
Application Note
Common Software Use Case Examples with TI Smart
Fuse High-Side Switches

Timothy Logan

ABSTRACT
The smart fuse high-side switch portfolio (HCS device family) from Texas Instruments provides a versatile
and powerful set of devices that allow for seamless replacement of physical melting fuse devices with a
configurable semiconductor design in automotive applications. The HCS high-side switch device family uses
SPI as it means of communication to configure various parameters such as capacitive charging/I2T as well
as read out diagnostics such as current sense (through an integrated ADC) and fault detection. To simplify
software development, Texas Instruments provides a full suite of software drivers and code examples across
multiple processor or microcontroller platforms (both from Texas Instruments and otherwise). This application
note dives deep into all aspects of the smart fuse software ecosystem from Texas Instruments including the top
level drivers, configuration or evaluation tool, and a full set of code examples that show common use cases of
the underlying smart fuse devices.

Table of Contents
1 Software Ecosystem...2
2 Platform Drivers..3

2.1 Driver Concept... 3
2.2 Supported Platforms.. 4
2.3 Porting to Other Platforms..5
2.4 API Guide...6

3 Configuration or Evaluation Tool.. 10
4 Code Examples... 12

4.1 Empty Example.. 12
4.2 I2T Trip Example..12
4.3 Low-Power Mode Example.. 13
4.4 Current Sense Example... 13

5 Summary... 14
6 References.. 15
7 Revision History... 16

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

1 Software Ecosystem
The smart fuse ecosystem from Texas Instruments consists of the following software components:

Table 1-1. Smart Fuse Collateral Offering
Collateral Name Description
Smart Fuse Configurator Host GUI tool used to configure TPSxHCxx-Q1 device and export C configuration file for

software development. This software is also used to control the HSS-HCSMOTHERBRDEVM
and corresponding daughter cards.

Device Specific C Headers Files Header file representation of the HCS device's register map. This file contains all register
definitions and enumerations of the device.

HCS Platform Drivers Generic set of drivers with a lower level SPI driver porting layer. Implementation examples are
provided for a variety of processors/microcontrollers.

Application Code Examples Common set of code examples that show case some common functionality and differentiation
of using the HCS family of high-side switches from Texas Instruments.

A software package containing the HCS Platform Drivers and Application code examples can be found on
the corresponding software page. The drivers and code examples are BSD licensed open source allowing for
flexible porting/re-use. The software package can be found at HCS-SMARTFUSE-DRIVERS.

Note that the functionality of the Smart Fuse Configurator software with relation to the HSS-
HCSMOTHERBRDEVM are detailed in the Smart Fuse Evaluation Module, user's guide.

All pieces of the software collateral are designed to work with each other, simplify software development,
and make it as easy as possible to get started with using the HCS family of high-side switches. A standard
development flow can include the following steps:

1. Use the Smart Fuse Configurator to generate the initial configuration. These settings will be loaded to
the high-side switch over SPI by the microcontroller during boot-up. The settings include current limit
configuration, capacitive charge modes, and any specific I2T turning required based on the specific wire
gauge curve.

2. Once configured, the software exports a generic C files that contain a generic C structure that is used for
initial configuration/programming.

3. A pointer of this configuration structure is passed into the HCS_initializeDevice function (Section 2.4.9).
The driver then programs all of the relevant registers of the device. This API is typically called once on the
microcontroller boot/initialization.

Each one of these steps and individual components are described in the following sections.

Software Ecosystem www.ti.com

2 Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/download/HSS-SMART-CONFIGURATOR
https://www.ti.com/tool/download/HCS-HEADER-FILES
https://www.ti.com/tool/download/HCS-SMARTFUSE-DRIVERS
https://www.ti.com/lit/pdf/slvucr9
https://www.ti.com/tool/download/HSS-SMART-CONFIGURATOR
https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

2 Platform Drivers

2.1 Driver Concept
The suite of drivers that Texas Instruments provides for the HCS family of smart fuse high-side switches were
designed to be generic and allow for complete configuration and utilization of the underlying device. Features of
these drivers include:

• Initial configuration through exported file from the Smart Fuse Configurator software.
• Generic register reads or writes with support for returning individual transaction headers.
• Convenience functions that convert raw ADC results from the high-side switch's ADC registers to a human

readable float value.
• Functions that provide both device and channel level diagnostic status.

