
TMS320C28x Extended Instruction Sets

Technical Reference Manual

Literature Number: SPRUHS1C
October 2014–Revised November 2019



2 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Contents

Contents

Preface ........................................................................................................................................ 9
1 Floating Point Unit (FPU) .................................................................................................... 11

1.1 Overview..................................................................................................................... 12
1.1.1 Compatibility with the C28x Fixed-Point CPU ................................................................. 12

1.2 Components of the C28x plus Floating-Point CPU .................................................................... 13
1.2.1 Emulation Logic.................................................................................................... 14
1.2.2 Memory Map ....................................................................................................... 14
1.2.3 On-Chip Program and Data...................................................................................... 14
1.2.4 CPU Interrupt Vectors ............................................................................................ 14
1.2.5 Memory Interface.................................................................................................. 14

1.3 CPU Register Set .......................................................................................................... 15
1.3.1 CPU Registers ..................................................................................................... 15

1.4 Pipeline ...................................................................................................................... 21
1.4.1 Pipeline Overview ................................................................................................. 21
1.4.2 General Guidelines for Floating-Point Pipeline Alignment .................................................. 22
1.4.3 Moves from FPU Registers to C28x Registers ................................................................ 23
1.4.4 Moves from C28x Registers to FPU Registers ................................................................ 24
1.4.5 Parallel Instructions ............................................................................................... 25
1.4.6 Invalid Delay Instructions......................................................................................... 25
1.4.7 Optimizing the Pipeline ........................................................................................... 28

1.5 Floating Point Unit Instruction Set ....................................................................................... 29
1.5.1 Instruction Descriptions........................................................................................... 29
1.5.2 Instructions ......................................................................................................... 32

2 Floating Point Unit (FPU64) ............................................................................................... 143
2.1 Overview ................................................................................................................... 144

2.1.1 Compatibility with the C28x Fixed-Point CPU................................................................ 144
2.2 Components of the C28x plus Floating-Point CPU (FPU64)........................................................ 145

2.2.1 Emulation Logic .................................................................................................. 146
2.2.2 Memory Map ..................................................................................................... 146
2.2.3 On-Chip Program and Data .................................................................................... 146
2.2.4 CPU Interrupt Vectors........................................................................................... 146
2.2.5 Memory Interface ................................................................................................ 147

2.3 CPU Register Set ......................................................................................................... 148
2.3.1 CPU Registers ................................................................................................... 148

2.4 Pipeline..................................................................................................................... 154
2.4.1 Pipeline Overview................................................................................................ 154
2.4.2 General Guidelines for Floating-Point Pipeline Alignment ................................................. 155
2.4.3 Moves from FPU Registers to C28x Registers .............................................................. 156
2.4.4 Moves from C28x Registers to FPU Registers .............................................................. 157
2.4.5 Parallel Instructions.............................................................................................. 157
2.4.6 Invalid Delay Instructions ....................................................................................... 158
2.4.7 Optimizing the Pipeline.......................................................................................... 161

2.5 Floating Point Unit (FPU64) Instruction Set ........................................................................... 162
2.5.1 Instruction Descriptions ......................................................................................... 162
2.5.2 Instructions ....................................................................................................... 165

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com

3SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Contents

3 Viterbi, Complex Math and CRC Unit (VCU) ......................................................................... 338
3.1 Overview ................................................................................................................... 339
3.2 Components of the C28x plus VCU .................................................................................... 340
3.3 Emulation Logic ........................................................................................................... 341

3.3.1 Memory Map ..................................................................................................... 342
3.3.2 CPU Interrupt Vectors........................................................................................... 342
3.3.3 Memory Interface ................................................................................................ 342
3.3.4 Address and Data Buses ....................................................................................... 342
3.3.5 Alignment of 32-Bit Accesses to Even Addresses .......................................................... 342

3.4 Register Set ............................................................................................................... 344
3.4.1 VCU Register Set ................................................................................................ 344
3.4.2 VCU Status Register (VSTATUS) ............................................................................. 346
3.4.3 Repeat Block Register (RB) .................................................................................... 349

3.5 Pipeline..................................................................................................................... 351
3.5.1 Pipeline Overview................................................................................................ 351
3.5.2 General Guidelines for Floating-Point Pipeline Alignment.................................................. 351
3.5.3 Parallel Instructions.............................................................................................. 352
3.5.4 Invalid Delay Instructions ....................................................................................... 352

3.6 Instruction Set ............................................................................................................. 356
3.6.1 Instruction Descriptions ......................................................................................... 356
3.6.2 General Instructions ............................................................................................. 358
3.6.3 Complex Math Instructions ..................................................................................... 389
3.6.4 Cyclic Redundancy Check (CRC) Instructions............................................................... 427
3.6.5 Viterbi Instructions ............................................................................................... 439

3.7 Rounding Mode ........................................................................................................... 461

4 Cyclic Redundancy Check (VCRC) ..................................................................................... 463
4.1 Overview ................................................................................................................... 464
4.2 VCRC Code Development............................................................................................... 464
4.3 Components of the C28x Plus VCRC.................................................................................. 464

4.3.1 Emulation Logic .................................................................................................. 465
4.3.2 Memory Map ..................................................................................................... 466
4.3.3 CPU Interrupt Vectors........................................................................................... 466
4.3.4 Memory Interface ................................................................................................ 466
4.3.5 Address and Data Buses ....................................................................................... 466
4.3.6 Alignment of 32-Bit Accesses to Even Addresses .......................................................... 467

4.4 Register Set ............................................................................................................... 467
4.4.1 VCRC Register Set .............................................................................................. 468

4.5 Pipeline..................................................................................................................... 469
4.5.1 Pipeline Overview................................................................................................ 469
4.5.2 General Guidelines for VCRC Pipeline Alignment........................................................... 469

4.6 Instruction Set ............................................................................................................. 470
4.6.1 Instruction Descriptions ......................................................................................... 470
4.6.2 General Instructions ............................................................................................. 472

5 C28 Viterbi, Complex Math and CRC Unit-II (VCU-II) ............................................................. 507
5.1 Overview ................................................................................................................... 508
5.2 Components of the C28x Plus VCU.................................................................................... 509

5.2.1 Emulation Logic .................................................................................................. 511
5.2.2 Memory Map ..................................................................................................... 511
5.2.3 CPU Interrupt Vectors........................................................................................... 511
5.2.4 Memory Interface ................................................................................................ 511
5.2.5 Address and Data Buses ....................................................................................... 511
5.2.6 Alignment of 32-Bit Accesses to Even Addresses .......................................................... 512

5.3 Register Set ............................................................................................................... 513

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com

4 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Contents

5.3.1 VCU Register Set ................................................................................................ 514
5.3.2 VCU Status Register (VSTATUS) ............................................................................. 516
5.3.3 Repeat Block Register (RB) .................................................................................... 519

5.4 Pipeline..................................................................................................................... 521
5.4.1 Pipeline Overview................................................................................................ 521
5.4.2 General Guidelines for VCU Pipeline Alignment ............................................................ 522
5.4.3 Parallel Instructions.............................................................................................. 523
5.4.4 Invalid Delay Instructions ....................................................................................... 523

5.5 Instruction Set ............................................................................................................. 526
5.5.1 Instruction Descriptions ......................................................................................... 526
5.5.2 General Instructions ............................................................................................. 528
5.5.3 Arithmetic Math Instructions .................................................................................... 572
5.5.4 Complex Math Instructions ..................................................................................... 579
5.5.5 Cyclic Redundancy Check (CRC) Instructions............................................................... 638
5.5.6 Deinterleaver Instructions....................................................................................... 654
5.5.7 FFT Instructions.................................................................................................. 670
5.5.8 Galois Instructions ............................................................................................... 698
5.5.9 Viterbi Instructions ............................................................................................... 711

5.6 Rounding Mode ........................................................................................................... 746

6 Fast Integer Division Unit (FINTDIV) ................................................................................... 748
6.1 Overview ................................................................................................................... 749

6.1.1 Compatibility With the C28x Fixed-Point CPU and C28x Floating Point CPU........................... 749
6.1.2 Fast Integer Division Code development .................................................................... 749

6.2 Components of the C28x plus FINTDIV (C28x+FINTDIV) ......................................................... 750
6.3 CPU Register Set ......................................................................................................... 750
6.4 Pipeline..................................................................................................................... 750
6.5 Types of Divisions supported by C28x+FINTDIV .................................................................... 750
6.6 C28x+Fast Integer Division – Fast Integer Division Instruction Set ............................................... 752

6.6.1 Instruction Descriptions ......................................................................................... 752
6.6.2 Instructions ....................................................................................................... 754

7 Trigonometric Math Unit (TMU)........................................................................................... 772
7.1 Overview ................................................................................................................... 773
7.2 Components of the C28x+FPU Plus TMU............................................................................. 773

7.2.1 Interrupt Context Save and Restore........................................................................... 773
7.3 Data Format ............................................................................................................... 774

7.3.1 Floating Point Encoding......................................................................................... 774
7.3.2 Negative Zero:.................................................................................................... 774
7.3.3 De-Normalized Numbers:....................................................................................... 774
7.3.4 Underflow: ........................................................................................................ 774
7.3.5 Overflow: .......................................................................................................... 774
7.3.6 Rounding: ......................................................................................................... 774
7.3.7 Infinity and Not a Number (NaN):.............................................................................. 774

7.4 Pipeline..................................................................................................................... 775
7.4.1 Pipeline and Register Conflicts ................................................................................ 775
7.4.2 Delay Slot Requirements ....................................................................................... 777
7.4.3 Effect of Delay Slot Operations on the Flags ................................................................ 778
7.4.4 Multi-Cycle Operations in Delay Slots......................................................................... 778
7.4.5 Moves From FPU Registers to C28x Registers ............................................................. 779

7.5 TMU Instruction Set ...................................................................................................... 780
7.5.1 Instruction Descriptions ......................................................................................... 780
7.5.2 Common Restrictions ........................................................................................... 782
7.5.3 TMU Type 0 Instructions........................................................................................ 782
7.5.4 TMU Type 1 Instructions........................................................................................ 796

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com

5SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Contents

Revision History ........................................................................................................................ 799

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com

6 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

List of Figures

List of Figures
1-1. FPU Functional Block Diagram........................................................................................... 12
1-2. C28x With Floating-Point Registers...................................................................................... 16
1-3. Floating-point Unit Status Register (STF) ............................................................................... 18
1-4. Repeat Block Register (RB) .............................................................................................. 20
1-5. FPU Pipeline ................................................................................................................ 21
2-1. FPU64 Functional Block Diagram ...................................................................................... 145
2-2. C28x With FPU64 Floating-Point Registers ........................................................................... 148
2-3. Floating-point Unit Status Register (STF) ............................................................................. 151
2-4. Repeat Block Register (RB) ............................................................................................. 153
2-5. FPU64 Pipeline ........................................................................................................... 154
3-1. C28x + VCU Block Diagram............................................................................................. 340
3-2. C28x + FPU + VCU Registers .......................................................................................... 344
3-3. VCU Status Register (VSTATUS) ...................................................................................... 346
3-4. Repeat Block Register (RB) ............................................................................................. 349
3-5. C28x + FCU + VCU Pipeline ............................................................................................ 351
4-1. C28x + VCRC Block Diagram........................................................................................... 464
4-2. C28x + VCRC Registers ................................................................................................. 467
5-1. C28x + VCU Block Diagram............................................................................................. 509
5-2. C28x + FPU + VCU Registers .......................................................................................... 513
5-3. VCU Status Register (VSTATUS) ...................................................................................... 516
5-4. Repeat Block Register (RB) ............................................................................................. 519
5-5. C28x + FCU + VCU Pipeline ............................................................................................ 521
6-1. Transfer Function for Different Types of Division..................................................................... 751
7-1. Calculation of RaH (Quadrant) and RbH (Ratio) Based on RcH (Y) and RdH (X) Values...................... 793

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com

7SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

List of Tables

List of Tables
1-1. 28x Plus Floating-Point CPU Register Summary ...................................................................... 17
1-2. Floating-point Unit Status (STF) Register Field Descriptions ........................................................ 18
1-3. Repeat Block (RB) Register Field Descriptions ........................................................................ 20
1-4. Operand Nomenclature.................................................................................................... 30
1-5. Summary of Instructions................................................................................................... 32
2-1. 28x Plus Floating-Point FPU64 CPU Register Summary ........................................................... 149
2-2. Floating-point Unit Status (STF) Register Field Descriptions ....................................................... 151
2-3. Repeat Block (RB) Register Field Descriptions....................................................................... 153
2-4. Operand Nomenclature .................................................................................................. 163
2-5. Summary of Instructions ................................................................................................. 165
3-1. Viterbi Decode Performance ............................................................................................ 339
3-2. Complex Math Performance............................................................................................. 339
3-3. VCU Register Set ......................................................................................................... 345
3-4. 28x CPU Register Summary ............................................................................................ 346
3-5. VCU Status (VSTATUS) Register Field Descriptions ................................................................ 347
3-6. Operation Interaction with VSTATUS Bits ............................................................................. 347
3-7. Repeat Block (RB) Register Field Descriptions....................................................................... 349
3-8. Operand Nomenclature .................................................................................................. 356
3-9. INSTRUCTION dest, source1, source2 Short Description .......................................................... 357
3-10. General Instructions ...................................................................................................... 358
3-11. Complex Math Instructions .............................................................................................. 389
3-12. CRC Instructions .......................................................................................................... 427
3-13. Viterbi Instructions ........................................................................................................ 439
3-14. Example: Values Before Shift Right .................................................................................... 461
3-15. Example: Values after Shift Right ...................................................................................... 461
3-16. Example: Addition with Right Shift and Rounding .................................................................... 461
3-17. Example: Addition with Rounding After Shift Right................................................................... 461
3-18. Shift Right Operation With and Without Rounding ................................................................... 461
4-1. VCRC Status (VSTATUS) Register Field Descriptions .............................................................. 468
4-2. VCRC: The CRC result register for unsecured memories .......................................................... 468
4-3. VCRCPOLY: The CRC Polynomial register for generic CRC instructions ....................................... 468
4-4. VCRCSIZE: The CRC Polynomial and Data Size register for generic CRC instructions ....................... 468
4-5. VCUREV: VCU revision register ........................................................................................ 468
4-6. Operand Nomenclature .................................................................................................. 471
4-7. INSTRUCTION dest, source1, source2 Short Description .......................................................... 471
4-8. General Instructions ...................................................................................................... 472
5-1. Viterbi Decode Performance ............................................................................................ 508
5-2. Complex Math Performance............................................................................................. 508
5-3. VCU Register Set ......................................................................................................... 514
5-4. 28x CPU Register Summary ............................................................................................ 515
5-5. VCU Status (VSTATUS) Register Field Descriptions ................................................................ 516
5-6. Operation Interaction With VSTATUS Bits ............................................................................ 517
5-7. Repeat Block (RB) Register Field Descriptions....................................................................... 519
5-8. Operations Requiring a Delay Slot(s) .................................................................................. 522
5-9. Operand Nomenclature .................................................................................................. 526
5-10. INSTRUCTION dest, source1, source2 Short Description .......................................................... 527
5-11. General Instructions ...................................................................................................... 528

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com

8 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

List of Tables

5-12. Arithmetic Math Instructions ............................................................................................. 572
5-13. Complex Math Instructions .............................................................................................. 579
5-14. CRC Instructions .......................................................................................................... 638
5-15. Deinterleaver Instructions................................................................................................ 654
5-16. FFT Instructions........................................................................................................... 670
5-17. Galois Field Instructions ................................................................................................. 698
5-18. Viterbi Instructions ........................................................................................................ 711
5-19. Example: Values Before Shift Right .................................................................................... 746
5-20. Example: Values after Shift Right ...................................................................................... 746
5-21. Example: Addition with Right Shift and Rounding .................................................................... 746
5-22. Example: Addition with Rounding After Shift Right................................................................... 746
5-23. Shift Right Operation With and Without Rounding ................................................................... 747
6-1. Operand Nomenclature .................................................................................................. 752
6-2. Summary of Instructions ................................................................................................. 754
7-1. TMU Type 0 Instructions................................................................................................. 773
7-2. TMU Type 1 Additional Instructions .................................................................................... 773
7-3. IEEE 32-Bit Single Precision Floating-Point Format ................................................................. 774
7-4. Delay Slot Requirements for TMU Instructions ....................................................................... 777
7-5. Operand Nomenclature .................................................................................................. 780
7-6. Summary of Instructions ................................................................................................. 782
7-7. Summary of Instructions ................................................................................................. 796

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


9SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Read This First

Preface
SPRUHS1C–October 2014–Revised November 2019

Read This First

This document describes the architecture, pipeline, and instruction sets of the TMU, VCRC, VCU-II,
FPU32, and FPU64 accelerators.

About This Manual
The TMS320C2000™ digital signal processor (DSP) platform is part of the TMS320™ DSP family.

Notational Conventions
This document uses the following conventions.
• Hexadecimal numbers are shown with the suffix h or with a leading 0x. For example, the following

number is 40 hexadecimal (decimal 64): 40h or 0x40.
• Registers in this document are shown as figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation
The following books describe the TMS320x28x and related support tools that are available on the TI
website:

Data Manual and Errata—
SPRS439— TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs) Data Manual contains

the pinout, signal descriptions, as well as electrical and timing specifications.

SPRZ272— TMS320F2833x, TMS320F2823x DSC Silicon Errata describes known advisories on silicon
and provides workarounds.

SPRS516— TMS320C2834x Delfino Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ267— TMS320C2834x Delfino™ MCUs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS698— TMS320F2806x Piccolo™ Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ342— TMS320F2806x Piccolo™ MCUs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS742— F28M35x Concerto™ Microcontrollers Data Manual contains the pinout, signal descriptions,
as well as electrical and timing specifications.

SPRZ357— F28M35x Concerto™ MCUs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS825— F28M36x Concerto™ Microcontrollers Data Manual contains the pinout, signal descriptions,
as well as electrical and timing specifications.

SPRZ375— F28M36x Concerto™ MCUs Silicon Errata describes known advisories on silicon and
provides workarounds.

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/sprs439
http://www.ti.com/lit/pdf/sprz272
http://www.ti.com/lit/pdf/sprs516
http://www.ti.com/lit/pdf/sprz267
http://www.ti.com/lit/pdf/sprs698
http://www.ti.com/lit/pdf/sprz342
http://www.ti.com/lit/pdf/sprs742
http://www.ti.com/lit/pdf/sprz357
http://www.ti.com/lit/pdf/sprs825
http://www.ti.com/lit/pdf/sprz375


Related Documentation www.ti.com

10 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Read This First

SPRS880— TMS320F2837xD Dual-Core Delfino™ Microcontrollers Data Manual contains the pinout,
signal descriptions, as well as electrical and timing specifications.

SPRZ412— TMS320F2837xD Dual-Core Delfino™ MCUs Silicon Errata describes known advisories on
silicon and provides workarounds.

SPRS881— TMS320F2837xS Delfino™ Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ422— TMS320F2837xS Delfino™ MCUs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS902— TMS320F2807x Piccolo™ Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ423— TMS320F2807x Piccolo™ MCUs Silicon Errata describes known advisories on silicon and
provides workarounds.

SPRS945— TMS320F28004x Piccolo™ Microcontrollers Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications.

SPRZ439— TMS320F28004x Piccolo™ Microcontrollers Silicon Errata describes known advisories on
silicon and provides workarounds.

SPRSP14— TMS320F2838x Microcontrollers With Connectivity Manager Data Manual contains the
pinout, signal descriptions, as well as electrical and timing specifications.

SPRZ458— TMS320F2838x MCUs Silicon Errata describes known advisories on silicon and provides
workarounds.

Trademarks
Delfino, Piccolo, Concerto, TMS320C2000 are trademarks of Texas Instruments.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/sprs880
http://www.ti.com/lit/pdf/sprz412
http://www.ti.com/lit/pdf/sprs881
http://www.ti.com/lit/pdf/sprz422
http://www.ti.com/lit/pdf/sprs902
http://www.ti.com/lit/pdf/sprz423
http://www.ti.com/lit/pdf/sprs945
http://www.ti.com/lit/pdf/sprz439
http://www.ti.com/lit/pdf/sprsp14
http://www.ti.com/lit/pdf/sprz458


11SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Chapter 1
SPRUHS1C–October 2014–Revised November 2019

Floating Point Unit (FPU)

The TMS320C2000™ DSP family consists of fixed-point and floating-point digital signal controllers
(DSCs). TMS320C2000™ Digital Signal Controllers combine control peripheral integration and ease of
use of a microcontroller (MCU) with the processing power and C efficiency of TI’s leading DSP
technology. This chapter provides an overview of the architectural structure and components of the C28x
plus floating-point unit CPU.

Topic ........................................................................................................................... Page

1.1 Overview ........................................................................................................... 12
1.2 Components of the C28x plus Floating-Point CPU ................................................. 13
1.3 CPU Register Set ............................................................................................... 15
1.4 Pipeline............................................................................................................. 21
1.5 Floating Point Unit Instruction Set........................................................................ 29

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Program address bus (22)

Program data bus (32)

Read address bus (32)

Read data bus (32)

Write data bus (32)

Existing
memory,

peripherals,
interfaces

PIE

Write address bus (32)

LVF

LUF

C28x
+

FPU

Memory
bus

Memory
bus

Overview www.ti.com

12 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.1 Overview
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU
by adding registers and instructions to support IEEE single-precision floating point operations. This device
draws from the best features of digital signal processing; reduced instruction set computing (RISC); and
microcontroller architectures, firmware, and tool sets. The DSC features include a modified Harvard
architecture and circular addressing. The RISC features are single-cycle instruction execution, register-to-
register operations, and modified Harvard architecture (usable in Von Neumann mode). The
microcontroller features include ease of use through an intuitive instruction set, byte packing and
unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and
data fetches to be performed in parallel. The CPU can read instructions and data while it writes data
simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this
over six separate address/data buses.

Throughout this document the following notations are used:
• C28x refers to the C28x fixed-point CPU.
• C28x plus Floating-Point and C28x+FPU both refer to the C28x CPU with enhancements to support

IEEE single-precision floating-point operations.

1.1.1 Compatibility with the C28x Fixed-Point CPU
No changes have been made to the C28x base set of instructions, pipeline, or memory bus architecture.
Therefore, programs written for the C28x CPU are completely compatible with the C28x+FPU and all of
the features of the C28x documented in TMS320C28x DSP CPU and Instruction Set Reference Guide
(literature number SPRU430) apply to the C28x+FPU.

Figure 1-1 shows basic functions of the FPU.

Figure 1-1. FPU Functional Block Diagram

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430


www.ti.com Components of the C28x plus Floating-Point CPU

13SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.1.1.1 Floating-Point Code Development
When developing C28x floating-point code use Code Composer Studio 3.3, or later, with at least service
release 8. The C28x compiler V5.0, or later, is also required to generate C28x native floating-point
opcodes. This compiler is available via Code Composer Studio update advisor as a seperate download.
V5.0 can generate both fixed-point as well as floating-point code. To build floating-point code use the
compiler switches:-v28 and - -float_support = fpu32. In Code Composer Studio 3.3 the float_support
option is in the build options under compiler-> advanced: floating point support. Without the float_support
flag, or with float_support = none, the compiler will generate fixed-point code.

When building for C28x floating-point make sure all associated libraries have also been built for floating-
point. The standard run-time support (RTS) libaries built for floating-point included with the compiler have
fpu32 in their name. For example rts2800_fpu32.lib and rts2800_fpu_eh.lib have been built for the floating-
point unit. The "eh" version has exception handling for C++ code. Using the fixed-point RTS libraries in a
floating-point project will result in the linker issuing an error for incompatible object files.

To improve performance of native floating-point projects, consider using the C28x FPU Fast RTS Library
(SPRC664). This library contains hand-coded optimized math routines such as division, square root,
atan2, sin and cos. This library can be linked into your project before the standard runtime support library
to give your application a performance boost. As an example, the standard RTS library uses a polynomial
expansion to calculate the sin function. The Fast RTS library, however, uses a math look-up table in the
boot ROM of the device. Using this look-up table method results in approximately a 20 cycle savings over
the standard RTS calculation.

1.2 Components of the C28x plus Floating-Point CPU
The C28x+FPU contains:
• A central processing unit for generating data and program-memory addresses; decoding and executing

instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory

• A floating-point unit for IEEE single-precision floating point operations.
• Emulation logic for monitoring and controlling various parts and functions of the device and for testing

device operation. This logic is identical to that on the C28x fixed-point CPU.
• Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the

emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic
is identical to the C28x fixed-point CPU.

Some features of the C28x+FPU central processing unit are:
• Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to

that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to
and a read from the same location from occurring out of order. See Figure 1-5.

• Some floating-point instructions require pipeline alignment. This alignment is done through software to
allow the user to improve performance by taking advantage of required delay slots.

• Independent register space. These registers function as system-control registers, math registers, and
data pointers. The system-control registers are accessed by special instructions.

• Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

• Floating point unit (FPU). The 32-bit FPU performs IEEE single-precision floating-point operations.
• Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and

increments or decrements pointers in parallel with ALU operations.
• Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left

by up to 16 bits and to the right by up to 16 bits.
• Fixed-Point Multiplier. The multiplier performs 32-bit × 32-bit 2s-complement multiplication with a 64-bit

result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one
signed number and one unsigned number.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html


Components of the C28x plus Floating-Point CPU www.ti.com

14 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.2.1 Emulation Logic
The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following
features:
• Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content

of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline.

• A counter for performance benchmarking.
• Multiple debug events. Any of the following debug events can cause a break in program execution:

– A breakpoint initiated by the ESTOP0 or ESTOP1 instruction.
– An access to a specified program-space or data-space location.
When a debug event causes the C28x to enter the debug-halt state, the event is called a break event.

• Real-time mode of operation.

For more details about these features, refer to the TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430).

1.2.2 Memory Map
Like the C28x, the C28x+FPU uses 32-bit data addresses and 22-bit program addresses. This allows for a
total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space.
Memory blocks on all C28x+FPU designs are uniformly mapped to both program and data space. For
specific details about each of the map segments, see the data sheet for your device.

1.2.3 On-Chip Program and Data
All C28x+FPU based devices contain at least two blocks of single access on-chip memory referred to as
M0 and M1. Each of these blocks is 1K words in size. M0 is mapped at addresses 0x0000 − 0x03FF and
M1 is mapped at addresses 0x0400 − 0x07FF. Like all other memory blocks on the C28x+FPU devices,
M0 and M1 are mapped to both program and data space. Therefore, you can use M0 and M1 to execute
code or for data variables. At reset, the stack pointer is set to the top of block M1. Depending on the
device, it may also have additional random-access memory (RAM), read-only memory (ROM), external
interface zones, or flash memory.

1.2.4 CPU Interrupt Vectors
The C28x+FPU interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in program
space are set aside for a table of 32 CPU interrupt vectors. The CPU vectors can be mapped to the top or
bottom of program space by way of the VMAP bit. For more information about the CPU vectors, see
TMS320C28x DSP CPU and Instruction Set Reference Guide (literature number SPRU430). For devices
with a peripheral interrupt expansion (PIE) block, the interrupt vectors will reside in the PIE vector table
and this memory can be used as program memory.

1.2.5 Memory Interface
The C28x+FPU memory interface is identical to that on the C28x. The C28x+FPU memory map is
accessible outside the CPU by the memory interface, which connects the CPU logic to memories,
peripherals, or other interfaces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory while data memory is being
accessed. The interface also includes signals that indicate the type of read or write being requested by the
CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In
addition to 16-bit and 32-bit accesses, the C28x+FPU supports special byte-access instructions that can
access the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe
signals indicate when such an access is occurring on a data bus.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru430


www.ti.com CPU Register Set

15SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.2.5.1 Address and Data Buses
Like the C28x, the memory interface has three address buses:
• PAB: Program address bus

The PAB carries addresses for reads and writes from program space. PAB is a 22-bit bus.
• DRAB: Data-read address bus

The 32-bit DRAB carries addresses for reads from data space.
• DWAB: Data-write address bus

The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:
• PRDB: Program-read data bus

The PRDB carries instructions during reads from program space. PRDB is a 32-bit bus.
• DRDB: Data-read data bus

The DRDB carries data during reads from data space. DRDB is a 32-bit bus.
• DWDB: Data-/Program-write data bus

The 32-bit DWDB carries data during writes to data space or program space.

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to
the C28x CPU.

1.2.5.2 Alignment of 32-Bit Accesses to Even Addresses
The C28x+FPU CPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or
write to an even address. If the address-generation logic generates an odd address, the CPU will begin
reading or writing at the previous even address. This alignment does not affect the address values
generated by the address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

1.3 CPU Register Set
The C28x+FPU architecture is the same as the C28x CPU with an extended register and instruction set to
support IEEE single-precision floating point operations. This section describes the extensions to the C28x
architecture

1.3.1 CPU Registers
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point
unit registers. The additional floating-point unit registers are the following:
• Eight floating-point result registers, RnH (where n = 0 - 7)
• Floating-point Status Register (STF)
• Repeat Block Register (RB)

All of the floating-point registers except the repeat block register are shadowed. This shadowing can be
used in high priority interrupts for fast context save and restore of the floating-point registers.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ACC (32-bit)

R1H (32-bit)

R2H (32-bit)

R3H (32-bit)

R4H (32-bit)

R5H (32-bit)

R6H (32-bit)

R7H (32-bit)

R0H (32-bit)

FPU Status Register (STF)

Repeat Block Register (RB)

P (32-bit)

XT (32-bit)

XAR0 (32-bit)

XAR1 (32-bit)

XAR2 (32-bit)

XAR3 (32-bit)

XAR4 (32-bit)

XAR5 (32-bit)

XAR6 (32-bit)

XAR7 (32-bit)

PC (22-bit)

RPC (22-bit)

DP (16-bit)

SP (16-bit)

ST0 (16-bit)

ST1 (16-bit)

IER (16-bit)

IFR (16-bit)

DBGIER (16-bit)

Standard C28x Register Set Additional 32-bit FPU Registers

FPU registers R0H - R7H and STF
are shadowed for fast context
save and restore

CPU Register Set www.ti.com

16 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Figure 1-2 shows a diagram of both register sets and Table 1-1 shows a register summary. For
information on the standard C28x register set, see the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number SPRU430).

Figure 1-2. C28x With Floating-Point Registers

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430


www.ti.com CPU Register Set

17SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

(1) Reset value shown is for devices without the VMAP signal and MOM1MAP signal pinned out. On these devices both of these signals are
tied high internal to the device.

Table 1-1. 28x Plus Floating-Point CPU Register Summary

Register C28x CPU C28x+FPU Size Description Value After Reset
ACC Yes Yes 32 bits Accumulator 0x00000000
AH Yes Yes 16 bits High half of ACC 0x0000
AL Yes Yes 16 bits Low half of ACC 0x0000
XAR0 Yes Yes 32 bits Auxiliary register 0 0x00000000
XAR1 Yes Yes 32 bits Auxiliary register 1 0x00000000
XAR2 Yes Yes 32 bits Auxiliary register 2 0x00000000
XAR3 Yes Yes 32 bits Auxiliary register 3 0x00000000
XAR4 Yes Yes 32 bits Auxiliary register 4 0x00000000
XAR5 Yes Yes 32 bits Auxiliary register 5 0x00000000
XAR6 Yes Yes 32 bits Auxiliary register 6 0x00000000
XAR7 Yes Yes 32 bits Auxiliary register 7 0x00000000
AR0 Yes Yes 16 bits Low half of XAR0 0x0000
AR1 Yes Yes 16 bits Low half of XAR1 0x0000
AR2 Yes Yes 16 bits Low half of XAR2 0x0000
AR3 Yes Yes 16 bits Low half of XAR3 0x0000
AR4 Yes Yes 16 bits Low half of XAR4 0x0000
AR5 Yes Yes 16 bits Low half of XAR5 0x0000
AR6 Yes Yes 16 bits Low half of XAR6 0x0000
AR7 Yes Yes 16 bits Low half of XAR7 0x0000
DP Yes Yes 16 bits Data-page pointer 0x0000
IFR Yes Yes 16 bits Interrupt flag register 0x0000
IER Yes Yes 16 bits Interrupt enable register 0x0000
DBGIER Yes Yes 16 bits Debug interrupt enable register 0x0000
P Yes Yes 32 bits Product register 0x00000000
PH Yes Yes 16 bits High half of P 0x0000
PL Yes Yes 16 bits Low half of P 0x0000
PC Yes Yes 22 bits Program counter 0x3FFFC0
RPC Yes Yes 22 bits Return program counter 0x00000000
SP Yes Yes 16 bits Stack pointer 0x0400
ST0 Yes Yes 16 bits Status register 0 0x0000
ST1 Yes Yes 16 bits Status register 1 0x080B (1)

XT Yes Yes 32 bits Multiplicand register 0x00000000
T Yes Yes 16 bits High half of XT 0x0000
TL Yes Yes 16 bits Low half of XT 0x0000
ROH No Yes 32 bits Floating-point result register 0 0.0
R1H No Yes 32 bits Floating-point result register 1 0.0
R2H No Yes 32 bits Floating-point result register 2 0.0
R3H No Yes 32 bits Floating-point result register 3 0.0
R4H No Yes 32 bits Floating-point result register 4 0.0
R5H No Yes 32 bits Floating-point result register 5 0.0
R6H No Yes 32 bits Floating-point result register 6 0.0
R7H No Yes 32 bits Floating-point result register 7 0.0
STF No Yes 32 bits Floating-point status register 0x00000000
RB No Yes 32 bits Repeat block register 0x00000000

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CPU Register Set www.ti.com

18 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.3.1.1 Floating-Point Status Register (STF)
The floating-point status register (STF) reflects the results of floating-point operations. There are three
basic rules for floating point operation flags:
1. Zero and negative flags are set based on moves to registers.
2. Zero and negative flags are set based on the result of compare, minimum, maximum, negative and

absolute value operations.
3. Overflow and underflow flags are set by math instructions such as multiply, add, subtract and 1/x.

