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Agenda

• Efficiency targets and standards

• Battery charging and LED lighting application overview

• The LLC topology

• Practical implementation considerations
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Efficiency standards: timeline
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DOE Level VI and Ecodesign 2019/1782
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AC/DC low voltage external power supplies (excludes multi-output)

Nameplat output power (pout) Maximum input power at no load  (in decimal) Minimum average efficiency (active mode)

<1 W ≤ 100 𝑚𝑊 ≥ 0.517 × 𝑃𝑜𝑢𝑡 + 0.087

1 W to 49 W ≤ 100 𝑚𝑊 ≥ 0.0834 × 𝑙𝑛 𝑃𝑜𝑢𝑡 − 0.0014 × 𝑃𝑜𝑢𝑡 + 0.609

49 W to 250 W ≤ 210 𝑚𝑊 ≥ 0.870

>250 W ≤ 500 𝑚𝑊 ≥ 0.875

Key Differences

DOE Level VI Ecodesign 2019/1782 CoC Tier II

Mandatory? Yes Yes Voluntary

10% Load 

Requirement?

No Reported but no requirement Yes

Includes >250W 

Supplies?

Yes No No



Battery charging: overview
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• Typical Output Voltage Range
• 2.7 V to 4.4 V per cell for Li-

ion chemistries

• Cells stacked in series

• Some chargers will support 
trickle charging for severely 
depleted batteries

• Battery charged at fixed current, 
then regulated at fixed voltage Internal 

Impedance Cell Balancing and Reporting

To System MCU

+ -



Battery charging: typical AC/DC charger
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LED lighting

• Typical input of 120 Vac to 277 Vac, PFC bus 
voltage of ~450 V

• Brightness proportional to current

• Forward voltage increases as forward current 
increases

• Constant Current (CC)

– Easy to achieve more consistent brightness 
by regulating LED current

• Constant Voltage (CV)

– Required for some light engines with built in 
dimming
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LED lighting: typical AC/DC LED driver
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LLC converter: overview
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• Why LLC?
• Full zero voltage switching for 

primary switches (lower 
switching loss)

• Zero current switching for 
secondary switches when at 
or below resonance

• Sinusoidal power stage 
currents (lower DM currents 
from input)

• Transformer leakage can be 
high (lower CM currents)



LLC converter: overview
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• Fixed, 50% duty cycle

• Regulation achieved via 
modulating frequency



LLC converter: power stage waveforms
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LLC Converter: Operating Frequency
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0A

0A

0A

• Above resonance, ZVS achieved, CCM* on sec, rectifiers not soft 

switched. Lower RMS currents for given power

• At resonance, ZVS achieved, CCM on sec, rectifiers are soft 

switched (ZCS), optimum efficiency

• Below resonance, ZVS achieved, DCM on sec, rectifiers are soft 

switched (ZCS), RMS currents higher for given power



LLC converter: gain curve considerations

• Both A and B achieve the same gain range 
(vertical bars). Which is better?

• Noteworthy Characteristics of A

– Narrow range of frequency operation: easier to 

optimize core losses

– Requires smaller Lm: increased magnetizing 

currents

• Noteworthy Characteristics of B

– Best efficiency at lowest frequency: less heat 

at highest output power

– Reverse recovery in rectifiers

– Need to make sure enough magnetizing 

current to maintain ZVS at highest frequency
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Typ gain vs freq plot
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LLC converter: gain curve considerations

• Shown at right

– Vout range of 13V to 21V

– Charging current of 12A

– Lm: 510uH

– Lr: 85uH

– Cr: 30nF

– Turns ratio of 15:1

• For a battery charger where output current 
is fixed, Re increases with output voltage