The drivers and relation to the provided code examples are shown in Figure 2-1.

Figure 2-1. Driver Architecture

The top level driver APIs have the HCS_ prefix to signify the HCS family of smart fuse devices and are provided
in hcs_control_driver.h and hcs_control_driver.c from the software package. The top level code examples
use these APIs to provide a generic set of functionality to control and configure the high-side switch. For the
physical SPI communication, a set of external functions are declared in hcs_control_driver.h:

/* --------------------------- Porting Functions ---------------------------- */
/*
 * These functions need to be implemented by each individual device port. The functions
 * handle the low-level hardware specific implementation with the respective
 * architecture's specific hardware peripherals (SPI and GPIO)
 */
bool HCS_port_spiSendData(uint8_t *data, uint8_t len, uint8_t* respData);
void HCS_port_assertSPI(void);
void HCS_port_deassertSPI(void);

These functions are defined in each individual architecture implementation and handle the hardware SPI
interaction of each platform. More details of porting these functions to additional architectures can be found
in Porting to Other Platforms (Section 2.3). A full list of APIs including functionality, parameters, and return
values can be found in the API guide (Section 2.4).

www.ti.com Platform Drivers

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

2.2 Supported Platforms
The smart fuse driver and configuration package contains example implementations for a variety of different
microcontrollers or processors. Additional implementations are routinely added, however a list of current
architectures and the relevant development kits are shown in Table 2-1:

Table 2-1. Supported Platforms
Architecture Development Board Ecosystem Notes

Texas Instruments MSPM0G3507-Q1 LP-MSPM0G3507 Code Composer Studio Theia

STMicroelectronics STM32H723ZGT6 NUCLEO-H723ZG STM32CubeIDE

Additional device support can be added by implementing the relevant device level functions described in Section
2.3.

The HSS-HCMOTHERBRDEVM has generic SPI headers that can be used to plug in external SPI signals to the
attached high-side switch daughter card. During development of the code examples and HCS platform drivers,
the development boards listed below were used in tandem with the HSS-HCMOTHERBRDEVM for validation.
An example of the LP-MSPM0G3507 evaluation module used in this configuration can be found below in Figure
2-2:

Figure 2-2. Connected MSPM0+

The following shows a connection using the NUCLEO-H723ZG board:

Platform Drivers www.ti.com

4 Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/product/MSPM0G3507
https://www.ti.com/tool/LP-MSPM0G3507
https://www.ti.com/tool/download/CCSTUDIO-THEIA/1.0.0
https://www.st.com/en/microcontrollers-microprocessors/stm32h723zg.html
https://www.st.com/en/evaluation-tools/nucleo-h723zg.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

Figure 2-3. NUCLEO-H723ZG Connection

2.3 Porting to Other Platforms
While a variety of example architecture implementations are provided, the HCS platform drivers are architected
to be easily ported to any microprocessor or architecture that supports SPI and the C programming language. In
the header file for the drivers (hcs_control_driver.h), the following two functions are declared with an external
reference:

/* --------------------------- Porting Functions ---------------------------- */
/*
 * These functions need to be implemented by each individual device port. The functions
 * handle the low-level hardware specific implementation with the respective
 * architecture's specific hardware peripherals (SPI and GPIO)
 */
bool HCS_port_spiSendData(uint8_t *data, uint8_t len, uint8_t* respData);
void HCS_port_assertSPI(void);
void HCS_port_deassertSPI(void);

www.ti.com Platform Drivers

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

Porting is meant to be straight forward, however a description of each function and guidance for porting is shown
in Table 2-2.

Table 2-2. Architecture Porting Functions
Function Description Return Value
HCS_port_spiSendData Performs a full-duplex SPI transaction. data represents the data

to be sent and respData is the data that is received. len is the
length of the transaction. The function needs to be blocking (either
by sleeping or polling) until the entirety of the SPI transaction is
complete.

stdbool representation of result
of transaction. true if transaction
completed without issue, false
otherwise.