These flags may also be connected to the peripheral interrupt expansion (PIE) block on your device.
This can be useful for debugging underflow and overflow conditions within an application.

As on the C28x, program flow is controlled by C28x instructions that read status flags in the status register
0 (ST0) . If a decision needs to be made based on a floating-point operation, the information in the STF
register needs to be loaded into ST0 flags (Z,N,OV,TC,C) so that the appropriate branch conditional
instruction can be executed. The MOVST0 FLAG instruction is used to load the current value of specified
STF flags into the respective bits of ST0. When this instruction executes, it will also clear the latched
overflow and underflow flags if those flags are specified.

Example 1-1. Moving STF Flags to the ST0 Register

Loop:
MOV32 R0H,*XAR4++
MOV32 R1H,*XAR3++
CMPF32 R1H, R0H
MOVST0 ZF, NF ; Move ZF and NF to ST0
BF Loop, GT ; Loop if (R1H > R0H)

Figure 1-3. Floating-point Unit Status Register (STF)
31 30 16

SHDWS Reserved

R/W-0 R-0

15 10 9 8 7 6 5 4 3 2 1 0
Reserved RND32 Reserved TF ZI NI ZF NF LUF LVF

R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-2. Floating-point Unit Status (STF) Register Field Descriptions

Bits Field Value Description
31 SHDWS Shadow Mode Status Bit

0 This bit is forced to 0 by the RESTORE instruction.
1 This bit is set to 1 by the SAVE instruction.

This bit is not affected by loading the status register either from memory or from the shadow values.
30 - 10 Reserved 0 Reserved for future use

9 RND32 Round 32-bit Floating-Point Mode
0 If this bit is zero, the MPYF32, ADDF32 and SUBF32 instructions will round to zero (truncate).
1 If this bit is one, the MPYF32, ADDF32 and SUBF32 instructions will round to the nearest even value.

8 - 7 Reserved 0 Reserved for future use
6 TF Test Flag

The TESTTF instruction can modify this flag based on the condition tested. The SETFLG and SAVE
instructions can also be used to modify this flag.

0 The condition tested with the TESTTF instruction is false.
1 The condition tested with the TESTTF instruction is true.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com CPU Register Set

19SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Table 1-2. Floating-point Unit Status (STF) Register Field Descriptions (continued)
Bits Field Value Description

(1) A negative zero floating-point value is treated as a positive zero value when configuring the ZF and NF flags.
(2) A DeNorm floating-point value is treated as a positive zero value when configuring the ZF and NF flags.

5 ZI Zero Integer Flag
The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to modify this flag.

0 The integer value is not zero.
1 The integer value is zero.

4 NI Negative Integer Flag
The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to modify this flag.

0 The integer value is not negative.
1 The integer value is negative.

3 ZF Zero Floating-Point Flag (1) (2)

The following instructions modify this flag based on the floating-point value stored in the destination
register:
MOV32, MOVD32, MOVDD32, ABSF32, NEGF32
The CMPF32, MAXF32, and MINF32 instructions modify this flag based on the result of the operation.
The SETFLG and SAVE instructions can also be used to modify this flag

0 The floating-point value is not zero.
1 The floating-point value is zero.

2 NF Negative Floating-Point Flag (1) (2)

The following instructions modify this flag based on the floating-point value stored in the destination
register:
MOV32, MOVD32, MOVDD32, ABSF32, NEGF32
The CMPF32, MAXF32, and MINF32 instructions modify this flag based on the result of the operation.
The SETFLG and SAVE instructions can also be used to modify this flag.

0 The floating-point value is not negative.
1 The floating-point value is negative.

1 LUF Latched Underflow Floating-Point Flag
The following instructions will set this flag to 1 if an underflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32

0 An underflow condition has not been latched. If the MOVST0 instruction is used to copy this bit to ST0,
then LUF will be cleared.

1 An underflow condition has been latched.
0 LVF Latched Overflow Floating-Point Flag

The following instructions will set this flag to 1 if an overflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32

0 An overflow condition has not been latched. If the MOVST0 instruction is used to copy this bit to ST0,
then LVF will be cleared.

1 An overflow condition has been latched.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CPU Register Set www.ti.com

20 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.3.1.2 Repeat Block Register (RB)
The repeat block instruction (RPTB) is a new instruction for C28x+FPU. This instruction allows you to
repeat a block of code as shown in Example 1-2.

Example 1-2. The Repeat Block (RPTB) Instruction uses the RB Register

; find the largest element and put its address in XAR6
MOV32 R0H, *XAR0++;
.align 2 ; Aligns the next instruction to an even address

NOP ; Makes RPTB odd aligned - required for a block size of 8
RPTB VECTOR_MAX_END, AR7 ; RA is set to 1
MOVL ACC,XAR0
MOV32 R1H,*XAR0++ ; RSIZE reflects the size of the RPTB block
MAXF32 R0H,R1H ; in this case the block size is 8
MOVST0 NF,ZF
MOVL XAR6,ACC,LT
VECTOR_MAX_END: ; RE indicates the end address. RA is cleared

The C28x_FPU hardware automatically populates the RB register based on the execution of a RPTB
instruction. This register is not normally read by the application and does not accept debugger writes.

Figure 1-4. Repeat Block Register (RB)
31 30 29 23 22 16

RAS RA RSIZE RE
R-0 R-0 R-0 R-0

15 0
RC
R-0

LEGEND: R = Read only; -n = value after reset

Table 1-3. Repeat Block (RB) Register Field Descriptions

Bits Field Value Description
31 RAS Repeat Block Active Shadow Bit

When an interrupt occurs the repeat active, RA, bit is copied to the RAS bit and the RA bit is cleared.
When an interrupt return instruction occurs, the RAS bit is copied to the RA bit and RAS is cleared.

0 A repeat block was not active when the interrupt was taken.
1 A repeat block was active when the interrupt was taken.

30 RA Repeat Block Active Bit
0 This bit is cleared when the repeat counter, RC, reaches zero.

When an interrupt occurs the RA bit is copied to the repeat active shadow, RAS, bit and RA is cleared.
When an interrupt return, IRET, instruction is executed, the RAS bit is copied to the RA bit and RAS is
cleared.

1 This bit is set when the RPTB instruction is executed to indicate that a RPTB is currently active.
29-23 RSIZE Repeat Block Size

This 7-bit value specifies the number of 16-bit words within the repeat block. This field is initialized
when the RPTB instruction is executed. The value is calculated by the assembler and inserted into the
RPTB instruction's RSIZE opcode field.

0-7 Illegal block size.
8/9-0x7F A RPTB block that starts at an even address must include at least 9 16-bit words and a block that

starts at an odd address must include at least 8 16-bit words. The maximum block size is 127 16-bit
words. The codegen assembler will check for proper block size and alignment.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Fetch

C28x pipeline

Decode Read Exe

W

Write

FPU instruction

Store

Load

CMP/MIN/MAX/NEG/ABS

MPY/ADD/SUB/MACF32

ER2R1D2D1F2F1

E2
W

E1RD

www.ti.com Pipeline

21SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Table 1-3. Repeat Block (RB) Register Field Descriptions (continued)
Bits Field Value Description

22-16 RE Repeat Block End Address
This 7-bit value specifies the end address location of the repeat block. The RE value is calculated by
hardware based on the RSIZE field and the PC value when the RPTB instruction is executed.
RE = lower 7 bits of (PC + 1 + RSIZE)

15-0 RC Repeat Count
0 The block will not be repeated; it will be executed only once. In this case the repeat active, RA, bit will

not be set.
1-

0xFFFF
This 16-bit value determines how many times the block will repeat. The counter is initialized when the
RPTB instruction is executed and is decremented when the PC reaches the end of the block. When
the counter reaches zero, the repeat active bit is cleared and the block will be executed one more
time. Therefore the total number of times the block is executed is RC+1.

1.4 Pipeline
The pipeline flow for C28x instructions is identical to that of the C28x CPU described in TMS320C28x
DSP CPU and Instruction Set Reference Guide (SPRU430). Some floating-point instructions, however,
use additional execution phases and thus require a delay to allow the operation to complete. This pipeline
alignment is achieved by inserting NOPs or non-conflicting instructions when required. Software control of
delay slots allows you to improve performance of an application by taking advantage of the delay slots and
filling them with non-conflicting instructions. This section describes the key characteristics of the pipeline
with regards to floating-point instructions. The rules for avoiding pipeline conflicts are small in number and
simple to follow and the C28x+FPU assembler will help you by issuing errors for conflicts.

1.4.1 Pipeline Overview
The C28x FPU pipeline is identical to the C28x pipeline for all standard C28x instructions. In the decode2
stage (D2), it is determined if an instruction is a C28x instruction or a floating-point unit instruction. The
pipeline flow is shown in Figure 1-5. Notice that stalls due to normal C28x pipeline stalls (D2) and memory
waitstates (R2 and W) will also stall any C28x FPU instruction. Most C28x FPU instructions are single
cycle and will complete in the FPU E1 or W stage which aligns to the C28x pipeline. Some instructions will
take an additional execute cycle (E2). For these instructions you must wait a cycle for the result from the
instruction to be available. The rest of this section will describe when delay cycles are required. Keep in
mind that the assembly tools for the C28x+FPU will issue an error if a delay slot has not been handled
correctly.

Figure 1-5. FPU Pipeline

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430


Pipeline www.ti.com

22 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.4.2 General Guidelines for Floating-Point Pipeline Alignment
While the C28x+FPU assembler will issue errors for pipeline conflicts, you may still find it useful to
understand when software delays are required. This section describes three guidelines you can follow
when writing C28x+FPU assembly code.

Floating-point instructions that require delay slots have a 'p' after their cycle count. For example '2p'
stands for 2 pipelined cycles. This means that an instruction can be started every cycle, but the result of
the instruction will only be valid one instruction later.

There are three general guidelines to determine if an instruction needs a delay slot:
1. Floating-point math operations (multiply, addition, subtraction, 1/x and MAC) require 1 delay slot.
2. Conversion instructions between integer and floating-point formats require 1 delay slot.
3. Everything else does not require a delay slot. This includes minimum, maximum, compare, load, store,

negative and absolute value instructions.

There are two exceptions to these rules. First, moves between the CPU and FPU registers require special
pipeline alignment that is described later in this section. These operations are typically infrequent. Second,
the MACF32 R7H, R3H, mem32, *XAR7 instruction has special requirements that make it easier to use.
Refer to the MACF32 instruction description for details.

An example of the 32-bit ADDF32 instruction is shown in Example 1-3. ADDF32 is a 2p instruction and
therefore requires one delay slot. The destination register for the operation, R0H, will be updated one
cycle after the instruction for a total of 2 cycles. Therefore, a NOP or instruction that does not use R0H
must follow this instruction.

Any memory stall or pipeline stall will also stall the floating-point unit. This keeps the floating-point unit
aligned with the C28x pipeline and there is no need to change the code based on the waitstates of a
memory block.

Please note that on certain devices instructions make take additional cycles to complete under specific
conditions. These exceptions will be documented in the device errata.

Example 1-3. 2p Instruction Pipeline Alignment

ADDF32 R0H, #1.5, R1H ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, R0H updated
NOP ; Any instruction

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

23SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.4.3 Moves from FPU Registers to C28x Registers
When transferring from the floating-point unit registers to the C28x CPU registers, additional pipeline
alignment is required as shown in Example 1-4 and Example 1-5.

Example 1-4. Floating-Point to C28x Register Software Pipeline Alignment

; MINF32: 32-bit floating-point minimum: single-cycle operation
; An alignment cycle is required before copying R0H to ACC
MINF32 R0H, R1H ; Single-cycle instruction

; <-- R0H is valid
NOP ; Alignment cycle
MOV32 @ACC, R0H ; Copy R0H to ACC

For 1-cycle FPU instructions, one delay slot is required between a write to the floating-point register and
the transfer instruction as shown in Example 1-4. For 2p FPU instructions, two delay slots are required
between a write to the floating-point register and the transfer instruction as shown in Example 1-5.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

24 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example 1-5. Floating-Point to C28x Register Software Pipeline Alignment

; ADDF32: 32-bit floating-point addition: 2p operation
; An alignment cycle is required before copying R0H to ACC
ADDF32 R0H, R1H, #2 ; R0H = R1H + 2, 2 pipeline cycle instruction
NOP ; 1 delay cycle or non-conflicting instruction

; <-- R0H is valid
NOP ; Alignment cycle
NOP :
MOV32 @ACC, R0H ; Copy R0H to ACC

1.4.4 Moves from C28x Registers to FPU Registers
Transfers from the standard C28x CPU registers to the floating-point registers require four alignment
cycles. For the 2833x, 2834x, 2806x, 28M35xx and 28M26xx, the four alignment cycles can be filled with
NOPs or any non-conflicting instruction except for F32TOUI32 RaH, RbH, FRACF32 RaH, RbH,
UI16TOF32 RaH, mem16 and UI16TOF32 RaH, RbH. These instructions cannot replace any of the four
alignment NOPs. On newer devices any non-conflicting instruction can go into the four alignment cycles.
Please refer to the device errata for specific exceptions to these rules.

Example 1-6. C28x Register to Floating-Point Register Software Pipeline Alignment

; Four alignment cycles are required after copying a standard 28x CPU
; register to a floating-point register.
;
MOV32 R0H,@ACC ; Copy ACC to R0H
NOP
NOP
NOP
NOP ; Wait 4 cycles
ADDF32 R2H,R1H,R0H ; R0H is valid

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

25SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.4.5 Parallel Instructions
Parallel instructions are single opcodes that perform two operations in parallel. This can be a math
operation in parallel with a move operation, or two math operations in parallel. Math operations with a
parallel move are referred to as 2p/1 instructions. The math portion of the operation takes two pipelined
cycles while the move portion of the operation is single cycle. This means that NOPs or other non
conflicting instructions must be inserted to align the math portion of the operation. An example of an add
with parallel move instruction is shown in Example 1-7.

Example 1-7. 2p/1 Parallel Instruction Software Pipeline Alignment

; ADDF32 || MOV32 instruction: 32-bit floating-point add with parallel move
; ADDF32 is a 2p operation
; MOV32 is a 1 cycle operation
;

ADDF32 R0H, R1H, #2 ; R0H = R1H + 2, 2 pipeline cycle operation
|| MOV32 R1H, @Val ; R1H gets the contents of Val, single cycle operation

; <-- MOV32 completes here (R1H is valid)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes here (R0H is valid)
NOP ; Any instruction

Parallel math instructions are referred to as 2p/2p instructions. Both math operations take 2 cycles to
complete. This means that NOPs or other non conflicting instructions must be inserted to align the both
math operations. An example of a multiply with parallel add instruction is shown in Example 1-8.

Example 1-8. 2p/2p Parallel Instruction Software Pipeline Alignment

; MPYF32 || ADDF32 instruction: 32-bit floating-point multiply with parallel add
; MPYF32 is a 2p operation
; ADDF32 is a 2p cycle operation
;

MPYF32 R0H, R1H, R3H ; R0H = R1H * R3H, 2 pipeline cycle operation
|| ADDF32 R1H, R2H, R4H ; R1H = R2H + R4H, 2 pipeline cycle operation

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 and ADDF32 complete here (R0H and R1H are valid)

NOP ; Any instruction

1.4.6 Invalid Delay Instructions
Most instructions can be used in delay slots as long as source and destination register conflicts are
avoided. The C28x+FPU assembler will issue an error anytime you use an conflicting instruction within a
delay slot. The following guidelines can be used to avoid these conflicts.

NOTE: Destination register conflicts in delay slots:

Any operation used for pipeline alignment delay must not use the same destination register
as the instruction requiring the delay. See Example 1-9.

In Example 1-9 the MPYF32 instruction uses R2H as its destination register. The next instruction should
not use R2H as its destination. Since the MOV32 instruction uses the R2H register a pipeline conflict will
be issued by the assembler. This conflict can be resolved by using a register other than R2H for the
MOV32 instruction as shown in Example 1-10.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

26 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example 1-9. Destination Register Conflict

; Invalid delay instruction. Both instructions use the same destination register
MPYF32 R2H, R1H, R0H ; 2p instruction
MOV32 R2H, mem32 ; Invalid delay instruction

Example 1-10. Destination Register Conflict Resolved

; Valid delay instruction
MPYF32 R2H, R1H, R0H ; 2p instruction MOV32 R1H, mem32
MOV32 R3H, mem32 ; Valid delay

; <-- MPYF32 completes, R2H valid

NOTE: Instructions in delay slots cannot use the instruction's destination register as a source
register.

Any operation used for pipeline alignment delay must not use the destination register of the
instruction requiring the delay as a source register as shown in Example 1-11. For parallel
instructions, the current value of a register can be used in the parallel operation before it is
overwritten as shown in Example 1-13.

In Example 1-11 the MPYF32 instruction again uses R2H as its destination register. The next instruction
should not use R2H as its source since the MPYF32 will take an additional cycle to complete. Since the
ADDF32 instruction uses the R2H register a pipeline conflict will be issued by the assembler. This conflict
can be resolved by using a register other than R2H or by inserting a non-conflicting instruction between
the MPYF32 and ADDF32 instructions. Since the SUBF32 does not use R2H this instruction can be
moved before the ADDF32 as shown in Example 1-12.

Example 1-11. Destination/Source Register Conflict

; Invalid delay instruction. ADDF32 should not use R2H as a source operand
MPYF32 R2H, R1H, R0H ; 2p instruction
ADDF32 R3H, R3H, R2H ; Invalid delay instruction
SUBF32 R4H, R1H, R0H

Example 1-12. Destination/Source Register Conflict Resolved

; Valid delay instruction.
MPYF32 R2H, R1H, R0H ; 2p instruction
SUBF32 R4H, R1H, R0H ; Valid delay for MPYF32
ADDF32 R3H, R3H, R2H ; <-- MPYF32 completes, R2H valid
NOP ; <-- SUBF32 completes, R4H valid

It should be noted that a source register for the 2nd operation within a parallel instruction can be the same
as the destination register of the first operation. This is because the two operations are started at the
same time. The 2nd operation is not in the delay slot of the first operation. Consider Example 1-13 where
the MPYF32 uses R2H as its destination register. The MOV32 is the 2nd operation in the instruction and
can freely use R2H as a source register. The contents of R2H before the multiply will be used by MOV32.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

27SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example 1-13. Parallel Instruction Destination/Source Exception

; Valid parallel operation.
MPYF32 R2H, R1H, R0H ; 2p/1 instruction

|| MOV32 mem32, R2H ; <-- Uses R2H before the MPYF32
; <-- mem32 updated

NOP ; <-- Delay for MPYF32
; <-- R2H updated

Likewise, the source register for the 2nd operation within a parallel instruction can be the same as one of
the source registers of the first operation. The MPYF32 operation in Example 1-14 uses the R1H register
as one of its sources. This register is also updated by the MOV32 register. The multiplication operation will
use the value in R1H before the MOV32 updates it.

Example 1-14. Parallel Instruction Destination/Source Exception

; Valid parallel instruction
MPYF32 R2H, R1H, R0H ; 2p/1 instruction

|| MOV32 R1H, mem32 ; Valid
NOP ; <-- MOV32 completes, R1H valid

; <-- MPYF32, R2H valid

NOTE: Operations within parallel instructions cannot use the same destination register.

When two parallel operations have the same destination register, the result is invalid.

For example, see Example 1-15.

If both operations within a parallel instruction try to update the same destination register as shown in
Example 1-15 the assembler will issue an error.

Example 1-15. Invalid Destination Within a Parallel Instruction

; Invalid parallel instruction. Both operations use the same destination register
MPYF32 R2H, R1H, R0H ; 2p/1 instruction

|| MOV32 R2H, mem32 ; Invalid

Some instructions access or modify the STF flags. Because the instruction requiring a delay slot will also
be accessing the STF flags, these instructions should not be used in delay slots. These instructions are
SAVE, SETFLG, RESTORE and MOVST0.

NOTE: Do not use SAVE, SETFLG, RESTORE, or the MOVST0 instruction in a delay slot.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

28 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.4.7 Optimizing the Pipeline
The following example shows how delay slots can be used to improve the performance of an algorithm.
The example performs two Y = MX+B operations. In Example 1-16, no optimization has been done. The Y
= MX+B calculations are sequential and each takes 7 cycles to complete. Notice there are NOPs in the
delay slots that could be filled with non-conflicting instructions. The only requirement is these instructions
must not cause a register conflict or access the STF register flags.

Example 1-16. Floating-Point Code Without Pipeline Optimization

; Using NOPs for alignment cycles, calculate the following:
;
; Y1 = M1*X1 + B1
; Y2 = M2*X2 + B2
;
; Calculate Y1
;

MOV32 R0H,@M1 ; Load R0H with M1 - single cycle
MOV32 R1H,@X1 ; Load R1H with X1 - single cycle
MPYF32 R1H,R1H,R0H ; R1H = M1 * X1 - 2p operation

|| MOV32 R0H,@B1 ; Load R0H with B1 - single cycle
NOP ; Wait for MPYF32 to complete

; <-- MPYF32 completes, R1H is valid
ADDF32 R1H,R1H,R0H ; R1H = R1H + R0H - 2p operation
NOP ; Wait for ADDF32 to complete

; <-- ADDF32 completes, R1H is valid
MOV32 @Y1,R1H ; Save R1H in Y1 - single cycle

; Calculate Y2

MOV32 R0H,@M2 ; Load R0H with M2 - single cycle
MOV32 R1H,@X2 ; Load R1H with X2 - single cycle
MPYF32 R1H,R1H,R0H ; R1H = M2 * X2 - 2p operation

|| MOV32 R0H,@B2 ; Load R0H with B2 - single cycle
NOP ; Wait for MPYF32 to complete

; <-- MPYF32 completes, R1H is valid
ADDF32 R1H,R1H,R0H ; R1H = R1H + R0H

NOP ; Wait for ADDF32 to complete
; <-- ADDF32 completes, R1H is valid

MOV32 @Y2,R1H ; Save R1H in Y2
; 14 cycles
; 48 bytes

The code shown in Example 1-17 was generated by the C28x+FPU compiler with optimization enabled.
Notice that the NOPs in the first example have now been filled with other instructions. The code for the
two Y = MX+B calculations are now interleaved and both calculations complete in only nine cycles.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Floating Point Unit Instruction Set

29SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example 1-17. Floating-Point Code With Pipeline Optimization

; Using non-conflicting instructions for alignment cycles,
; calculate the following:
;
; Y1 = M1*X1 + B1
; Y2 = M2*X2 + B2
;

MOV32 R2H,@X1 ; Load R2H with X1 - single cycle
MOV32 R1H,@M1 ; Load R1H with M1 - single cycle
MPYF32 R3H,R2H,R1H ; R3H = M1 * X1 - 2p operation

|| MOV32 R0H,@M2 ; Load R0H with M2 - single cycle
MOV32 R1H,@X2 ; Load R1H with X2 - single cycle

; <-- MPYF32 completes, R3H is valid
MPYF32 R0H,R1H,R0H ; R0H = M2 * X2 - 2p operation

|| MOV32 R4H,@B1 ; Load R4H with B1 - single cycle
; <-- MOV32 completes, R4H is valid

ADDF32 R1H,R4H,R3H ; R1H = B1 + M1*X1 - 2p operation
|| MOV32 R2H,@B2 ; Load R2H with B2 - single cycle

; <-- MPYF32 completes, R0H is valid
ADDF32 R0H,R2H,R0H ; R0H = B2 + M2*X2 - 2p operation

; <-- ADDF32 completes, R1H is valid
MOV32 @Y1,R1H ; Store Y1

; <-- ADDF32 completes, R0H is valid
MOV32 @Y2,R0H ; Store Y2

; 9 cycles
; 36 bytes

1.5 Floating Point Unit Instruction Set
This chapter describes the assembly language instructions of the TMS320C28x plus floating-point
processor. Also described are parallel operations, conditional operations, resource constraints, and
addressing modes. The instructions listed here are an extension to the standard C28x instruction set. For
information on standard C28x instructions, see the TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430).

1.5.1 Instruction Descriptions
This section gives detailed information on the instruction set. Each instruction may present the following
information:
• Operands
• Opcode
• Description
• Exceptions
• Pipeline
• Examples
• See also

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. On the C28x+FPU instructions, follow the same format as the
C28x. The source operand(s) are always on the right and the destination operand(s) are on the left.

The explanations for the syntax of the operands used in the instruction descriptions for the TMS320C28x
plus floating-point processor are given in Table 1-4. For information on the operands of standard C28x
instructions, see the TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru430


Floating Point Unit Instruction Set www.ti.com

30 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Table 1-4. Operand Nomenclature

Symbol Description
#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value
#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value
#32F Immediate float value represented in floating-point representation
#0.0 Immediate zero
#RC 16-bit immediate value for the repeat count
*(0:16bitAddr) 16-bit immediate address, zero extended
CNDF Condition to test the flags in the STF register
FLAG Selected flags from STF register (OR) 11 bit mask indicating which floating-point status flags to change
label Label representing the end of the repeat block
mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
RaH R0H to R7H registers
RbH R0H to R7H registers
RcH R0H to R7H registers
RdH R0H to R7H registers
ReH R0H to R7H registers
RfH R0H to R7H registers
RB Repeat Block Register
STF FPU Status Register
VALUE Flag value of 0 or 1 for selected flag (OR) 11 bit mask indicating the flag value; 0 or 1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com INSTRUCTION dest1, source1, source2 — Short Description

31SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

INSTRUCTION dest1, source1, source2 Short Description

Operands

dest1 description for the 1st operand for the instruction
source1 description for the 2nd operand for the instruction
source2 description for the 3rd operand for the instruction

Each instruction has a table that gives a list of the operands and a short description.
Instructions always have their destination operand(s) first followed by the source
operand(s).

Opcode This section shows the opcode for the instruction.

Description Detailed description of the instruction execution is described. Any constraints on the
operands imposed by the processor or the assembler are discussed.

Restrictions Any constraints on the operands or use of the instruction imposed by the processor are
discussed.

Pipeline This section describes the instruction in terms of pipeline cycles as described in
Section 1.4.

Example Examples of instruction execution. If applicable, register and memory values are given
before and after instruction execution. All examples assume the device is running with
the OBJMODE set to 1. Normally the boot ROM or the c-code initialization will set this
bit.

See Also Lists related instructions.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Floating Point Unit Instruction Set www.ti.com

32 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

1.5.2 Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 1-5. Summary of Instructions
Title ...................................................................................................................................... Page

ABSF32 RaH, RbH —32-bit Floating-Point Absolute Value........................................................................ 34
ADDF32 RaH, #16FHi, RbH —32-bit Floating-Point Addition..................................................................... 35
ADDF32 RaH, RbH, #16FHi —32-bit Floating-Point Addition..................................................................... 37
ADDF32 RaH, RbH, RcH —32-bit Floating-Point Addition ......................................................................... 39
ADDF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH —32-bit Floating-Point Addition with Parallel Move...................... 41
ADDF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Addition with Parallel Move....................... 43
CMPF32 RaH, RbH —32-bit Floating-Point Compare for Equal, Less Than or Greater Than ................................ 45
CMPF32 RaH, #16FHi —32-bit Floating-Point Compare for Equal, Less Than or Greater Than ............................. 46
CMPF32 RaH, #0.0 —32-bit Floating-Point Compare for Equal, Less Than or Greater Than................................. 48
EINVF32 RaH, RbH —32-bit Floating-Point Reciprocal Approximation .......................................................... 49
EISQRTF32 RaH, RbH —32-bit Floating-Point Square-Root Reciprocal Approximation ...................................... 51
F32TOI16 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Integer ................................................... 53
F32TOI16R RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Integer and Round ................................... 54
F32TOI32 RaH, RbH —Convert 32-bit Floating-Point Value to 32-bit Integer ................................................... 55
F32TOUI16 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer .................................... 56
F32TOUI16R RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round..................... 57
F32TOUI32 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer .................................... 58
FRACF32 RaH, RbH —Fractional Portion of a 32-bit Floating-Point Value...................................................... 59
I16TOF32 RaH, RbH —Convert 16-bit Integer to 32-bit Floating-Point Value .................................................. 60
I16TOF32 RaH, mem16 —Convert 16-bit Integer to 32-bit Floating-Point Value .............................................. 61
I32TOF32 RaH, mem32 —Convert 32-bit Integer to 32-bit Floating-Point Value .............................................. 62
I32TOF32 RaH, RbH —Convert 32-bit Integer to 32-bit Floating-Point Value .................................................. 63
MACF32 R3H, R2H, RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Add ..................................... 64
MACF32 R3H, R2H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Multiply and Accumulate with

Parallel Move ................................................................................................................... 66
MACF32 R7H, R3H, mem32, *XAR7++ —32-bit Floating-Point Multiply and Accumulate ................................... 68
MACF32 R7H, R6H, RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Add ...................................... 70
MACF32 R7H, R6H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Multiply and Accumulate with

Parallel Move ................................................................................................................... 72
MAXF32 RaH, RbH —32-bit Floating-Point Maximum.............................................................................. 74
MAXF32 RaH, #16FHi —32-bit Floating-Point Maximum .......................................................................... 75
MAXF32 RaH, RbH ∥∥MOV32 RcH, RdH —32-bit Floating-Point Maximum with Parallel Move.............................. 76
MINF32 RaH, RbH —32-bit Floating-Point Minimum................................................................................ 77
MINF32 RaH, #16FHi —32-bit Floating-Point Minimum ............................................................................ 78
MINF32 RaH, RbH ∥∥MOV32 RcH, RdH —32-bit Floating-Point Minimum with Parallel Move ................................ 79
MOV16 mem16, RaH —Move 16-bit Floating-Point Register Contents to Memory............................................. 80
MOV32 *(0:16bitAddr), loc32 —Move the Contents of loc32 to Memory ....................................................... 81
MOV32 ACC, RaH —Move 32-bit Floating-Point Register Contents to ACC .................................................... 82
MOV32 loc32, *(0:16bitAddr) —Move 32-bit Value from Memory to loc32 ..................................................... 83
MOV32 mem32, RaH —Move 32-bit Floating-Point Register Contents to Memory ............................................ 84
MOV32 mem32, STF —Move 32-bit STF Register to Memory .................................................................... 86
MOV32 P, RaH —Move 32-bit Floating-Point Register Contents to P ............................................................ 87
MOV32 RaH, ACC —Move the Contents of ACC to a 32-bit Floating-Point Register ......................................... 88
MOV32 RaH, mem32 {, CNDF} —Conditional 32-bit Move........................................................................ 89

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Floating Point Unit Instruction Set

33SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Table 1-5. Summary of Instructions (continued)
MOV32 RaH, P —Move the Contents of P to a 32-bit Floating-Point Register ................................................. 91
MOV32 RaH, RbH {, CNDF} —Conditional 32-bit Move............................................................................ 92
MOV32 RaH, XARn —Move the Contents of XARn to a 32-bit Floating-Point Register ...................................... 93
MOV32 RaH, XT —Move the Contents of XT to a 32-bit Floating-Point Register .............................................. 94
MOV32 STF, mem32 —Move 32-bit Value from Memory to the STF Register ................................................. 95
MOV32 XARn, RaH —Move 32-bit Floating-Point Register Contents to XARn ................................................. 96
MOV32 XT, RaH —Move 32-bit Floating-Point Register Contents to XT......................................................... 97
MOVD32 RaH, mem32 —Move 32-bit Value from Memory with Data Copy .................................................... 98
MOVF32 RaH, #32F —Load the 32-bits of a 32-bit Floating-Point Register ..................................................... 99
MOVI32 RaH, #32FHex —Load the 32-bits of a 32-bit Floating-Point Register with the immediate ........................ 100
MOVIZ RaH, #16FHiHex —Load the Upper 16-bits of a 32-bit Floating-Point Register ..................................... 101
MOVIZF32 RaH, #16FHi —Load the Upper 16-bits of a 32-bit Floating-Point Register ...................................... 102
MOVST0 FLAG —Load Selected STF Flags into ST0 ............................................................................ 103
MOVXI RaH, #16FLoHex —Move Immediate to the Low 16-bits of a Floating-Point Register .............................. 104
MPYF32 RaH, RbH, RcH —32-bit Floating-Point Multiply ........................................................................ 105
MPYF32 RaH, #16FHi, RbH —32-bit Floating-Point Multiply .................................................................... 106
MPYF32 RaH, RbH, #16FHi —32-bit Floating-Point Multiply .................................................................... 108
MPYF32 RaH, RbH, RcH ∥∥ADDF32 RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Add ................... 110
MPYF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Multiply with Parallel Move...................... 112
MPYF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH —32-bit Floating-Point Multiply with Parallel Move...................... 114
MPYF32 RaH, RbH, RcH ∥∥SUBF32 RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Subtract.............. 115
NEGF32 RaH, RbH{, CNDF} —Conditional Negation ............................................................................. 116
POP RB —Pop the RB Register from the Stack ................................................................................... 117
PUSH RB —Push the RB Register onto the Stack ................................................................................ 119
RESTORE —Restore the Floating-Point Registers ............................................................................... 120
RPTB label, loc16 —Repeat A Block of Code ..................................................................................... 122
RPTB label, #RC —Repeat a Block of Code ....................................................................................... 124
SAVE FLAG, VALUE —Save Register Set to Shadow Registers and Execute SETFLG ................................... 126
SETFLG FLAG, VALUE —Set or clear selected floating-point status flags ................................................... 128
SUBF32 RaH, RbH, RcH —32-bit Floating-Point Subtraction................................................................... 129
SUBF32 RaH, #16FHi, RbH —32-bit Floating Point Subtraction ................................................................ 130
SUBF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Subtraction with Parallel Move ................ 131
SUBF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH —32-bit Floating-Point Subtraction with Parallel Move ................ 133
SWAPF RaH, RbH{, CNDF} —Conditional Swap ................................................................................. 135
TESTTF CNDF —Test STF Register Flag Condition .............................................................................. 136
UI16TOF32 RaH, mem16 —Convert unsigned 16-bit integer to 32-bit floating-point value.................................. 137
UI16TOF32 RaH, RbH —Convert unsigned 16-bit integer to 32-bit floating-point value...................................... 138
UI32TOF32 RaH, mem32 —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value................................ 139
UI32TOF32 RaH, RbH —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value ................................... 140
ZERO RaH —Zero the Floating-Point Register RaH ............................................................................. 141
ZEROA —Zero All Floating-Point Registers........................................................................................ 142

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ABSF32 RaH, RbH — 32-bit Floating-Point Absolute Value www.ti.com

34 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ABSF32 RaH, RbH 32-bit Floating-Point Absolute Value

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0110 1001 0101
MSW: 0000 0000 00bb baaa

Description The absolute value of RbH is loaded into RaH. Only the sign bit of the operand is
modified by the ABSF32 instruction.
if (RbH < 0) {RaH = -RbH}

else {RaH = RbH}

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:

NF = 0;
ZF = 0;
if ( RaH[30:23] == 0) ZF = 1;

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
ABSF32 R1H, R1H ; R1H = 2.0 (0x40000000), ZF = NF = 0

MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
ABSF32 R0H, R0H ; R0H = 5.0 (0x40A00000), ZF = NF = 0

MOVIZF32 R0H, #0.0 ; R0H = 0.0
ABSF32 R1H, R0H ; R1H = 0.0 ZF = 1, NF = 0

See also NEGF32 RaH, RbH{, CNDF}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RaH, #16FHi, RbH — 32-bit Floating-Point Addition

35SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ADDF32 RaH, #16FHi, RbH 32-bit Floating-Point Addition

Operands

RaH floating-point destination register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.
RbH floating-point source register (R0H to R7H)

Opcode
LSW: 1110 1000 10II IIII
MSW: IIII IIII IIbb baaa

Description Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = RbH + #16FHi:0

This instruction can also be written as ADDF32 RaH, RbH, #16FHi.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example ; Add to R1H the value 2.0 in 32-bit floating-point format
ADDF32 R0H, #2.0, R1H ; R0H = 2.0 + R1H
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R0H updated
NOP ;

; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, #-2.5, R3H ; R2H = -2.5 + R3H
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R2H updated
NOP ;

; Add to R5H the value 0x3FC00000 (1.5)
ADDF32 R5H, #0x3FC0, R5H ; R5H = 1.5 + R5H
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R5H updated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RaH, #16FHi, RbH — 32-bit Floating-Point Addition www.ti.com

36 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

NOP ;

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RaH, RbH, #16FHi — 32-bit Floating-Point Addition

37SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ADDF32 RaH, RbH, #16FHi 32-bit Floating-Point Addition

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 10II IIII
MSW: IIII IIII IIbb baaa

Description Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = RbH + #16FHi:0

This instruction can also be written as ADDF32 RaH, #16FHi, RbH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
; Add to R1H the value 2.0 in 32-bit floating-point format

ADDF32 R0H, R1H, #2.0 ; R0H = R1H + 2.0
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R0H updated
NOP ;

; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, R3H, #-2.5 ; R2H = R3H + (-2.5)
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R2H updated
NOP ;

; Add to R5H the value 0x3FC00000 (1.5)
ADDF32 R5H, R5H, #0x3FC0 ; R5H = R5H + 1.5
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R5H updated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RaH, RbH, #16FHi — 32-bit Floating-Point Addition www.ti.com

38 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

NOP ;

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RaH, RbH, RcH — 32-bit Floating-Point Addition

39SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ADDF32 RaH, RbH, RcH 32-bit Floating-Point Addition

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)
RcH floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0111 0001 0000
MSW: 0000 000c ccbb baaa

Description Add the contents of RcH to the contents of RbH and load the result into RaH.
RaH = RbH + RcH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:
ADDF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y are all on the
same data page.
MOVW DP, #M1 ; Load the data page
MOV32 R0H,@M1 ; Load R0H with M1
MOV32 R1H,@X1 ; Load R1H with X1
MPYF32 R1H,R1H,R0H ; Multiply M1*X1
|| MOV32 R0H,@B1 ; and in parallel load R0H with B1
NOP ; <-- MOV32 complete

; <-- MPYF32 complete
ADDF32 R1H,R1H,R0H ; Add M*X1 to B1 and store in R1H
NOP

; <-- ADDF32 complete
MOV32 @Y1,R1H ; Store the result

Calculate Y = A + B
MOVL XAR4, #A
MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
ADDF32 R0H,R1H,R0H ; Add A + B R0H=R0H+R1H
MOVL XAR4, #Y

; < -- ADDF32 complete
MOV32 *XAR4,R0H ; Store the result

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, #16F, RbH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RaH, RbH, RcH — 32-bit Floating-Point Addition www.ti.com

40 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Addition with Parallel Move

41SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ADDF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH 32-bit Floating-Point Addition with Parallel Move

Operands

RdH floating-point destination register for the ADDF32 (R0H to R7H)
ReH floating-point source register for the ADDF32 (R0H to R7H)
RfH floating-point source register for the ADDF32 (R0H to R7H)
mem32 pointer to a 32-bit memory location. This will be the destination of the MOV32.
RaH floating-point source register for the MOV32 (R0H to R7H)

Opcode
LSW: 1110 0000 0001 fffe
MSW: eedd daaa mem32

Description Perform an ADDF32 and a MOV32 in parallel. Add RfH to the contents of ReH and store
the result in RdH. In parallel move the contents of RaH to the 32-bit location pointed to
by mem32. mem32 addresses memory using any of the direct or indirect addressing
modes supported by the C28x CPU.
RdH = ReH + RfH,
[mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

Pipeline ADDF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:

ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 mem32, RaH ; 1 cycle

; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.

Example
ADDF32 R3H, R6H, R4H ; (A) R3H = R6H + R4H and R7H = I3

|| MOV32 R7H, *-SP[2] ;
; <-- R7H vali

SUBF32 R6H, R6H, R4H ; (B) R6H = R6H - R4H
; <-- ADDF32 (A) completes, R3H valid

SUBF32 R3H, R1H, R7H ; (C) R3H = R1H - R7H and store R3H (A)
|| MOV32 *+XAR5[2], R3H ;

; <-- SUBF32 (B) completes, R6H valid
; <-- MOV32 completes, (A) stored

ADDF32 R4H, R7H, R1H ; R4H = D = R7H + R1H and store R6H (B)
|| MOV32 *+XAR5[6], R6H ;

; <-- SUBF32 (C) completes, R3H valid
; <-- MOV32 completes, (B) stored

MOV32 *+XAR5[0], R3H ; store R3H (C)
; <-- MOV32 completes, (C) stored
; <-- ADDF32 (D) completes, R4H valid

MOV32 *+XAR5[4], R4H ; store R4H (D) ;

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Addition with Parallel Move www.ti.com

42 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

; <-- MOV32 completes, (D) stored

See also ADDF32 RaH, #16FHi, RbH
ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Addition with Parallel Move

43SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ADDF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Addition with Parallel Move

Operands

RdH floating-point destination register for the ADDF32 (R0H to R7H).
RdH cannot be the same register as RaH.

ReH floating-point source register for the ADDF32 (R0H to R7H)
RfH floating-point source register for the ADDF32 (R0H to R7H)
RaH floating-point destination register for the MOV32 (R0H to R7H).

RaH cannot be the same register as RdH.
mem32 pointer to a 32-bit memory location. This is the source for the MOV32.

Opcode
LSW: 1110 0011 0001 fffe
MSW: eedd daaa mem32

Description Perform an ADDF32 and a MOV32 operation in parallel. Add RfH to the contents of ReH
and store the result in RdH. In parallel move the contents of the 32-bit location pointed to
by mem32 to RaH. mem32 addresses memory using any of the direct or indirect
addressing modes supported by the C28x CPU.
RdH = ReH + RfH,
RaH = [mem32]

Restrictions The destination register for the ADDF32 and the MOV32 must be unique. That is, RaH
and RdH cannot be the same register.

Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline The ADDF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:

ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle

; <-- MOV32 completes, RaH updated NOP
; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RdH updated

NOP

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Addition with Parallel Move www.ti.com

44 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example Calculate Y = A + B - C:

MOVL XAR4, #A
MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
ADDF32 R0H,R1H,R0H ; Add A + B and in parallel

|| MOV32 R2H, *XAR4 ; Load R2H with C
; <-- MOV32 complete

MOVL XAR4,#Y
; ADDF32 complete

SUBF32 R0H,R0H,R2H ; Subtract C from (A + B)
NOP ;

<-- SUBF32 completes
MOV32 *XAR4,R0H ; Store the result

See also ADDF32 RaH, #16FHi, RbH
ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com CMPF32 RaH, RbH — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

45SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

CMPF32 RaH, RbH 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

RaH floating-point source register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0110 1001 0100
MSW: 0000 0000 00bb baaa

Description Set ZF and NF flags on the result of RaH - RbH. The CMPF32 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.

Special cases for inputs:
• Negative zero will be treated as positive zero.
• A denormalized value will be treated as positive zero.
• Not-a-Number (NaN) will be treated as infinity.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:
If(RaH == RbH) {ZF=1, NF=0}
If(RaH > RbH) {ZF=0, NF=0}
If(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example
; Behavior of ZF and NF flags for different comparisons

MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
CMPF32 R1H, R0H ; ZF = 0, NF = 1
CMPF32 R0H, R1H ; ZF = 0, NF = 0
CMPF32 R0H, R0H ; ZF = 1, NF = 0

; Using the result of a compare for loop control

Loop:
MOV32 R0H,*XAR4++ ; Load R0H
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, R0H ; Set/clear ZF and NF
MOVST0 ZF, NF ; Copy ZF and NF to ST0 Z and N bits
BF Loop, GT ; Loop if R1H > R0H

See also CMPF32 RaH, #16FHi
CMPF32 RaH, #0.0
MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CMPF32 RaH, #16FHi — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

46 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

CMPF32 RaH, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

RaH floating-point source register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 0001 0III
MSW: IIII IIII IIII Iaaa

Description Compare the value in RaH with the floating-point value represented by the immediate
operand. Set the ZF and NF flags on (RaH - #16FHi:0).

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.

The CMPF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for inputs:
• Negative zero will be treated as positive zero.
• Denormalized value will be treated as positive zero.
• Not-a-Number (NaN) will be treated as infinity.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:
If(RaH == #16FHi:0) {ZF=1, NF=0}
If(RaH > #16FHi:0) {ZF=0, NF=0}
If(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction

Example ; Behavior of ZF and NF flags for different comparisons
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
CMPF32 R1H, #-2.2 ; ZF = 0, NF = 0
CMPF32 R0H, #6.5 ; ZF = 0, NF = 1
CMPF32 R0H, #5.0 ; ZF = 1, NF = 0

; Using the result of a compare for loop control

Loop:
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, #2.0 ; Set/clear ZF and NF
MOVST0 ZF, NF ; Copy ZF and NF to ST0 Z and N bits
BF Loop, GT ; Loop if R1H > #2.0

See also CMPF32 RaH, #0.0
CMPF32 RaH, RbH
MAXF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com CMPF32 RaH, #16FHi — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

47SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CMPF32 RaH, #0.0 — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

48 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

CMPF32 RaH, #0.0 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

RaH floating-point source register (R0H to R7H)
#0.0 zero

Opcode LSW: 1110 0101 1010 0aaa

Description Set the ZF and NF flags on (RaH - #0.0). The CMPF32 instruction is performed as a
logical compare operation. This is possible because of the IEEE floating-point format
offsets the exponent. Basically the bigger the binary number, the bigger the floating-point
value.

Special cases for inputs:
• Negative zero will be treated as positive zero.
• Denormalized value will be treated as positive zero.
• Not-a-Number (NaN) will be treated as infinity.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:
If(RaH == #0.0) {ZF=1, NF=0}
If(RaH > #0.0) {ZF=0, NF=0}
If(RaH < #0.0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example ; Behavior of ZF and NF flags for different comparisons
MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
MOVIZF32 R2H, #0.0 ; R2H = 0.0 (0x00000000)
CMPF32 R0H, #0.0 ; ZF = 0, NF = 0
CMPF32 R1H, #0.0 ; ZF = 0, NF = 1
CMPF32 R2H, #0.0 ; ZF = 1, NF = 0

; Using the result of a compare for loop control

Loop:
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, #0.0 ; Set/clear ZF and NF
MOVST0 ZF, NF ; Copy ZF and NF to ST0 Z and N bits
BF Loop, GT ; Loop if R1H > #0.0

See also CMPF32 RaH, #0.0
CMPF32 RaH, #16FHi
MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com EINVF32 RaH, RbH — 32-bit Floating-Point Reciprocal Approximation

49SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

EINVF32 RaH, RbH 32-bit Floating-Point Reciprocal Approximation

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0110 1001 0011
MSW: 0000 0000 00bb baaa

Description This operation generates an estimate of 1/X in 32-bit floating-point format accurate to
approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:
Ye = Estimate(1/X);
Ye = Ye*(2.0 - Ye*X)
Ye = Ye*(2.0 - Ye*X)

After two iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EINVF32 operation will not generate a negative zero,
DeNorm or NaN value.
RaH = Estimate of 1/RbH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if EINVF32 generates an underflow condition.
• LVF = 1 if EINVF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

EINVF32 RaH, RbH ; 2p
NOP ; 1 cycle delay or non-conflicting instruction

; <-- EINVF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


EINVF32 RaH, RbH — 32-bit Floating-Point Reciprocal Approximation www.ti.com

50 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example Calculate Y = A/B. A fast division routine similar to that shown below can be found in the
C28x FPU Fast RTS Library (SPRC664).

MOVL XAR4, #A
MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
LCR DIV ; Calculate R0H = R0H / R1H
MOV32 *XAR4, R0H ;
....

DIV:
EINVF32 R2H, R1H ; R2H = Ye = Estimate(1/B)
CMPF32 R0H, #0.0 ; Check if A == 0
MPYF32 R3H, R2H, R1H ; R3H = Ye*B
NOP
SUBF32 R3H, #2.0, R3H ; R3H = 2.0 - Ye*B
NOP
MPYF32 R2H, R2H, R3H ; R2H = Ye = Ye*(2.0 - Ye*B)
NOP
MPYF32 R3H, R2H, R1H ; R3H = Ye*B
CMPF32 R1H, #0.0 ; Check if B == 0.0
SUBF32 R3H, #2.0, R3H ; R3H = 2.0 - Ye*B
NEGF32 R0H, R0H, EQ ; Fixes sign for A/0.0
MPYF32 R2H, R2H, R3H ; R2H = Ye = Ye*(2.0 - Ye*B)
NOP
MPYF32 R0H, R0H, R2H ; R0H = Y = A*Ye = A/B
LRETR

See also EISQRTF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html


www.ti.com EISQRTF32 RaH, RbH — 32-bit Floating-Point Square-Root Reciprocal Approximation

51SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

EISQRTF32 RaH, RbH 32-bit Floating-Point Square-Root Reciprocal Approximation

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0110 1001 0010
MSW: 0000 0000 00bb baaa

Description This operation generates an estimate of 1/sqrt(X) in 32-bit floating-point format accurate
to approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:
Ye = Estimate(1/sqrt(X));
Ye = Ye*(1.5 - Ye*Ye*X/2.0)
Ye = Ye*(1.5 - Ye*Ye*X/2.0)

After 2 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EISQRTF32 operation will not generate a negative zero,
DeNorm or NaN value.
RaH = Estimate of 1/sqrt (RbH)

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if EISQRTF32 generates an underflow condition.
• LVF = 1 if EISQRTF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

EINVF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- EISQRTF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


EISQRTF32 RaH, RbH — 32-bit Floating-Point Square-Root Reciprocal Approximation www.ti.com

52 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example Calculate the square root of X. A square-root routine similar to that shown below can be
found in the C28x FPU Fast RTS Library (SPRC664).

; Y = sqrt(X)
; Ye = Estimate(1/sqrt(X));
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Y = X*Ye
_sqrt:

; R0H = X on entry
EISQRTF32 R1H, R0H ; R1H = Ye = Estimate(1/sqrt(X))
MPYF32 R2H, R0H, #0.5 ; R2H = X*0.5
MPYF32 R3H, R1H, R1H ; R3H = Ye*Ye
NOP
MPYF32 R3H, R3H, R2H ; R3H = Ye*Ye*X*0.5
NOP
SUBF32 R3H, #1.5, R3H ; R3H = 1.5 - Ye*Ye*X*0.5
NOP
MPYF32 R1H, R1H, R3H ; R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
NOP
MPYF32 R3H, R1H, R2H ; R3H = Ye*X*0.5
NOP
MPYF32 R3H, R1H, R3H ; R3H = Ye*Ye*X*0.5
NOP
SUBF32 R3H, #1.5, R3H ; R3H = 1.5 - Ye*Ye*X*0.5
CMPF32 R0H, #0.0 ; Check if X == 0
MPYF32 R1H, R1H, R3H ; R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
NOP
MOV32 R1H, R0H, EQ ; If X is zero, change the Ye estimate to 0
MPYF32 R0H, R0H, R1H ; R0H = Y = X*Ye = sqrt(X)
LRETR

See also EINVF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html


www.ti.com F32TOI16 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Integer

53SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

F32TOI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1100
MSW: 0000 0000 00bb baaa

Description Convert a 32-bit floating point value in RbH to a 16-bit integer and truncate. The result
will be stored in RaH.
RaH(15:0) = F32TOI16(RbH)
RaH(31:16) = sign extension of RaH(15)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOI16 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOI16 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
F32TOI16 R1H, R0H ; R1H(15:0) = F32TOI16(R0H)

; R1H(31:16) = Sign extension of R1H(15)
MOVIZF32 R2H, #-5.0 ; R2H = -5.0 (0xC0A00000)

; <-- F32TOI16 complete, R1H(15:0) = 5 (0x0005)
; R1H(31:16) = 0 (0x0000)

F32TOI16 R3H, R2H ; R3H(15:0) = F32TOI16(R2H)
; R3H(31:16) = Sign extension of R3H(15)

NOP ; 1 Cycle delay for F32TOI16 to complete
; <-- F32TOI16 complete, R3H(15:0) = -5 (0xFFFB)
; R3H(31:16) = (0xFFFF)

See also F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F32TOI16R RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Integer and Round www.ti.com

54 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

F32TOI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer and Round

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1100
MSW: 1000 0000 00bb baaa

Description Convert the 32-bit floating point value in RbH to a 16-bit integer and round to the nearest
even value. The result is stored in RaH.
RaH(15:0) = F32ToI16round(RbH)
RaH(31:16) = sign extension of RaH(15)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOI16R RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOI16R completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
MOVIZ R0H, #0x3FD9 ; R0H [31:16] = 0x3FD9
MOVXI R0H, #0x999A ; R0H [15:0] = 0x999A

; R0H = 1.7 (0x3FD9999A)
F32TOI16R R1H, R0H ; R1H(15:0) = F32TOI16round (R0H)

; R1H(31:16) = Sign extension of R1H(15)
MOVF32 R2H, #-1.7 ; R2H = -1.7 (0xBFD9999A)

; <- F32TOI16R complete, R1H(15:0) = 2 (0x0002)
; R1H(31:16) = 0 (0x0000)

F32TOI16R R3H, R2H ; R3H(15:0) = F32TOI16round (R2H)
; R3H(31:16) = Sign extension of R2H(15)

NOP ; 1 Cycle delay for F32TOI16R to complete
; <-- F32TOI16R complete, R1H(15:0) = -2 (0xFFFE)
; R1H(31:16) = (0xFFFF)

See also F32TOI16 RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com F32TOI32 RaH, RbH — Convert 32-bit Floating-Point Value to 32-bit Integer

55SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

F32TOI32 RaH, RbH Convert 32-bit Floating-Point Value to 32-bit Integer

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1000
MSW: 0000 0000 00bb baaa

Description Convert the 32-bit floating-point value in RbH to a 32-bit integer value and truncate.
Store the result in RaH.
RaH = F32TOI32(RbH)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOI32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOI32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
MOVF32 R2H, #11204005.0 ; R2H = 11204005.0 (0x4B2AF5A5)
F32TOI32 R3H, R2H ; R3H = F32TOI32 (R2H)
MOVF32 R4H, #-11204005.0 ; R4H = -11204005.0 (0xCB2AF5A5)

; <-- F32TOI32 complete,
; R3H = 11204005 (0x00AAF5A5)

F32TOI32 R5H, R4H ; R5H = F32TOI32 (R4H)
NOP ; 1 Cycle delay for F32TOI32 to complete

; <-- F32TOI32 complete,
; R5H = -11204005 (0xFF550A5B)

See also F32TOUI32 RaH, RbH
I32TOF32 RaH, RbH
I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F32TOUI16 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer www.ti.com

56 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

F32TOUI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1110
MSW: 0000 0000 00bb baaa

Description Convert the 32-bit floating point value in RbH to an unsigned 16-bit integer value and
truncate to zero. The result will be stored in RaH. To instead round the integer to the
nearest even value use the F32TOUI16R instruction. The instruction will saturate the
float to what can fit in 16bit integer and then convert to 16bit. For example 300000 will
be saturated to 65535.
RaH(15:0) = F32ToUI16(RbH) RaH(31:16) = 0x0000

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOUI16 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOUI16 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
MOVIZF32 R4H, #9.0 ; R4H = 9.0 (0x41100000)
F32TOUI16 R5H, R4H ; R5H (15:0) = F32TOUI16 (R4H)

; R5H (31:16) = 0x0000
MOVIZF32 R6H, #-9.0 ; R6H = -9.0 (0xC1100000)

; <-- F32TOUI16 complete, R5H (15:0) = 9.0 (0x0009)
; R5H (31:16) = 0.0 (0x0000)

F32TOUI16 R7H, R6H ; R7H (15:0) = F32TOUI16 (R6H)
; R7H (31:16) = 0x0000

NOP ; 1 Cycle delay for F32TOUI16 to complete
; <-- F32TOUI16 complete, R7H (15:0) = 0.0 (0x0000)
; R7H (31:16) = 0.0 (0x0000)

See also F32TOI16 RaH, RbH
F32TOUI16R RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com F32TOUI16R RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

57SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

F32TOUI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1110
MSW: 1000 0000 00bb baaa

Description Convert the 32-bit floating-point value in RbH to an unsigned 16-bit integer and round to
the closest even value. The result will be stored in RaH. To instead truncate the
converted value, use the F32TOUI16 instruction. The instruction will saturate the float to
what can fit in 16bit integer and then convert to 16bit. For example 300000 will be
saturated to 65535.
RaH(15:0) = F32ToUI16round(RbH)
RaH(31:16) = 0x0000

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOUI16R RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOUI16R completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZ R5H, #0x412C ; R5H = 0x412C
MOVXI R5H, #0xCCCD ; R5H = 0xCCCD

; R5H = 10.8 (0x412CCCCD)
F32TOUI16R R6H, R5H ; R6H (15:0) = F32TOUI16round (R5H)

; R6H (31:16) = 0x0000
MOVF32 R7H, #-10.8 ; R7H = -10.8 (0x0xC12CCCCD)

; <-- F32TOUI16R complete,
; R6H (15:0) = 11.0 (0x000B)
; R6H (31:16) = 0.0 (0x0000)

F32TOUI16R R0H, R7H ; R0H (15:0) = F32TOUI16round (R7H)
; R0H (31:16) = 0x0000

NOP ; 1 Cycle delay for F32TOUI16R to complete
; <-- F32TOUI16R complete,
; R0H (15:0) = 0.0 (0x0000)
; R0H (31:16) = 0.0 (0x0000)

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F32TOUI32 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer www.ti.com

58 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

F32TOUI32 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1010
MSW: 0000 0000 00bb baaa

Description Convert the 32-bit floating-point value in RbH to an unsigned 32-bit integer and store the
result in RaH.
RaH = F32ToUI32(RbH)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOUI32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOUI32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZF32 R6H, #12.5 ; R6H = 12.5 (0x41480000)
F32TOUI32 R7H, R6H ; R7H = F32TOUI32 (R6H)
MOVIZF32 R1H, #-6.5 ; R1H = -6.5 (0xC0D00000)

; <-- F32TOUI32 complete, R7H = 12.0 (0x0000000C)
F32TOUI32 R2H, R1H ; R2H = F32TOUI32 (R1H)
NOP ; 1 Cycle delay for F32TOUI32 to complete

; <-- F32TOUI32 complete, R2H = 0.0 (0x00000000)

See also F32TOI32 RaH, RbH
I32TOF32 RaH, RbH
I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com FRACF32 RaH, RbH — Fractional Portion of a 32-bit Floating-Point Value

59SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

FRACF32 RaH, RbH Fractional Portion of a 32-bit Floating-Point Value

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1111 0001
MSW: 0000 0000 00bb baaa

Description Returns in RaH the fractional portion of the 32-bit floating-point value in RbH

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
FRACF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- FRACF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZF32 R2H, #19.625 ; R2H = 19.625 (0x419D0000)
FRACF32 R3H, R2H ; R3H = FRACF32 (R2H)
NOP ; 1 Cycle delay for FRACF32 to complete

; <-- FRACF32 complete, R3H = 0.625 (0x3F200000)

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


I16TOF32 RaH, RbH — Convert 16-bit Integer to 32-bit Floating-Point Value www.ti.com

60 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

I16TOF32 RaH, RbH Convert 16-bit Integer to 32-bit Floating-Point Value

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1101
MSW: 0000 0000 00bb baaa

Description Convert the 16-bit signed integer in RbH to a 32-bit floating point value and store the
result in RaH.
RaH = I16ToF32 RbH

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

I16TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- I16TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZ R0H, #0x0000 ; R0H[31:16] = 0.0 (0x0000)
MOVXI R0H, #0x0004 ; R0H[15:0] = 4.0 (0x0004)
I16TOF32 R1H, R0H ; R1H = I16TOF32 (R0H)
MOVIZ R2H, #0x0000 ; R2H[31:16] = 0.0 (0x0000)

; <--I16TOF32 complete, R1H = 4.0 (0x40800000)
MOVXI R2H, #0xFFFC ; R2H[15:0] = -
4.0 (0xFFFC) I16TOF32 R3H, R2H ; R3H = I16TOF32 (R2H)
NOP ; 1 Cycle delay for I16TOF32 to complete

; <-- I16TOF32 complete, R3H = -4.0 (0xC0800000)

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com I16TOF32 RaH, mem16 — Convert 16-bit Integer to 32-bit Floating-Point Value

61SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

I16TOF32 RaH, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value

Operands

RaH floating-point destination register (R0H to R7H)
mem316 16-bit source memory location to be converted

Opcode LSW: 1110 0010 1100 1000
MSW: 0000 0aaa mem16

Description Convert the 16-bit signed integer indicated by the mem16 pointer to a 32-bit floating-
point value and store the result in RaH.
RaH = I16ToF32[mem16]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
I16TOF32 RaH, mem16 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- I16TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVW DP, #0x0280 ; DP = 0x0280
MOV @0, #0x0004 ; [0x00A000] = 4.0 (0x0004)
I16TOF32 R0H, @0 ; R0H = I16TOF32 [0x00A000]
MOV @1, #0xFFFC ; [0x00A001] = -4.0 (0xFFFC)

; <--I16TOF32 complete, R0H = 4.0 (0x40800000)
I16TOF32 R1H, @1 ; R1H = I16TOF32 [0x00A001]
NOP ; 1 Cycle delay for I16TOF32 to complete

; <-- I16TOF32 complete, R1H = -4.0 (0xC0800000)

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


I32TOF32 RaH, mem32 — Convert 32-bit Integer to 32-bit Floating-Point Value www.ti.com

62 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

I32TOF32 RaH, mem32 Convert 32-bit Integer to 32-bit Floating-Point Value

Operands

RaH floating-point destination register (R0H to R7H)
mem32 32-bit source for the MOV32 operation. mem32 means that the operation can only address memory

using any of the direct or indirect addressing modes supported by the C28x CPU

Opcode LSW: 1110 0010 1000 1000
MSW: 0000 0aaa mem32

Description Convert the 32-bit signed integer indicated by the mem32 pointer to a 32-bit floating
point value and store the result in RaH.
RaH = I32ToF32[mem32]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
I32TOF32 RaH, mem32 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- I32TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVW DP, #0x0280 ; DP = 0x0280
MOV @0, #0x1111 ; [0x00A000] = 4369 (0x1111)
MOV @1, #0x1111 ; [0x00A001] = 4369 (0x1111)

; Value of the 32 bit signed integer present in
; 0x00A001 and 0x00A000 is +286331153 (0x11111111)

I32TOF32 R1H, @0 ; R1H = I32TOF32 (0x11111111)
NOP ; 1 Cycle delay for I32TOF32 to complete

; <-- I32TOF32 complete, R1H = 286331153 (0x4D888888)

See also F32TOI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, RbH
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com I32TOF32 RaH, RbH — Convert 32-bit Integer to 32-bit Floating-Point Value

63SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

I32TOF32 RaH, RbH Convert 32-bit Integer to 32-bit Floating-Point Value

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1001
MSW: 0000 0000 00bb baaa

Description Convert the signed 32-bit integer in RbH to a 32-bit floating-point value and store the
result in RaH.
RaH = I32ToF32(RbH)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
I32TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- I32TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZ R2H, #0x1111 ; R2H[31:16] = 4369 (0x1111)
MOVXI R2H, #0x1111 ; R2H[15:0] = 4369 (0x1111)

; Value of the 32 bit signed integer present
; in R2H is +286331153 (0x11111111)

I32TOF32 R3H, R2H ; R3H = I32TOF32 (R2H)
NOP ; 1 Cycle delay for I32TOF32 to complete

; <-- I32TOF32 complete, R3H = 286331153 (0x4D888888)

See also F32TOI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R3H, R2H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add www.ti.com

64 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MACF32 R3H, R2H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:
MPYF32 RdH, RaH, RbH
|| ADDF32 R3H, R3H, R2H

R3H floating-point destination and source register for the ADDF32
R2H floating-point source register for the ADDF32 operation (R0H to R7H)
RdH floating-point destination register for MPYF32 operation (R0H to R7H)

RdH cannot be R3H
ReH floating-point source register for MPYF32 operation (R0H to R7H)
RfH floating-point source register for MPYF32 operation (R0H to R7H)

Opcode LSW: 1110 0111 0100 00ff
MSW: feee dddc ccbb baaa

Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = ReH * RfH
R3H = R3H + R2H

Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R3H.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 or ADDF32 generates an underflow condition.
• LVF = 1 if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated

NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R3H, R2H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

65SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example ; Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R2H = A = X0 * Y0
MPYF32 R2H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R3H = B = X1 * Y1
MPYF32 R3H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R3H = A + B
; R2H = C = X2 * Y2

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3
; R3H = (A + B) + C
; R2H = D = X3 * Y3

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; The next MACF32 is an alias for
; MPYF32 || ADDF32

; R2H = E = X4 * Y4
MACF32 R3H, R2H, R2H, R0H, R1H ; in parallel R3H = (A + B + C) + D
NOP ; Wait for MPYF32 || ADDF32 to complete

ADDF32 R3H, R3H, R2H ; R3H = (A + B + C + D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R3H ; Store the result

See also MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R3H, R2H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate with Parallel
Move www.ti.com

66 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MACF32 R3H, R2H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Multiply and
Accumulate with Parallel Move

Operands

R3H floating-point destination/source register R3H for the add operation
R2H floating-point source register R2H for the add operation
RdH floating-point destination register (R0H to R7H) for the multiply operation

RdH cannot be the same register as RaH
ReH floating-point source register (R0H to R7H) for the multiply operation
RfH floating-point source register (R0H to R7H) for the multiply operation
RaH floating-point destination register for the MOV32 operation (R0H to R7H).

