timer/Counter 9

{'f TEXAS
SLAA083 INSTRUMENTS

Appendix A Software Listing tc_uartl.asm
.include "STD_DEF.ASM”

~kkk *kkkkk *% *kkkkk *% *kkkkk *% *kkkkk *% *kkkkk *%

; MSP430 DEMONSTRATION PROGRAM
;. 9,600-baud UART Function from LPMO using the 8-bit T/C and MCLK

: | MSP430x3x | 32k XTAL
S -

. < | TX/P0.2 | 8bit T/C |

. -->|RX/P0.1| |

; Description: This program runs normall in LPMO and demonstrating a half

; duplex UART function using 8-bit T/C. ">" prompt is sent to the PC. The

; MSP430x3xx waits in LPM3 until a character is received from the PC which
; reactivates mainloop and the same character is echoed back to PC.

; Program repeats. MCLK used for baud generation.

;[] This Program can be tested using 8N1 no flow control.

; Conditions for 9,600 Baud UART with MCLK @ 1,048,576MHz
Bitime .equ 0100h - 109 ; 104 us per bit (104.2us actual)
Bitimel 5 .equ 0100h-164 ;1.5 bitlength

TXLoad .equ OBAh : TCTXD=TCISCTL=TCTXEN=TCENCNT=1 MCLK
RXLoad .equ 0OB6h : TCTXD=TCISCTL=TCTXEN=TCRXACT=1 MCLK
M.Buccini

;. Americans Sales and Marketing
; Texas Instruments, Inc
; September 1999

skkkkkkkkkhkkkkkkkkkkhhkhhhhhhhhhrkhkkkkhkkhkhhhhhhhhhrrrhrrkkhkkrkhkhhhhhhhrrrrrixix
1

RAM_orig .set 00200h ; RAM Start address
ROM_orig .set 0CO00h ; X3x5 ROM Start

Stack .set 00400h ; X3x5 TO of RAM Stackpointer
|_vectors .set OFFFFh ; Interrupt vectors

Main .equ ROM_orig ; Program Start

; CPU Registers Used

RXTXData .equ R5 ; Register for RX / TX UART Data
BitCnt .equ R6 ; Register used to count UART bits

.sect "MAIN”,Main

RESET mov #Stack,SP ; Initialize Stackpointer
call #Init_Sys ; Setup Peripherals

; Mainloop of Program

Mainloop mov.b #">" RXTXData ; Load ">"to buffer

call #TX_Byte P TX ">
call #RX_Ready ; UART ready to RX one Byte
bis #LPMO,SR ; Enter LPMO Until Byte RXed

10 Implementing a UART Functin With the 8-Bit Interval Timer/Counter

{9 TEXAS
INSTRUMENTS

SLAA083

call #TX Byte ; TX Back RXed Byte Received
jmp Mainloop ;

Init_Sys ; Subroutine: Setup MSP430 Peripherals For Operation

SetupWDT mov #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT

Delay mov #OFFFFh,R15 ; SW Delay to allow FLL Lock
Delayl dec R15 ;

jnz Delayl ;

eint ; Enable Interrupts

ret ; Return from Setup

TX_Byte ; Subroutine: Transmit One Byte from RXTXData Buffer.

mov #TX_Count,BitCnt ; TX Count--> Branch Pointer
mov.b #Bitime,&TCPLD ; Load Preload with Bitime

mov.b #TXLoad,&TCCTL ; Prepare and start timer

bic.b #POIFG_1,&IFG1 ; Clear any erroneous interrupt flag

bis.b #POIE_1,&IE1 ; Enable TC/P0.1 interrupt

TX Wait cmp #TX_End+2,BitCnt ; Wait for TX byte completion
jne TX Wait ;
ret ; Return

RX_Ready ; Subroutine: Receive One Byte into RXTXData Buffer.

mov #RX_Count,BitCnt ; RX_Count--> Branch Pointer
mov.b #Bitimel_5,&TCPLD ; Preload with 1.5 bit lengths
mov.b #0,&TCDAT ; Force Bitimel_5 into timer

mov.b #Bitime, & TCPLD ; Preload with Bitime, for data bit
mov.b #RXLoad,&TCCTL ; Prepare for Start Bit

bis.b #POIES_1,&POIES ; High/low edge for P0.1 interrupt
bic.o #POIFG_1,&IFG1 ; Clear any erroneous interrupt flag
bis.o #POIE_1,&IE1 ; Enable TC/PO0.1 interrupt

ret ;