HCS_port_assertSPI Sets the chip select (CS) line of the SPI bus low. This is used for
both single and daisy chained transactions as well as used by the
HCS_port_spiSendData function above.

None

HCS_port_deassertSPI Sets the chip select (CS) line of the SPI bus high. This is used for
both single and daisy chained transactions as well as used by the
HCS_port_spiSendData function above.

None

2.4 API Guide

References
• tHCSResponseCode Union (Section 2.4.1)
• HCS_convertCurrent (Section 2.4.2)
• HCS_convertTemperature (Section 2.4.3)
• HCS_convertVoltage (Section 2.4.4)
• HCS_getChannelFaultStatus (Section 2.4.5)
• HCS_getDeviceFaultSatus (Section 2.4.6)
• HCS_gotoLPM (Section 2.4.7)
• HCS_gotoSleep (Section 2.4.8)
• HCS_initializeDevice (Section 2.4.9)
• HCS_readRegister (Section 2.4.10)
• HCS_setSwitchState (Section 2.4.11)
• HCS_updateConfig (Section 2.4.12)
• HCS_wakeupDevice (Section 2.4.13)
• HCS_writeRegister (Section 2.4.14)

2.4.1 tHCSResponseCode Union Reference

Data Fields

typedef union
{
 uint8_t byte;
 struct
 {
 unsigned I2T_FLT : 1;
 unsigned LPM_FLT : 1;
 unsigned CHAN_TSD : 1;
 unsigned ILIMIT_FLT : 1;
 unsigned SHRT_VBB_FLT : 1;
 unsigned OL_FLT : 1;
 unsigned SUPPLY_FLT : 1;
 unsigned GLOBAL_ERR_WRN : 1;
 } bits;
} tHCSResponseCode;

Platform Drivers www.ti.com

6 Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

2.4.2 float_t HCS_convertCurrent (uint16_t rawValue, uint16_t ksnsVal, uint16_t snsRes)

Converts a raw ADC current value to a readable float value.

This is a convenience function that can take a raw value read from one of the ADC result registers and convert
the register into a human readable float value.

Table 2-3. Parameters
in rawValue Raw value to convert

in ksnsVal KSNS constant from the data sheet

in snsRes Value of resistor on the SNS pin

Table 2-4. Return Values
returnCode Floating point representation of current

2.4.3 float_t HCS_convertTemperature (uint16_t rawValue)

Converts a raw ADC temperature value to a readable float value.

This is a convenience function that can take a raw value read from one of the ADC result registers and convert it
into a human readable float value.

Table 2-5. Parameters
in rawValue Raw value to convert

Table 2-6. Return Values
returnCode Floating point representation of temperature

2.4.4 float_t HCS_convertVoltage (uint16_t rawValue)

Converts a raw ADC voltage value to a read float value.

This is a convenience function that can take a raw value read from one of the ADC result registers and convert
the value into a human readable float value.

Table 2-7. Parameters
in rawValue Raw value to convert

Table 2-8. Return Values
returnCode Floating point representation of voltage

Table 2-9. Return Values
returnCode An instance of tHCSResponseCode

2.4.5 tHCSResponseCode HCS_getChannelFaultStatus (uint8_t chanNum, uint16_t * fltStatus)

Reads an individual channel's fault status.

Reads the individual channel's fault status and stores the status into fltStatus

Table 2-10. Parameters
in chanNum Channel number to read

out fltStatus Fault status can be stored here

www.ti.com Platform Drivers

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

2.4.6 tHCSResponseCode HCS_getDeviceFaultSatus (uint16_t * fltStatus)

Reads the device's fault status.

Reads the device's fault status and stores the status into fltStatus

Table 2-11. Parameters
out fltStatus Fault status can be stored here

Table 2-12. Return Values
returnCode An instance of tHCSResponseCode

2.4.7 tHCSResponseCode HCS_gotoLPM (lpm_exit_curr_ch1_t ch1ExitCurrent, lpm_exit_curr_ch2_t
ch2ExitCurrent)

Puts the device into LPM mode.