RaH cannot be R3H or the same register as RdH.
mem32 32-bit source for the MOV32 operation

Opcode LSW: 1110 0011 0011 fffe
MSW: eedd daaa mem32

Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF32.
R3H = R3H + R2H,
RdH = ReH * RfH,
RaH = [mem32]

Restrictions The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R3H and RaH cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MACF32 (add or multiply) generates an underflow condition.
• LVF = 1 if MACF32 (add or multiply) generates an overflow condition.

MOV32 sets the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:

MACF32 R3H, R2H, RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle

; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay for MACF32

; <-- MACF32 completes, R3H, RdH updated
NOP

Any instruction in the delay slot for this version of MACF32 must not use R3H or RdH as
a destination register or R3H or RdH as a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R3H, R2H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate
with Parallel Move

67SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example ; Perform 5 multiply and accumulate operations:
;
; 1ST multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4TH multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R2H = A = X0 * Y0
MPYF32 R2H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R3H = B = X1 * Y1
MPYF32 R3H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R3H = A + B
; R2H = C = X2 * Y2

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3

; R3H = (A + B) + C
; R2H = D = X3 * Y3

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; R2H = E = X4 * Y4
MPYF32 R2H, R0H, R1H ; in parallel R3H = (A + B + C) + D

|| ADDF32 R3H, R3H, R2H
NOP ; Wait for MPYF32 || ADDF32 to complete

ADDF32 R3H, R3H, R2H ; R3H = (A + B + C + D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R3H ; Store the result

See also MACF32 R3H, R2H, RdH, ReH, RfH
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R7H, R3H, mem32, *XAR7++ — 32-bit Floating-Point Multiply and Accumulate www.ti.com

68 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MACF32 R7H, R3H, mem32, *XAR7++ 32-bit Floating-Point Multiply and Accumulate

Operands

R7H floating-point destination register
R3H floating-point destination register
mem32 pointer to a 32-bit source location
*XAR7++ 32-bit location pointed to by auxiliary register 7, XAR7 is post incremented.

Opcode LSW: 1110 0010 0101 0000
MSW: 0001 1111 mem32

Description Perform a multiply and accumulate operation. When used as a standalone operation, the
MACF32 will perform a single multiply as shown below:
Cycle 1: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

This instruction is the only floating-point instruction that can be repeated using the single
repeat instruction (RPT ||). When repeated, the destination of the accumulate will
alternate between R3H and R7H on each cycle and R2H and R6H are used as
temporary storage for each multiply.
Cycle 1: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]
Cycle 2: R7H = R7H + R6H, R6H = [mem32] * [XAR7++]
Cycle 3: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]
Cycle 4: R7H = R7H + R6H, R6H = [mem32] * [XAR7++]
etc...

Restrictions R2H and R6H will be used as temporary storage by this instruction.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MACF32 generates an underflow condition.
• LVF = 1 if MACF32 generates an overflow condition.

Pipeline When repeated the MACF32 takes 3 + N cycles where N is the number of times the
instruction is repeated. When repeated, this instruction has the following pipeline
restrictions:

<instruction1> ; No restriction
<instruction2> ; Cannot be a 2p instruction that writes

; to R2H, R3H, R6H or R7H
RPT #(N-1) ; Execute N times, where N is even

|| MACF32 R7H, R3H, *XAR6++, *XAR7++
<instruction3> ; No restrictions.

; Can read R2H, R3H, R6H and R7H

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R7H, R3H, mem32, *XAR7++ — 32-bit Floating-Point Multiply and Accumulate

69SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MACF32 can also be used standalone. In this case, the instruction takes 2 cycles and
the following pipeline restrictions apply:

<instruction1> ; No restriction
<instruction2> ; Cannot be a 2p instruction that writes

; to R2H, R3H, R6H or R7H
MACF32 R7H, R3H, *XAR6, *XAR7 ; R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

; <--
R2H and R3H are valid (note: no delay required)

NOP

Example
ZERO R2H ; Zero the accumulation registers
ZERO R3H ; and temporary multiply storage

registers
ZERO R6H
ZERO R7H
RPT #3 ; Repeat MACF32 N+1 (4) times

|| MACF32 R7H, R3H, *XAR6++, *XAR7++
ADDF32 R7H, R7H, R3H ; Final accumulate
NOP ; <-- ADDF32 completes, R7H valid
NOP

Cascading of RPT || MACF32 is allowed as long as the first and subsequent counts are
even. Cascading is useful for creating interruptible windows so that interrupts are not
delayed too long by the RPT instruction. For example:

ZERO R2H ; Zero the accumulation registers
ZERO R3H ; and temporary multiply storage

registers
ZERO R6H
ZERO R7H
RPT #3 ; Execute MACF32 N+1 (4) times

|| MACF32 R7H, R3H, *XAR6++, *XAR7++ RPT #5 ; Execute MACF32 N+1 (6) times
|| MACF32 R7H, R3H, *XAR6++, *XAR7++ RPT #N ; Repeat MACF32 N+1 times where N+1
is even
|| MACF32 R7H, R3H, *XAR6++, *XAR7++

ADDF32 R7H, R7H, R3H ; Final accumulate
NOP

; <-- ADDF32 completes, R7H valid

See also MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R7H, R6H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add www.ti.com

70 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MACF32 R7H, R6H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:

MPYF32 RdH, RaH, RbH || ADDF32 R7H, R7H, R6H

R7H floating-point destination and source register for the ADDF32
R6H floating-point source register for the ADDF32 operation (R0H to R7H)
RdH floating-point destination register for MPYF32 operation (R0H to R7H)

RdH cannot be R3H
ReH floating-point source register for MPYF32 operation (R0H to R7H)
RfH floating-point source register for MPYF32 operation (R0H to R7H)

Opcode LSW: 1110 0111 0100 00ff
MSW: feee dddc ccbb baaa

Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = RaH * RbH
R7H = R6H + R6H

Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R7H.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 or ADDF32 generates an underflow condition.
• LVF = 1 if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated

NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R7H, R6H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

71SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example ; Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R6H = A = X0 * Y0
MPYF32 R6H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R7H = B = X1 * Y1
MPYF32 R7H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R7H = A + B
; R6H = C = X2 * Y2

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3
; R7H = (A + B) + C
; R6H = D = X3 * Y3

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; Next MACF32 is an alias for
; MPYF32 || ADDF32

MACF32 R7H, R6H, R6H, R0H, R1H ; R6H = E = X4 * Y4
; in parallel R7H = (A + B + C) + D

NOP ; Wait for MPYF32 || ADDF32 to complete
ADDF32 R7H, R7H, R6H ; R7H = (A + B + C + D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R7H ; Store the result

See also MACF32 R3H, R2H, RdH, ReH, RfH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R7H, R6H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate with Parallel
Move www.ti.com

72 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MACF32 R7H, R6H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Multiply and
Accumulate with Parallel Move

Operands

R7H floating-point destination/source register R7H for the add operation
R6H floating-point source register R6H for the add operation
RdH floating-point destination register (R0H to R7H) for the multiply operation.

RdH cannot be the same register as RaH.
ReH floating-point source register (R0H to R7H) for the multiply operation
RfH floating-point source register (R0H to R7H) for the multiply operation
RaH floating-point destination register for the MOV32 operation (R0H to R7H).

RaH cannot be R3H or the same as RdH.
mem32 32-bit source for the MOV32 operation

Opcode LSW: 1110 0011 1100 fffe
MSW: eedd daaa mem32

Description Multiply/accumulate the contents of floating-point registers and move from register to
memory. The destination register for the MOV32 cannot be the same as the destination
registers for the MACF32.
R7H = R7H + R6H
RdH = ReH * RfH,
RaH = [mem32]

Restrictions The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R7H and RaH cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MACF32 (add or multiply) generates an underflow condition.
• LVF = 1 if MACF32 (add or multiply) generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) {ZF = 1;
NF = 0;} NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
MACF32 R7H, R6H, RdH, ReH, RfH ; 2 pipeline cycles (2p)

|| MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated

NOP ; 1 cycle delay
; <-- MACF32 completes, R7H, RdH updated

NOP

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R7H, R6H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate
with Parallel Move

73SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R6H = A = X0 * Y0
MPYF32 R6H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R7H = B = X1 * Y1
MPYF32 R7H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R7H = A + B
; R6H = C = X2 * Y2

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3

; R7H = (A + B) + C
; R6H = D = X3 * Y3

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; R6H = E = X4 * Y4
MPYF32 R6H, R0H, R1H ; in parallel R7H = (A + B + C) + D

|| ADDF32 R7H, R7H, R6H
NOP ; Wait for MPYF32 || ADDF32 to complete

ADDF32 R7H, R7H, R6H ; R7H = (A + B + C + D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R7H ; Store the result

See also MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MAXF32 RaH, RbH — 32-bit Floating-Point Maximum www.ti.com

74 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MAXF32 RaH, RbH 32-bit Floating-Point Maximum

Operands

RaH floating-point source/destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1001 0110
MSW: 0000 0000 00bb baaa

Description if(RaH < RbH) RaH = RbH

Special cases for the output from the MAXF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example
MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MAXF32 R2H, R1H ; R2H = -1.5, ZF = NF = 0
MAXF32 R1H, R2H ; R1H = -1.5, ZF = 0, NF = 1
MAXF32 R2H, R0H ; R2H = 5.0, ZF = 0, NF = 1
MAXF32 R0H, R2H ; R2H = 5.0, ZF = 1, NF = 0

See also CMPF32 RaH, RbH
CMPF32 RaH, #16FHi
CMPF32 RaH, #0.0
MAXF32 RaH, RbH || MOV32 RcH, RdH
MAXF32 RaH, #16FHi
MINF32 RaH, RbH
MINF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MAXF32 RaH, #16FHi — 32-bit Floating-Point Maximum

75SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MAXF32 RaH, #16FHi 32-bit Floating-Point Maximum

Operands

RaH floating-point source/destination register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1000 0010 0III
MSW: IIII IIII IIII Iaaa

Description Compare RaH with the floating-point value represented by the immediate operand. If the
immediate value is larger, then load it into RaH.
if(RaH < #16FHi:0) RaH = #16FHi:0

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.

Special cases for the output from the MAXF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == #16FHi:0){ZF=1, NF=0}
if(RaH > #16FHi:0) {ZF=0, NF=0}
if(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MAXF32 R0H, #5.5 ; R0H = 5.5, ZF = 0, NF = 1
MAXF32 R1H, #2.5 ; R1H = 4.0, ZF = 0, NF = 0
MAXF32 R2H, #-1.0 ; R2H = -1.0, ZF = 0, NF = 1
MAXF32 R2H, #-1.0 ; R2H = -1.5, ZF = 1, NF = 0

See also MAXF32 RaH, RbH
MAXF32 RaH, RbH || MOV32 RcH, RdH
MINF32 RaH, RbH
MINF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MAXF32 RaH, RbH ∥∥MOV32 RcH, RdH — 32-bit Floating-Point Maximum with Parallel Move www.ti.com

76 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MAXF32 RaH, RbH ∥∥MOV32 RcH, RdH 32-bit Floating-Point Maximum with Parallel Move

Operands

RaH floating-point source/destination register for the MAXF32 operation (R0H to R7H)
RaH cannot be the same register as RcH

RbH floating-point source register for the MAXF32 operation (R0H to R7H)
RcH floating-point destination register for the MOV32 operation (R0H to R7H)

RcH cannot be the same register as RaH
RdH floating-point source register for the MOV32 operation (R0H to R7H)

Opcode LSW: 1110 0110 1001 1100
MSW: 0000 dddc ccbb baaa

Description If RaH is less than RbH, then load RaH with RbH. Thus RaH will always have the
maximum value. If RaH is less than RbH, then, in parallel, also load RcH with the
contents of RdH.
if(RaH < RbH) { RaH = RbH; RcH = RdH; }

The MAXF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for the output from the MAXF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Restrictions The destination register for the MAXF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MOVIZF32 R3H, #-2.0 ; R3H =-2.0 (0xC0000000)
MAXF32 R0H, R1H ; R0H = 5.0, R3H = -1.5, ZF = 0, NF = 0

|| MOV32 R3H, R2H
MAXF32 R1H, R0H ; R1H = 5.0, R3H = -1.5, ZF = 0, NF = 1

|| MOV32 R3H, R2H
MAXF32 R0H, R1H ; R0H = 5.0, R2H = -1.5, ZF = 1, NF = 0

|| MOV32 R2H, R1H

See also MAXF32 RaH, RbH
MAXF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MINF32 RaH, RbH — 32-bit Floating-Point Minimum

77SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MINF32 RaH, RbH 32-bit Floating-Point Minimum

Operands

RaH floating-point source/destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1001 0111
MSW: 0000 0000 00bb baaa

Description if(RaH > RbH) RaH = RbH

Special cases for the output from the MINF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MINF32 R0H, R1H ; R0H = 4.0, ZF = 0, NF = 0
MINF32 R1H, R2H ; R1H = -1.5, ZF = 0, NF = 0
MINF32 R2H, R1H ; R2H = -1.5, ZF = 1, NF = 0
MINF32 R1H, R0H ; R2H = -1.5, ZF = 0, NF = 1

See also MAXF32 RaH, RbH
MAXF32 RaH, #16FHi
MINF32 RaH, #16FHi
MINF32 RaH, RbH || MOV32 RcH, RdH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MINF32 RaH, #16FHi — 32-bit Floating-Point Minimum www.ti.com

78 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MINF32 RaH, #16FHi 32-bit Floating-Point Minimum

Operands

RaH floating-point source/destination register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1000 0011 0III
MSW: IIII IIII IIII Iaaa

Description Compare RaH with the floating-point value represented by the immediate operand. If the
immidate value is smaller, then load it into RaH.
if(RaH > #16FHi:0) RaH = #16FHi:0

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.

Special cases for the output from the MINF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == #16FHi:0){ZF=1, NF=0}
if(RaH > #16FHi:0) {ZF=0, NF=0}
if(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MINF32 R0H, #5.5 ; R0H = 5.0, ZF = 0, NF = 1
MINF32 R1H, #2.5 ; R1H = 2.5, ZF = 0, NF = 0
MINF32 R2H, #-1.0 ; R2H = -1.5, ZF = 0, NF = 1
MINF32 R2H, #-1.5 ; R2H = -1.5, ZF = 1, NF = 0

See also MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, RbH
MINF32 RaH, RbH || MOV32 RcH, RdH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MINF32 RaH, RbH ∥∥MOV32 RcH, RdH — 32-bit Floating-Point Minimum with Parallel Move

79SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MINF32 RaH, RbH ∥∥MOV32 RcH, RdH 32-bit Floating-Point Minimum with Parallel Move

Operands

RaH floating-point source/destination register for the MIN32 operation (R0H to R7H)
RaH cannot be the same register as RcH

RbH floating-point source register for the MIN32 operation (R0H to R7H)
RcH floating-point destination register for the MOV32 operation (R0H to R7H)

RcH cannot be the same register as RaH
RdH floating-point source register for the MOV32 operation (R0H to R7H)

Opcode LSW: 1110 0110 1001 1101
MSW: 0000 dddc ccbb baaa

Description if(RaH > RbH) { RaH = RbH; RcH = RdH; }

Special cases for the output from the MINF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Restrictions The destination register for the MINF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example
MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MOVIZF32 R3H, #-2.0 ; R3H = -2.0 (0xC0000000)
MINF32 R0H, R1H ; R0H = 4.0, R3H = -1.5, ZF = 0, NF = 0

|| MOV32 R3H, R2H
MINF32 R1H, R0H ; R1H = 4.0, R3H = -1.5, ZF = 1, NF = 0

|| MOV32 R3H, R2H
MINF32 R2H, R1H ; R2H = -1.5, R1H = 4.0, ZF = 1, NF = 1

|| MOV32 R1H, R3H

See also MINF32 RaH, RbH
MINF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV16 mem16, RaH — Move 16-bit Floating-Point Register Contents to Memory www.ti.com

80 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV16 mem16, RaH Move 16-bit Floating-Point Register Contents to Memory

Operands

mem16 points to the 16-bit destination memory
RaH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0010 0001 0011
MSW: 0000 0aaa mem16

Description Move 16-bit value from the lower 16-bits of the floating-point register (RaH[15:0]) to the
location pointed to by mem16.
[mem16] = RaH[15:0]

Flags No flags STF flags are affected.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example MOVW DP, #0x02C0 ; DP = 0x02C0
MOVXI R4H, #0x0003 ; R4H = 3.0 (0x0003)
MOV16 @0, R4H ; [0x00B000] = 3.0 (0x0003

See also MOVIZ RaH, #16FHiHex
MOVIZF32 RaH, #16FHi
MOVXI RaH, #16FLoHex

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 *(0:16bitAddr), loc32 — Move the Contents of loc32 to Memory

81SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 *(0:16bitAddr), loc32 Move the Contents of loc32 to Memory

Operands

0:16bitAddr 16-bit immediate address, zero extended
loc32 32- bit source location

Opcode LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in loc32 to the memory location addressed by 0:16bitAddr. The
EALLOW bit in the ST1 register is ignored by this operation.
[0:16bitAddr] = [loc32]

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a two-cycle instruction.

Example MOVIZ R5H, #0x1234 ; R5H[31:16] = 0x1234
MOVXI R5H, #0xABCD ; R5H[15:0] = 0xABCD
NOP ; 1 Alignment Cycle
MOV32 ACC, R5H ; ACC = 0x1234ABCD
MOV32 *(0xA000), @ACC ; [0x00A000] = ACC NOP

; 1 Cycle delay for MOV32 to complete
; <-- MOV32 *(0:16bitAddr), loc32 complete,
; [0x00A000] = 0xABCD, [0x00A001] = 0x1234

See also MOV32 mem32, RaH
MOV32 mem32, STF
MOV32 loc32, *(0:16bitAddr)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 ACC, RaH — Move 32-bit Floating-Point Register Contents to ACC www.ti.com

82 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 ACC, RaH Move 32-bit Floating-Point Register Contents to ACC

Operands

ACC 28x accumulator
RaH floating-point source register (R0H to R7H)

Opcode LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
ACC = RaH

Flags No STF flags are affected.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Z and N flag in status register zero (ST0) of the 28x CPU are affected.

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 R0H,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,R0H ; Copy R0H to ACC
NOP ; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle MOV32 ACC, R2H

; copy R2H into ACC, takes 2 cycles
; <-- MOV32 completes, ACC is valid

NOP ; Any instruction

Example
ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; < -- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 2 cycles

; <-- MOV32 completes, ACC is valid
NOP ; Any instruction
MOVIZF32 R0H, #2.5 ; R0H = 2.5 = 0x40200000
F32TOUI32 R0H, R0H
NOP ; Delay for conversion instruction

; < -- Conversion complete, R0H valid
NOP ; Alignment cycle
MOV32 P, R0H ; P = 2 = 0x00000002

See also MOV32 P, RaH
MOV32 XARn, RaH
MOV32 XT, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 loc32, *(0:16bitAddr) — Move 32-bit Value from Memory to loc32

83SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 loc32, *(0:16bitAddr) Move 32-bit Value from Memory to loc32

Operands

loc32 destination location
0:16bitAddr 16-bit address of the 32-bit source value

Opcode LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description Copy the 32-bit value referenced by 0:16bitAddr to the location indicated by loc32.
[loc32] = [0:16bitAddr]

Flags No STF flags are affected. If loc32 is the ACC register, then the Z and N flag in status
register zero (ST0) of the 28x CPU are affected.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 cycle instruction.

Example MOVW DP, #0x0300 ; DP = 0x0300
MOV @0, #0xFFFF ; [0x00C000] = 0xFFFF;
MOV @1, #0x1111 ; [0x00C001] = 0x1111;
MOV32 @ACC, *(0xC000) ; AL = [0x00C000], AH = [0x00C001]
NOP ; 1 Cycle delay for MOV32 to complete

; <-- MOV32 complete, AL = 0xFFFF, AH = 0x1111

See also MOV32 RaH, mem32{, CNDF}
MOV32 *(0:16bitAddr), loc32
MOV32 STF, mem32
MOVD32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 mem32, RaH — Move 32-bit Floating-Point Register Contents to Memory www.ti.com

84 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 mem32, RaH Move 32-bit Floating-Point Register Contents to Memory

Operands

RaH floating-point register (R0H to R7H)
mem32 points to the 32-bit destination memory

Opcode LSW: 1110 0010 0000 0011
MSW: 0000 0aaa mem32

Description Move from memory to STF.
[mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

Example ; Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R6H = A = X0 * Y0
MPYF32 R6H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R7H = B = X1 * Y1
MPYF32 R7H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R7H = A + B
; R6H = C = X2 * Y2

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3

; R3H = (A + B) + C
; R6H = D = X3 * Y3

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; R6H = E = X4 * Y4
MPYF32 R6H, R0H, R1H ; in parallel R7H = (A + B + C) + D

|| ADDF32 R7H, R7H, R2H
NOP ; Wait for MPYF32 || ADDF32 to complete

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 mem32, RaH — Move 32-bit Floating-Point Register Contents to Memory

85SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ADDF32 R7H, R7H, R6H ; R7H = (A + B + C + D) + E NOP

; Wait for ADDF32 to complete
MOV32 @Result, R7H ; Store the result

See also MOV32 *(0:16bitAddr), loc32
MOV32 mem32, STF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 mem32, STF — Move 32-bit STF Register to Memory www.ti.com

86 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 mem32, STF Move 32-bit STF Register to Memory

Operands

STF floating-point status register
mem32 points to the 32-bit destination memory

Opcode LSW: 1110 0010 0000 0000
MSW: 0000 0000 mem32

Description Copy the floating-point status register, STF, to memory.
[mem32] = STF

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

Example 1 MOVW DP, #0x0280 ; DP = 0x0280
MOVIZF32 R0H, #2.0 ; R0H = 2.0 (0x40000000)
MOVIZF32 R1H, #3.0 ; R1H = 3.0 (0x40400000)
CMPF32 R0H, R1H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 @0, STF ; [0x00A000] = 0x00000004

Example 2
MOV32 *SP++, STF ; Store STF in stack
MOVF32 R2H, #3.0 ; R2H = 3.0 (0x40400000)
MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)
CMPF32 R2H, R3H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)
MOV32 STF, *--SP ; Restore STF from stack

See also MOV32 mem32, RaH
MOV32 *(0:16bitAddr), loc32
MOVST0 FLAG

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 P, RaH — Move 32-bit Floating-Point Register Contents to P

87SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 P, RaH Move 32-bit Floating-Point Register Contents to P

Operands

P 28x product register P
RaH floating-point source register (R0H to R7H)

Opcode LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in RaH to the 28x product register P.
P = RaH

Flags No flags affected in floating-point unit.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 R0H,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,R0H ; Copy R0H to ACC
NOP ; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:

ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 1 cycle

; <-- MOV32 completes, ACC is valid NOP ; Any instruction

Example MOVIZF32 R0H, #2.5 ; R0H = 2.5 = 0x40200000
F32TOUI32 R0H, R0H
NOP ; Delay for conversion instruction

; <-- Conversion complete, R0H valid
NOP ; Alignment cycle
MOV32 P, R0H ; P = 2 = 0x00000002

See also MOV32 ACC, RaH
MOV32 XARn, RaH
MOV32 XT, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 RaH, ACC — Move the Contents of ACC to a 32-bit Floating-Point Register www.ti.com

88 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 RaH, ACC Move the Contents of ACC to a 32-bit Floating-Point Register

Operands

RaH floating-point destination register (R0H to R7H)
ACC accumulator

Opcode LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in ACC to the floating-point register RaH.
RaH = ACC

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 R0H,@ACC ; Copy ACC to R0H
NOP ; Wait 4 cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; I16TOF32, F32TOUI32 or F32TOI32
NOP ;

; <-- ROH is valid

Example MOV AH, #0x0000
MOV AL, #0x0200 ; ACC = 512
MOV32 R0H, ACC
NOP
NOP
NOP
NOP UI32TOF32 R0H, R0H ; R0H = 512.0 (0x44000000)

See also MOV32 RaH, P
MOV32 RaH, XARn
MOV32 RaH, XT

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 RaH, mem32 {, CNDF} — Conditional 32-bit Move

89SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 RaH, mem32 {, CNDF} Conditional 32-bit Move

Operands

RaH floating-point destination register (R0H to R7H)
mem32 pointer to the 32-bit source memory location
CNDF optional condition.

Opcode LSW: 1110 0010 1010 CNDF
MSW: 0000 0aaa mem32

Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
if (CNDF == TRUE) RaH = [mem32]

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

if(CNDF == UNCF)
{

NF = RaH(31); ZF = 0;
if(RaH[30:23] == 0) { ZF = 1; NF = 0; } NI = RaH[31]; ZI = 0;
if(RaH[31:0] == 0) ZI = 1;

}
else No flags modified;

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 RaH, mem32 {, CNDF} — Conditional 32-bit Move www.ti.com

90 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example MOVW DP, #0x0300 ; DP = 0x0300
MOV @0, #0x5555 ; [0x00C000] = 0x5555
MOV @1, #0x5555 ; [0x00C001] = 0x5555
MOVIZF32 R3H, #7.0 ; R3H = 7.0 (0x40E00000)
MOVIZF32 R4H, #7.0 ; R4H = 7.0 (0x40E00000)
MAXF32 R3H, R4H ; ZF = 1, NF = 0
MOV32 R1H, @0, EQ ; R1H = 0x55555555

See also MOV32 RaH, RbH{, CNDF}
MOVD32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 RaH, P — Move the Contents of P to a 32-bit Floating-Point Register

91SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 RaH, P Move the Contents of P to a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
P product register

Opcode
LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in the product register, P, to the floating-point register RaH.
RaH = P

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 R0H,@P ; Copy P to R0H
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; I16TOF32, F32TOUI32 or F32TOI32
NOP ;

; <-- R0H is valid
; Instruction can use R0H as a source

Example MOV PH, #0x0000
MOV PL, #0x0200 ; P = 512
MOV32 R0H, P
NOP
NOP
NOP
NOP
UI32TOF32 R0H, R0H ; R0H = 512.0 (0x44000000)

See also MOV32 RaH, ACC
MOV32 RaH, XARn
MOV32 RaH, XT

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 RaH, RbH {, CNDF} — Conditional 32-bit Move www.ti.com

92 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 RaH, RbH {, CNDF} Conditional 32-bit Move

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)
CNDF optional condition.

Opcode LSW: 1110 0110 1100 CNDF
MSW: 0000 0000 00bb baaa

Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
if (CNDF == TRUE) RaH = RbH

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

if(CNDF == UNCF) { NF = RaH(31); ZF = 0;
if(RaH[30:23] == 0) {ZF = 1; NF = 0;} NI = RaH(31); ZI = 0;
if(RaH[31:0] == 0) ZI = 1; } else No flags modified;

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R3H, #8.0 ; R3H = 8.0 (0x41000000)
MOVIZF32 R4H, #7.0 ; R4H = 7.0 (0x40E00000)
MAXF32 R3H, R4H ; ZF = 0, NF = 0
MOV32 R1H, R3H, GT ; R1H = 8.0 (0x41000000)

See also MOV32 RaH, mem32{, CNDF}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 RaH, XARn — Move the Contents of XARn to a 32-bit Floating-Point Register

93SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 RaH, XARn Move the Contents of XARn to a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
XARn auxiliary register (XAR0 - XAR7)

Opcode LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in the auxiliary register XARn to the floating point register RaH.
RaH = XARn

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 R0H,@XAR7 ; Copy XAR7 to R0H
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; I16TOF32, F32TOUI32 or F32TOI32
NOP ;

; <-- R0H is valid
ADDF32 R2H,R1H ,R0H ; Instruction can use R0H as a source

Example MOVL XAR1, #0x0200 ; XAR1 = 512
MOV32 R0H, XAR1
NOP
NOP
NOP
NOP
UI32TOF32 R0H, R0H ; R0H = 512.0 (0x44000000)

See also MOV32 RaH, ACC
MOV32 RaH, P
MOV32 RaH, XT

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 RaH, XT — Move the Contents of XT to a 32-bit Floating-Point Register www.ti.com

94 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 RaH, XT Move the Contents of XT to a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
XT auxiliary register (XAR0 - XAR7)

Opcode LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in temporary register, XT, to the floating-point register RaH.
RaH = XT

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 R0H, XT ; Copy XT to R0H
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; I16TOF32, F32TOUI32 or F32TOI32
NOP ;

; <-- R0H is valid
ADDF32 R2H,R1H,R0H ; Instruction can use R0H as a sourc

Example MOVIZF32 R6H, #5.0 ; R6H = 5.0 (0x40A00000)
NOP ; 1 Alignment cycle
MOV32 XT, R6H ; XT = 5.0 (0x40A00000)
MOV32 R1H, XT ; R1H = 5.0 (0x40A00000)

See also MOV32 RaH, ACC
MOV32 RaH, P
MOV32 RaH, XARn

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 STF, mem32 — Move 32-bit Value from Memory to the STF Register

95SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 STF, mem32 Move 32-bit Value from Memory to the STF Register

Operands

STF floating-point unit status register
mem32 pointer to the 32-bit source memory location

Opcode
LSW: 1110 0010 1000 0000
MSW: 0000 0000 mem32

Description Move from memory to the floating-point unit's status register STF.
STF = [mem32]

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Restoring status register will overwrite all flags.

Pipeline This is a single-cycle instruction.