UART_Isr ; UART/PO.1 ISR

mov @BitCnt+,PC : Branch To Routine
’ .even ;
RX_Count .word RX_Bit ; RX First Data Bit

word RX_Bit ;

word RX_Bit ;

.word RX_Bit ;

.word RX_Bit ;

.word RX_Bit ;

word RX_Bit ;

word RX_Bit ;

Implementing a UART Functin With the 8-Bit Interval Timer/Counter 11

{'.f TEXAS

SLAA083 INSTRUMENTS

.word RX_Comp ; RX Complete, Process RXed Data
TX Count .word TX_Space ; TX Start Bit= Space

.word TX_Bit ; TX First Data Bit

word TX_Bit ;

word TX_Bit ;

.word TX_ Bit ;

word TX_Bit ;

word TX_Bit ;

word TX_ Bit ;

.word TX_Bit ;

.word TX_Mark ; TX Stop Bit= Mark
TX_End .word TX_ Comp ; TX Complete and Complete
TX Bit rra RXTXData ; TX ISR, LSB is shifted to carry

jnc TX_Space ; Jump bit = 0TX_Mark

TX_Mark bis.b #TCTXD,&TCCTL ; Bit=1, set TCTXD in TCCTL
reti

TX_Space bic.b #TCTXD,&TCCTL ; Bit=0, reset TCTXD in TCCTL
reti

TX _Comp bic.b #TCENCNT,&TCCTL ; Stop Timer
bic.b #POIE_1,&IE ; Disable TC/PO0.1 interrupt
reti ;

RX_Bit bit.b #TCRXD,&TCCTL ; RX'ISR, Bit from TCRXD -> Carry
rrc.b RXTXData ; Carry -> RXTXData
reti ;

: >>> Decode Received Byte Here <<<

RX_Comp bic.b #TCENCNT,&TCCTL ; Stop Timer
bic.b #POIE_1,&IE1 ; Disable TC/PO0.1 interrupt
mov #GIE,O(SP) ; Decode Byte= Active in Mainloop
reti ;

.sect "Int_Vect”,l_vectors-31

.word RESET ; PortO, bit 2 to bit 7

.word RESET ; Basic Timer

.word RESET ; N0 source

.word RESET ; NO source

.word RESET ; Timer Port

.word RESET ; EOC from ADC

.word RESET ; NO source

.word RESET ; NO source

.word RESET ; NO source

.word RESET ; NO source

.word RESET ; Watchdog Timer, Timer mode
.word RESET ; NO source

.word UART _lIsr ; PO.1 or 8-bit T/C

.word RESET : P0.0

.word RESET ; NMI, Osc. fault

.word RESET ; POR, ext. Reset, Watchdog

12 Implementing a UART Functin With the 8-Bit Interval Timer/Counter

{9 TEXAS
INSTRUMENTS SLAA083

Appendix B Software Listing tc_uart2.asm
.include "STD_DEF.ASM”

skkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkhkkkkkhkkkkhkhkkkkhkhkkkkhkhkkkkkhkhkkkkhkhkkkkkhkkkkkkk
; MSP430 DEMONSTRATION PROGRAM
; 9,600-baud UART Function from LPM3 using the 8-bit T/C and MCLK

; | MSP430x3x | 32k XTAL
S |-

. < | TX/P0.2 | 8bit T/C |

. —>|RX/P0.1| |

; Description: This program runs normall in LPM3 and demonstrating a half

; duplex UART function using 8-bit T/C. ">" prompt is sent to the PC. The

; MSP430x3xx waits in LPM3 until a character is received from the PC which
; reactivates mainloop and the same character is echoed back to PC.

; Program repeats. MCLK used for baud generation.

;[This Program can be tested using 8N1 no flow control.

; Conditions for 9,600 Baud UART with MCLK @ 32x32768= 1,048,576
Bitime .equ 0100h - 109 ; 104 us per bit (104.2us actual)
Bitimel 5 .equ 0100h - (164-10) ; 1.5 bit lengths - DCO start

TXLoad .equ OBAh ; TCTXD=TCISCTL=TCTXEN=TCENCNT=1 MCLK
RXLoad .equ 0B6h ; TCTXD=TCISCTL=TCTXEN=TCRXACT=1 MCLK
RXLoadX .equ 096h : TCTXD=TCTXEN=TCRXACT=1 MCLK

;. M.Buccini

; Americans Sales and Marketing
; Texas Instruments, Inc
; September 1999

rkkkkkkkkkkkkkkkkkhkkkhkkkkkkhhkkhkkkkkkhhkkkhkkkhkkkhkkhkkkkhkkkhhkkhkkkkkkkhkhkkkkkk
’