This function can send the command to go into LPM mode. The MCU is responsible to monitor the FLT pin for a
falling edge if the exit current if the device exceeds the exit current level. Alternatively, the HCS_wakeupDevice
function can be used to wakeup the device.

Table 2-13. Parameters
in ch1ExitCurrent Exit current for channel 1

in ch2ExitCurrent Exit current for channel 2

2.4.8 tHCSResponseCode HCS_gotoSleep (void)

Puts the device into SLEEP mode.

This function can send the command to go into SLEEP mode. Note that all values in the device's registers can
be reset after exiting sleep mode. The device needs to be woken up by the HCS_wakeupDevice function.

Table 2-14. Return Values
returnCode An instance of tHCSResponseCode

2.4.9 tHCSResponseCode HCS_initializeDevice (TPS2HCS10Q1_CONFIG * config)

Initializes the device with device configuration structure.

This function can take a configuration structure that is generated from the Smart Fuse Configurator GUI software
and send all of the values to the attached high-side switch. The common practice here is to call this function on
initial boot of the MCU or when the device wakes up from sleep mode with all of the register configurations lost.

Table 2-15. Parameters
in config Pointer to configuration structure

Table 2-16. Return Values
returnCode An instance of tHCSResponseCode

2.4.10 tHCSResponseCode HCS_readRegister (uint8_t addr, uint16_t * readValue)

Performs a raw register read for specified register address.

This function performs a simple register read from the given address and populates the provided pointer with the
register contents.

Table 2-17. Parameters
in addr Register address to read

out payload Value of register populated to this parameter

Table 2-18. Return Values
returnCode An instance of tHCSResponseCode

Platform Drivers www.ti.com

8 Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

2.4.11 tHCSResponseCode HCS_setSwitchState (uint8_t swState)

Sets the on/off switch state status per channel.

This can turn on or off a channel of the high-side switch. The parameter is a bitwise representation of the
channels to be enabled.

Table 2-19. Parameters
in swState Pointer to configuration structure

Table 2-20. Return Values
returnCode An instance of tHCSResponseCode

2.4.12 tHCSResponseCode HCS_updateConfig (TPS2HCS10Q1_CONFIG * config)

Updates the provided configuration with smart fuse settings.

This API can populate the provided configuration structure with the values from the high-side switch. The can be
used when the host software changes settings within the register and wants to update the initial configuration
structure.

Table 2-21. Parameters
out config Pointer to configuration structure

Table 2-22. Return Values
returnCode An instance of tHCSResponseCode

2.4.13 tHCSResponseCode HCS_wakeupDevice (void)

Wakes up the device from sleep mode.

This API simply issues a dummy write to register address 0xFF (which does not exist) so that the device wakes
from sleep mode. Since the device wakes from sleep mode via a CS pin transition, the dummy write causes the
device to wake up.

Table 2-23. Return Values
returnCode An instance of tHCSResponseCode

2.4.14 tHCSResponseCode HCS_writeRegister (uint8_t addr, uint16_t payload)

Performs a raw register write for specified register address.

This function performs a simple register write to the given address with the provided payload

Table 2-24. Parameters
in addr Register address to write

in payload Value to write to addr

Table 2-25. Return Values
returnCode An instance of tHCSResponseCode

www.ti.com Platform Drivers

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

3 Configuration or Evaluation Tool
The Smart Fuse Configurator tool is a software host tool that can be used along side of the HSS-
HCMOTHERBRDEVM to live configure an HCS high-side switch as well as read out diagnostics such as
current sense and fault conditions. Additionally, starting from version 1.9.4 the software has the ability to enter
configuration mode without the need for a physical EVM board. In configuration mode, the user is able to
change all different aspects of the device's settings such as current limit, capacitive charging modes, diagnostic
reporting, and so on. The use can also use the I2T tuner to configure the device to match the wire profile and
capabilities of the melting fuse being replaced. To enter configuration mode, select Help->Demo/Config Mode
as shown in Figure 3-1:

Figure 3-1. Configuration Mode

Once in demo mode, the user can use the software as described in the Smart Fuse Evaluation Module user's
guide. Note that actual communication with the EVM are not performed in this mode and any diagnostics
reported on the GUI are also not reflected. Demo mode can be exited by either selecting Help->Demo/Config
Mode or by plugging in an EVM to the device.