Example 1 MOVW DP, #0x0300 ; DP = 0x0300
MOV @2, #0x020C ; [0x00C002] = 0x020C
MOV @3, #0x0000 ; [0x00C003] = 0x0000
MOV32 STF, @2 ; STF = 0x0000020C

Example 2 MOV32 *SP++, STF ; Store STF in stack
MOVF32 R2H, #3.0 ; R2H = 3.0 (0x40400000)
MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)
CMPF32 R2H, R3H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)
MOV32 STF, *--SP ; Restore STF from stack

See also MOV32 mem32, STF
MOVST0 FLAG

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 XARn, RaH — Move 32-bit Floating-Point Register Contents to XARn www.ti.com

96 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 XARn, RaH Move 32-bit Floating-Point Register Contents to XARn

Operands

XARn 28x auxiliary register (XAR0 - XAR7)
RaH floating-point source register (R0H to R7H)

Opcode LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value from the floating-point register RaH to the auxiliary register XARn.
XARn = RaH

Flags No flags affected in floating-point unit.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 R0H,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,R0H ; Copy R0H to ACC
NOP ; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 1 cycle

; <-- MOV32 completes, ACC is valid
NOP ; Any instruction

Example MOVIZF32 R0H, #2.5 ; R0H = 2.5 = 0x40200000
F32TOUI32 R0H, R0H
NOP ; Delay for conversion instruction

; <-- Conversion complete, R0H valid
NOP ; Alignment cycle
MOV32 XAR0, R0H ; XAR0 = 2 = 0x00000002

See also MOV32 ACC, RaH
MOV32 P, RaH
MOV32 XT, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 XT, RaH — Move 32-bit Floating-Point Register Contents to XT

97SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOV32 XT, RaH Move 32-bit Floating-Point Register Contents to XT

Operands

XT temporary register
RaH floating-point source register (R0H to R7H)

Opcode
LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in RaH to the temporary register XT.
XT = RaH

Flags No flags affected in floating-point unit.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:

MINF32 R0H,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @XT,R0H ; Copy R0H to ACC NOP

; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:

ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 XT, R2H ; copy R2H into ACC, takes 1 cycle

; <-- MOV32 completes, ACC is valid
NOP ; Any instruction

Example
MOVIZF32 R0H, #2.5 ; R0H = 2.5 = 0x40200000

F32TOUI32 R0H, R0H
NOP ; Delay for conversion instruction

; <-- Conversion complete, R0H valid
NOP ; Alignment cycle
MOV32 XT, R0H ; XT = 2 = 0x00000002

See also MOV32 ACC, RaH
MOV32 P, RaH
MOV32 XARn, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOVD32 RaH, mem32 — Move 32-bit Value from Memory with Data Copy www.ti.com

98 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOVD32 RaH, mem32 Move 32-bit Value from Memory with Data Copy

Operands

RaH floating-point register (R0H to R7H)
mem32 pointer to the 32-bit source memory location

Opcode LSW: 1110 0010 0010 0011
MSW: 0000 0aaa mem32

Description Move the 32-bit value referenced by mem32 to the floating-point register indicated by
RaH.
RaH = [mem32] [mem32+2] = [mem32]

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

NF = RaH[31];
ZF = 0;
if(RaH[30:23] == 0){ ZF = 1; NF = 0; }
NI = RaH[31];
ZI = 0;
if(RaH[31:0] == 0) ZI = 1;

Pipeline This is a single-cycle instruction.

Example MOVW DP, #0x02C0 ; DP = 0x02C0
MOV @2, #0x0000 ; [0x00B002] = 0x0000
MOV @3, #0x4110 ; [0x00B003] = 0x4110
MOVD32 R7H, @2 ; R7H = 0x41100000,

; [0x00B004] = 0x0000, [0x00B005] = 0x4110

See also MOV32 RaH, mem32 {,CNDF}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOVF32 RaH, #32F — Load the 32-bits of a 32-bit Floating-Point Register

99SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOVF32 RaH, #32F Load the 32-bits of a 32-bit Floating-Point Register

Operands This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:
MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex

RaH floating-point destination register (R0H to R7H)
#32F immediate float value represented in floating-point representation

Opcode
LSW: 1110 1000 0000 0III (opcode of MOVIZ RaH, #16FHiHex)
MSW: IIII IIII IIII Iaaa

LSW: 1110 1000 0000 1III (opcode of MOVXI RaH, #16FLoHex)
MSW: IIII IIII IIII Iaaa

Description Note: This instruction accepts the immediate operand only in floating-point
representation. To specify the immediate value as a hex value (IEEE 32-bit floating-
point format) use the MOVI32 RaH, #32FHex instruction.

Load the 32-bits of RaH with the immediate float value represented by #32F.

#32F is a float value represented in floating-point representation. The assembler will only
accept a float value represented in floating-point representation. That is, 3.0 can only be
represented as #3.0. #0x40400000 will result in an error.
RaH = #32F

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline Depending on #32FH, this instruction takes one or two cycles. If all of the lower 16-bits
of the IEEE 32-bit floating-point format of #32F are zeros, then the assembler will
convert MOVF32 into only MOVIZ instruction. If the lower 16-bits of the IEEE 32-bit
floating-point format of #32F are not zeros, then the assembler will convert MOVF32 into
MOVIZ and MOVXI instructions.

Example MOVF32 R1H, #3.0 ; R1H = 3.0 (0x40400000)
; Assembler converts this instruction as
; MOVIZ R1H, #0x4040

MOVF32 R2H, #0.0 ; R2H = 0.0 (0x00000000)
; Assembler converts this instruction as
; MOVIZ R2H, #0x0

MOVF32 R3H, #12.265 ; R3H = 12.625 (0x41443D71)
; Assembler converts this instruction as
; MOVIZ R3H, #0x4144
; MOVXI R3H, #0x3D71

See also MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
MOVI32 RaH, #32FHex
MOVIZF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOVI32 RaH, #32FHex — Load the 32-bits of a 32-bit Floating-Point Register with the immediate www.ti.com

100 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOVI32 RaH, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediate

Operands This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:
MOVIZ RaH, #16FHiHex

MOVXI RaH, #16FLoHex

RaH floating-point register (R0H to R7H)
#32FHex A 32-bit immediate value that represents an IEEE 32-bit floating-point value.

Opcode
LSW: 1110 1000 0000 0III (opcode of MOVIZ RaH, #16FHiHex)
MSW: IIII IIII IIII Iaaa

LSW: 1110 1000 0000 1III (opcode of MOVXI RaH, #16FLoHex)
MSW: IIII IIII IIII Iaaa

Description Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MOVF32 RaH, #32F
instruction.

Load the 32-bits of RaH with the immediate 32-bit hex value represented by #32Fhex.

#32Fhex is a 32-bit immediate hex value that represents the IEEE 32-bit floating-point
value of a floating-point number. The assembler will only accept a hex immediate value.
That is, 3.0 can only be represented as #0x40400000. #3.0 will result in an error.
RaH = #32FHex

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline Depending on #32FHex, this instruction takes one or two cycles. If all of the lower 16-
bits of #32FHex are zeros, then assembler will convert MOVI32 to the MOVIZ
instruction. If the lower 16-bits of #32FHex are not zeros, then assembler will convert
MOVI32 to a MOVIZ and a MOVXI instruction.

Example MOVI32 R1H, #0x40400000 ; R1H = 0x40400000
; Assembler converts this instruction as
; MOVIZ R1H, #0x4040

MOVI32 R2H, #0x00000000 ; R2H = 0x00000000
; Assembler converts this instruction as
; MOVIZ R2H, #0x0

MOVI32 R3H, #0x40004001 ; R3H = 0x40004001
; Assembler converts this instruction as
; MOVIZ R3H, #0x4000 ; MOVXI R3H, #0x4001

MOVI32 R4H, #0x00004040 ; R4H = 0x00004040
; Assembler converts this instruction as
; MOVIZ R4H, #0x0000 ; MOVXI R4H, #0x4040

See also MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
MOVF32 RaH, #32F
MOVIZF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOVIZ RaH, #16FHiHex — Load the Upper 16-bits of a 32-bit Floating-Point Register

101SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOVIZ RaH, #16FHiHex Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
#16FHiHex A 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

The low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 0000 0III
MSW: IIII IIII IIII Iaaa

Description Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MOVIZF32 pseudo
instruction.

Load the upper 16-bits of RaH with the immediate value #16FHiHex and clear the low
16-bits of RaH.

#16FHiHex is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-
bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. The
assembler will only accept a hex immediate value. That is, -1.5 can only be represented
as #0xBFC0. #-1.5 will result in an error.

By itself, MOVIZ is useful for loading a floating-point register with a constant in which the
lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x40000000), 4.0
(0x40800000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). If a constant requires all 32-
bits of a floating-point register to be initialized, then use MOVIZ along with the MOVXI
instruction.
RaH[31:16] = #16FHiHex

RaH[15:0] = 0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example
; Load R0H with -1.5 (0xBFC00000)

MOVIZ R0H, #0xBFC0 ; R0H = 0xBFC00000

; Load R0H with pi = 3.141593 (0x40490FDB)
MOVIZ R0H, #0x4049 ; R0H = 0x40490000
MOVXI R0H, #0x0FDB ; R0H = 0x40490FDB

See also MOVIZF32 RaH, #16FHi
MOVXI RaH, #16FLoHex

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOVIZF32 RaH, #16FHi — Load the Upper 16-bits of a 32-bit Floating-Point Register www.ti.com

102 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOVIZF32 RaH, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 0000 0III
MSW: IIII IIII IIII Iaaa

Description Load the upper 16-bits of RaH with the value represented by #16FHi and clear the low
16-bits of RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). #16FHi can be specified in hex or float. That is, -1.5 can be
represented as #-1.5 or #0xBFC0.

MOVIZF32 is an alias for the MOVIZ RaH, #16FHiHex instruction. In the case of
MOVIZF32 the assembler will accept either a hex or float as the immediate value and
encodes it into a MOVIZ instruction. For example, MOVIZF32 RaH, #-1.5 will be
encoded as MOVIZ RaH, 0xBFC0.
RaH[31:16] = #16FHi

RaH[15:0] = 0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example
MOVIZF32 R0H, #3.0 ; R0H = 3.0 = 0x40400000
MOVIZF32 R1H, #1.0 ; R1H = 1.0 = 0x3F800000
MOVIZF32 R2H, #2.5 ; R2H = 2.5 = 0x40200000
MOVIZF32 R3H, #-5.5 ; R3H = -5.5 = 0xC0B00000
MOVIZF32 R4H, #0xC0B0 ; R4H = -5.5 = 0xC0B00000

;
; Load R5H with pi = 3.141593 (0x40490000)
;

MOVIZF32 R5H, #3.141593 ; R5H = 3.140625 (0x40490000)
;
; Load R0H with a more accurate pi = 3.141593 (0x40490FDB)
;

MOVIZF32 R0H,#0x4049 ; R0H = 0x40490000
MOVXI R0H,#0x0FDB ; R0H = 0x40490FDB

See also MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOVST0 FLAG — Load Selected STF Flags into ST0

103SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOVST0 FLAG Load Selected STF Flags into ST0

Operands

FLAG Selected flag

Opcode LSW: 1010 1101 FFFF FFFF

Description Load selected flags from the STF register into the ST0 register of the 28x CPU where
FLAG is one or more of TF, CI, ZI, ZF, NI, NF, LUF or LVF. The specified flag maps to
the ST0 register as follows:
• Set OV = 1 if LVF or LUF is set. Otherwise clear OV.
• Set N = 1 if NF or NI is set. Otherwise clear N.
• Set Z = 1 if ZF or ZI is set. Otherwise clear Z.
• Set C = 1 if TF is set. Otherwise clear C.
• Set TC = 1 if TF is set. Otherwise clear TF.
If any STF flag is not specified, then the corresponding ST0 register bit is not modified.

Restrictions Do not use the MOVST0 instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the MOVST0 operation.
; The following is INVALID

MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
MOVST0 TF ; INVALID, do not use MOVST0 in a delay slot

; The following is VALID
MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
MOVST0 TF ; VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

When the flags are moved to the C28x ST0 register, the LUF or LVF flags are
automatically cleared if selected.

Pipeline This is a single-cycle instruction.

Example Program flow is controlled by C28x instructions that read status flags in the status
register 0 (ST0) . If a decision needs to be made based on a floating-point operation, the
information in the STF register needs to be loaded into ST0 flags (Z,N,OV,TC,C) so that
the appropriate branch conditional instruction can be executed. The MOVST0 FLAG
instruction is used to load the current value of specified STF flags into the respective bits
of ST0. When this instruction executes, it will also clear the latched overflow and
underflow flags if those flags are specified.
Loop:

MOV32 R0H,*XAR4++
MOV32 R1H,*XAR3++
CMPF32 R1H, R0H
MOVST0 ZF, NF
BF Loop, GT ; Loop if (R1H > R0H)

See also MOV32 mem32, STF
MOV32 STF, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOVXI RaH, #16FLoHex — Move Immediate to the Low 16-bits of a Floating-Point Register www.ti.com

104 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MOVXI RaH, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register

Operands

Ra floating-point register (R0H to R7H)
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value. The

upper 16-bits will not be modified.

Opcode LSW: 1110 1000 0000 1III MSW: IIII IIII IIII Iaaa

Description Load the low 16-bits of RaH with the immediate value #16FLoHex. #16FLoHex
represents the lower 16-bits of an IEEE 32-bit floating-point value. The upper 16-bits of
RaH will not be modified. MOVXI can be combined with the MOVIZ or MOVIZF32
instruction to initialize all 32-bits of a RaH register.
RaH[15:0] = #16FLoHex
RaH[31:16] = Unchanged

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example ; Load R0H with pi = 3.141593 (0x40490FDB)
MOVIZ R0H,#0x4049 ; R0H = 0x40490000
MOVXI R0H,#0x0FDB ; R0H = 0x40490FDB

See also MOVIZ RaH, #16FHiHex
MOVIZF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RaH, RbH, RcH — 32-bit Floating-Point Multiply

105SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MPYF32 RaH, RbH, RcH 32-bit Floating-Point Multiply

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)
RcH floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0111 0000 0000
MSW: 0000 000c ccbb baaa

Description Multiply the contents of two floating-point registers.
RaH = RbH * RcH

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example Calculate Y = A * B:
MOVL XAR4, #A

MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, # B
MOV32 R1H, *XAR4 ; Load R1H with B
MPYF32 R0H,R1H,R0H ; Multiply A * B
MOVL XAR4, #Y

; <--MPYF32 complete
MOV32 *XAR4,R0H ; Save the result

See also MPYF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
MPYF32 RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RaH, #16FHi, RbH — 32-bit Floating-Point Multiply www.ti.com

106 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MPYF32 RaH, #16FHi, RbH 32-bit Floating-Point Multiply

Operands

RaH floating-point destination register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.
RcH floating-point source register (R0H to R7H)

Opcode LSW: 1110 1000 01II IIII
MSW: IIII IIII IIbb baaa

Description Multiply RbH with the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = RbH * #16FHi:0

This instruction can also be written as MPYF32 RaH, RbH, #16FHi.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example 1
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, #3.0, R3H ; R4H = 3.0 * R3H
MOVL XAR1, #0xB006 ; <-- Non conflicting instruction

; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in memory location 0xB006

Example 2 ;Same as above example but #16FHi is represented in Hex
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, #0x4040, R3H ; R4H = 0x4040 * R3H

; 3.0 is represented as 0x40400000 in
; IEEE 754 32-bit format

MOVL XAR1, #0xB006 ; <-- Non conflicting instruction
; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)

MOV32 *XAR1, R4H ; Save the result in memory location 0xB006

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RaH, #16FHi, RbH — 32-bit Floating-Point Multiply

107SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

See also MPYF32 RaH, RbH, #16FHi
MPYF32 RaH, RbH, RcH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RaH, RbH, #16FHi — 32-bit Floating-Point Multiply www.ti.com

108 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MPYF32 RaH, RbH, #16FHi 32-bit Floating-Point Multiply

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1000 01II IIII
MSW: IIII IIII IIbb baaa

Description Multiply RbH with the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = RbH * #16FHi:0

This instruction can also be writen as MPYF32 RaH, #16FHi, RbH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, RbH, #16FHi ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example 1
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, R3H, #3.0 ; R4H = R3H * 3.0
MOVL XAR1, #0xB008 ; <-- Non conflicting instruction

; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in memory location 0xB008

Example 2 ;Same as above example but #16FHi is represented in Hex
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, R3H, #0x4040 ; R4H = R3H * 0x4040

; 3.0 is represented as 0x40400000 in
; IEEE 754 32-bit format

MOVL XAR1, #0xB008 ; <-- Non conflicting instruction
; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)

MOV32 *XAR1, R4H ; Save the result in memory location 0xB008

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RaH, RbH, #16FHi — 32-bit Floating-Point Multiply

109SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

See also MPYF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RaH, RbH, RcH ∥∥ADDF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add www.ti.com

110 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MPYF32 RaH, RbH, RcH ∥∥ADDF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands

RaH floating-point destination register for MPYF32 (R0H to R7H)
RaH cannot be the same register as RdH

RbH floating-point source register for MPYF32 (R0H to R7H)
RcH floating-point source register for MPYF32 (R0H to R7H)
RdH floating-point destination register for ADDF32 (R0H to R7H)

RdH cannot be the same register as RaH
ReH floating-point source register for ADDF32 (R0H to R7H)
RfH floating-point source register for ADDF32 (R0H to R7H)

Opcode LSW: 1110 0111 0100 00ff
MSW: feee dddc ccbb baaa

Description Multiply the contents of two floating-point registers with parallel addition of two registers.
RaH = RbH * RcH
RdH = ReH + RfH

This instruction can also be written as:
MACF32 RaH, RbH, RcH, RdH, ReH, RfH

Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 or ADDF32 generates an underflow condition.
• LVF = 1 if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated

NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RaH, RbH, RcH ∥∥ADDF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

111SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example ; Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R2H = A = X0 * Y0
MPYF32 R2H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R3H = B = X1 * Y1
MPYF32 R3H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R3H = A + B
; R2H = C = X2 * Y2

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3

; R3H = (A + B) + C
; R2H = D = X3 * Y3

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; R2H = E = X4 * Y4
MPYF32 R2H, R0H, R1H ; in parallel R3H = (A + B + C) + D

|| ADDF32 R3H, R3H, R2H
NOP ; Wait for MPYF32 || ADDF32 to complete

ADDF32 R3H, R3H, R2H ; R3H = (A + B + C + D) + E NOP

; Wait for ADDF32 to complete
MOV32 @Result, R3H ; Store the result

See also MACF32 R3H, R2H, RdH, ReH, RfH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply with Parallel Move www.ti.com

112 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MPYF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Multiply with Parallel Move

Operands

RdH floating-point destination register for the MPYF32 (R0H to R7H)
RdH cannot be the same register as RaH

ReH floating-point source register for the MPYF32 (R0H to R7H)
RfH floating-point source register for the MPYF32 (R0H to R7H)
RaH floating-point destination register for the MOV32 (R0H to R7H)

RaH cannot be the same register as RdH
mem32 pointer to a 32-bit memory location. This will be the source of the MOV32.

Opcode LSW: 1110 0011 0000 fffe
MSW: eedd daaa mem32

Description Multiply the contents of two floating-point registers and load another.
RdH = ReH * RfH
RaH = [mem32]

Restrictions The destination register for the MPYF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);

ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:

MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle

; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply with Parallel Move

113SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y1 are all on the
same data page.

MOVW DP, #M1 ; Load the data page
MOV32 R0H,@M1 ; Load R0H with M1
MOV32 R1H,@X1 ; Load R1H with X1
MPYF32 R1H,R1H,R0H ; Multiply M1*X1

|| MOV32 R0H,@B1 ; and in parallel load R0H with B1
; <-- MOV32 complete

NOP ; Wait 1 cycle for MPYF32 to complete
; <-- MPYF32 complete

ADDF32 R1H,R1H,R0H ; Add M*X1 to B1 and store in R1H
NOP ; Wait 1 cycle for ADDF32 to complete

; <-- ADDF32 complete
MOV32 @Y1,R1H ; Store the result

Calculate Y = (A * B) * C:
MOVL XAR4, #A

MOV32 R0H, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
MPYF32 R1H,R1H,R0H ; Calculate R1H = A * B

|| MOV32 R0H, *XAR4 ; and in parallel load R2H with C
; <-- MOV32 complete

MOVL XAR4, #Y
; <-- MPYF32 complete

MPYF32 R2H,R1H,R0H ; Calculate Y = (A * B) * C
NOP ; Wait 1 cycle for MPYF32 to complete

; MPYF32 complete
MOV32 *XAR4,R2H

See also MPYF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Multiply with Parallel Move www.ti.com

114 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MPYF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH 32-bit Floating-Point Multiply with Parallel Move

Operands

RdH floating-point destination register for the MPYF32 (R0H to R7H)
ReH floating-point source register for the MPYF32 (R0H to R7H)
RfH floating-point source register for the MPYF32 (R0H to R7H)
mem32 pointer to a 32-bit memory location. This will be the destination of the MOV32.
RaH floating-point source register for the MOV32 (R0H to R7H)

Opcode LSW: 1110 0000 0000 fffe
MSW: eedd daaa mem32

Description Multiply the contents of two floating-point registers and move from memory to register.
RdH = ReH * RfH, [mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:

MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 mem32, RaH ; 1 cycle

; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

Example
MOVL XAR1, #0xC003 ; XAR1 = 0xC003
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R3H, R3H, #5.0 ; R3H = R3H * 5.0
MOVIZF32 R1H, #5.0 ; R1H = 5.0 (0x40A00000)

; <-- MPYF32 complete, R3H = 10.0 (0x41200000)
MPYF32 R3H, R1H, R3H ; R3H = R1H * R3H

|| MOV32 *XAR1, R3H ; and in parallel store previous R3 value
; MOV32 complete, [0xC003] = 0x4120,

; [0xC002] = 0x0000
NOP ; 1 cycle delay for MPYF32 to complete

; <-- MPYF32 , R3H = 50.0 (0x42480000)

See also MPYF32 RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RaH, RbH, RcH ∥∥SUBF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Subtract

115SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

MPYF32 RaH, RbH, RcH ∥∥SUBF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel
Subtract

Operands

RaH floating-point destination register for MPYF32 (R0H to R7H)
RaH cannot be the same register as RdH

RbH floating-point source register for MPYF32 (R0H to R7H)
RcH floating-point source register for MPYF32 (R0H to R7H)
RdH floating-point destination register for SUBF32 (R0H to R7H)

RdH cannot be the same register as RaH
ReH floating-point source register for SUBF32 (R0H to R7H)
RfH floating-point source register for SUBF32 (R0H to R7H)

Opcode LSW: 1110 0111 0101 00ff MSW: feee dddc ccbb baaa

Description Multiply the contents of two floating-point registers with parallel subtraction of two
registers.
RaH = RbH * RcH,
RdH = ReH - RfH

Restrictions The destination register for the MPYF32 and the SUBF32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 or SUBF32 generates an underflow condition.
• LVF = 1 if MPYF32 or SUBF32 generates an overflow condition.

Pipeline MPYF32 and SUBF32 both take 2 pipeline-cycles (2p). That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, SUBF32 complete. RaH, RdH updated

NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

Example
MOVIZF32 R4H, #5.0 ; R4H = 5.0 (0x40A00000)
MOVIZF32 R5H, #3.0 ; R5H = 3.0 (0x40400000)
MPYF32 R6H, R4H, R5H ; R6H = R4H * R5H

|| SUBF32 R7H, R4H, R5H ; R7H = R4H - R5H NOP
; 1 cycle delay for MPYF32 || SUBF32 to complete
; <-- MPYF32 || SUBF32 complete,
; R6H = 15.0 (0x41700000), R7H = 2.0 (0x40000000)

See also SUBF32 RaH, RbH, RcH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


NEGF32 RaH, RbH{, CNDF} — Conditional Negation www.ti.com

116 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

NEGF32 RaH, RbH{, CNDF} Conditional Negation

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)
CNDF condition tested

Opcode LSW: 1110 0110 1010 CNDF
MSW: 0000 0000 00bb baaa

Description if (CNDF == true) {RaH = - RbH }
else {RaH = RbH }

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)

MPYF32 R4H, R1H, R2H ; R4H = -6.0
MPYF32 R5H, R0H, R1H ; R5H = 20.0

; <-- R4H valid
CMPF32 R4H, #0.0 ; NF = 1

; <-- R5H valid
NEGF32 R4H, R4H, LT ; if NF = 1, R4H = 6.0
CMPF32 R5H, #0.0 ; NF = 0
NEGF32 R5H, R5H, GEQ ; if NF = 0, R4H = -20.0

See also ABSF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com POP RB — Pop the RB Register from the Stack

117SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

POP RB Pop the RB Register from the Stack

Operands

RB repeat block register

Opcode LSW: 1111 1111 1111 0001

Description Restore the RB register from stack. If a high-priority interrupt contains a RPTB
instruction, then the RB register must be stored on the stack before the RPTB block and
restored after the RTPB block. In a low-priority interrupt RB must always be saved and
restored. This save and restore must occur when interrupts are disabled.

Flags This instruction does not affect any flags floating-point Unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
_Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the
ISR
...
...
RPTB #BlockEnd, AL ; Execute the block AL+1 times
...
...
BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register
...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
_Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
... ; ISR may or may not include a RPTB block
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


POP RB — Pop the RB Register from the Stack www.ti.com

118 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

See also PUSH RB
RPTB label, #RC
RPTB label, loc16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com PUSH RB — Push the RB Register onto the Stack

119SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

PUSH RB Push the RB Register onto the Stack

Operands

RB repeat block register

Opcode LSW: 1111 1111 1111 0000

Description Save the RB register on the stack. If a high-priority interrupt contains a RPTB instruction,
then the RB register must be stored on the stack before the RPTB block and restored
after the RTPB block. In a low-priority interrupt RB must always be saved and restored.
This save and restore must occur when interrupts are disabled.

Flags This instruction does not affect any flags floating-point Unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction for the first iteration, and zero cycles thereafter.

Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
_Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the
ISR
...
RPTB #BlockEnd, AL ; Execute the block AL+1 times
...
...
BlockEnd ; End of block to be repeated
...
POP RB ; Restore RB register
...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
_Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
... ; ISR may or may not include a RPTB block
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
RPTB label, #RC
RPTB label, loc16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RESTORE — Restore the Floating-Point Registers www.ti.com

120 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

RESTORE Restore the Floating-Point Registers

Operands

none This instruction does not have any operands

Opcode LSW: 1110 0101 0110 0010

Description Restore the floating-point register set (R0H - R7H and STF) from their shadow registers.
The SAVE and RESTORE instructions should be used in high-priority interrupts. That is
interrupts that cannot themselves be interrupted. In low-priority interrupt routines the
floating-point registers should be pushed onto the stack.

Restrictions The RESTORE instruction cannot be used in any delay slots for pipelined operations.
Doing so will yield invalid results. To avoid this, the proper number of NOPs or non-
pipelined instructions must be inserted before the RESTORE operation.
; The following is INVALID

MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
RESTORE ; INVALID, do not use RESTORE in a delay slot

; The following is VALID
MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
RESTORE ; VALID

Flags Restoring the status register will overwrite all flags:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com RESTORE — Restore the Floating-Point Registers

121SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example The following example shows a complete context save and restore for a high-priority
interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
ST0, ST1, IER, DP, AR0, AR1 and PC. If an interrupt is low priority (that is it can be
interrupted), then push the floating point registers onto the stack instead of using the
SAVE and RESTORE operations.
; Interrupt Save
_HighestPriorityISR: ; Uninterruptable

ASP ; Align stack
PUSH RB ; Save RB register if used in the ISR
PUSH AR1H:AR0H ; Save other registers if used
PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XAR5
PUSH XAR6
PUSH XAR7
PUSH XT
SPM 0 ; Set default C28 modes
CLRC AMODE
CLRC PAGE0,OVM
SAVE RNDF32=1 ; Save all FPU registers
... ; set default FPU modes
...

; Interrupt Restore
...
RESTORE ; Restore all FPU registers
POP XT ; restore other registers
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H
POP RB ; restore RB register
NASP ; un-align stack
IRET ; return from interrupt

See also SAVE FLAG, VALUE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RPTB label, loc16 — Repeat A Block of Code www.ti.com

122 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

RPTB label, loc16 Repeat A Block of Code

Operands

label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.

loc16 16-bit location for the repeat count value.

Opcode LSW: 1011 0101 0bbb bbbb
MSW: 0000 0000 loc16

Description Initialize repeat block loop, repeat count from [loc16]

Restrictions
• The maximum block size is ≤127 16-bit words.
• An even aligned block must be ≥ 9 16-bit words.
• An odd aligned block must be ≥ 8 16-bit words.
• Interrupts must be disabled when saving or restoring the RB register.
• Repeat blocks cannot be nested.
• Any discontinuity type operation is not allowed inside a repeat block. This includes all

call, branch, or TRAP instructions. Interrupts are allowed.
• Conditional execution operations are allowed.

Flags This instruction does not affect any flags in the floating-point unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes four cycles on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

Example The minimum size for the repeat block is 9 words if the block is even-aligned and 8
words if the block is odd-aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even-
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd-aligned. For blocks of
9 or more words, this is not required.
; Repeat Block of 8 Words (Interruptible)
;
; find the largest element and put its address in XAR6

.align 2

NOP
RPTB VECTOR_MAX_END, AR7 ; Execute the block AR7+1 times
MOVL ACC,XAR0
MOV32 R1H,*XAR0++ ; min size = 8, 9 words
MAXF32 R0H,R1H ; max size = 127 words
MOVST0 NF,ZF
MOVL XAR6,ACC,LT

VECTOR_MAX_END: ; label indicates the end
; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com RPTB label, loc16 — Repeat A Block of Code

123SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the

ISR
...

...
RPTB #BlockEnd, AL ; Execute the block AL+1 times
...
...
...

BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register
...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
... ; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
PUSH RB
RPTB label, #RC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RPTB label, #RC — Repeat a Block of Code www.ti.com

124 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

RPTB label, #RC Repeat a Block of Code

Operands

label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.

#RC 16-bit location

Opcode LSW: 1011 0101 1bbb bbbb
MSW: cccc cccc cccc cccc

Description Repeat a block of code. The repeat count is specified as a immediate value.

Restrictions
• The maximum block size is ≤127 16-bit words.
• An even aligned block must be ≥ 9 16-bit words.
• An odd aligned block must be ≥ 8 16-bit words.
• Interrupts must be disabled when saving or restoring the RB register.
• Repeat blocks cannot be nested.
• Any discontinuity type operation is not allowed inside a repeat block. This includes all

call, branch or TRAP instructions. Interrupts are allowed.
• Conditional execution operations are allowed.

Flags This instruction does not affect any flags int the floating-point unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes one cycle on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

Example The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.
; Repeat Block (Interruptible)
;
; find the largest element and put its address in XAR6
.align 2

NOP
RPTB VECTOR_MAX_END, #(4-1) ; Execute the block 4 times
MOVL ACC,XAR0
MOV32 R1H,*XAR0++ ; 8 or 9 words block size 127 words
MAXF32 R0H,R1H
MOVST0 NF,ZF
MOVL XAR6,ACC,LT
VECTOR_MAX_END: ; RE indicates the end address

; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com RPTB label, #RC — Repeat a Block of Code

125SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0
...
PUSH RB ; Save RB register only if a RPTB block is used in the
ISR
...
...
RPTB #BlockEnd, #5 ; Execute the block 5+1 times
...
...
...
BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register
...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
... ; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
PUSH RB
RPTB label, loc16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SAVE FLAG, VALUE — Save Register Set to Shadow Registers and Execute SETFLG www.ti.com

126 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

SAVE FLAG, VALUE Save Register Set to Shadow Registers and Execute SETFLG

Operands

FLAG 11 bit mask indicating which floating-point status flags to change.
VALUE 11 bit mask indicating the flag value; 0 or 1.

Opcode LSW: 1110 0110 01FF FFFF
MSW: FFFF FVVV VVVV VVVV

Description This operation copies the current working floating-point register set (R0H to R7H and
STF) to the shadow register set and combines the SETFLG FLAG, VALUE operation in
a single cycle. The status register is copied to the shadow register before the flag values
are changed. The STF[SHDWM] flag is set to 1 when the SAVE command has been
executed. The SAVE and RESTORE instructions should be used in high-priority
interrupts. That is interrupts that cannot themselves be interrupted. In low-priority
interrupt routines the floating-point registers should be pushed onto the stack.

Restrictions Do not use the SAVE instruction in the delay slots for pipelined operations. Doing so can
yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SAVE operation.
; The following is INVALID

MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
SAVE RNDF32=1 ; INVALID, do not use SAVE in a delay slot

; The following is VALID
MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SAVE RNDF32=1 ; VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Any flag can be modified by this instruction.

Pipeline This is a single-cycle instruction.

Example To make it easier and more legible, the assembler will accept a FLAG=VALUE syntax for
the STFLG operation as shown below:
SAVE RNDF32=0, TF=1, ZF=0 ; FLAG = 01001000100, VALUE = X0XX0XXX1XX
MOVST0 TF, ZF, LUF ; Copy the indicated flags to ST0

; Note: X means this flag will not be modified.
; The assembler will set these X values to 0.

The following example shows a complete context save and restore for a high priority
interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
ST0, ST1, IER, DP, AR0, AR1 and PC.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SAVE FLAG, VALUE — Save Register Set to Shadow Registers and Execute SETFLG

127SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

_HighestPriorityISR:
ASP ;Align stack
PUSH RB ; Save RB register if used in the ISR
PUSH AR1H:AR0H ; Save other registers if used
PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XAR5
PUSH XAR6
PUSH XAR7
PUSH XT
SPM 0 ; Set default C28 modes
CLRC AMODE
CLRC PAGE0,OVM
SAVE RNDF32=0 ; Save all FPU registers
... ; set default FPU modes
...
...
...
RESTORE ; Restore all FPU registers
POP XT ; restore other registers
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H
POP RB ; restore RB register
NASP ; un-align stack IRET

; return from interrupt

See also RESTORE
SETFLG FLAG, VALUE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SETFLG FLAG, VALUE — Set or clear selected floating-point status flags www.ti.com

128 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

SETFLG FLAG, VALUE Set or clear selected floating-point status flags

Operands

FLAG 11 bit mask indicating which floating-point status flags to change.
VALUE 11 bit mask indicating the flag value; 0 or 1.

