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ABSTRACT

This application report describes implementing Radix-2 FFT algorithms on the
TMS470R1x. The FFT is implemented to work with complex input data. The key
objective is to get a fast execution time, with obtaining a small code size secondary.
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In many applications, specific signals are measured with sensors. These signals contain information
necessary for the application to perform its tasks. The signal has to be transformed by special algorithms
before the application can get the information from it.

In most cases, it is useful to convert the signal from its time domain into the frequency domain to
determine the spectrum of the signal and the different frequencies it is made up of. To complete this
conversion, a Fourier transform has to be performed. Different algorithms were developed for this task,
such as discrete Fourier transforms (DFT) or fast Fourier transforms (FFT).

This application report explains a Radix-2 FFT algorithm to convert a signal into the frequency domain. It
works on complex input data, where the real and imaginary parts are stored in two separate arrays.

Other algorithms, such as the L-Shaped Butterfly, Hadamard Transform, etc., have a better execution
speed. However, they have certain limitations, for example, resolution. As the Radix-2 is the most
common transform used and therefore offers a good basis for performance comparison, we limit ourselves
to this FFT. The other algorithms are not explained in this application report.
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2 TMS470R1x Architecture

3 Fourier Transform

( ) ( ) 12 ft
S f s t e dt

¥
- p=

- ¥
ò

(1)

( ) ( ) ( )
1

12
1 k 0,1, N 1

0

N
f tk iS f s t e t tk i i i

i

-
- p

= + - = -

=
å K

(2)

4 FFT

2 /W j NN e - p
=

(3)

( )
1

m 0,1, , N 1 16, p 106

0

N
mm

X k W X n
N

n

-
= = -é ù é ùë û ë û

=
å K

(4)

TMS470R1x Architecture

The TMS470R1x contains a 16/32bit RISC CPU with a von Neumann architecture. All arithmetic
operations have to be performed in registers (of a load/store architecture). Therefore, all the parts of a
calculation have to be loaded into registers first. It also has a 32x8 hardware-multiplier implemented. The
instruction cycle time of the hardware multiplier depends on the format of the input data. It varies between
2 and 5 cycles for a multiplication. All other data processing instructions need 1 or 2 cycles. This
difference in the cycle time leads to the conclusion that the implemented algorithm should use as few
multiplications as possible.

With the Fourier transform, a function is split up in a sum of sine functions with different frequencies. To
get the original signal, the sine functions have to be overlaid. The time signal is transformed into the
frequency domain.

Fourier transform of signal s(t):

s(t) = Magnitude of the signal

f = Frequency of the signal

To do this transform with a CPU this equation has to be numerically integrated as shown in Equation 2:

If we look closely at this equation, we can see that the time for the calculation of the N sine components is
proportional to N2. This is a long computation time, which is not useful for real-time applications. This
lengthy computation time led to a special implementation of the Fourier transform, the fast Fourier
transform (FFT).

The FFT takes advantage of the cyclic features of the exponential function.

The equation for the discrete Fourier transform can be written as:

Figure 1 explains the cyclic features (twiddle factors) of the exponential function.
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FFT

Figure 1. Twiddle Factors (W8)

Explicitly, the twiddle factors translate into the following:

The measured samples can be split up in an even and an odd part.

Equation 4 can be rewritten as follows:
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4.1 Radix-2 FFT

FFT

(a[n] = x[2n] and b[n] = x[2n+1])

Equation 5 can be written in another way as follows:

To understand the basics of a FFT, it is often useful to look to a special flow diagram.

Figure 2 shows a diagram for an 8-point radix-2 DIT-FFT (decimation in time-FFT). There are several
ways to calculate a radix-2 FFT because the derivation from the DFT can be performed differently. Finally,
we end up with the distinction of decimation in time and decimation in frequency, depending on how the
twiddle factors are arranged in the butterfly. In addition, we can have bit-reversed inputs or outputs. The
scrambling caused by the bit-reversal can be corrected in the first or the last stage of the FFT.