Once the device has been configured to meet the application needs, the configuration can be exported by
selecting Export->Configuration Files:

Configuration or Evaluation Tool www.ti.com

10 Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

Figure 3-2. Export Configuration

The files that are exported from this dialog are the same configuration files that come packaged with the
provided code examples (default titled tps2hcs10_config.h and tps2hcs10_config.c). As an easy point-of-
entry, the configuration files can be exported to the Empty Example (Section 4.1) and override the defaults file
for a blank program used to start smart fuse development.

Note that the exported configuration files depend on the device specific header file that is provided on the project
page. This header file contains all off the register definitions and enumerations relevant to the specific high-side
switch part number.

The exported files contains a register definition that corresponds to every relevant configuration register of the
device:

typedef struct TPS2HCS10Q1_CONFIG
{
 TPS2HC10S_CRC_CONFIG_OBJ crcConfig;
 TPS2HC10S_LPM_OBJ lpmConfig;
 TPS2HC10S_FAULT_MASK_OBJ faultMaskConfig;
 TPS2HC10S_SW_STATE_OBJ swState;
 TPS2HC10S_DEVICE_SAF_OBJ devSAFConfig;
 TPS2HC10S_DEV_CONFIG_OBJ devConfig;
 TPS2HC10S_ADC_CONFIG_OBJ adcConfig;
 TPS2HC10S_PWM_CH1_OBJ pwmCh1Config;
 TPS2HC10S_ILIM_CONFIG_CH1_OBJ ilimCh1Config;
 TPS2HC10S_DIAG_CONFIG_CH1_OBJ diagConfigCh1;
 TPS2HC10S_I2T_CONFIG_CH1_OBJ i2tConfigCh1;
 TPS2HC10S_PWM_CH2_OBJ pwmCh2Config;
 TPS2HC10S_ILIM_CONFIG_CH2_OBJ ilimCh2Config;
 TPS2HC10S_DIAG_CONFIG_CH2_OBJ diagConfigCh2;
 TPS2HC10S_I2T_CONFIG_CH2_OBJ i2tConfigCh2;
 } TPS2HCS10Q1_CONFIG;

A pointer to this function is passed into the HCS_initializeDevice function of the platform driver (typically at
microcontroller boot-up) to initially configure the high-side switch. After the structure definition, an instantiation of
the structure is declared with values that represent all of the configured value from the Smart Fuse Configurator
tool. The user can user this instantiation as a starting point and update manually through the code if a change is
required, or regenerate the configuration file from the Smart Fuse Configurator program.

www.ti.com Configuration or Evaluation Tool

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

4 Code Examples
As part of the smart fuse software package, as set of code examples are provided that highlight both the
functionality or differentiation of the smart fuse device family as well as the ease-of-use of the HCS platform
drivers. A summary of the available code examples are shown in Table 4-1.

Table 4-1. Smart Fuse Code Examples
Code Example Name Description
Empty Simple code example that initializes the high-side switch from a Smart Fuse Configurator exported

structure.

I2T Trip Showcases I2T functionality and how to detect/recover from an I2T fault.

Low-Power Mode Puts the device into low-power mode and waits for a wake-up event

Current Sense Demonstrates how to use the HCS family's high-accuracy current sense and optimize readings for both
lower and higher currents

4.1 Empty Example
The empty code example is a simple code example that is used to serve as a starting point for smart fuse
applications. All this code example does is boot up, configure the underlying SPI peripheral, and then pass
control off to the user. The main part of the initial configuration are shown in the following:

 /* Configuring the device initially */
 HCS_wakeupDevice();
 HCS_initializeDevice(&exportConfig);

The HCS_wakeupDevice function simply issues a dummy write to the device. Out of reset, the HCS family is
in sleep mode. The wakeup function issues a write to register 0xFF (which doesn't exist) to make sure that the
device is out of sleep.