Opcode LSW: 1110 0110 00FF FFFF
MSW: FFFF FVVV VVVV VVVV

Description The SETFLG instruction is used to set or clear selected floating-point status flags in the
STF register. The FLAG field is an 11-bit value that indicates which flags will be
changed. That is, if a FLAG bit is set to 1 it indicates that flag will be changed; all other
flags will not be modified. The bit mapping of the FLAG field is shown below:

10 9 8 7 6 5 4 3 2 1 0
reserved RNDF32 reserved reserved TF ZI NI ZF NF LUF LVF

The VALUE field indicates the value the flag should be set to; 0 or 1.

Restrictions Do not use the SETFLG instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SETFLG operation.
; The following is INVALID

MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
SETFLG RNDF32=1 ; INVALID, do not use SETFLG in a delay slot

; The following is VALID
MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SETFLG RNDF32=1 ; VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Any flag can be modified by this instruction.

Pipeline This is a single-cycle instruction.

Example To make it easier and legible, the assembler will accept a FLAG=VALUE syntax for the
STFLG operation as shown below:
SETFLG RNDF32=0, TF=1, ZF=0 ; FLAG = 01001001000, VALUE = X0XX1XX0XXX
MOVST0 TF, ZF, LUF ; Copy the indicated flags to ST0

; X means this flag is not modified.
; The assembler will set X values to 0

See also SAVE FLAG, VALUE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBF32 RaH, RbH, RcH — 32-bit Floating-Point Subtraction

129SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

SUBF32 RaH, RbH, RcH 32-bit Floating-Point Subtraction

Operands

RaH floating-point destination register (R0H to R1)
RbH floating-point source register (R0H to R1)
RcH floating-point source register (R0H to R1)

Opcode LSW: 1110 0111 0010 0000
MSW: 0000 000c ccbb baaa

Description Subtract the contents of two floating-point registers
RaH = RbH - RcH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
SUBF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- SUBF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example Calculate Y - A + B - C:
MOVL XAR4, #A

MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
ADDF32 R0H,R1H,R0H ; Add A + B and in parallel

|| MOV32 R2H,*XAR4 ; Load R2H with C

; <-- ADDF32 complete
SUBF32 R0H,R0H,R2H ; Subtract C from (A + B)
NOP

; <-- SUBF32 completes
MOV32 *XAR4,R0H ; Store the result

See also SUBF32 RaH, #16FHi, RbH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBF32 RaH, #16FHi, RbH — 32-bit Floating Point Subtraction www.ti.com

130 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

SUBF32 RaH, #16FHi, RbH 32-bit Floating Point Subtraction

Operands

RaH floating-point destination register (R0H to R1)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.
RbH floating-point source register (R0H to R1)

Opcode LSW: 1110 1000 11II IIII
MSW: IIII IIII IIbb baaa

Description Subtract RbH from the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = #16FHi:0 - RbH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
SUBF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- SUBF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example Calculate Y = 2.0 - (A + B):
MOVL XAR4, #A
MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
ADDF32 R0H,R1H,R0H ; Add A + B and in parallel
NOP

; <-- ADDF32 complete
SUBF32 R0H,#2.0,R2H ; Subtract (A + B) from 2.0
NOP

; <-- SUBF32 completes
MOV32 *XAR4,R0H ; Store the result

See also SUBF32 RaH, RbH, RcH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Subtraction with Parallel Move

131SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

SUBF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Subtraction with Parallel Move

Operands

RdH floating-point destination register (R0H to R7H) for the SUBF32 operation
RdH cannot be the same register as RaH

ReH floating-point source register (R0H to R7H) for the SUBF32 operation
RfH floating-point source register (R0H to R7H) for the SUBF32 operation
RaH floating-point destination register (R0H to R7H) for the MOV32 operation

RaH cannot be the same register as RdH
mem32 pointer to 32-bit source memory location for the MOV32 operation

Opcode LSW: 1110 0011 0010 fffe
MSW: eedd daaa mem32

Description Subtract the contents of two floating-point registers and move from memory to a floating-
point register.
RdH = ReH - RfH, RaH = [mem32]

Restrictions The destination register for the SUBF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if SUBF32 generates an underflow condition.
• LVF = 1 if SUBF32 generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle

; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- SUBF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Subtraction with Parallel Move www.ti.com

132 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

Example
MOVL XAR1, #0xC000 ; XAR1 = 0xC000
SUBF32 R0H, R1H, R2H ; (A) R0H = R1H - R2H

|| MOV32 R3H, *XAR1 ;
; <-- R3H valid

MOV32 R4H, *+XAR1[2] ;
; <-- (A) completes, R0H valid, R4H valid

ADDF32 R5H, R4H, R3H ; (B) R5H = R4H + R3H
|| MOV32 *+XAR1[4], R0H ;

; <-- R0H stored
MOVL XAR2, #0xE000 ;

; <-- (B) completes, R5H valid
MOV32 *XAR2, R5H ;

; <-- R5H stored

See also SUBF32 RaH, RbH, RcH
SUBF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Subtraction with Parallel Move

133SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

SUBF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH 32-bit Floating-Point Subtraction with Parallel Move

Operands

RdH floating-point destination register (R0H to R7H) for the SUBF32 operation
ReH floating-point source register (R0H to R7H) for the SUBF32 operation
RfH floating-point source register (R0H to R7H) for the SUBF32 operation
mem32 pointer to 32-bit destination memory location for the MOV32 operation
RaH floating-point source register (R0H to R7H) for the MOV32 operation

Opcode LSW: 1110 0000 0010 fffe
MSW: eedd daaa mem32

Description Subtract the contents of two floating-point registers and move from a floating-point
register to memory.
RdH = ReH - RfH,
[mem32] = RaH

Flags This instruction modifies the following flags in the STF register:SUBF32 RdH, ReH, RfH
|| MOV32 RaH, mem32

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if SUBF32 generates an underflow condition.
• LVF = 1 if SUBF32 generates an overflow condition.

Pipeline SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 mem32, RaH ; 1 cycle

; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

Example ADDF32 R3H, R6H, R4H ; (A) R3H = R6H + R4H and R7H = I3
|| MOV32 R7H, *-SP[2] ;

; <-- R7H valid
SUBF32 R6H, R6H, R4H ; (B) R6H = R6H - R4H

; <-- ADDF32 (A) completes, R3H valid
SUBF32 R3H, R1H, R7H ; (C) R3H = R1H - R7H and store R3H (A)

|| MOV32 *+XAR5[2], R3H ;
; <-- SUBF32 (B) completes, R6H valid
; <-- MOV32 completes, (A) stored

ADDF32 R4H, R7H, R1H ; R4H = D = R7H + R1H and store R6H (B)
|| MOV32 *+XAR5[6], R6H ;

; <-- SUBF32 (C) completes, R3H valid
; <-- MOV32 completes, (B) stored

MOV32 *+XAR5[0], R3H ; store R3H (C)
; <-- MOV32 completes, (C) stored
; <-- ADDF32 (D) completes, R4H valid

MOV32 *+XAR5[4], R4H ; store R4H (D)
; <-- MOV32 completes, (D) stored

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Subtraction with Parallel Move www.ti.com

134 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

See also SUBF32 RaH, RbH, RcH
SUBF32 RaH, #16FHi, RbH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SWAPF RaH, RbH{, CNDF} — Conditional Swap

135SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

SWAPF RaH, RbH{, CNDF} Conditional Swap

Operands

RaH floating-point register (R0H to R7H)
RbH floating-point register (R0H to R7H)
CNDF condition tested

Opcode LSW: 1110 0110 1110 CNDF
MSW: 0000 0000 00bb baaa

Description Conditional swap of RaH and RbH.
if (CNDF == true) swap RaH and RbH

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected

Pipeline This is a single-cycle instruction.

Example ;find the largest element and put it in R1H

MOVL XAR1, #0xB000 ;
MOV32 R1H, *XAR1 ; Initialize R1H
.align 2

NOP
RPTB LOOP_END, #(10-1); Execute the block 10 times
MOV32 R2H, *XAR1++ ; Update R2H with next element
CMPF32 R2H, R1H ; Compare R2H with R1H
SWAPF R1H, R2H, GT ; Swap R1H and R2H if R2 > R1
NOP ; For minimum repeat block size
NOP ; For minimum repeat block size

LOOP_END:

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


TESTTF CNDF — Test STF Register Flag Condition www.ti.com

136 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

TESTTF CNDF Test STF Register Flag Condition

Operands

CNDF condition to test

Opcode LSW: 1110 0101 1000 CNDF

Description Test the floating-point condition and if true, set the TF flag. If the condition is false, clear
the TF flag. This is useful for temporarily storing a condition for later use.
if (CNDF == true) TF = 1; else TF = 0;

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes No No No No No No

TF = 0; if (CNDF == true) TF = 1;

Note: If (CNDF == UNC or UNCF), the TF flag will be set to 1.

Pipeline This is a single-cycle instruction.

Example CMPF32 R0H, #0.0 ; Compare R0H against 0
TESTTF LT ; Set TF if R0H less than 0 (NF == 0)
ABS R0H, R0H ; Get the absolute value of R0H

; Perform calculations based on ABS R0H
MOVST0 TF ; Copy TF to TC in ST0
SBF End, NTC ; Branch to end if TF was not set
NEGF32 R0H, R0H

End

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com UI16TOF32 RaH, mem16 — Convert unsigned 16-bit integer to 32-bit floating-point value

137SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

UI16TOF32 RaH, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value

Operands

RaH floating-point destination register (R0H to R7H)
mem16 pointer to 16-bit source memory location

Opcode LSW: 1110 0010 1100 0100

MSW: 0000 0aaa mem16

Description RaH = UI16ToF32[mem16]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI16TOF32 RaH, mem16 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- UI16TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example ; float32 y,m,b;
; AdcRegs.RESULT0 is an unsigned int
; Calculate: y = (float)AdcRegs.ADCRESULT0 * m + b;
;

MOVW DP @0x01C4
UI16TOF32 R0H, @8 ; R0H = (float)AdcRegs.RESULT0
MOV32 R1H, *-SP[6] ; R1H = M

; <-- Conversion complete, R0H valid
MPYF32 R0H, R1H, R0H ; R0H = (float)X * M
MOV32 R1H, *-SP[8] ; R1H = B

; <-- MPYF32 complete, R0H valid
ADDF32 R0H, R0H, R1H ; R0H = Y = (float)X * M + B
NOP

; <-- ADDF32 complete, R0H valid
MOV32 *-[SP], R0H ; Store Y

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


UI16TOF32 RaH, RbH — Convert unsigned 16-bit integer to 32-bit floating-point value www.ti.com

138 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

UI16TOF32 RaH, RbH Convert unsigned 16-bit integer to 32-bit floating-point value

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1111

MSW: 0000 0000 00bb baaa

Description RaH = UI16ToF32[RbH]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI16TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- UI16TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example MOVXI R5H, #0x800F ; R5H[15:0] = 32783 (0x800F)
UI16TOF32 R6H, R5H ; R6H = UI16TOF32 (R5H[15:0])
NOP ; 1 cycle delay for UI16TOF32 to complete

; R6H = 32783.0 (0x47000F00)

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com UI32TOF32 RaH, mem32 — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

139SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

UI32TOF32 RaH, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands

RaH floating-point destination register (R0H to R7H)
mem32 pointer to 32-bit source memory location

Opcode LSW: 1110 0010 1000 0100

MSW: 0000 0aaa mem32

Description RaH = UI32ToF32[mem32]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI32TOF32 RaH, mem32 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay non-conflicting instruction

; <-- UI32TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example ; unsigned long X
; float Y, M, B
; ...
; Calculate Y = (float)X * M + B
;

UI32TOF32 R0H, *-SP[2] ; R0H = (float)X
MOV32 R1H, *-SP[6] ; R1H = M

; <-- Conversion complete, R0H valid
MPYF32 R0H, R1H, R0H ; R0H = (float)X * M
MOV32 R1H, *-SP[8] ; R1H = B

; <-- MPYF32 complete, R0H valid
ADDF32 R0H, R0H, R1H ; R0H = Y = (float)X * M + B
NOP

; <-- ADDF32 complete, R0H valid
MOV32 *-[SP], R0H ; Store Y

See also F32TOI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
I32TOF32 RaH, RbH
UI32TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


UI32TOF32 RaH, RbH — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value www.ti.com

140 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

UI32TOF32 RaH, RbH Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands

RaH floating-point destination register (R0H to R7H)
RbH floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1011

MSW: 0000 0000 00bb baaa

Description RaH = UI32ToF32[RbH]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI32TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- UI32TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example MOVIZ R3H, #0x8000 ; R3H[31:16] = 0x8000
MOVXI R3H, #0x1111 ; R3H[15:0] = 0x1111

; R3H = 2147488017
UI32TOF32 R4H, R3H ; R4H = UI32TOF32 (R3H)
NOP ; 1 cycle delay for UI32TOF32 to complete

; R4H = 2147488017.0 (0x4F000011)

See also F32TOI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
I32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ZERO RaH — Zero the Floating-Point Register RaH

141SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ZERO RaH Zero the Floating-Point Register RaH

Operands

RaH floating-point register (R0H to R7H)

Opcode LSW: 1110 0101 1001 0aaa

Description Zero the indicated floating-point register:
RaH = 0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

Example ;for(i = 0; i < n; i++)
;{
; real += (x[2*i] * y[2*i]) - (x[2*i+1] * y[2*i+1]);
; imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
;}
;Assume AR7 = n-1

ZERO R4H ; R4H = real = 0
ZERO R5H ; R5H = imag = 0

LOOP
MOV AL, AR7
MOV ACC, AL << 2
MOV AR0, ACC
MOV32 R0H, *+XAR4[AR0] ; R0H = x[2*i]
MOV32 R1H, *+XAR5[AR0] ; R1H = y[2*i]
ADD AR0, #2
MPYF32 R6H, R0H, R1H; ; R6H = x[2*i] * y[2*i]

|| MOV32 R2H, *+XAR4[AR0] ; R2H = x[2*i+1]
MPYF32 R1H, R1H, R2H ; R1H = y[2*i] * x[2*i+2]

|| MOV32 R3H, *+XAR5[AR0] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H ; R2H = x[2*i+1] * y[2*i+1]

|| ADDF32 R4H, R4H, R6H ; R4H += x[2*i] * y[2*i]
MPYF32 R0H, R0H, R3H ; R0H = x[2*i] * y[2*i+1]

|| ADDF32 R5H, R5H, R1H ; R5H += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; R4H -= x[2*i+1] * y[2*i+1]
ADDF32 R5H, R5H,R0H ; R5H += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--

See also ZEROA

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ZEROA — Zero All Floating-Point Registers www.ti.com

142 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU)

ZEROA Zero All Floating-Point Registers

Operands

none

Opcode LSW: 1110 0101 0110 0011

Description Zero all floating-point registers:
R0H = 0
R1H = 0
R2H = 0
R3H = 0
R4H = 0
R5H = 0
R6H = 0
R7H = 0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

Example ;for(i = 0; i < n; i++)
;{
; real += (x[2*i] * y[2*i]) - (x[2*i+1] * y[2*i+1]);
; imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
;}
;Assume AR7 = n-1

ZER0A ; Clear all RaH registers
LOOP

MOV AL, AR7
MOV ACC, AL << 2
MOV AR0, ACC
MOV32 R0H, *+XAR4[AR0] ; R0H = x[2*i]
MOV32 R1H, *+XAR5[AR0] ; R1H = y[2*i]
ADD AR0,#2
MPYF32 R6H, R0H, R1H; ; R6H = x[2*i] * y[2*i]

|| MOV32 R2H, *+XAR4[AR0] ; R2H = x[2*i+1]
MPYF32 R1H, R1H, R2H ; R1H = y[2*i] * x[2*i+2]

|| MOV32 R3H, *+XAR5[AR0] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H ; R2H = x[2*i+1] * y[2*i+1]

|| ADDF32 R4H, R4H, R6H ; R4H += x[2*i] * y[2*i]
MPYF32 R0H, R0H, R3H ; R0H = x[2*i] * y[2*i+1]

|| ADDF32 R5H, R5H, R1H ; R5H += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; R4H -= x[2*i+1] * y[2*i+1]
ADDF32 R5H, R5H,R0H ; R5H += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--

See also ZERO RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


143SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Chapter 2
SPRUHS1C–October 2014–Revised November 2019

Floating Point Unit (FPU64)

The TMS320C2000™ DSP family consists of fixed-point and floating-point digital signal processors.
TMS320C2000™ Digital Signal Processors combine control peripheral integration and ease of use of a
microcontroller (MCU) with the processing power and C efficiency of TI’s leading DSP technology. This
chapter provides an overview of the architectural structure and components of the C28x plus floating-point
unit (FPU64) CPU.

Topic ........................................................................................................................... Page

2.1 Overview ......................................................................................................... 144
2.2 Components of the C28x plus Floating-Point CPU (FPU64).................................... 145
2.3 CPU Register Set.............................................................................................. 148
2.4 Pipeline ........................................................................................................... 154
2.5 Floating Point Unit (FPU64) Instruction Set.......................................................... 162

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Overview www.ti.com

144 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

2.1 Overview
The C28x plus floating-point (C28x+FPU64) processor extends the capabilities of the C28x fixed-point
CPU by adding registers and instructions to support IEEE single-precision and double-precision floating
point operations. This device draws from the best features of digital signal processing; reduced instruction
set computing (RISC); and microcontroller architectures, firmware, and tool sets. The DSP features
include a modified Harvard architecture and circular addressing. The RISC features are single-cycle
instruction execution, register-to-register operations, and modified Harvard architecture (usable in Von
Neumann mode). The microcontroller features include ease of use through an intuitive instruction set, byte
packing and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables
instruction and data fetches to be performed in parallel. The CPU can read instructions and data while it
writes data simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU
does this over six separate address/data buses.

Throughout this document the following notations are used:
• C28x refers to the C28x fixed-point CPU.
• C28x plus Floating-Point and C28x+FPU both refer to the C28x CPU with enhancements to support

IEEE single-precision floating-point operations.
• C28x+FPU64 refer to the C28x CPU with enhancements to support IEEE single-precision and double-

precision floating-point operations. FPU64 extensions supports all existing FPU single precision
floating point instructions.

2.1.1 Compatibility with the C28x Fixed-Point CPU
No changes have been made to the C28x base set of instructions, pipeline, or memory bus architecture.
Therefore, programs written for the C28x CPU and C28x CPU + FPU are completely compatible with the
C28x CPU + FPU64 and all of the features of the C28x documented in TMS320C28x DSP CPU and
Instruction Set Reference Guide (literature number SPRU430) apply to the C28x CPU + FPU64.

Figure 2-1 shows basic functions of the FPU64.

2.1.1.1 Floating-Point Code Development
When developing C28x floating-point code for C28x+FPU64, use Code Composer Studio 8.0, or later. For
C28x+FPU64 (double precision), the TI C28x C/C++ Compiler v18.9.0.STS or later is required to generate
C28x native floating-point opcodes. To build floating-point code use the compiler switches:-v28 and - -
float_support = fpu64.

NOTE: In Code Composer Studio 8.0 the float_support option is in the build options under compiler->
advanced: floating point support. Without the float_support flag, or with float_support = none, the compiler
will generate fixed-point code. These compilers are available via Code Composer Studio update advisor or
as a separate download. When building for C28x, using CCS project properties General entry, “Runtime
support library <automatic>”, will automatically select the correct RTS library during link. This is just linker
option –llibc.a. If any are not yet built then the linker will automatically build the necessary RTS library.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430


Program address bus (22)

Program data bus (32)

Read address bus (32)

Read data bus (32)

Write data bus (32)

Existing
memory,

peripherals,
interfaces

PIE

Write address bus (32)

LVF

LUF

C28x
+

FPU

Memory
bus

Memory
bus

www.ti.com Components of the C28x plus Floating-Point CPU (FPU64)

145SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Figure 2-1. FPU64 Functional Block Diagram

2.2 Components of the C28x plus Floating-Point CPU (FPU64)
The C28x+FPU64 contains:
• A central processing unit for generating data and program-memory addresses; decoding and executing

instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory

• A floating-point unit (FPU64) for IEEE single-precision or double-precision floating point operations.
• Emulation logic for monitoring and controlling various parts and functions of the device and for testing

device operation. This logic is identical to that on the C28x fixed-point CPU.
• Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the

emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic
is identical to the C28x fixed-point CPU.

Some features of the C28x+FPU64 central processing unit are:
• Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to

that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to
and a read from the same location from occurring out of order. See Figure 2-5.

• Some floating-point instructions require pipeline alignment. This alignment is done through software to
allow the user to improve performance by taking advantage of required delay slots.

• Independent register space. These registers function as system-control registers, math registers, and
data pointers. The system-control registers are accessed by special instructions.

• Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

• Floating point unit (FPU64). The 64-bit FPU performs IEEE single-precision and IEEE double-precision

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Components of the C28x plus Floating-Point CPU (FPU64) www.ti.com

146 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

floating-point operations.
• Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and

increments or decrements pointers in parallel with ALU operations.
• Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left

by up to 16 bits and to the right by up to 16 bits.
• Fixed-Point Multiplier. The multiplier performs 32-bit × 32-bit 2s-complement multiplication with a 64-bit

result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one
signed number and one unsigned number.

2.2.1 Emulation Logic
The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following
features:
• Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content

of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline.

• A counter for performance benchmarking.
• Multiple debug events. Any of the following debug events can cause a break in program execution:

– A breakpoint initiated by the ESTOP0 or ESTOP1 instruction.
– An access to a specified program-space or data-space location.
When a debug event causes the C28x to enter the debug-halt state, the event is called a break event.

• Real-time mode of operation.

For more details about these features, refer to the TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430.

2.2.2 Memory Map
Like the C28x, the C28x+FPU64 uses 32-bit data addresses and 22-bit program addresses. This allows
for a total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space.
Memory blocks on all C28x+FPU64 designs are uniformly mapped to both program and data space. For
specific details about each of the map segments, see the data sheet for your device.

2.2.3 On-Chip Program and Data
All C28x+FPU64 based devices contain at least two blocks of single access on-chip memory referred to
as M0 and M1. Each of these blocks is 1K words in size. M0 is mapped at addresses 0x0000 − 0x03FF
and M1 is mapped at addresses 0x0400 − 0x07FF. Like all other memory blocks on the C28x+FPU64
devices, M0 and M1 are mapped to both program and data space. Therefore, you can use M0 and M1 to
execute code or for data variables. At reset, the stack pointer is set to the top of block M1. Depending on
the device, it may also have additional random-access memory (RAM), read-only memory (ROM), external
interface zones, or flash memory.

2.2.4 CPU Interrupt Vectors
The C28x+FPU64 interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in
program space are set aside for a table of 32 CPU interrupt vectors. The CPU vectors can be mapped to
the top or bottom of program space by way of the VMAP bit. For more information about the CPU vectors,
see TMS320C28x DSP CPU and Instruction Set Reference Guide (literature number SPRU430). For
devices with a peripheral interrupt expansion (PIE) block, the interrupt vectors will reside in the PIE vector
table and this memory can be used as program memory.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru430


www.ti.com Components of the C28x plus Floating-Point CPU (FPU64)

147SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

2.2.5 Memory Interface
The C28x+FPU64 memory interface is identical to that on the C28x. The C28x+FPU64 memory map is
accessible outside the CPU by the memory interface, which connects the CPU logic to memories,
peripherals, or other interfaces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory while data memory is being
accessed. The interface also includes signals that indicate the type of read or write being requested by the
CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In
addition to 16-bit and 32-bit accesses, the C28x+FPU64 supports special byte-access instructions that can
access the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe
signals indicate when such an access is occurring on a data bus.

2.2.5.1 Address and Data Buses
Like the C28x, the memory interface has three address buses:
• PAB: Program address bus

The PAB carries addresses for reads and writes from program space. PAB is a 22-bit bus.
• DRAB: Data-read address bus

The 32-bit DRAB carries addresses for reads from data space.
• DWAB: Data-write address bus

The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:
• PRDB: Program-read data bus

The PRDB carries instructions during reads from program space. PRDB is a 32-bit bus.
• DRDB: Data-read data bus

The DRDB carries data during reads from data space. DRDB is a 32-bit bus.
• DWDB: Data-/Program-write data bus

The 32-bit DWDB carries data during writes to data space or program space.

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to
the C28x CPU.

2.2.5.2 Alignment of 32-Bit Accesses to Even Addresses
The C28x+FPU64 CPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or
write to an even address. If the address-generation logic generates an odd address, the CPU will begin
reading or writing at the previous even address. This alignment does not affect the address values
generated by the address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ACC (32-bit)

R1H (32-bit) R1L (32-bit)

R2H (32-bit) R2L (32-bit)

R3H (32-bit) R3L (32-bit)

R4H (32-bit) R4L (32-bit)

R5H (32-bit) R5L (32-bit)

R6H (32-bit) R6L (32-bit)

R7H (32-bit) R7L (32-bit)

R0H (32-bit) R0L (32-bit)

FPU Status Register (STF)

Repeat Block Register (RB)

P (32-bit)

XT (32-bit)

XAR0 (32-bit)

XAR1 (32-bit)

XAR2 (32-bit)

XAR3 (32-bit)

XAR4 (32-bit)

XAR5 (32-bit)

XAR6 (32-bit)

XAR7 (32-bit)

PC (22-bit)

RPC (22-bit)

DP (16-bit)

SP (16-bit)

ST0 (16-bit)

ST1 (16-bit)

IER (16-bit)

IFR (16-bit)

DBGIER (16-bit)

Standard C28x Register Set 32-bit FPU Registers Additional 32-bit FPU Registers

FPU registers R0H - R7H and STF
are shadowed for fast context
save and restore

CPU Register Set www.ti.com

148 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

2.3 CPU Register Set
The C28x+FPU64 architecture is the same as the C28x CPU with an extended register and instruction set
to support IEEE single-precision and double-precision floating point operations. This section describes the
extensions to the C28x architecture

2.3.1 CPU Registers
Devices with the C28x+FPU64 include the standard C28x register set plus an additional set of floating-
point unit registers. The additional floating-point unit registers are the following:
• Eight floating-point result registers, RnH (where n = 0 - 7) for single-precision floating point operations
• Eight floating-point result registers, RnH:RnL (where n = 0 - 7) for double-precision floating point

operations
• Floating-point Status Register (STF)
• Repeat Block Register (RB)

All of the floating-point registers except the repeat block register are shadowed. This shadowing can be
used in high priority interrupts for fast context save and restore of the floating-point registers.

Figure 2-2 shows a diagram of both register sets and Table 2-1 shows a register summary. For
information on the standard C28x register set, see the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number SPRU430).

Figure 2-2. C28x With FPU64 Floating-Point Registers

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430


www.ti.com CPU Register Set

149SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

(1) Reset value shown is for devices without the VMAP signal and MOM1MAP signal pinned out. On these devices both of these signals are
tied high internal to the device.

Table 2-1. 28x Plus Floating-Point FPU64 CPU Register Summary

Register C28x CPU C28x + FPU64 Size Description Value After Reset
ACC Yes Yes 32 bits Accumulator 0x00000000
AH Yes Yes 16 bits High half of ACC 0x0000
AL Yes Yes 16 bits Low half of ACC 0x0000
XAR0 Yes Yes 32 bits Auxiliary register 0 0x00000000
XAR1 Yes Yes 32 bits Auxiliary register 1 0x00000000
XAR2 Yes Yes 32 bits Auxiliary register 2 0x00000000
XAR3 Yes Yes 32 bits Auxiliary register 3 0x00000000
XAR4 Yes Yes 32 bits Auxiliary register 4 0x00000000
XAR5 Yes Yes 32 bits Auxiliary register 5 0x00000000
XAR6 Yes Yes 32 bits Auxiliary register 6 0x00000000
XAR7 Yes Yes 32 bits Auxiliary register 7 0x00000000
AR0 Yes Yes 16 bits Low half of XAR0 0x0000
AR1 Yes Yes 16 bits Low half of XAR1 0x0000
AR2 Yes Yes 16 bits Low half of XAR2 0x0000
AR3 Yes Yes 16 bits Low half of XAR3 0x0000
AR4 Yes Yes 16 bits Low half of XAR4 0x0000
AR5 Yes Yes 16 bits Low half of XAR5 0x0000
AR6 Yes Yes 16 bits Low half of XAR6 0x0000
AR7 Yes Yes 16 bits Low half of XAR7 0x0000
DP Yes Yes 16 bits Data-page pointer 0x0000
IFR Yes Yes 16 bits Interrupt flag register 0x0000
IER Yes Yes 16 bits Interrupt enable register 0x0000
DBGIER Yes Yes 16 bits Debug interrupt enable register 0x0000
P Yes Yes 32 bits Product register 0x00000000
PH Yes Yes 16 bits High half of P 0x0000
PL Yes Yes 16 bits Low half of P 0x0000
PC Yes Yes 22 bits Program counter 0x3FFFC0
RPC Yes Yes 22 bits Return program counter 0x00000000
SP Yes Yes 16 bits Stack pointer 0x0400
ST0 Yes Yes 16 bits Status register 0 0x0000
ST1 Yes Yes 16 bits Status register 1 0x080B (1)

XT Yes Yes 32 bits Multiplicand register 0x00000000
T Yes Yes 16 bits High half of XT 0x0000
TL Yes Yes 16 bits Low half of XT 0x0000
ROH No Yes 32 bits 32 Bits Floating point single / double precision

result register 0
0.0

R1H No Yes 32 bits 32 Bits Floating point single / double precision
result register 1

0.0

R2H No Yes 32 bits 32 Bits Floating point single / double precision
result register 2

0.0

R3H No Yes 32 bits 32 Bits Floating point single / double precision
result register 3

0.0

R4H No Yes 32 bits 32 Bits Floating point single / double precision
result register 4

0.0

R5H No Yes 32 bits 32 Bits Floating point single / double precision
result register 5

0.0

R6H No Yes 32 bits 32 Bits Floating point single / double precision
result register 6

0.0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CPU Register Set www.ti.com

150 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Table 2-1. 28x Plus Floating-Point FPU64 CPU Register Summary (continued)
Register C28x CPU C28x + FPU64 Size Description Value After Reset
R7H No Yes 32 bits 32 Bits Floating point single / double precision

result register 7
0.0

R0L No Yes 32 bits 32 Bits Floating point double precision result
register 0

0.0

R1L No Yes 32 bits 32 Bits Floating point double precision result
register 1

0.0

R2L No Yes 32 bits 32 Bits Floating point double precision result
register 2

0.0

R3L No Yes 32 bits 32 Bits Floating point double precision result
register 3

0.0

R4L No Yes 32 bits 32 Bits Floating point double precision result
register 4

0.0

R5L No Yes 32 bits 32 Bits Floating point double precision result
register 5

0.0

R6L No Yes 32 bits 32 Bits Floating point double precision result
register 6

0.0

R7L No Yes 32 bits 32 Bits Floating point double precision result
register 7

0.0

STF No Yes 32 bits Floating-point status register 0x00000000
RB No Yes 32 bits Repeat block register 0x00000000

2.3.1.1 Floating-Point Status Register (STF)
The floating-point status register (STF) reflects the results of floating-point operations. There are three
basic rules for floating point operation flags:
1. Zero and negative flags are set based on moves to registers.
2. Zero and negative flags are set based on the result of compare, minimum, maximum, negative and

absolute value operations.
3. Overflow and underflow flags are set by math instructions such as multiply, add, subtract and 1/x.

These flags may also be connected to the peripheral interrupt expansion (PIE) block on your device.
This can be useful for debugging underflow and overflow conditions within an application.

As on the C28x, program flow is controlled by C28x instructions that read status flags in the status register
0 (ST0) . If a decision needs to be made based on a floating-point operation, the information in the STF
register needs to be loaded into ST0 flags (Z,N,OV,TC,C) so that the appropriate branch conditional
instruction can be executed. The MOVST0 FLAG instruction is used to load the current value of specified
STF flags into the respective bits of ST0. When this instruction executes, it will also clear the latched
overflow and underflow flags if those flags are specified.