– 𝑅𝑒 =
8×𝑛2

π2
×

𝑉𝑜𝑢𝑡

𝐼𝑜𝑢𝑡

– Re at 21V: 319 Ω

– Re at 13V: 198 Ω
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Fsw

range



LLC converter: gain curve considerations

• Shown at right

– Vout range of 13V to 21V

• LED string current of 12A at 21V output

• LED string current of 1A at 13V output

– Lm: 510uH

– Lr: 85uH

– Cr: 30nF

– Turns ratio of 15:1

• For a LED driver, light load expected at 
lower output voltage

– 𝑅𝑒 =
8×𝑛2

π2
×

𝑉𝑜𝑢𝑡

𝐼𝑜𝑢𝑡

– Re at 21V: 319 Ω

– Re at 13V: 2370 Ω
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Fsw

range



LLC converter: switching loss and dead time
• 𝑡𝑑𝑒𝑎𝑑𝑡𝑖𝑚𝑒 = 𝑡𝑑(𝑜𝑓𝑓) + 𝑡𝑟𝑒𝑠

– 𝑡𝑑(𝑜𝑓𝑓): delay time from falling edge of gate drive 

to MOSFET fully off

– 𝑡𝑟𝑒𝑠: time needed for switch node to charge up to 

Vin or discharge down to gnd

• 𝑡𝑟𝑒𝑠 = 2 × 𝐶𝑜𝑠𝑠(𝑡𝑟) ×
𝑉𝑖𝑛

𝐼𝑚

– Optimal 𝑡𝑑𝑒𝑎𝑑𝑡𝑖𝑚𝑒 changes with operating 

frequency

• Excessive dead time gives longer body diode 

conduction

• Insufficient dead time results in loss of ZVS 

and incurs turn on losses

• Adaptive dead time convenient for wide Vout

applications

• 𝑃𝑠𝑤 ≈ 0.5× 𝐼𝑚×𝑉𝑖𝑛× 𝑡𝑑(𝑜𝑓𝑓)× 𝑓𝑠𝑤

• 𝑃𝑑𝑟𝑖𝑣𝑒 ≈ 𝑄𝑔 × 𝑉𝑔𝑎𝑡𝑒 × 𝑓𝑠𝑤
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LLC converter: conduction loss

• Conduction loss

– 𝐼𝑂𝐸 =
π

2 2
×

𝐼𝑜𝑢𝑡

𝑛

– 𝐼𝑚 =
2 2

π
× 𝑛 ×

𝑉𝑜𝑢𝑡

2π×𝑓𝑠𝑤×𝐿𝑚

– 𝐼𝑟 = 𝐼𝑚
2 + 𝐼𝑂𝐸

2

– 𝑃𝑐𝑜𝑛𝑑 = 0.5 × 𝐼𝑟
2 ×𝑅𝑑𝑠𝑜𝑛

• Total Loss

– 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑤 +𝑃𝑑𝑟𝑖𝑣𝑒 + 𝑃𝑐𝑜𝑛𝑑
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LLC converter: rectifier losses

• Reverse Recovery Loss (above 

resonance only)

– 𝑃𝑟𝑟 ≈ 𝑄𝑟𝑟 × 𝑓𝑠𝑤 ×𝑉𝑑𝑠

• Conduction Loss

– 𝐼𝑂𝐸𝑆 = 𝑛× 𝐼𝑂𝐸

– 𝑃𝑐𝑜𝑛𝑑 ≈ 𝐼𝑂𝐸𝑆
2 ×𝑅𝑑𝑠𝑜𝑛

• Switching Loss

– 𝑃𝑠𝑤 = 0.5×𝐶𝑜𝑠𝑠(𝑒𝑞) × 𝑉𝐷𝑆
2× 𝑓𝑠𝑤

• Driver Loss

– 𝑃𝑑𝑟𝑖𝑣𝑒 ≈ 𝑄𝑔 ×𝑉𝑔𝑎𝑡𝑒 ×𝑓𝑠𝑤

• Total loss

– 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑟𝑟 +𝑃𝑐𝑜𝑛𝑑+𝑃𝑠𝑤 +𝑃𝑑𝑟𝑖𝑣𝑒
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LLC converter: center tap or full bridge?

19

VIN

Vout
Cr

Lr

Lm

VIN
Vout

Cr

Lr

Lm

Center Tap Full Bridge

Rectifier Reverse 

Voltage Rating

>2x Vout >Vout

Number of Rectifiers 2 4

Number of Secondary 

Windings 

2 (needs tight 

matching)

1

Rectifier Conduction 

Losses

2x  compared to 

center tap

𝑅𝑠𝑒𝑐 for same winding 

area

2x compared to full 

bridge

𝐼𝑟𝑚𝑠 per winding 0.5x compared to full 

bridge

Transformer 

secondary copper loss

2x compared to full 

bridge



Synchronous rectifier considerations

• Majority of analog SR controllers for LLC are 
based on Vds sensing scheme

• Smaller Rdson reduces conduction loss when 
the MOSFET is on but can lead to earlier turn-
off and longer body diode conduction time