The HCS_initializeDevice function takes the configuration file exported from the Smart Fuse Configurator
application and loads it into the high-side switch. This function is typically called every time on MCU boot-up
to initialize the high-side switch.

4.2 I2T Trip Example
The I2T trip code examples shows how to handle an event on the high-side switch when an I2T event
happens in the system. This code example assumes that the device is setup to LATCH mode for I2T faults
and shows the correct sequence of events to reset the device after the I2T event occurs. In auto-retry mode
(where TCLDN_CHx of the I2T_CONFIG_CHx register are set to a timeout), the device automatically waits the
appropriate duration of time before re-enabling the channel.

Note, that in this code example the FAULT pin is setup to be used as a falling edge interrupt. When the I2T trip
occurs, the FAULT pin (which is open drain) is pulled low and the microcontroller is interrupted. The software
on the microcontroller can then wake up device execution and take the necessary mitigations to re-enable the
device. In LATCH mode, the appropriate steps to take after the I2T trip event occurs is to:

1. Disable the affected channel
2. Set the TCLDN_CHx of the I2T_CONFIG_CHx register to an appropriate cool-down time
3. Wait the specified duration by sleeping on the microcontroller
4. Set the TCLDN_CHx of the I2T_CONFIG_CHx register back to LATCH mode
5. Re-enable the channel

The following is a relevant snippet of code:

 if(currentValue & TPS2HC10S_FLT_STAT_CH1_I2T_FLT_CH1_MASK)
 {
 /* Disabling the channel */
 HCS_setSwitchState(0);

 /* Setting the device to 2s retry state */
 exportConfig.i2tConfigCh1.value.bits.TCLDN_CH1 =
 (tcldn_ch1_en_3_0x2 >> TPS2HC10S_I2T_CONFIG_CH1_TCLDN_CH1_OFS);
 HCS_writeRegister(TPS2HC10S_I2T_CONFIG_CH1_REG,

Code Examples www.ti.com

12 Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

 exportConfig.i2tConfigCh1.value.word);

 /* Waiting for two seconds. At this point we can normally
 yield the tasks if we were in an RTOS, but just waiting for
 an interrupt here. */

 DL_TimerA_startCounter(TIMER_0_INST);
 while(timerTriggered == false)
 {
 __WFI();
 }
 timerTriggered = false;

 /* Setting back to latch mode */
 exportConfig.i2tConfigCh1.value.bits.TCLDN_CH1 = 0;
 HCS_writeRegister(TPS2HC10S_I2T_CONFIG_CH1_REG,
 exportConfig.i2tConfigCh1.value.word);

 /* Re-enabling the channel */
 HCS_setSwitchState(1);
 }

4.3 Low-Power Mode Example
The low-power mode example shows how to set the HCS high-side switch into low-power mode and then wake
up on a fault event. To use this example, before downloading the code to your microcontroller set a load on
channel 1 that consumes less that 800mA of current (what we set the LPM exit current to using HCS_gotoSleep.
Once the code example has been downloaded, increase the load current to greater than 800mA. This can cause
the LPM to exit, the FAULT pin to trigger, and for the microcontroller to interrupt/handle the event. The relevant
application code can be seen below:

 while(1)
 {
 /* Putting the device into LPM. 800mA exit current on CH1 */
 HCS_gotoLPM(lpm_exit_curr_ch1_en_2_0x1, lpm_exit_curr_ch2_en_1_0x0);

 /* Wait for the fault line to trigger low on PB3 */
 __WFI();