RAM_orig .set 00200h ; RAM Start address
ROM_orig .set 0CO00h ; X3x5 ROM Start

Stack .set 00400h ; Xx3x5 TO of RAM Stackpointer
|_vectors .set OFFFFh ; Interrupt vectors

Main .equ ROM_orig ; Program Start

; CPU Registers Used

RXTXData .equ R5 ; Register for RX / TX UART Data
BitCnt .equ R6 ; Register used to count UART bits

.sect "MAIN",Main

RESET mov #Stack,SP ; Initialize Stackpointer
call #Init_Sys ; Setup Peripherals

; Mainloop of Program

Mainloop mov.b #’>"RXTXData ;Load ">"to buffer
call #TX_Byte CTX ">

Implementing a UART Function With the 8-Bit Interval Timer/Counter 13

{'.f TEXAS

SLAA083 INSTRUMENTS
call #RX_Ready ; UART ready to RX one Byte
bis #LPM3,SR ; Enter LPM3 Until Byte RXed
call #TX Byte ; TX Back RXed Byte Received

jmp Mainloop ;

Init_Sys ; Subroutine: Setup MSP430 Peripherals For Operation

SetupWDT mov #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT

Delay mov #OFFFFh,R15 ; SW Delay to allow FLL Lock
Delayl dec R15 ;

jnz Delayl ;

eint ; Enable Interrupts

ret ; Return from Setup

TX Byte ; Subroutine: Transmit One Byte from RXTXData Buffer.

mov #TX_ Count,BitCnt ; TX Count--> Branch Pointer
mov.b #Bitime,&TCPLD ; Load Preload with Bitime

mov.b #TXLoad,&TCCTL ; Prepare and start timer

bic.o #POIFG_1,&IFG1 ; Clear any erroneous interrupt flag

bis.b #POIE_1,&IE1 ; Enable TC/PO0.1 interrupt

TX Wait cmp #TX_End+2,BitCnt ; Wait for TX byte completion
jne TX_Wait ;
ret ; Return

RX_Ready ; Subroutine: Receive One Byte into RXTXData Buffer.

mov #RX_Count,BitCnt ; RX_Count--> Branch Pointer
mov.b #Bitimel 5,&TCPLD ; Preload with 1.5 bit lengths
mov.b #0,&TCDAT ; Force Bitimel_5 into timer

mov.b #Bitime, & TCPLD ; Preload with Bitime, for data bit
mov.b #RXLoadX,&TCCTL ;// LPM3 Prepare for Start Bit //
bis.bo #POIES_ 1,&POIES ; High/low edge for P0O.1 interrupt
bic.o #POIFG_1,&IFG1 ; Clear any erroneous interrupt flag
bis.b #POIE_1,&IE1 ; Enable TC/PO0.1 interrupt

ret ;

UART_Isr ; UART/PO.1 ISR

mov @BitCnt+,PC ; Branch To Routine
.even ;

RX_Count .word RX_Edge ; Start Bit Edge
word RX_Bit ; RX First Data Bit
word RX_Bit ;

14 Implementing a UART Function With the 8-Bit Interval Timer/Counter

{9 TEXAS
INSTRUMENTS SLAA083

word RX_Bit ;

word RX_Bit ;

word RX_Bit ;

word RX_Bit ;

word RX_Bit ;

.word RX_Bit ;

word RX_Comp ; RX Complete, Process RXed Data
TX_Count .word TX_Space ; TX Start Bit= Space

.word TX_ Bit ; TX First Data Bit

.word TX_ Bit ;

.word TX_ Bit ;

.word TX_ Bit ;

.word TX_ Bit ;

.word TX_ Bit ;

.word TX_ Bit ;

.word TX_ Bit ;

word TX_Mark ; TX Stop Bit= Mark
TX_End .word TX Comp ; TX Complete and Complete

TX_Bit rra RXTXData ; TX ISR, LSB is shifted to carry
jnc TX_Space ; Jump bit = 0TX_Mark
TX_Mark bis.b #TCTXD,&TCCTL ; Bit=1, set TCTXD in TCCTL
reti
TX_Space bhic.b #TCTXD,&TCCTL ; Bit= 0, reset TCTXD in TCCTL
reti
TX _Comp bic.o #TCENCNT,&TCCTL ; Stop Timer
bic.b #POIE_1,&IE ; Disable TC/P0.1 interrupt
reti ;
RX_Edge bis.b #TCISCTL,&TCCTL ; 8-it T/C Now Interrupt Source
bic #SCG1+SCGO0,0(SP) ;DCO and FLL Now on after reti
reti
RX_Bit bit.b #TCRXD,&TCCTL ; RX'ISR, Bit from TCRXD -> Carry
rrc.b RXTXData ; Carry -> RXTXData
reti ;
; >>> Decode Received Byte Here <<<
RX_Comp bic.b #TCENCNT,&TCCTL ; Stop Timer
bic.o #POIE_1,&IE1 ; Disable TC/PO0.1 interrupt
mov #GIE,0(SP) ; Decode Byte= Active in Mainloop
RXTX_Next reti ;