4 Implementing Radix-2 FFT Algorithms on the TMS470R1x SPNA071A–November 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA071A


www.ti.com

x(0)

x(1)

X(0)

X(1)

x(3)

x(2)

X(3)

X(2)

x(7) X(7)

x(6)

x(5)

x(4)

X(6)

X(5)

X(4)

−1

−1

1
W

0
4

W
8
0

1
8

W

8
2

W
1

W
4
2

1
W4

W
4
3

3
8

W

4
W 8

1
W 4

0

−1

W
4
1

W
4
2 W 8

6

8
5

W

W 8
6

7
8W

3
W 4

3
W 4

3
W 4−1

1

0
W

N

( ) ( ) ( ) ( ) ( ) ( )_ , 1 _ , _ , cos _ , sinx re n s x re n s x re n t s x x im n t s x+ = + + * + + *
(9)

( ) ( ) ( ) ( ) ( ) ( )_ , 1 _ , _ , cos _ , sinx im n s x im n s x im n t s x x re n t s x+ = + + * - + *
(10)

( ) ( ) ( ) ( ) ( ) ( )_ , 1 _ , _ , cos _ , sinx re n t s x re n s x re n t s x x im n t s x+ + = - + * - + *
(11)

( ) ( ) ( ) ( ) ( ) ( )_ , 1 _ , _ , cos _ , sinx im n t s x im n s x im n t s x x re n t s x+ + = - + * + + *
(12)

FFT

Figure 2. 8-Point DIT-Radix2-FFT

In stage 1, no multiplication is needed, since the twiddle factor

is always 0 for sine and 1 for cosine. The real and imaginary parts of the butterfly can be calculated with
the following equations:
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4.2 Bit Reversal

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 00
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

Odd number of bits

Bit 0 and bit 2 are exchanged.
Bit 1 is in the middle and
remains unchanged.

0 00 0
0 00 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

0 00 0
0 0 01

0 1 0 0
1 1 0 0
0 0 1 0
1 0 01
0 1 1 0
1 1 1 0

Even number of bits

Bit 0 and bit 3 are exchanged.
Bit 1 and bit 2 are exchanged.

5 Implementation

Implementation

The cosine and sine values are normally implemented as lookup tables because the calculation takes too
long. The amount of ROM required depends on the number of points, which have to be calculated. This
means that for an N-point FFT, 2N values need to be stored. To minimize these requirements, a single
table with two pointers (one for cosine, one for sine) can be implemented.

Bit reversal is necessary to reorder the results or respectively the input data.

Discrete transforms are the main users of bit-reverse and digit-reverse routines. Discrete transforms take
discrete inputs in one domain and convert them to discrete outputs in another. For example, an FFT takes
a discrete time domain input and transforms it into the discrete frequency domain output (i.e., x(t) →
X(jwt).)

Bit-reverse and digit-reverse routines are routines in which the data is reordered based on its index value
from 0 to –1, where N is the number of points to be bit-reversed.

Many discrete transforms (FFT, DCT, IDCT, DST, etc.) are executed in place using the same memory
locations for both the input and output. This reduces both data size and algorithmic complexity.
Bit-reversing routines are needed to take full advantage of in-place execution. For example, if the input is
in normal order but the output is in bit-reverse order, then you have to do bit reversal during the last stage
of the FFT to view the resulting output in normal order.

A disadvantage of in-place bit reversal is that the original input data is lost, which is why we implemented
an out-of-place algorithm. The bit-reversal is implemented in the first stage of the FFT. This results in
larger RAM requirements and additional code. The extra code needed can easily be separated from the
FFT calculation itself and therefore creates no overhead in the cycle count for the FFT routine.

Since the TMS470 has no bit-reversed addressing mode, we created a bit-reversed offset table. Using this
table we were able to implement the bit-reversed addressing mode using the normal load commands.

The bit reversal is quite simple. If we take the binary format of the address the sample is stored in and
mirror it, we get the bit-reversed address. See examples below in Figure 3.

Figure 3. Examples of Bit-Reversed Address

The algorithm is implemented in assembler and is configurable. This means the number of points can be
configured at compile time. The range is 8 ≤ N ≤ 128 points.

By defining with -dN=x at the command line (compiler option), the number of points can be chosen. The
first, second and last stages are not implemented with a macro as the other stages are. When compiling,
a macro expansion is performed, depending on how N is configured. This method eliminates unnecessary
branches and the code size is reduced because only the used code gets inlined.
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6 Results

Results

The number of points is limited to 128 because of register indexing constraints from the TMS470R1x CPU.
If a higher number is needed, a different implementation scheme has to be used.

The assembler routine can be called from assembler or C. The algorithm uses different arrays for the input
data, the temporary values and the result. The arguments to the function are passed via registers and the
stack. The arrays for the real and imaginary parts should be consecutive.