 /* If we woke up from the interrupt, check to make sure it was a signal
 for an LPM wakeup. The idea here is that the user increases the
 load current somehow to "force the device" from LPM. */
 resCode = HCS_readRegister(TPS2HC10S_FLT_STAT_CH1_REG,
 ¤tValue);
 resCode.byte |= HCS_readRegister(TPS2HC10S_FLT_STAT_CH1_REG,
 ¤tValue).byte;

 if(currentValue & TPS2HC10S_FLT_STAT_CH1_LPM_WAKE_CH1_MASK)
 {
 /* Set a breakpoint here for demonstration */
 asm ("nop");
 }

 if(resCode.byte != 0)
 {
 handleError(resCode);
 }
 }

4.4 Current Sense Example
The current sense code example shows how the HCS family of smart fuse high-side switches has a scalable and
extremely flexible current sense. This code example sets up a 1ms time that periodically wakes up and samples
the load current of channel 1 of the high-side switch. If the load current is below 500mA, the device enables the
following settings of the high-side switch:

• Input voltage scaling (ISNS_SCALE_CHx of DIAG_CONFIG_CHx register) is enabled allowing for the ADC
input voltage to be scaled by a factor of 8x

• Open load detection enabled (OL_ON_EN_CHx of DIAG_CONFIG_CHx) which changes KSNS ratio to lower
value (see electrical specs in the data sheet)

www.ti.com Code Examples

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

A breakpoint line is set at each event to allow the user to break and understand the behavior of the current
sense. When the low current sense mode is entered in the software, a state variable (inLowCurrent) is set
to signify the current status and the device continues to periodically sample the current. If the current level
saturates the ADC reading, the low current mode is exited and the normal scaling/KSNS modes are used. A
snippet of the relevant code are shown in the following code:

 while(1)
 {
 __WFI();

 /* Reading the load current value. We need to read the register twice
 as the */
 resCode = HCS_readRegister(TPS2HC10S_ADC_RESULT_CH1_I_REG,
 ¤tValue);
 resCode.byte |= HCS_readRegister(TPS2HC10S_ADC_RESULT_CH1_I_REG,
 ¤tValue).byte;

 /* For each transaction, the high-side switch can return an error
 status code that can report common faults of the device. */
 if(resCode.byte != 0)
 {
 handleError(resCode);
 }

 /* Masking out the relevant bits */
 currentValue &= TPS2HC10S_ADC_RESULT_CH1_I_ADC_RESULT_CH1_I_MASK;

 /* Check to see if we are below the threshold where we want to turn
 on current sense scaling and change the KSNS ratio and enable
 scaling by 8x. This can allow for */
 if((currentValue < LOW_CURRENT_SNS_THRESHOLD) &&
 (inLowCurrent == false))
 {
 exportConfig.diagConfigCh1.value.bits.OL_ON_EN_CH1 = 1;
 exportConfig.diagConfigCh1.value.bits.ISNS_SCALE_CH1 = 1;
 inLowCurrent = true;
 HCS_writeRegister(TPS2HC10S_DIAG_CONFIG_CH1_REG,
 exportConfig.diagConfigCh1.value.word);

 /* Adding place to set a breakpoint for the sake of demonstration */
 asm ("nop");
 }
 else if((currentValue == LOW_CURRENT_SNS_SATURATION) &&
 (inLowCurrent == true))
 {
 exportConfig.diagConfigCh1.value.bits.OL_ON_EN_CH1 = 0;
 exportConfig.diagConfigCh1.value.bits.ISNS_SCALE_CH1 = 0;
 HCS_writeRegister(TPS2HC10S_DIAG_CONFIG_CH1_REG,
 exportConfig.diagConfigCh1.value.word);

 /* Adding place to set a breakpoint for the sake of demonstration */
 asm ("nop");
 }
 }

By being able to detect low current and enable the scaling/KSNS modes, the high-side sense is able to greatly
the current sense resolution and meet applications requiring high current sense accuracy.

5 Summary
The software drivers and code examples for the HCS family of smart fuse devices provide a versatile range of
functions for developing software for automotive smart fuse applications. These drivers can be easily ported to
support a variety of different host architectures and the simplistic design of the drivers allows a developer to
get up-to-speed with software development for the HCS devices with little backend overhead. Additionally, with
the use of the Smart Fuse Configurator software tool, the user has the ability to seamlessly configure the smart
fuse device and tune the drivers to the exact requirement of the end application. These software tools remove
barriers for adapting the HCS device family into a smart fuse or zonal application and provide a flexible approach
for combining software or hardware development.