.sect "Int_Vect”,l_vectors-31

.word RESET ; Port0, bit 2 to hit 7
.word RESET ; Basic Timer

.word RESET ; NO source

.word RESET ; NO source

.word RESET ; Timer Port

.word RESET ; EOC from ADC

Implementing a UART Function With the 8-Bit Interval Timer/Counter 15

{'.f TEXAS

SLAA083 INSTRUMENTS
.word RESET ; NO source
.word RESET ; No source
.word RESET ; NO source
.word RESET ; NO source
.word RESET ; Watchdog Timer, Timer mode
.word RESET ; NO source
.word UART_lsr ; PO.1 or 8-bit T/C
.word RESET ; PO.O
.word RESET ; NMI, Osc. fault
.word RESET ; POR, ext. Reset, Watchdog
16 Implementing a UART Function With the 8-Bit Interval Timer/Counter

{9 TEXAS
INSTRUMENTS SLAA083

Appendix C Software Listing tc_uart4.asm
.include "STD_DEF.ASM”; listed in the listing file or

shkkkkkkkkkkkkkkkhkhkhhhhhhkkkkkkkkhhhkhhhhhhhhhhrrkkkkrhhhkhkhhhhdhhhrrhhkxxirkxx
; MSP430 DEMONSTRATION PROGRAM
; 1200-baud UART Function from LPM3 using the 8-bit T/C and ACLK

; | MSP430x3x | 32k XTAL
S |-

. < | TX/P0.2 | 8bit T/C |

. -->|RX/P0.1| |

; Description: This program runs normall in LPM3 and demonstrating a half

; duplex UART function using 8-bit T/C. ">" prompt is sent to the PC. The

; MSP430x3xx waits in LPM3 until a character is received from the PC which
; reactivates mainloop and the same character is echoed back to PC.

; Program repeats. MCLK used for baud generation.

; [l This Program can be tested using 8N1 no flow control.

; Conditions for 1200 Baud UART with ACLK @ 32768
Bitime .equ 0100h-27 ; 823.5us per bit (833.3us actual)
Bitimel 5 .equ 0100h-43 ;1.5 bit lengths

TXLoad .equ 07Ah : TCTXD=TCISCTL=TCTXEN=TCENCNT=1 ACLK
RXLoad .equ 076h : TCTXD=TCISCTL=TCTXEN=TCRXACT=1 ACLK
;. M.Buccini

; Americans Sales and Marketing
; Texas Instruments, Inc
; September 1999

shkkkkkkkkkkkkkkkhkhhhhhhhhhkrkkhkkkhkhkhkhhhhhhhhhrrrhkrkkhkkkhhhhhhhhhrrrrrrxikrkikx
’

RAM_orig .set 00200h ; RAM Start address

ROM orig .set 0CO000h ; X3x5 ROM Start

Stack .set 00400h ; Xx3x5 TO of RAM Stackpointer
|_vectors .set OFFFFh ; Interrupt vectors

Main .equ ROM _ orig ; Program Start

; RAM Registers Used

RXTXData .equ 0200h ; Register for RX or TX UART Data
BitCnt .equ 0202h ; Register used to count UART bits
Pointer .equ R7 ; Pointer used for table processing

LF .equ Oah ; ASCII Line Feed

CR .equ 0dh ; ASCII Carriage Return

.sect "MAIN”,Main

RESET mov #Stack,SP ; Initialize Stackpointer
call #lnit_Sys ; Setup Peripherals
; Mainloop of Program

Implementing a UART Function With the 8-Bit Interval Timer/Counter 17

{'.f TEXAS

SLAA083 INSTRUMENTS
Mainloop call #TX_Prompt ; TX "Ready>" Prompt

call #RX_Ready ; UART ready to RX one Byte

bis #LPM3,SR ; Enter LPMO Until Byte RXed

call #TX_ Byte ; TX Back RXed Byte Received

jmp Mainloop ;