• Some designs will include circuitry to shut off the 
SR at no load or use SR controllers that shut 
down at light load
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Practical implementation: CV LED driver

• Motivation: optimize efficiency of downstream converter by 
adjusting LLC output voltage

• BJT circuit sets current 𝐼3

• 𝐼1 = 𝐼2+ 𝐼3

• 𝑉𝑜𝑢𝑡 = 2.5𝑉
𝑅1+𝑅2 𝑅3+𝑅4

𝑅3𝑅4
+

𝑅3+𝑅4

𝑅4
−

𝑅1+𝑅2

𝑅3
+ 𝐼3 𝑅1+ 𝑅2

• As ADJ voltage increases, Vout increases
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Practical implementation: CC LED driver & 
battery charger
• Two control loops

– One sets output current regulation

– The other sets output voltage regulation

– Diode OR’d together to opto-coupler

– Loop with lowest error “wins” and controls the state 

of the LLC converter

• References for the error amplifiers can be fixed 
(i.e. TL103W) or adjustable

– Analog dimming or  trickle charge accomplished by 

adjusting reference voltage of current control loop
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Practical considerations: AUX or no AUX?

• Traditionally an AUX flyback is 

used to supply system power, 

PFC and LLC are shut down at 

standby to meet no load input 

power standards

• Newer PFC+LLC+SR controllers 

contain advanced light load 

features that can enable 

removing AUX supply and on/off 

circuitry while still meeting 

regulation requirements
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Practical considerations: AUX or no AUX?

• If No AUX is pursued, bias for the 
primary/secondary side circuitry is typically 
done by adding AUX windings onto the LLC 
transformer

• Bias voltage will vary with the output voltage
– AUX voltage may require  post regulation to maintain 

safe voltage stresses depending on output voltage 

range
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Reference design: 500W e-bike charger

• Universal AC input

• 46V to 71V output at 7A charging 
current

• Precharge mode for <46V output

• 94% peak efficiency

• Status indication and fan control
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https://www.ti.com/tool/PMP40766



Additional resources
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1. Design and Optimization of a High-Performance LLC Converter; B McDonald, J Freeman: slup306

2. Designing an LLC Resonant Half-Bridge Power Converter; H. Huang: slup263

3. LLC Design for UCC29950: J Leisten: (note: despite the title this covers LLC design in general)  slua733

4. A current sharing, paralleled, synchronised HB-LLC, using a C2000 processor: tiduct9

5. LCC Converter Small Signal Modeling: McDonald.:  Texas Instruments Power Supply Design Seminar, SEM2100, 2014. 

Note_1

6. Zero Voltage Switching Resonant Power Conversion: Andreycak:. Unitrode Power Supply Design Seminar 700, 1990.

7. Understanding Noise-Spreading Techniques and their Effects in Switch-Mode Power Applications, Rice et al. slup269

8. Survey of resonant converter topologies: slup376

9. Control and design challenges for synchronous rectifiers: slup378

Note_1: TI power supply design seminar archive at  http://www.ti.com/ww/en/power-training/login.shtml?DCMP=pwr-psds-

archive

Note_2: TI reference design library: https://www.ti.com/reference-designs/index.html

https://www.ti.com/seclit/ml/slup306/slup306.pdf
http://www.ti.com/lit/slup263
http://www.ti.com/lit/an/slua733/slua733.pdf
http://www.ti.com.cn/cn/lit/ug/tiduct9/tiduct9.pdf
https://www.ti.com/seclit/ml/slup269/slup269.pdf
https://www.ti.com/seclit/ml/slup376/slup376.pdf?ts=1615533205303&ref_url=https%3A%2F%2Fwww.ti.com%2Fww%2Fen%2Fpower-training%2Flogin.shtml
https://www.ti.com/seclit/ml/slup378/slup378.pdf?ts=1615533248895&ref_url=https%3A%2F%2Fwww.ti.com%2Fww%2Fen%2Fpower-training%2Flogin.shtml
http://www.ti.com/ww/en/power-training/login.shtml?DCMP=pwr-psds-archive
https://www.ti.com/reference-designs/index.html
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