R0 → pointer to real part of an temporary array

R1 → pointer to bitreversal offset table

R2 → pointer to sine table (twiddle factors)

R3 → pointer to real part of the input array

arg5 → pointer to imaginary part of the input array (Stack)

arg6 → pointer to result (Stack)

C-Call example:

Rad2fft(&x2_re[0], &brev[0], &sine[0], &x1_re[0], &x1_im[0], &result[0]);

Where:

&x2_re[0] is a pointer to the first element of the real part of the temporary array

&brev[0] is a pointer to the first element of the bitreversal offset table

&sine[0] is a pointer to the first element of the sine table

&x1_re[0] is a pointer to the first element of the real part of the input array

&x1_im[0] is a pointer to the first element of the imaginary part of the input array

&result[0] is a pointer to the first element of the result array

The complete assembler listing and a sample in C how to call the function are shown in Appendix A. The
results are shown in Section 6.

The results of the Radix-2 FFT algorithm are shown in Table 1.

Table 1. Radix-2 FFT Algorithm Results

8-Point FFT 16-Point FFT 64-Point FFT 128-Point FFT

Code size (1) 396 Byte 580 Byte 948 Byte 1132 Byte

Table size (2) 36 Byte 72 Byte 144 Byte 288 Byte

Array size (3) 80 Byte 160 Byte 320 Byte 640 Byte

Cycle count (4) 592 1573 9563 22508

(1) Code size means the size of the Rad2fft function.
(2) Table size is the size of the constant tables. In the example code they are named sine and brev. For testing reasons, they are

defined as variables, not as constants.
(3) Array size is the size of the input stream, and intermediate and output arrays. The cycle count is based on the input of the

fundamental frequency.
(4) If other input signals are used, the cycle count may vary slightly, because of the multiplier of the ARM7.
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Appendix A Creating a COFF

A.1 Files Needed

A.2 Example Program

Appendix A

The files shown in Table A-1 are needed to create an executable common object file format (COFF):

Table A-1. Files Needed to Create a COFF

File Name Description

c32.bat Batch file that launches code translation

files.cmd List of files to be compiled/assembled

Main.c Contains C-routine calling the FFT

Rad2.asm Contains Assembler code for FFT

intvecs.asm Interrupt vector table

startup.c Sets up system environment for SE-chip

result.txt Contains input signal and FFT result

These files are available as sources.

The following is an example program.
Main.c
/********************************************************************************/
/* */
/* PROJECT: TEST OF RADIX-2 FFT */
/* */
/********************************************************************************/
#include "stdio.h"
#include "math.h"
volatile int a,b;
short x1_re[N];
short x1_im[N];
short x2_re[N];
short x2_im[N];
short sine[N+N/4];
unsigned short result[N];
short brev[N];
extern void sineinit();
void bit_rev_init(short *br)
{
volatile int bit,rev,tmp1,tmp2,maskl,maskh,m,n,shift;
volatile float x,y;

x = log(N);
y = log(2);
bit = (int)(x/y);
rev = 0;
for (n=0;n<N;n++)
{
for (m=0;m<(bit/2)+0.5;m++)

shift = (bit-((m*2)+1));
maskl = 1<<m;
tmp1 = (n & maskl) << shift;

maskh = N/2>>m;
tmp2 = (n & maskh) >> shift;
rev = rev | tmp1 | tmp2;

}
br[n] = rev * 2;
rev = 0;

}
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Example Program

}
void sineinit(short *si)
{

double rad;
int I;
I = 0;
while (++I < (N + N/4) )
{

rad = (double)(i*2.0*3.141592654/N);
si[i] = (int)(sin(rad)*32768);

}
}
void Print()
{

FILE *f;
f = fopen("result.txt","w");

if (f == NULL)
printf("Error in opening file 'result.txt'\n");

for(a=0;a<N;a++)
fprintf(f,"\%d\n",x1_re[a]);

fprintf(f,"\n");
for(a=0;a<N;a++)

{
fprintf(f,"\%d\n",result[a]);
}

fclose(f);
}
main()
{
double rad;
volatile int A = 305;
volatile int f = 1;

sineinit(&sine[0]);
bit_rev_init(&brev[0]);

for(a=0;a<N;a++)
x1_re[a] = x1_im[a] = x2_re[a] = x2_im[a] = 0;

for(f=1;f<N;f++)
{

//-----test-----
for(a=0;a<N;a++)
{

rad = (double)((f*a*2.0*3.141592654)/(N));
x1_re[a] = (int)(sin(rad)*A);
/*
if (a != N/2)

x1_re[a] = (((int)(sin(rad)*A+0.5))-1)/2;
else

x1_re[a] = ((int)(sin(rad)*A+0.5))/2;
*/

}
//----test end--
//---calculate radix-2 FFT-----
Rad2fft(&x2_re[0], &brev[0], &sine[0], &x1_re[0], &x1_im[0], &result[0]);