Example 2-1. Moving STF Flags to the ST0 Register

Loop:
MOV32 R0H,*XAR4++
MOV32 R1H,*XAR3++
CMPF32 R1H, R0H
MOVST0 ZF, NF ; Move ZF and NF to ST0
BF Loop, GT ; Loop if (R1H > R0H)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com CPU Register Set

151SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Figure 2-3. Floating-point Unit Status Register (STF)
31 30 16

SHDWS Reserved

R/W-0 R-0

15 11 10 9 8 7 6 5 4 3 2 1 0
Reserved RND64 RND32 Reserved TF ZI NI ZF NF LUF LVF

R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

(1) A negative zero floating-point value is treated as a positive zero value when configuring the ZF and NF flags.
(2) A DeNorm floating-point value is treated as a positive zero value when configuring the ZF and NF flags.

Table 2-2. Floating-point Unit Status (STF) Register Field Descriptions

Bits Field Value Description
31 SHDWS Shadow Mode Status Bit

0 This bit is forced to 0 by the RESTORE instruction.
1 This bit is set to 1 by the SAVE instruction.

This bit is not affected by loading the status register either from memory or from the shadow values.
30 - 11 Reserved 0 Reserved for future use

10 RND64 Round 64-bit Floating-Point Mode
0 If this bit is zero, the MPYF64, ADDF64 and SUBF64 instructions will round to zero (truncate).
1 If this bit is one, the MPYF64, ADDF64 and SUBF64 instructions will round to the nearest even value.

9 RND32 Round 32-bit Floating-Point Mode
0 If this bit is zero, the MPYF32, ADDF32 and SUBF32 instructions will round to zero (truncate).
1 If this bit is one, the MPYF32, ADDF32 and SUBF32 instructions will round to the nearest even value.

8 - 7 Reserved 0 Reserved for future use
6 TF Test Flag

The TESTTF instruction can modify this flag based on the condition tested. The SETFLG and SAVE
instructions can also be used to modify this flag.

0 The condition tested with the TESTTF instruction is false.
1 The condition tested with the TESTTF instruction is true.

5 ZI Zero Integer Flag
The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to modify this flag.

0 The integer value is not zero.
1 The integer value is zero.

4 NI Negative Integer Flag
The following instructions modify this flag based on the integer value stored in the destination register:
MOV32, MOVD32, MOVDD32
The SETFLG and SAVE instructions can also be used to modify this flag.

0 The integer value is not negative.
1 The integer value is negative.

3 ZF Zero Floating-Point Flag (1) (2)

The following instructions modify this flag based on the floating-point value stored in the destination
register:
MOV32, MOVD32, MOVDD32, ABSF32, NEGF32, ABSF64, NEGF64,CMPF64, MAXF64, MINF64
The CMPF32, MAXF32, MINF32, CMPF64,MAXF64, and MINF64 instructions modify this flag based
on the result of the operation.
The SETFLG and SAVE instructions can also be used to modify this flag

0 The floating-point value is not zero.
1 The floating-point value is zero.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CPU Register Set www.ti.com

152 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Table 2-2. Floating-point Unit Status (STF) Register Field Descriptions (continued)
Bits Field Value Description

2 NF Negative Floating-Point Flag (1) (2)

The following instructions modify this flag based on the floating-point value stored in the destination
register:
MOV32, MOVD32, MOVDD32, ABSF32, NEGF32, ABSF64, NEGF64, CMPF64, MAXF64 and MINF64
The CMPF32, MAXF32, MINF32, CMPF64,MAXF64, and MINF64 instructions modify this flag based
on the result of the operation.
The SETFLG and SAVE instructions can also be used to modify this flag.

0 The floating-point value is not negative.
1 The floating-point value is negative.

1 LUF Latched Underflow Floating-Point Flag
The following instructions will set this flag to 1 if an underflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32, MPYF64, ADDF64, SUBF64,
MACF64, EINVF64, EISQRTF64

0 An underflow condition has not been latched. If the MOVST0 instruction is used to copy this bit to ST0,
then LUF will be cleared.

1 An underflow condition has been latched.
0 LVF Latched Overflow Floating-Point Flag

The following instructions will set this flag to 1 if an overflow occurs:
MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32, MPYF64, ADDF64, SUBF64,
MACF64, EINVF64, EISQRTF64

0 An overflow condition has not been latched. If the MOVST0 instruction is used to copy this bit to ST0,
then LVF will be cleared.

1 An overflow condition has been latched.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com CPU Register Set

153SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

2.3.1.2 Repeat Block Register (RB)
The repeat block instruction (RPTB) is a new instruction for C28x+FPU64. This instruction allows you to
repeat a block of code as shown in Example 2-2.

Example 2-2. The Repeat Block (RPTB) Instruction uses the RB Register

; find the largest element and put its address in XAR6
MOV32 R0H, *XAR0++;
.align 2 ; Aligns the next instruction to an even address

NOP ; Makes RPTB odd aligned - required for a block size of 8
RPTB VECTOR_MAX_END, AR7 ; RA is set to 1
MOVL ACC,XAR0
MOV32 R1H,*XAR0++ ; RSIZE reflects the size of the RPTB block
MAXF32 R0H,R1H ; in this case the block size is 8
MOVST0 NF,ZF
MOVL XAR6,ACC,LT
VECTOR_MAX_END: ; RE indicates the end address. RA is cleared

The C28x+FPU64 hardware automatically populates the RB register based on the execution of a RPTB
instruction. This register is not normally read by the application and does not accept debugger writes.

Figure 2-4. Repeat Block Register (RB)
31 30 29 23 22 16

RAS RA RSIZE RE
R-0 R-0 R-0 R-0

15 0
RC
R-0

LEGEND: R = Read only; -n = value after reset

Table 2-3. Repeat Block (RB) Register Field Descriptions

Bits Field Value Description
31 RAS Repeat Block Active Shadow Bit

When an interrupt occurs the repeat active, RA, bit is copied to the RAS bit and the RA bit is cleared.
When an interrupt return instruction occurs, the RAS bit is copied to the RA bit and RAS is cleared.

0 A repeat block was not active when the interrupt was taken.
1 A repeat block was active when the interrupt was taken.

30 RA Repeat Block Active Bit
0 This bit is cleared when the repeat counter, RC, reaches zero.

When an interrupt occurs the RA bit is copied to the repeat active shadow, RAS, bit and RA is cleared.
When an interrupt return, IRET, instruction is executed, the RAS bit is copied to the RA bit and RAS is
cleared.

1 This bit is set when the RPTB instruction is executed to indicate that a RPTB is currently active.
29-23 RSIZE Repeat Block Size

This 7-bit value specifies the number of 16-bit words within the repeat block. This field is initialized
when the RPTB instruction is executed. The value is calculated by the assembler and inserted into the
RPTB instruction's RSIZE opcode field.

0-7 Illegal block size.
8/9-0x7F A RPTB block that starts at an even address must include at least 9 16-bit words and a block that

starts at an odd address must include at least 8 16-bit words. The maximum block size is 127 16-bit
words. The codegen assembler will check for proper block size and alignment.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F1 F2 D1 D2 R1 R2 E W

D R E1
E2

W

MPY/ADD/SUBF64

Load

Store

CMP/MIN/MAX/NEG/ABS

MPY/ADD/SUB/MACF32

Fetch Decode Read Exe Write

C28x Pipeline W

E3

W

Pipeline www.ti.com

154 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Table 2-3. Repeat Block (RB) Register Field Descriptions (continued)
Bits Field Value Description

22-16 RE Repeat Block End Address
This 7-bit value specifies the end address location of the repeat block. The RE value is calculated by
hardware based on the RSIZE field and the PC value when the RPTB instruction is executed.
RE = lower 7 bits of (PC + 1 + RSIZE)

15-0 RC Repeat Count
0 The block will not be repeated; it will be executed only once. In this case the repeat active, RA, bit will

not be set.
1-

0xFFFF
This 16-bit value determines how many times the block will repeat. The counter is initialized when the
RPTB instruction is executed and is decremented when the PC reaches the end of the block. When
the counter reaches zero, the repeat active bit is cleared and the block will be executed one more
time. Therefore the total number of times the block is executed is RC+1.

2.4 Pipeline
The pipeline flow for C28x instructions is identical to that of the C28x CPU described in TMS320C28x
DSP CPU and Instruction Set Reference Guide (SPRU430). Some floating-point instructions, however,
use additional execution phases and thus require a delay to allow the operation to complete. This pipeline
alignment is achieved by inserting NOPs or non-conflicting instructions when required. Software control of
delay slots allows you to improve performance of an application by taking advantage of the delay slots and
filling them with non-conflicting instructions. This section describes the key characteristics of the pipeline
with regards to floating-point instructions. The rules for avoiding pipeline conflicts are small in number and
simple to follow and the C28x+FPU64 assembler will help you by issuing errors for conflicts.

2.4.1 Pipeline Overview
The C28x + FPU64 pipeline is identical to the C28x pipeline for all standard C28x instructions. In the
decode2 stage (D2), it is determined if an instruction is a C28x instruction or a floating-point unit
instruction. The pipeline flow is shown in Figure 2-5. Notice that stalls due to normal C28x pipeline stalls
(D2) and memory waitstates (R2 and W) will also stall any C28x FPU64 instruction. Some C28x FPU64
instructions are single cycle and will complete in the FPU E1 or W stage which aligns to the C28x pipeline.
Some instructions will take an additional execute cycle (E2,E3). For these instructions you must wait a
cycle or two cycles for the result from the instruction to be available. The rest of this section will describe
when delay cycles are required. Keep in mind that the assembly tools for the C28x+FPU64 will issue an
error if a delay slot has not been handled correctly.

Figure 2-5. FPU64 Pipeline

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430


www.ti.com Pipeline

155SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

2.4.2 General Guidelines for Floating-Point Pipeline Alignment
While the C28x+FPU64 assembler will issue errors for pipeline conflicts, you may still find it useful to
understand when software delays are required. This section describes three guidelines you can follow
when writing C28x+FPU64 assembly code.

Floating-point instructions that require delay slots have a 'p' after their cycle count. For example '2p'
stands for 2 pipelined cycles,'3p' stands for 3 pipelined cycles. This means that an instruction can be
started every cycle, but the result of the instruction will only be valid one or two instructions later.

There are three general guidelines to determine if an instruction needs a delay slot:
1. Single-precision floating-point math operations (multiply, addition, subtraction, 1/x and MAC) require 1

delay slot.
2. Double-precision Floating-point math operations (multiply, addition, subtraction, 1/x) require 2 delay

slots.
3. Single-precision conversion instructions between integer and floating-point formats require 1 delay slot.
4. Double-precision Conversion instructions between integer and floating-point formats require 2 delay

slots.
5. Everything else does not require a delay slot. This includes minimum, maximum, compare, load, store,

negative and absolute value instructions.

There are two exceptions to these rules. First, moves between the CPU and FPU registers require special
pipeline alignment that is described later in this section. These operations are typically infrequent. Second,
the MACF32 R7H, R3H, mem32, *XAR7 instruction has special requirements that make it easier to use.
Refer to the MACF32 instruction description for details.

An example of the 32-bit ADDF32 instruction is shown in Example 2-3. ADDF32 is a 2p instruction and
therefore requires one delay slot. The destination register for the operation, R0H, will be updated one
cycle after the instruction for a total of 2 cycles. Therefore, a NOP or instruction that does not use R0H
must follow this instruction.

Any memory stall or pipeline stall will also stall the floating-point unit. This keeps the floating-point unit
aligned with the C28x pipeline and there is no need to change the code based on the waitstates of a
memory block.

Please note that on certain devices instructions make take additional cycles to complete under specific
conditions. These exceptions will be documented in the device errata.

Example 2-3. 2p Instruction Pipeline Alignment

ADDF32 R0H, #1.5, R1H ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, R0H updated
NOP ; Any instruction

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

156 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

2.4.3 Moves from FPU Registers to C28x Registers
When transferring from the floating-point unit registers to the C28x CPU registers, additional pipeline
alignment is required as shown in Example 2-4 and Example 2-5.

Example 2-4. Floating-Point to C28x Register Software Pipeline Alignment

; MINF32: 32-bit floating-point minimum: single-cycle operation
; An alignment cycle is required before copying R0H to ACC
MINF32 R0H, R1H ; Single-cycle instruction

; <-- R0H is valid
NOP ; Alignment cycle
MOV32 @ACC, R0H ; Copy R0H to ACC

For 1-cycle FPU instructions, one delay slot is required between a write to the floating-point register and
the transfer instruction as shown in Example 2-4. For 2p FPU instructions, two delay slots are required
between a write to the floating-point register and the transfer instruction as shown in Example 2-5. For 3p
FPU instructions, three delay slots are required between a write to the floating-point register and the
transfer instruction.

Example 2-5. Floating-Point to C28x Register Software Pipeline Alignment

There is an exception for moves from FPU register to C28x register for the result of
ADDF32/SUBF32/MPYF32 instructions. They are 2p cycle instructions but 3 NOPs are needed.
This has gone into errata also.

Please refer to page 13 - http://www.ti.com/lit/er/sprz272k/sprz272k.pdf

; ADDF32: 32-bit floating-point addition: 2p operation
; An alignment cycle is required before copying R0H to ACC
ADDF32 R0H, R1H, #2 ; R0H = R1H + 2, 2 pipeline cycle instruction
NOP ; 1 delay cycle or non-conflicting instruction

; <-- R0H is valid
NOP ; Alignment cycle
NOP ; 3rd NOP
MOV32 @ACC, R0H ; Copy R0H to ACC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

157SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

2.4.4 Moves from C28x Registers to FPU Registers
Transfers from the standard C28x CPU registers to the floating-point registers require four alignment
cycles. For the 2833x, 2834x, 2806x, 28M35xx and 28M26xx, the four alignment cycles can be filled with
NOPs or any non-conflicting instruction except for F32TOUI32 RaH, RbH, FRACF32 RaH , RbH,
UI16TOF32 RaH , mem16 and UI16TOF32 RaH , RbH. These instructions cannot replace any of the four
alignment NOPs. On newer devices any non-conflicting instruction can go into the four alignment cycles.
Please refer to the device errata for specific exceptions to these rules.

Example 2-6. C28x Register to Floating-Point Register Software Pipeline Alignment

; Four alignment cycles are required after copying a standard 28x CPU
; register to a floating-point register.
;
MOV32 R0H,@ACC ; Copy ACC to R0H
NOP
NOP
NOP
NOP ; Wait 4 cycles
ADDF32 R2H,R1H,R0H ; R0H is valid

2.4.5 Parallel Instructions
Parallel instructions are single opcodes that perform two operations in parallel. This can be a math
operation in parallel with a move operation, or two math operations in parallel. Math operations with a
parallel move are referred to as 2p/1 or 3p/1 instructions. The math portion of the operation takes two or
three pipelined cycles while the move portion of the operation is single cycle. This means that NOPs or
other non conflicting instructions must be inserted to align the math portion of the operation. An example
of an add with parallel move instruction is shown in Example 2-7.

Example 2-7. 2p/1 Parallel Instruction Software Pipeline Alignment

; ADDF32 || MOV32 instruction: 32-bit floating-point add with parallel move
; ADDF32 is a 2p operation
; MOV32 is a 1 cycle operation
;

ADDF32 R0H, R1H, #2 ; R0H = R1H + 2, 2 pipeline cycle operation
|| MOV32 R1H, @Val ; R1H gets the contents of Val, single cycle operation

; <-- MOV32 completes here (R1H is valid)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes here (R0H is valid)
NOP ; Any instruction

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

158 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Parallel math instructions are referred to as 2p/2p or 3p/3p instructions. Both math operations take 2 or 3
cycles to complete. This means that NOPs or other non conflicting instructions must be inserted to align
the both math operations. An example of a multiply with parallel add instruction is shown in Example 2-8.

Example 2-8. 2p/2p Parallel Instruction Software Pipeline Alignment

; MPYF32 || ADDF32 instruction: 32-bit floating-point multiply with parallel add
; MPYF32 is a 2p operation
; ADDF32 is a 2p cycle operation
;

MPYF32 R0H, R1H, R3H ; R0H = R1H * R3H, 2 pipeline cycle operation
|| ADDF32 R1H, R2H, R4H ; R1H = R2H + R4H, 2 pipeline cycle operation

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32 and ADDF32 complete here (R0H and R1H are valid)

NOP ; Any instruction

2.4.6 Invalid Delay Instructions
Most instructions can be used in delay slots as long as source and destination register conflicts are
avoided. The C28x+FPU64 assembler will issue an error anytime you use an conflicting instruction within
a delay slot. The following guidelines can be used to avoid these conflicts.

NOTE: Destination register conflicts in delay slots:

Any operation used for pipeline alignment delay must not use the same destination register
as the instruction requiring the delay. See Example 2-9.

In Example 2-9 the MPYF32 instruction uses R2H as its destination register. The next instruction should
not use R2H as its destination. Since the MOV32 instruction uses the R2H register a pipeline conflict will
be issued by the assembler. This conflict can be resolved by using a register other than R2H for the
MOV32 instruction as shown in Example 2-10.

Example 2-9. Destination Register Conflict

; Invalid delay instruction. Both instructions use the same destination register
MPYF32 R2H, R1H, R0H ; 2p instruction
MOV32 R2H, mem32 ; Invalid delay instruction

Example 2-10. Destination Register Conflict Resolved

; Valid delay instruction
MPYF32 R2H, R1H, R0H ; 2p instruction MOV32 R1H, mem32
MOV32 R3H, mem32 ; Valid delay

; <-- MPYF32 completes, R2H valid

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

159SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

NOTE: Instructions in delay slots cannot use the instruction's destination register as a source
register.

Any operation used for pipeline alignment delay must not use the destination register of the
instruction requiring the delay as a source register as shown in Example 2-11. For parallel
instructions, the current value of a register can be used in the parallel operation before it is
overwritten as shown in Example 2-13.

In Example 2-11 the MPYF32 instruction again uses R2H as its destination register. The next instruction
should not use R2H as its source since the MPYF32 will take an additional cycle to complete. Since the
ADDF32 instruction uses the R2H register a pipeline conflict will be issued by the assembler. This conflict
can be resolved by using a register other than R2H or by inserting a non-conflicting instruction between
the MPYF32 and ADDF32 instructions. Since the SUBF32 does not use R2H this instruction can be
moved before the ADDF32 as shown in Example 2-12.

Example 2-11. Destination/Source Register Conflict

; Invalid delay instruction. ADDF32 should not use R2H as a source operand
MPYF32 R2H, R1H, R0H ; 2p instruction
ADDF32 R3H, R3H, R2H ; Invalid delay instruction
SUBF32 R4H, R1H, R0H

Example 2-12. Destination/Source Register Conflict Resolved

; Valid delay instruction.
MPYF32 R2H, R1H, R0H ; 2p instruction
SUBF32 R4H, R1H, R0H ; Valid delay for MPYF32
ADDF32 R3H, R3H, R2H ; <-- MPYF32 completes, R2H valid
NOP ; <-- SUBF32 completes, R4H valid

It should be noted that a source register for the 2nd operation within a parallel instruction can be the same
as the destination register of the first operation. This is because the two operations are started at the
same time. The 2nd operation is not in the delay slot of the first operation. Consider Example 2-13 where
the MPYF32 uses R2H as its destination register. The MOV32 is the 2nd operation in the instruction and
can freely use R2H as a source register. The contents of R2H before the multiply will be used by MOV32.

Example 2-13. Parallel Instruction Destination/Source Exception

; Valid parallel operation.
MPYF32 R2H, R1H, R0H ; 2p/1 instruction

|| MOV32 mem32, R2H ; <-- Uses R2H before the MPYF32
; <-- mem32 updated

NOP ; <-- Delay for MPYF32
; <-- R2H updated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

160 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Likewise, the source register for the 2nd operation within a parallel instruction can be the same as one of
the source registers of the first operation. The MPYF32 operation in Example 2-14 uses the R1H register
as one of its sources. This register is also updated by the MOV32 register. The multiplication operation will
use the value in R1H before the MOV32 updates it.

Example 2-14. Parallel Instruction Destination/Source Exception

; Valid parallel instruction
MPYF32 R2H, R1H, R0H ; 2p/1 instruction

|| MOV32 R1H, mem32 ; Valid
NOP ; <-- MOV32 completes, R1H valid

; <-- MPYF32, R2H valid

NOTE: Operations within parallel instructions cannot use the same destination register.

When two parallel operations have the same destination register, the result is invalid.

For example, see Example 2-15.

If both operations within a parallel instruction try to update the same destination register as shown in
Example 2-15 the assembler will issue an error.

Example 2-15. Invalid Destination Within a Parallel Instruction

; Invalid parallel instruction. Both operations use the same destination register
MPYF32 R2H, R1H, R0H ; 2p/1 instruction

|| MOV32 R2H, mem32 ; Invalid

Some instructions access or modify the STF flags. Because the instruction requiring a delay slot will also
be accessing the STF flags, these instructions should not be used in delay slots. These instructions are
SAVE, SETFLG, RESTORE and MOVST0.

NOTE: Do not use SAVE, SETFLG, RESTORE, or the MOVST0 instruction in a delay slot.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

161SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

2.4.7 Optimizing the Pipeline
The following example shows how delay slots can be used to improve the performance of an algorithm.
The example performs two Y = MX+B operations. In Example 2-16, no optimization has been done. The Y
= MX+B calculations are sequential and each takes 7 cycles to complete. Notice there are NOPs in the
delay slots that could be filled with non-conflicting instructions. The only requirement is these instructions
must not cause a register conflict or access the STF register flags.

Example 2-16. Floating-Point Code Without Pipeline Optimization

; Using NOPs for alignment cycles, calculate the following:
;
; Y1 = M1*X1 + B1
; Y2 = M2*X2 + B2
;
; Calculate Y1
;

MOV32 R0H,@M1 ; Load R0H with M1 - single cycle
MOV32 R1H,@X1 ; Load R1H with X1 - single cycle
MPYF32 R1H,R1H,R0H ; R1H = M1 * X1 - 2p operation

|| MOV32 R0H,@B1 ; Load R0H with B1 - single cycle
NOP ; Wait for MPYF32 to complete

; <-- MPYF32 completes, R1H is valid
ADDF32 R1H,R1H,R0H ; R1H = R1H + R0H - 2p operation
NOP ; Wait for ADDF32 to complete

; <-- ADDF32 completes, R1H is valid
MOV32 @Y1,R1H ; Save R1H in Y1 - single cycle

; Calculate Y2

MOV32 R0H,@M2 ; Load R0H with M2 - single cycle
MOV32 R1H,@X2 ; Load R1H with X2 - single cycle
MPYF32 R1H,R1H,R0H ; R1H = M2 * X2 - 2p operation

|| MOV32 R0H,@B2 ; Load R0H with B2 - single cycle
NOP ; Wait for MPYF32 to complete

; <-- MPYF32 completes, R1H is valid
ADDF32 R1H,R1H,R0H ; R1H = R1H + R0H

NOP ; Wait for ADDF32 to complete
; <-- ADDF32 completes, R1H is valid

MOV32 @Y2,R1H ; Save R1H in Y2
; 14 cycles
; 48 bytes

The code shown in Example 2-17 was generated by the C28x+FPU64 compiler with optimization enabled.
Notice that the NOPs in the first example have now been filled with other instructions. The code for the
two Y = MX+B calculations are now interleaved and both calculations complete in only nine cycles.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Floating Point Unit (FPU64) Instruction Set www.ti.com

162 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example 2-17. Floating-Point Code With Pipeline Optimization

; Using non-conflicting instructions for alignment cycles,
; calculate the following:
;
; Y1 = M1*X1 + B1
; Y2 = M2*X2 + B2
;

MOV32 R2H,@X1 ; Load R2H with X1 - single cycle
MOV32 R1H,@M1 ; Load R1H with M1 - single cycle
MPYF32 R3H,R2H,R1H ; R3H = M1 * X1 - 2p operation

|| MOV32 R0H,@M2 ; Load R0H with M2 - single cycle
MOV32 R1H,@X2 ; Load R1H with X2 - single cycle

; <-- MPYF32 completes, R3H is valid
MPYF32 R0H,R1H,R0H ; R0H = M2 * X2 - 2p operation

|| MOV32 R4H,@B1 ; Load R4H with B1 - single cycle
; <-- MOV32 completes, R4H is valid

ADDF32 R1H,R4H,R3H ; R1H = B1 + M1*X1 - 2p operation
|| MOV32 R2H,@B2 ; Load R2H with B2 - single cycle

; <-- MPYF32 completes, R0H is valid
ADDF32 R0H,R2H,R0H ; R0H = B2 + M2*X2 - 2p operation

; <-- ADDF32 completes, R1H is valid
MOV32 @Y1,R1H ; Store Y1

; <-- ADDF32 completes, R0H is valid
MOV32 @Y2,R0H ; Store Y2

; 9 cycles
; 36 bytes

2.5 Floating Point Unit (FPU64) Instruction Set
This chapter describes the assembly language instructions of the TMS320C28x plus floating-point
processor FPU64. Also described are parallel operations, conditional operations, resource constraints, and
addressing modes. The instructions listed here are an extension to the standard C28x instruction set. For
information on standard C28x instructions, see the TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430).

2.5.1 Instruction Descriptions
This section gives detailed information on the instruction set. This section lists all the single precision
floating point instructions and note that these are identical to the instructions available in C28x + FPU.
Each instruction may present the following information:
• Operands
• Opcode
• Description
• Exceptions
• Pipeline
• Examples
• See also

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. On the C28x+FPU64 instructions, follow the same format as the
C28x. The source operand(s) are always on the right and the destination operand(s) are on the left.

The explanations for the syntax of the operands used in the instruction descriptions for the TMS320C28x
plus floating-point processor are given in Table 2-4. For information on the operands of standard C28x
instructions, see the TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru430


www.ti.com Floating Point Unit (FPU64) Instruction Set

163SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Table 2-4. Operand Nomenclature

Symbol Description
#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value
#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value
#32F Immediate float value represented in floating-point representation
#0.0 Immediate zero
#RC 16-bit immediate value for the repeat count
*(0:16bitAddr) 16-bit immediate address, zero extended
CNDF Condition to test the flags in the STF register
FLAG Selected flags from STF register (OR) 11 bit mask indicating which floating-point status flags to change
label Label representing the end of the repeat block
mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
RaH R0H to R7H registers
RbH R0H to R7H registers
RcH R0H to R7H registers
RdH R0H to R7H registers
ReH R0H to R7H registers
RfH R0H to R7H registers
RaL R0L to R7L registers
RbL R0L to R7L registers
RcL R0L to R7L registers
RdL R0L to R7L registers
ReL R0L to R7L registers
RfL R0L to R7L registers
RB Repeat Block Register
STF FPU Status Register
VALUE Flag value of 0 or 1 for selected flag (OR) 11 bit mask indicating the flag value; 0 or 1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


INSTRUCTION dest1, source1, source2 — Short Description www.ti.com

164 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

INSTRUCTION dest1, source1, source2 Short Description

Operands

dest1 description for the 1st operand for the instruction
source1 description for the 2nd operand for the instruction
source2 description for the 3rd operand for the instruction

Each instruction has a table that gives a list of the operands and a short description.
Instructions always have their destination operand(s) first followed by the source
operand(s).

Opcode This section shows the opcode for the instruction.

Description Detailed description of the instruction execution is described. Any constraints on the
operands imposed by the processor or the assembler are discussed.

Restrictions Any constraints on the operands or use of the instruction imposed by the processor are
discussed.

Pipeline This section describes the instruction in terms of pipeline cycles as described in
Section 2.4.

Example Examples of instruction execution. If applicable, register and memory values are given
before and after instruction execution. All examples assume the device is running with
the OBJMODE set to 1. Normally the boot ROM or the c-code initialization will set this
bit.