Init_Sys ; Subroutine: Setup MSP430 Peripherals For Operation

SetupWDT mov #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT

Delay mov #0FFFFh,R15 ; SW Delay to allow FLL Lock
Delayl dec R15 ;

jnz Delayl ;

eint ; Enable Interrupts

ret ; Return from Setup

TX_Prompt ; Transmit "Ready>" Prompt String

mov #Buffer,Pointer ; Pointer Points Buffer String
Promptl mov.b @Pointer+,RXTXData ; Move String Byte TO UART

call #TX Byte ; Send Byte
tst.b O(Pointer) ; End of String Deliminator "0”
jnz Promptl ; If 70", String complete
ret ; Done
Buffer .string CR,LF, "Ready>"
.byte 0

TX_Byte ; Subroutine: Transmit One Byte from RXTXData Buffer.

add #0100h,&RXTXData ; Add Mark stop Bit to RXTXData
rla &RXTXData ; Add Space start Bit to RXTXData
mov #10,&BitCnt ; Load Bit Counter, 8 data + ST +SP
mov.b #TXLoad,&TCCTL ; Prepare and start timer

bic.o #POIFG_1,&IFG1 ; Clear any erroneous interrupt flag

bis.b #POIE_1,&IE1 ; Enable TC/PO0.1 interrupt
TX Wait tst &BitCnt ; Wait for TX Completion
jnz TX_ Wait X

ret ;

RX_Ready ; Subroutine: Receive One Byte into RXTXData Buffer.

mov.b #Bitimel_5,&TCPLD ; Preload with 1.5 bit lengths

mov.b #0,&TCDAT ; Force Bitimel_5 into timer
mov.b #Bitime,&TCPLD : Preload with Bitime, for data bit
mov #08,&BitCnt ; Load Bit Counter, 8 data bits

mov.b #RXLoad,&TCCTL ; Prepare for Start Bit

18 Implementing a UART Function With the 8-Bit Interval Timer/Counter

{9 TEXAS
INSTRUMENTS

SLAA083

bis.b #POIES 1,&POIES ; High/low edge for P0.1 interrupt
bic.o #POIFG_1,&IFG1 ; Clear any erroneous interrupt flag
bis.b #POIE_1,&IE1 ; Enable TC/P0.1 interrupt

ret ;

UART_Isr ; UART/PO.1 ISR

bit.tb #TCRXACT,&TCCTL ; Receive or transmit?

jnz RX_Bit ; Goto RX
UART_TX rra &RXTXData ; LSB is shifted to carry
jnc TX_Space ; Jump bit =0
TX_Mark bis.b #TCTXD,&TCCTL ; Bit=1, set TCTXD in TCCTL
jmp TX Test ; Next bit
TX_Space bic.b #TCTXD,&TCCTL ; Bit= 0, reset TCTXD in TCCTL
TX Test dec &BitCnt ; All bits sent (or received)?
jnz RXTX_Next ; Next bit?
TX_Comp bic.b #TCENCNT,&TCCTL ; Stop Timer
bic.o #POIE_1,&IE1 ; Disable TC/PO0.1 interrupt
TX_ Next reti ;
RX_Bit bitb #TCRXD,&TCCTL ; RX ISR, Bit from TCRXD -> Carry
rrc.b RXTXData ; Carry -> RXTXData
RX _Test dec &BitCnt ; All bits sent (or received)?
jnz RXTX_Next ; Next bit?

: >>> Decode Received Byte Here <<<
RX_Comp bic.o #TCENCNT,&TCCTL ; Stop Timer

bic.b #POIE_1,&IE1 ; Disable TC/P0.1 interrupt

mov #GIE,0(SP) ; Decode Byte= Active in Mainloop
RXTX_Next reti ;

.sect "Int_Vect”,|_vectors-31

.word RESET ; Port0, bit 2 to bit 7

.word RESET ; Basic Timer

.word RESET ; NO source

.word RESET ; NO source

.word RESET ; Timer Port

.word RESET ; EOC from ADC

.word RESET ; NO source

.word RESET ; NO source

.word RESET ; NO source

.word RESET ; NO source

.word RESET ; Watchdog Timer, Timer mode
.word RESET ; NO source

.word UART _Isr ; PO.1 or 8-bit T/C

.word RESET ; P0O.0

.word RESET ; NMI, Osc. fault

.word RESET ; POR, ext. Reset, Watchdog

Implementing a UART Function With the 8-Bit Interval Timer/Counter 19

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 0 1999, Texas Instruments Incorporated