//---Write result to file----
Print();

}
for(;;);

}
Rad2.asm
;******************************************************************************
;* *
;* Optimized assembler program for Radix-2 FFT algorithm *
;* *
;******************************************************************************
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Example Program

.global _Rad2fft

; R0 -> pointer to x2_re
; R1 -> pointer to brev
; R2 -> pointer to sine
; R3 -> pointer to x1_re
; arg5 -> pointer to x1_im
; arg6 -> pointer to result
;------------------------------------------------------------------------------
; macro definition of stage
; off defines the offset of the two values used to calculate the butterfly
; butt defines how often a butterfly is executed inside a block
; block defines how often blocks are executed
; sioff defines the offset of the sine table values used
; alsi defines the alignment of the sine table pointer after each
; block
;------------------------------------------------------------------------------
stage .macro off, butt, block, sioff, alsi

mov R1,#block
mov R3,#butt
add R0,R0,#(off-2) ;align address
sub R2,R2,#sioff*2 ;align twiddle

stage1_?:
ldrsh R4,[R0,#-(off-2)]! ;x_re(m)
ldrsh R5,[R0,LR] ;x_im(m)
ldrsh R6,[R0,#off]! ;x_re(m+4)
ldrsh R7,[R0,LR] ;x_im(m+4)
ldrsh R8,[R2,#sioff*2]! ;wi sin(k+8)
ldrsh R9,[R2,#(N/4)*2] ;wr cos(k+8)

stage2_?:
mul R12,R9,R6 ;x_re(m+4) * cos(k+8)
mul R11,R8,R7 ;x_im(m+4) * sin(k+8)
add R10,R11,R12 ;x_re(m+4) * cos(k+8) + x_im(m+4) * sin(k+8)
mov R10,R10, LSL#1
mov R10,R10, ASR#16
add R10,R4,R10 ;x_re(m) + x_re(m+4) * cos(k+8) + x_im(m+4)

* sin(k+8)
strh R10,[R0,#-off]! ;x_re(m)= x_re(m) + [x_re(m+4)*cos(k+8) +

x_im(m+4)*sin(k+8)]
add R10,R12,R11 ;x_re(m+4) * cos(k+8) + x_im(m+4) * sin(k+8)
mov R10,R10, LSL#1
mov R10,R10, ASR#16
sub R4,R4,R10 ;x_re(m) - [x_re(m+4) * cos(k+8) - x_im(m+4)

* sin(k+8)]
mul R12,R9,R7 ;x_im(m+4) * cos(k+8)
mul R11,R8,R6 ;x_re(m+4) * sin(k+8)
sub R10,R12,R11 ;x_im(m+4) * cos(k+8) - x_re(m+4) * sin(k+8)
mov R10,R10, LSL#1
mov R10,R10, ASR#16
add R10,R5,R10 ;x_im(m) + x_im(m+4) * cos(k+8) - x_re(m+4)

* sin(k+8)

strh R10,[R0,LR] ;x_im(m) = x_im(m) + [x_im(m+4) * cos(k+8) -
x_re(m+4) * sin(k+8)]

strh R4,[R0,#off]! ;x_re(m) = x_re(m) - [x_re(m+4) * cos(k+8) -
x_im(m+4) * sin(k+8)]

sub R10,R12,R11 ;x_im(m+4) * cos(k+8) - x_re(m+4) * sin(k+8)
mov R10,R10, LSL#1
mov R10,R10, ASR#16
sub R10,R5,R10 ;x_im(m) - x_im(m+4) * cos(k+8) - x_re(m+4) *

sin(k+8)
strh R10,[R0,LR] ;x_im(m) = x_im(m) - [x_im(m+4) * cos(k+8) -

x_re(m+4) * sin(k+8)]
subs R3,R3,#1
bne stage1_?
subs R1,R1,#1
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Example Program

movne R3,#butt
ldrnesh R4,[R0,#2]! ;x_re(m+8)
ldrnesh R5,[R0,LR] ;x_im(m+8)
ldrnesh R6,[R0,#off]! ;x_re(m+12)
ldrnesh R7,[R0,LR] ;x_im(m+12)
ldrnesh R8,[R2,#-alsi]! ;wi sin(k+8)
ldrnesh R9,[R2,#(N/4)*2] ;wr cos(k+8)
bne stage2_?
.endm