Summary www.ti.com

14 Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/download/HSS-SMART-CONFIGURATOR
https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

6 References
• Texas Instruments, TPS2HCS10-Q1 Automotive, dual-channel 10-mΩ smart high-side switch with I²T wire

protection, low IQ mode and SPI
• Texas Instruments, HCS-SMARTFUSE-DRIVERS Simple C drivers and code examples for HCS smart fuse

devices
• Texas Instruments, HSS-HCMOTHERBRDEVM Smart fuse evaluation module
• Texas Instruments, HSS-2HCS10EVM TPS2HCS10-Q1 daughter card for smart fuse high-side switch
• Texas Instruments, HSS-SMART-CONFIGURATOR Configuration tool for the HSS-HCMOTHERBRDEVM

and TI's smart fuse high-side switches
• Texas Instruments, HCS-HEADER-FILES C Header files for smart fuse high-side switches with register

definitions

www.ti.com References

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

15

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/product/TPS2HCS10-Q1
https://www.ti.com/product/TPS2HCS10-Q1
https://www.ti.com/tool/download/HCS-SMARTFUSE-DRIVERS
https://www.ti.com/tool/download/HCS-SMARTFUSE-DRIVERS
https://www.ti.com/tool/HSS-HCMOTHERBRDEVM
https://www.ti.com/tool/HSS-2HCS10EVM
https://www.ti.com/tool/download/HSS-SMART-CONFIGURATOR
https://www.ti.com/tool/download/HSS-SMART-CONFIGURATOR
https://www.ti.com/tool/download/HCS-HEADER-FILES
https://www.ti.com/tool/download/HCS-HEADER-FILES
https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

7 Revision History

Changes from Revision * (May 2024) to Revision A (July 2024) Page
• Updated the numbering format for tables, figures, and cross-references throughout the document 1
• Updated or removed several API references throughout the document ... 1

Revision History www.ti.com

16 Common Software Use Case Examples with TI Smart Fuse High-Side
Switches

SLVAFT2A – MAY 2024 – REVISED JULY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAFT2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAFT2A&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Software Ecosystem
	2 Platform Drivers
	2.1 Driver Concept
	2.2 Supported Platforms
	2.3 Porting to Other Platforms
	2.4 API Guide
	2.4.1 tHCSResponseCode Union Reference
	2.4.2 float_t HCS_convertCurrent (uint16_t rawValue, uint16_t ksnsVal, uint16_t snsRes)
	2.4.3 float_t HCS_convertTemperature (uint16_t rawValue)
	2.4.4 float_t HCS_convertVoltage (uint16_t rawValue)
	2.4.5 tHCSResponseCode HCS_getChannelFaultStatus (uint8_t chanNum, uint16_t * fltStatus)
	2.4.6 tHCSResponseCode HCS_getDeviceFaultSatus (uint16_t * fltStatus)
	2.4.7 tHCSResponseCode HCS_gotoLPM (lpm_exit_curr_ch1_t ch1ExitCurrent, lpm_exit_curr_ch2_t ch2ExitCurrent)
	2.4.8 tHCSResponseCode HCS_gotoSleep (void)
	2.4.9 tHCSResponseCode HCS_initializeDevice (TPS2HCS10Q1_CONFIG * config)
	2.4.10 tHCSResponseCode HCS_readRegister (uint8_t addr, uint16_t * readValue)
	2.4.11 tHCSResponseCode HCS_setSwitchState (uint8_t swState)
	2.4.12 tHCSResponseCode HCS_updateConfig (TPS2HCS10Q1_CONFIG * config)
	2.4.13 tHCSResponseCode HCS_wakeupDevice (void)
	2.4.14 tHCSResponseCode HCS_writeRegister (uint8_t addr, uint16_t payload)

	3 Configuration or Evaluation Tool
	4 Code Examples
	4.1 Empty Example
	4.2 I2T Trip Example
	4.3 Low-Power Mode Example
	4.4 Current Sense Example

	5 Summary
	6 References
	7 Revision History