;----end of macro definition
_Rad2fft:

stmfd SP!,{R4-R12,LR} ; save used registers

ldr R4,[SP,#40] ; &x1_im[0]
stmfd SP!,{R0-R2} ; store registers for later use

;------------------------------------------------------------------------------
; STAGE 1 (BITREVERSAL IS ALREADY PERFORMED IN THIS STAGE)
;------------------------------------------------------------------------------

mov LR,#N*2 ;offset to x1_im
mov R12,#N/2
sub R0,R0,#2

stage1:
ldrsh R8,[R1],#2 ;load offset from bitreversal table
ldrsh R9,[R1],#2 ;load offset from bitreversal table
ldrsh R10,[R3,R8] ;load x1_re[m]
ldrsh R5,[R3,R9] ;load x1_re[m+offs]
ldrsh R11,[R4,R8] ;load x1_im[m]
ldrsh R7,[R4,R9] ;load x1_im[m+offs]
add R6,R10,R5
strh R6,[R0,#2]! ;x2_re(m) = x1_re[m] + x1_re[m+offs]
add R6,R11,R7
strh R6,[R0,LR] ;x2_im(m) = x1_im[m] + x1_im[m+offs]

sub R6,R10,R5
strh R6,[R0,#2]! ;x2_re(m+offs) = x1_re[m] -

x1_re[m+offs]
sub R6,R11,R7
strh R6,[R0,LR] ;x2_im(m+offs) = x1_im[m] -

x1_im[m+offs]
subs R12,R12,#1
bne stage1

;------------------------------------------------------------------------------
; STAGE 2
;------------------------------------------------------------------------------

ldmfd SP,{R0-R2}
mov R12,#N/4
sub R0,R0,#2

stage2:
ldrsh R4,[R0,#2]! ;load x2_re[m]
ldrsh R7,[R0,LR] ;load x2_im[m]
ldrsh R5,[R0,#4]! ;load x2_re[m+2]
ldrsh R8,[R0,LR] ;load x2_im[m+2]
add R6,R4,R5
strh R6,[R0,#-4]! ;x2_re(m) = x2_re[m] + x2_re[m+2]
add R6,R7,R8
strh R6,[R0,LR] ;x2_im(m) = x2_im[m] + x2_im[m+2]
sub R6,R4,R5
strh R6,[R0,#4]! ;x2_re(m+2) = x2_re[m] - x2_re[m+2]
sub R6,R7,R8
strh R6,[R0,LR] ;x2_im(m+2) = x2_im[m] - x2_im[m+2]
ldrsh R4,[R0,#-2]! ;load x2_re[m+1]
ldrsh R6,[R0,LR] ;load x2_im[m+1]
ldrsh R7,[R0,#4]! ;load x2_re[m+3]
ldrsh R5,[R0,LR] ;load x2_im[m+1]

add R8,R4,R5
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Example Program

strh R8,[R0,#-4]! ;x2_re(m+1) = x2_re[m+1] + x2_re[m+3]
sub R8,R6,R7
strh R8,[R0,LR] ;x2_im(m+1) = x2_im[m+1] - x2_im[m+3]
sub R8,R4,R5
strh R8,[R0,#4]! ;x2_re(m+3) = x2_re[m+1] - x2_re[m+3]
add R8,R6,R7
strh R8,[R0,LR] ;x2_im(m+1) = x2_im[m+1] + x2_im[m+3]
subs R12,R12,#1
bne stage2
ldmfd SP,{R0-R2}

;------------------------------------------------------------------------------
; STAGE 3
;------------------------------------------------------------------------------

.if N>8
stage 8, 4, N/8, N/8, (N-N/4)

ldmfd SP,{R0-R2}
.endif

;------------------------------------------------------------------------------
; STAGE 4
;------------------------------------------------------------------------------

.if N>16
stage 16, 8, N/16, N/16, (N-N/8)

ldmfd SP,{R0-R2}
.endif

;------------------------------------------------------------------------------
; STAGE 5
;------------------------------------------------------------------------------

.if N>32
stage 32, 16, N/32, N/32, (N-N/16)

ldmfd SP,{R0-R2}
.endif

;------------------------------------------------------------------------------
; STAGE 6
;------------------------------------------------------------------------------

.if N>64
stage 64, 32, N/64, N/64, (N-N/32)

ldmfd SP,{R0-R2}
.endif

;------------------------------------------------------------------------------
;LAST STAGE (THE SQUARED MAGNITUDE IS ALREADY CALCULATED IN THIS STAGE)
;------------------------------------------------------------------------------

mov R3,#N/2
add R0,R0,#–2 ;align address
sub R2,R2,#2 ;align twiddle
ldr R1,[SP,#44] ;&result[0]
sub R1,R1,#2

lstage:
ldrsh R4,[R0,#-(–2)]! ;x_re(m)
ldrsh R5,[R0,LR] ;x_im(m)
ldrsh R6,[R0,#N]! ;x_re(m+32)
ldrsh R7,[R0,LR] ;x_im(m+32)
ldrsh R8,[R2,#2]! ;wi sin(k+1)
ldrsh R9,[R2,#(N/4)*2] ;wr cos(k+1)
mul R12,R9,R6 ;x_re(m+32) * cos(k+1)
mul R11,R8,R7 ;x_im(m+32) * sin(k+1)
add R10,R11,R12 ;x_re(m+32) * cos(k+1) + x_im(m+32) * sin(k+1)
mov R10,R10, LSL#1
mov R10,R10, ASR#16
add R10,R4,R10 ;x_re(m) + x_re(m+32) * cos(k+1) + x_im(m+32) *

sin(k+1)
strh R10,[R0,#-N]! ;x_re(m) = x_re(m) + [x_re(m+32)*cos(k+1) +

x_im(m+32)*sin(k+1)]
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Example Program

add R12,R12,R11 ;x_re(m+32) * cos(k+1) + x_im(m+32) * sin(k+1)
mov R12,R12, LSL#1
mov R12,R12, ASR#16
sub R4,R4,R12 ;x_re(m) - [x_re(m+32) * cos(k+1) - x_im(m+32) *

sin(k+1)]
mul R7,R9,R7 ;x_im(m+32) * cos(k+1)
mul R9,R8,R6 ;x_re(m+32) * sin(k+1)
sub R8,R7,R9 ;x_im(m+32) * cos(k+1) - x_re(m+32) * sin(k+1)
mov R8,R8, LSL#1
mov R8,R8, ASR#16
add R8,R5,R8 ;x_im(m) + x_im(m+32) * cos(k+1) - x_re(m+32)

* sin(k+1)
strh R8,[R0,LR] ;x_im(m) = x_re(m) + [x_im(m+32)*cos(k+1) -

x_re(m+32)*sin(k+1)]
strh R4,[R0,#N]! ;x_re(m+32) = x_re(n) - [x_re(m+32)*cos(k+1) -

x_im(m+32)*sin(k+1)]
mul R6,R10,R10
mla R6,R8,R8,R6
mov R6,R6,LSR#15
strh R6,[R1,#2]! ; store result[n]
sub R7,R7,R9 ;x_im(m+32) * cos(k+1) - x_re(m+32) *

sin(k+1)
mov R7,R7, LSL#1
mov R7,R7, ASR#16
sub R7,R5,R7 ;x_im(m) - x_im(m+32) * cos(k+1) + x_re(m+32) *

sin(k+1)
sin(k+1)

strh R7,[R0,LR] ;x_im(m+32) = x_im(n) - [x_im(m+32)*cos(k+1) +
x_re(m+32)*sin(k+1)]

mul R6,R4,R4
mla R6,R7,R7,R6
mov R6,R6,LSR#15
strh R6,[R1,#N] ; store result[n+32]
subs R3,R3,#1
bne lstage
ldmfd SP!,{R0-R2}
ldmfd SP!,{R4-R12,PC}^

Intvecs.asm
.state32
.global _c_int00
.sect ".intvecs"
b _c_int00 ; RESET INTERRUPT
b _c_int00 ; RESET INTERRUPT b #-

8 ; UNDEFINED INSTRUCTION INTERRUPT
b #-8 ; SOFTWARE INTERRUPT
b #-8 ; ABORT (PREFETCH) INTERRUPT
b #-8 ; ABORT (DATA) INTERRUPT
b #-8 ; RESERVED
b #-8 ; IRQ INTERRUPT
b #-8 ; FIQ INTERRUPT
.end
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