See Also Lists related instructions.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Floating Point Unit (FPU64) Instruction Set

165SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

2.5.2 Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 2-5. Summary of Instructions
Title ...................................................................................................................................... Page

ABSF32 RaH, RbH —32-bit Floating-Point Absolute Value ...................................................................... 169
ADDF32 RaH, #16FHi, RbH —32-bit Floating-Point Addition ................................................................... 170
ADDF32 RaH, RbH, #16FHi —32-bit Floating-Point Addition ................................................................... 172
ADDF32 RaH, RbH, RcH —32-bit Floating-Point Addition ....................................................................... 174
ADDF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH —32-bit Floating-Point Addition with Parallel Move .................... 176
ADDF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Addition with Parallel Move ..................... 178
CMPF32 RaH, RbH —32-bit Floating-Point Compare for Equal, Less Than or Greater Than ............................... 180
CMPF32 RaH, #16FHi —32-bit Floating-Point Compare for Equal, Less Than or Greater Than............................ 181
CMPF32 RaH, #0.0 —32-bit Floating-Point Compare for Equal, Less Than or Greater Than ............................... 183
EINVF32 RaH, RbH —32-bit Floating-Point Reciprocal Approximation ......................................................... 184
EISQRTF32 RaH, RbH —32-bit Floating-Point Square-Root Reciprocal Approximation ..................................... 186
F32TOI16 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Integer ................................................. 188
F32TOI16R RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Integer and Round ................................. 189
F32TOI32 RaH, RbH —Convert 32-bit Floating-Point Value to 32-bit Integer ................................................. 190
F32TOUI16 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer .................................. 191
F32TOUI16R RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round ................... 192
F32TOUI32 RaH, RbH —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer .................................. 193
FRACF32 RaH, RbH —Fractional Portion of a 32-bit Floating-Point Value .................................................... 194
I16TOF32 RaH, RbH —Convert 16-bit Integer to 32-bit Floating-Point Value ................................................. 195
I16TOF32 RaH, mem16 —Convert 16-bit Integer to 32-bit Floating-Point Value ............................................. 196
I32TOF32 RaH, mem32 —Convert 32-bit Integer to 32-bit Floating-Point Value ............................................. 197
I32TOF32 RaH, RbH —Convert 32-bit Integer to 32-bit Floating-Point Value ................................................. 198
MACF32 R3H, R2H, RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Add .................................... 199
MACF32 R3H, R2H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Multiply and Accumulate with

Parallel Move ................................................................................................................. 201
MACF32 R7H, R3H, mem32, *XAR7++ —32-bit Floating-Point Multiply and Accumulate .................................. 203
MACF32 R7H, R6H, RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Add..................................... 205
MACF32 R7H, R6H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Multiply and Accumulate with

Parallel Move ................................................................................................................. 207
MAXF32 RaH, RbH —32-bit Floating-Point Maximum ............................................................................ 209
MAXF32 RaH, #16FHi —32-bit Floating-Point Maximum ......................................................................... 210
MAXF32 RaH, RbH ∥∥MOV32 RcH, RdH —32-bit Floating-Point Maximum with Parallel Move ............................ 211
MINF32 RaH, RbH —32-bit Floating-Point Minimum .............................................................................. 212
MINF32 RaH, #16FHi —32-bit Floating-Point Minimum........................................................................... 213
MINF32 RaH, RbH ∥∥MOV32 RcH, RdH —32-bit Floating-Point Minimum with Parallel Move ............................... 214
MOV16 mem16, RaH —Move 16-bit Floating-Point Register Contents to Memory ........................................... 215
MOV32 *(0:16bitAddr), loc32 —Move the Contents of loc32 to Memory ..................................................... 216
MOV32 ACC, RaH —Move 32-bit Floating-Point Register Contents to ACC................................................... 217
MOV32 loc32, *(0:16bitAddr) —Move 32-bit Value from Memory to loc32.................................................... 218
MOV32 mem32, RaH —Move 32-bit Floating-Point Register Contents to Memory .......................................... 219
MOV32 mem32, STF —Move 32-bit STF Register to Memory .................................................................. 221
MOV32 P, RaH —Move 32-bit Floating-Point Register Contents to P .......................................................... 222
MOV32 RaH, ACC —Move the Contents of ACC to a 32-bit Floating-Point Register ........................................ 223
MOV32 RaH, mem32 {, CNDF} —Conditional 32-bit Move ...................................................................... 224

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Floating Point Unit (FPU64) Instruction Set www.ti.com

166 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Table 2-5. Summary of Instructions (continued)
MOV32 RaH, P —Move the Contents of P to a 32-bit Floating-Point Register ................................................ 226
MOV32 RaH, RbH {, CNDF} —Conditional 32-bit Move .......................................................................... 227
MOV32 RaH, XARn —Move the Contents of XARn to a 32-bit Floating-Point Register ..................................... 228
MOV32 RaH, XT —Move the Contents of XT to a 32-bit Floating-Point Register ............................................ 229
MOV32 STF, mem32 —Move 32-bit Value from Memory to the STF Register ................................................ 230
MOV32 XARn, RaH —Move 32-bit Floating-Point Register Contents to XARn................................................ 231
MOV32 XT, RaH —Move 32-bit Floating-Point Register Contents to XT ....................................................... 232
MOVD32 RaH, mem32 —Move 32-bit Value from Memory with Data Copy ................................................... 233
MOVF32 RaH, #32F —Load the 32-bits of a 32-bit Floating-Point Register ................................................... 234
MOVI32 RaH, #32FHex —Load the 32-bits of a 32-bit Floating-Point Register with the immediate ........................ 235
MOVIZ RaH, #16FHiHex —Load the Upper 16-bits of a 32-bit Floating-Point Register ..................................... 236
MOVIZF32 RaH, #16FHi —Load the Upper 16-bits of a 32-bit Floating-Point Register ...................................... 237
MOVST0 FLAG —Load Selected STF Flags into ST0 ............................................................................ 238
MOVXI RaH, #16FLoHex —Move Immediate to the Low 16-bits of a Floating-Point Register .............................. 239
MPYF32 RaH, RbH, RcH —32-bit Floating-Point Multiply ........................................................................ 240
MPYF32 RaH, #16FHi, RbH —32-bit Floating-Point Multiply .................................................................... 241
MPYF32 RaH, RbH, #16FHi —32-bit Floating-Point Multiply .................................................................... 243
MPYF32 RaH, RbH, RcH ∥∥ADDF32 RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Add ................... 245
MPYF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Multiply with Parallel Move...................... 247
MPYF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH —32-bit Floating-Point Multiply with Parallel Move...................... 249
MPYF32 RaH, RbH, RcH ∥∥SUBF32 RdH, ReH, RfH —32-bit Floating-Point Multiply with Parallel Subtract.............. 250
NEGF32 RaH, RbH{, CNDF} —Conditional Negation ............................................................................. 251
POP RB —Pop the RB Register from the Stack ................................................................................... 252
PUSH RB —Push the RB Register onto the Stack ................................................................................ 254
RESTORE —Restore the Floating-Point Registers ............................................................................... 255
RPTB label, loc16 —Repeat A Block of Code ..................................................................................... 257
RPTB label, #RC —Repeat a Block of Code ....................................................................................... 259
SAVE FLAG, VALUE —Save Register Set to Shadow Registers and Execute SETFLG ................................... 261
SETFLG FLAG, VALUE —Set or clear selected floating-point status flags ................................................... 263
SUBF32 RaH, RbH, RcH —32-bit Floating-Point Subtraction................................................................... 264
SUBF32 RaH, #16FHi, RbH —32-bit Floating Point Subtraction ................................................................ 265
SUBF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 —32-bit Floating-Point Subtraction with Parallel Move ................ 266
SUBF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH —32-bit Floating-Point Subtraction with Parallel Move ................ 268
SWAPF RaH, RbH{, CNDF} —Conditional Swap ................................................................................. 270
TESTTF CNDF —Test STF Register Flag Condition .............................................................................. 271
UI16TOF32 RaH, mem16 —Convert unsigned 16-bit integer to 32-bit floating-point value.................................. 272
UI16TOF32 RaH, RbH —Convert unsigned 16-bit integer to 32-bit floating-point value...................................... 273
UI32TOF32 RaH, mem32 —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value................................ 274
UI32TOF32 RaH, RbH —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value ................................... 275
ZERO RaH —Zero the Floating-Point Register RaH ............................................................................. 276
ZEROA —Zero All Floating-Point Registers........................................................................................ 277
MOV32 RaL, mem32{, CNDF} —Conditional 32-bit Move....................................................................... 278
MOVDD32 RaL,mem32 —Move From Register To Memory 32-bit Move ...................................................... 279
MOVDD32 RaH,mem32 —Move From Register To Memory 32-bit Move...................................................... 280
MOV32 mem32,RaL —Move From Memory to Register 32-bit Move .......................................................... 281
MOVIX RaL,#16I —Load the Upper 16-bits of a 32-bit Floating-Point Register ............................................... 282
MOVXI RaL, #16I —Load the Lower 16-bits of a 32-bit Floating-Point Register ............................................. 283
MPYF64 Rd,Re,Rf ∥∥MOV32 RaL,mem32 —64-bit Floating-Point Multiply with Parallel Move ............................. 284
MPYF64 Rd,Re,Rf ∥∥MOV32 mem32,RaL —64-bit Floating-Point Multiply with Parallel Move .............................. 285

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Floating Point Unit (FPU64) Instruction Set

167SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Table 2-5. Summary of Instructions (continued)
ADDF64 Rd,Re,Rf ∥∥ MOV32 RaL, mem32 —64-bit Floating-Point Addition with Parallel Move ............................ 286
ADDF64 Rd,Re,Rf ∥∥MOV32 mem32, RaL —64-bit Floating-Point Addition with Parallel Move............................. 287
SUBF64 Rd,Re,Rf ∥∥MOV32 RaL,mem32 —64-bit Floating-Point Subtraction with Parallel Move .......................... 288
SUBF64 Rd,Re,Rf ∥∥MOV32 mem32, RaL —64-bit Floating-Point Subtraction with Parallel Move ......................... 289
MACF64 R3,R2,Rd,Re,Rf ∥∥MOV32 RaL, mem32 —64-bit Floating-Point Multiply and Accumulate with Parallel Move 290
MACF64 R7,R6,Rd,Re,Rf ∥∥MOV32 RaL, mem32 —64-bit Floating-Point Multiply and Accumulate with Parallel Move 291
MPYF64 Rd,Re,Rf ∥∥MOV32 RaH,mem32 —64-bit Floating-Point Multiply with Parallel Move .............................. 292
MPYF64 Rd,Re,Rf ∥∥MOV32 mem32, RaH —64-bit Floating-Point Multiply with Parallel Move ............................. 293
ADDF64 Rd,Re,Rf ∥∥MOV32 RaH,mem32 —64-bit Floating-Point Addition with Parallel Move ............................. 294
ADDF64 Rd,Re,Rf ∥∥MOV32 mem32, RaH —64-bit Floating-Point Addition with Parallel Move ............................ 295
SUBF64 Rd,Re,Rf ∥∥MOV32 RaH,mem32 —64-bit Floating-Point Subtraction with Parallel Move.......................... 296
SUBF64 Rd,Re,Rf ∥∥MOV32 mem32, RaH —64-bit Floating-Point Subtraction with Parallel Move......................... 297
MACF64 R3,R2,Rd,Re,Rf ∥∥MOV32 RaH, mem32 —64-bit Floating-Point Multiply and Accumulate with Parallel Move 298
MACF64 R7,R6,Rd,Re,Rf ∥∥MOV32 RaH, mem32 —64-bit Floating-Point Multiply and Accumulate with Parallel Move 299
MPYF64 Ra,Rb,Rc ∥∥ADDF64 Rd,Re,Rf —64-bit Floating-Point Multiply with Parallel Addition ............................. 300
MPYF64 Ra,Rb,Rc ∥∥SUBF64 Rd,Re,Rf —64-bit Floating-Point Multiply with Parallel Subtraction ......................... 301
MPYF64 Ra,Rb,Rc —64-bit Floating-Point Multiply............................................................................... 302
ADDF64 Ra,Rb,Rc —64-bit Floating-Point Addition .............................................................................. 303
SUBF64 Ra,Rb,Rc —64-bit Floating-Point Subtraction .......................................................................... 304
MPYF64 Ra,Rb,#16F OR MPYF64 Ra,#16F, Rb —64-bit Floating-Point Multiply ............................................ 305
ADDF64 Ra,Rb,#16F OR ADDF64 Ra,#16F, Rb —64-bit Floating-Point Addition............................................ 306
SUBF64 Ra,#16F,Rb —64-bit Floating-Point Subtraction ........................................................................ 307
CMPF64 Ra, Rb —64-bit Floating-Point Compare for Equal, Less Than or Greater Than................................... 308
CMPF64 Ra,#16F —64-bit Floating-Point Compare for Equal, Less Than or Greater Than ................................. 309
CMPF64 Ra,#0.0 —64-bit Floating-Point Compare for Equal, Less Than or Greater Than .................................. 310
MAXF64 Ra, Rb —64-bit Floating-Point Maximum ............................................................................... 311
MAXF64 Ra, Rb ∥∥MOV64 Rc,Rd —64-bit Floating-Point Maximum with Parallel Move .................................... 312
MAXF64 Ra, #16F —64-bit Floating-Point Maximum ............................................................................ 313
MINF64 Ra, Rb —64-bit Floating-Point Minimum ................................................................................ 314
MINF64 Ra, Rb ∥∥MOV64 Rc,Rd —64-bit Floating-Point Minimum with Parallel Move ...................................... 315
MINF64 Ra, #16F —64-bit Floating-Point Minimum .............................................................................. 316
F64TOI32 RaH,Rb —Convert 64-bit Floating-Point Value to 32-bit Integer ................................................... 317
F64TOUI32 RaH,Rb —Convert 64-bit Floating-Point Value to 32-bit Unsigned Integer ..................................... 318
I32TOF64 Ra,mem32 —Convert 32-bit Integer to 64-bit Floating-Point Value ................................................ 319
I32TOF64 Ra,RbH —Convert 32-bit Integer to 64-bit Floating-Point Value ................................................... 320
UI32TOF64 Ra,mem32 —Convert unsigned 32-bit Integer to 64-bit Floating-Point Value ................................. 321
F64TOI64 Ra,Rb —Convert 64-bit Floating-Point Value to 64-bit Integer ..................................................... 322
F64TOUI64 Ra,Rb —Convert 64-bit Floating-Point Value to 64-bit unsigned Integer ....................................... 323
I64TOF64 Ra,Rb —Convert 64-bit Integer to 64-bit Floating-Point Value ..................................................... 324
UI64TOF64 Ra,Rb —Convert 64-bit unsigned Integer to 64-bit Floating-Point Value ....................................... 325
I64TOF64 Ra,Rb —Convert 64-bit Integer to 64-bit Floating-Point Value ..................................................... 326
UI64TOF64 Ra,Rb —Convert 64-bit unsigned Integer to 64-bit Floating-Point Value ....................................... 327
FRACF64 Ra,Rb —Fractional Portion of a 64-bit Floating-Point Value ....................................................... 328
F64TOF32 RaH,Rb —Convert 64-bit Floating-Point Value to 32-bit Floating-Point Value .................................. 329
F32TOF64 Ra,RbH —Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value .................................. 330
F32TOF64 Ra, mem32 —Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value ............................. 331
F32DTOF64 Ra, mem32 —Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value ........................... 332
ABSF64 Ra, Rb —64-bit Floating-Point Absolute Value ........................................................................ 333
NEGF64 Ra, Rb{, CNDF} —Conditional Negation ............................................................................... 334

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Floating Point Unit (FPU64) Instruction Set www.ti.com

168 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Table 2-5. Summary of Instructions (continued)
MOV64 Ra, Rb{, CNDF} —Conditional 64-bit Move .............................................................................. 335
EISQRTF64 Ra, Rb —64-bit Floating-Point Square-Root Reciprocal Approximation ....................................... 336
EINVF64 Ra, Rb —64-bit Floating-Point Reciprocal Approximation ........................................................... 337

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ABSF32 RaH, RbH — 32-bit Floating-Point Absolute Value

169SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ABSF32 RaH, RbH 32-bit Floating-Point Absolute Value

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0110 1001 0101
MSW: 0000 0000 00bb baaa

Description The absolute value of RbH is loaded into RaH. Only the sign bit of the operand is
modified by the ABSF32 instruction.
if (RbH < 0) {RaH = -RbH}

else {RaH = RbH}

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:

NF = 0;
ZF = 0;
if ( RaH[30:23] == 0) ZF = 1;

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
ABSF32 R1H, R1H ; R1H = 2.0 (0x40000000), ZF = NF = 0

MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
ABSF32 R0H, R0H ; R0H = 5.0 (0x40A00000), ZF = NF = 0

MOVIZF32 R0H, #0.0 ; R0H = 0.0
ABSF32 R1H, R0H ; R1H = 0.0 ZF = 1, NF = 0

See also NEGF32 RaH, RbH{, CNDF}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RaH, #16FHi, RbH — 32-bit Floating-Point Addition www.ti.com

170 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF32 RaH, #16FHi, RbH 32-bit Floating-Point Addition

Operands

RaH Floating-point destination register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.
RbH Floating-point source register (R0H to R7H)

Opcode
LSW: 1110 1000 10II IIII
MSW: IIII IIII IIbb baaa

Description Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = RbH + #16FHi:0

This instruction can also be written as ADDF32 RaH, RbH, #16FHi.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example ; Add to R1H the value 2.0 in 32-bit floating-point format
ADDF32 R0H, #2.0, R1H ; R0H = 2.0 + R1H
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R0H updated
NOP ;

; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, #-2.5, R3H ; R2H = -2.5 + R3H
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R2H updated
NOP ;

; Add to R5H the value 0x3FC00000 (1.5)
ADDF32 R5H, #0x3FC0, R5H ; R5H = 1.5 + R5H
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R5H updated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RaH, #16FHi, RbH — 32-bit Floating-Point Addition

171SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

NOP ;

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RaH, RbH, #16FHi — 32-bit Floating-Point Addition www.ti.com

172 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF32 RaH, RbH, #16FHi 32-bit Floating-Point Addition

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 10II IIII
MSW: IIII IIII IIbb baaa

Description Add RbH to the floating-point value represented by the immediate operand. Store the
result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = RbH + #16FHi:0

This instruction can also be written as ADDF32 RaH, #16FHi, RbH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:

ADDF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
; Add to R1H the value 2.0 in 32-bit floating-point format

ADDF32 R0H, R1H, #2.0 ; R0H = R1H + 2.0
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R0H updated
NOP ;

; Add to R3H the value -2.5 in 32-bit floating-point format
ADDF32 R2H, R3H, #-2.5 ; R2H = R3H + (-2.5)
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R2H updated
NOP ;

; Add to R5H the value 0x3FC00000 (1.5)
ADDF32 R5H, R5H, #0x3FC0 ; R5H = R5H + 1.5
NOP ; Delay for ADDF32 to complete

; <-- ADDF32 completes, R5H updated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RaH, RbH, #16FHi — 32-bit Floating-Point Addition

173SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

NOP ;

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RaH, RbH, RcH — 32-bit Floating-Point Addition www.ti.com

174 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF32 RaH, RbH, RcH 32-bit Floating-Point Addition

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)
RcH Floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0111 0001 0000
MSW: 0000 000c ccbb baaa

Description Add the contents of RcH to the contents of RbH and load the result into RaH.
RaH = RbH + RcH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

Pipeline This is a 2 pipeline-cycle instruction (2p). That is:
ADDF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RaH updated

NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y are all on the
same data page.
MOVW DP, #M1 ; Load the data page
MOV32 R0H,@M1 ; Load R0H with M1
MOV32 R1H,@X1 ; Load R1H with X1
MPYF32 R1H,R1H,R0H ; Multiply M1*X1
|| MOV32 R0H,@B1 ; and in parallel load R0H with B1
NOP ; <-- MOV32 complete

; <-- MPYF32 complete
ADDF32 R1H,R1H,R0H ; Add M*X1 to B1 and store in R1H
NOP

; <-- ADDF32 complete
MOV32 @Y1,R1H ; Store the result

Calculate Y = A + B
MOVL XAR4, #A
MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
ADDF32 R0H,R1H,R0H ; Add A + B R0H=R0H+R1H
MOVL XAR4, #Y

; < -- ADDF32 complete
MOV32 *XAR4,R0H ; Store the result

See also ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, #16F, RbH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RaH, RbH, RcH — 32-bit Floating-Point Addition

175SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Addition with Parallel Move www.ti.com

176 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH 32-bit Floating-Point Addition with Parallel Move

Operands

RdH Floating-point destination register for the ADDF32 (R0H to R7H)
ReH Floating-point source register for the ADDF32 (R0H to R7H)
RfH Floating-point source register for the ADDF32 (R0H to R7H)
mem32 pointer to a 32-bit memory location. This will be the destination of the MOV32.
RaH Floating-point source register for the MOV32 (R0H to R7H)

Opcode
LSW: 1110 0000 0001 fffe
MSW: eedd daaa mem32

Description Perform an ADDF32 and a MOV32 in parallel. Add RfH to the contents of ReH and store
the result in RdH. In parallel move the contents of RaH to the 32-bit location pointed to
by mem32. mem32 addresses memory using any of the direct or indirect addressing
modes supported by the C28x CPU.
RdH = ReH + RfH,
[mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

Pipeline ADDF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:

ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 mem32, RaH ; 1 cycle

; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.

Example
ADDF32 R3H, R6H, R4H ; (A) R3H = R6H + R4H and R7H = I3

|| MOV32 R7H, *-SP[2] ;
; <-- R7H vali

SUBF32 R6H, R6H, R4H ; (B) R6H = R6H - R4H
; <-- ADDF32 (A) completes, R3H valid

SUBF32 R3H, R1H, R7H ; (C) R3H = R1H - R7H and store R3H (A)
|| MOV32 *+XAR5[2], R3H ;

; <-- SUBF32 (B) completes, R6H valid
; <-- MOV32 completes, (A) stored

ADDF32 R4H, R7H, R1H ; R4H = D = R7H + R1H and store R6H (B)
|| MOV32 *+XAR5[6], R6H ;

; <-- SUBF32 (C) completes, R3H valid
; <-- MOV32 completes, (B) stored

MOV32 *+XAR5[0], R3H ; store R3H (C)
; <-- MOV32 completes, (C) stored
; <-- ADDF32 (D) completes, R4H valid

MOV32 *+XAR5[4], R4H ; store R4H (D) ;

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Addition with Parallel Move

177SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

; <-- MOV32 completes, (D) stored

See also ADDF32 RaH, #16FHi, RbH
ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Addition with Parallel Move www.ti.com

178 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Addition with Parallel Move

Operands

RdH Floating-point destination register for the ADDF32 (R0H to R7H).
RdH cannot be the same register as RaH.

ReH Floating-point source register for the ADDF32 (R0H to R7H)
RfH Floating-point source register for the ADDF32 (R0H to R7H)
RaH Floating-point destination register for the MOV32 (R0H to R7H).

RaH cannot be the same register as RdH.
mem32 pointer to a 32-bit memory location. This is the source for the MOV32.

Opcode
LSW: 1110 0011 0001 fffe
MSW: eedd daaa mem32

Description Perform an ADDF32 and a MOV32 operation in parallel. Add RfH to the contents of ReH
and store the result in RdH. In parallel move the contents of the 32-bit location pointed to
by mem32 to RaH. mem32 addresses memory using any of the direct or indirect
addressing modes supported by the C28x CPU.
RdH = ReH + RfH,
RaH = [mem32]

Restrictions The destination register for the ADDF32 and the MOV32 must be unique. That is, RaH
and RdH cannot be the same register.

Any instruction in the delay slot must not use RdH as a destination register or use RdH
as a source operand.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if ADDF32 generates an underflow condition.
• LVF = 1 if ADDF32 generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline The ADDF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:

ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle

; <-- MOV32 completes, RaH updated NOP
; 1 cycle delay or non-conflicting instruction
; <-- ADDF32 completes, RdH updated

NOP

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Addition with Parallel Move

179SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example Calculate Y = A + B - C:

MOVL XAR4, #A
MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
ADDF32 R0H,R1H,R0H ; Add A + B and in parallel

|| MOV32 R2H, *XAR4 ; Load R2H with C
; <-- MOV32 complete

MOVL XAR4,#Y
; ADDF32 complete

SUBF32 R0H,R0H,R2H ; Subtract C from (A + B)
NOP ;

<-- SUBF32 completes
MOV32 *XAR4,R0H ; Store the result

See also ADDF32 RaH, #16FHi, RbH
ADDF32 RaH, RbH, #16FHi
ADDF32 RaH, RbH, RcH
ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CMPF32 RaH, RbH — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

180 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

CMPF32 RaH, RbH 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

RaH Floating-point source register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0110 1001 0100
MSW: 0000 0000 00bb baaa

Description Set ZF and NF flags on the result of RaH - RbH. The CMPF32 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.

Special cases for inputs:
• Negative zero will be treated as positive zero.
• A denormalized value will be treated as positive zero.
• Not-a-Number (NaN) will be treated as infinity.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:
If(RaH == RbH) {ZF=1, NF=0}
If(RaH > RbH) {ZF=0, NF=0}
If(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example
; Behavior of ZF and NF flags for different comparisons

MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
CMPF32 R1H, R0H ; ZF = 0, NF = 1
CMPF32 R0H, R1H ; ZF = 0, NF = 0
CMPF32 R0H, R0H ; ZF = 1, NF = 0

; Using the result of a compare for loop control

Loop:
MOV32 R0H,*XAR4++ ; Load R0H
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, R0H ; Set/clear ZF and NF
MOVST0 ZF, NF ; Copy ZF and NF to ST0 Z and N bits
BF Loop, GT ; Loop if R1H > R0H

See also CMPF32 RaH, #16FHi
CMPF32 RaH, #0.0
MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com CMPF32 RaH, #16FHi — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

181SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

CMPF32 RaH, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

RaH Floating-point source register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 0001 0III
MSW: IIII IIII IIII Iaaa

Description Compare the value in RaH with the floating-point value represented by the immediate
operand. Set the ZF and NF flags on (RaH - #16FHi:0).

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.

The CMPF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for inputs:
• Negative zero will be treated as positive zero.
• Denormalized value will be treated as positive zero.
• Not-a-Number (NaN) will be treated as infinity.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:
If(RaH == #16FHi:0) {ZF=1, NF=0}
If(RaH > #16FHi:0) {ZF=0, NF=0}
If(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction

Example ; Behavior of ZF and NF flags for different comparisons
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
CMPF32 R1H, #-2.2 ; ZF = 0, NF = 0
CMPF32 R0H, #6.5 ; ZF = 0, NF = 1
CMPF32 R0H, #5.0 ; ZF = 1, NF = 0

; Using the result of a compare for loop control

Loop:
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, #2.0 ; Set/clear ZF and NF
MOVST0 ZF, NF ; Copy ZF and NF to ST0 Z and N bits
BF Loop, GT ; Loop if R1H > #2.0

See also CMPF32 RaH, #0.0
CMPF32 RaH, RbH
MAXF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CMPF32 RaH, #16FHi — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

182 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com CMPF32 RaH, #0.0 — 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

183SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

CMPF32 RaH, #0.0 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

RaH Floating-point source register (R0H to R7H)
#0.0 zero

Opcode LSW: 1110 0101 1010 0aaa

Description Set the ZF and NF flags on (RaH - #0.0). The CMPF32 instruction is performed as a
logical compare operation. This is possible because of the IEEE floating-point format
offsets the exponent. Basically the bigger the binary number, the bigger the floating-point
value.

Special cases for inputs:
• Negative zero will be treated as positive zero.
• Denormalized value will be treated as positive zero.
• Not-a-Number (NaN) will be treated as infinity.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The STF register flags are modified as follows:
If(RaH == #0.0) {ZF=1, NF=0}
If(RaH > #0.0) {ZF=0, NF=0}
If(RaH < #0.0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example ; Behavior of ZF and NF flags for different comparisons
MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
MOVIZF32 R2H, #0.0 ; R2H = 0.0 (0x00000000)
CMPF32 R0H, #0.0 ; ZF = 0, NF = 0
CMPF32 R1H, #0.0 ; ZF = 0, NF = 1
CMPF32 R2H, #0.0 ; ZF = 1, NF = 0

; Using the result of a compare for loop control

Loop:
MOV32 R1H,*XAR3++ ; Load R1H
CMPF32 R1H, #0.0 ; Set/clear ZF and NF
MOVST0 ZF, NF ; Copy ZF and NF to ST0 Z and N bits
BF Loop, GT ; Loop if R1H > #0.0

See also CMPF32 RaH, #0.0
CMPF32 RaH, #16FHi
MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, #16FHi
MINF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


EINVF32 RaH, RbH — 32-bit Floating-Point Reciprocal Approximation www.ti.com

184 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

EINVF32 RaH, RbH 32-bit Floating-Point Reciprocal Approximation

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0110 1001 0011
MSW: 0000 0000 00bb baaa

Description This operation generates an estimate of 1/X in 32-bit floating-point format accurate to
approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:
Ye = Estimate(1/X);
Ye = Ye*(2.0 - Ye*X)
Ye = Ye*(2.0 - Ye*X)

After two iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EINVF32 operation will not generate a negative zero,
DeNorm or NaN value.
RaH = Estimate of 1/RbH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if EINVF32 generates an underflow condition.
• LVF = 1 if EINVF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

EINVF32 RaH, RbH ; 2p
NOP ; 1 cycle delay or non-conflicting instruction

; <-- EINVF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com EINVF32 RaH, RbH — 32-bit Floating-Point Reciprocal Approximation

185SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example Calculate Y = A/B. A fast division routine similar to that shown below can be found in the
C28x FPU Fast RTS Library (SPRC664).

MOVL XAR4, #A
MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
LCR DIV ; Calculate R0H = R0H / R1H
MOV32 *XAR4, R0H ;
....

DIV:
EINVF32 R2H, R1H ; R2H = Ye = Estimate(1/B)
CMPF32 R0H, #0.0 ; Check if A == 0
MPYF32 R3H, R2H, R1H ; R3H = Ye*B
NOP
SUBF32 R3H, #2.0, R3H ; R3H = 2.0 - Ye*B
NOP
MPYF32 R2H, R2H, R3H ; R2H = Ye = Ye*(2.0 - Ye*B)
NOP
MPYF32 R3H, R2H, R1H ; R3H = Ye*B
CMPF32 R1H, #0.0 ; Check if B == 0.0
SUBF32 R3H, #2.0, R3H ; R3H = 2.0 - Ye*B
NEGF32 R0H, R0H, EQ ; Fixes sign for A/0.0
MPYF32 R2H, R2H, R3H ; R2H = Ye = Ye*(2.0 - Ye*B)
NOP
MPYF32 R0H, R0H, R2H ; R0H = Y = A*Ye = A/B
LRETR

See also EISQRTF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html


EISQRTF32 RaH, RbH — 32-bit Floating-Point Square-Root Reciprocal Approximation www.ti.com

186 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

EISQRTF32 RaH, RbH 32-bit Floating-Point Square-Root Reciprocal Approximation

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0110 1001 0010
MSW: 0000 0000 00bb baaa

Description This operation generates an estimate of 1/sqrt(X) in 32-bit floating-point format accurate
to approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:
Ye = Estimate(1/sqrt(X));
Ye = Ye*(1.5 - Ye*Ye*X/2.0)
Ye = Ye*(1.5 - Ye*Ye*X/2.0)

After 2 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The EISQRTF32 operation will not generate a negative zero,
DeNorm or NaN value.
RaH = Estimate of 1/sqrt (RbH)

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if EISQRTF32 generates an underflow condition.
• LVF = 1 if EISQRTF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

EINVF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- EISQRTF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com EISQRTF32 RaH, RbH — 32-bit Floating-Point Square-Root Reciprocal Approximation

187SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example Calculate the square root of X. A square-root routine similar to that shown below can be
found in the C28x FPU Fast RTS Library (SPRC664).

; Y = sqrt(X)
; Ye = Estimate(1/sqrt(X));
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Y = X*Ye
_sqrt:

; R0H = X on entry
EISQRTF32 R1H, R0H ; R1H = Ye = Estimate(1/sqrt(X))
MPYF32 R2H, R0H, #0.5 ; R2H = X*0.5
MPYF32 R3H, R1H, R1H ; R3H = Ye*Ye
NOP
MPYF32 R3H, R3H, R2H ; R3H = Ye*Ye*X*0.5
NOP
SUBF32 R3H, #1.5, R3H ; R3H = 1.5 - Ye*Ye*X*0.5
NOP
MPYF32 R1H, R1H, R3H ; R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
NOP
MPYF32 R3H, R1H, R2H ; R3H = Ye*X*0.5
NOP
MPYF32 R3H, R1H, R3H ; R3H = Ye*Ye*X*0.5
NOP
SUBF32 R3H, #1.5, R3H ; R3H = 1.5 - Ye*Ye*X*0.5
CMPF32 R0H, #0.0 ; Check if X == 0
MPYF32 R1H, R1H, R3H ; R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
NOP
MOV32 R1H, R0H, EQ ; If X is zero, change the Ye estimate to 0
MPYF32 R0H, R0H, R1H ; R0H = Y = X*Ye = sqrt(X)
LRETR

See also EINVF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://focus.ti.com/docs/toolsw/folders/print/sprc664.html


F32TOI16 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Integer www.ti.com

188 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F32TOI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1100
MSW: 0000 0000 00bb baaa

Description Convert a 32-bit floating point value in RbH to a 16-bit integer and truncate. The result
will be stored in RaH.
RaH(15:0) = F32TOI16(RbH)
RaH(31:16) = sign extension of RaH(15)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOI16 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOI16 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
F32TOI16 R1H, R0H ; R1H(15:0) = F32TOI16(R0H)

; R1H(31:16) = Sign extension of R1H(15)
MOVIZF32 R2H, #-5.0 ; R2H = -5.0 (0xC0A00000)

; <-- F32TOI16 complete, R1H(15:0) = 5 (0x0005)
; R1H(31:16) = 0 (0x0000)

F32TOI16 R3H, R2H ; R3H(15:0) = F32TOI16(R2H)
; R3H(31:16) = Sign extension of R3H(15)

NOP ; 1 Cycle delay for F32TOI16 to complete
; <-- F32TOI16 complete, R3H(15:0) = -5 (0xFFFB)
; R3H(31:16) = (0xFFFF)

See also F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com F32TOI16R RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Integer and Round

189SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F32TOI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer and Round

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1100
MSW: 1000 0000 00bb baaa

Description Convert the 32-bit floating point value in RbH to a 16-bit integer and round to the nearest
even value. The result is stored in RaH.
RaH(15:0) = F32ToI16round(RbH)
RaH(31:16) = sign extension of RaH(15)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOI16R RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOI16R completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
MOVIZ R0H, #0x3FD9 ; R0H [31:16] = 0x3FD9
MOVXI R0H, #0x999A ; R0H [15:0] = 0x999A

; R0H = 1.7 (0x3FD9999A)
F32TOI16R R1H, R0H ; R1H(15:0) = F32TOI16round (R0H)

; R1H(31:16) = Sign extension of R1H(15)
MOVF32 R2H, #-1.7 ; R2H = -1.7 (0xBFD9999A)

; <- F32TOI16R complete, R1H(15:0) = 2 (0x0002)
; R1H(31:16) = 0 (0x0000)

F32TOI16R R3H, R2H ; R3H(15:0) = F32TOI16round (R2H)
; R3H(31:16) = Sign extension of R2H(15)

NOP ; 1 Cycle delay for F32TOI16R to complete
; <-- F32TOI16R complete, R1H(15:0) = -2 (0xFFFE)
; R1H(31:16) = (0xFFFF)

See also F32TOI16 RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F32TOI32 RaH, RbH — Convert 32-bit Floating-Point Value to 32-bit Integer www.ti.com

190 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F32TOI32 RaH, RbH Convert 32-bit Floating-Point Value to 32-bit Integer

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1000
MSW: 0000 0000 00bb baaa

Description Convert the 32-bit floating-point value in RbH to a 32-bit integer value and truncate.
Store the result in RaH.
RaH = F32TOI32(RbH)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOI32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOI32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
MOVF32 R2H, #11204005.0 ; R2H = 11204005.0 (0x4B2AF5A5)
F32TOI32 R3H, R2H ; R3H = F32TOI32 (R2H)
MOVF32 R4H, #-11204005.0 ; R4H = -11204005.0 (0xCB2AF5A5)

; <-- F32TOI32 complete,
; R3H = 11204005 (0x00AAF5A5)

F32TOI32 R5H, R4H ; R5H = F32TOI32 (R4H)
NOP ; 1 Cycle delay for F32TOI32 to complete

; <-- F32TOI32 complete,
; R5H = -11204005 (0xFF550A5B)

See also F32TOUI32 RaH, RbH
I32TOF32 RaH, RbH
I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com F32TOUI16 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

191SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F32TOUI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1110
MSW: 0000 0000 00bb baaa

Description Convert the 32-bit floating point value in RbH to an unsigned 16-bit integer value and
truncate to zero. The result will be stored in RaH. To instead round the integer to the
nearest even value use the F32TOUI16R instruction. The instruction will saturate the
float to what can fit in 16bit integer and then convert to 16bit. For example 300000 will
be saturated to 65535.
RaH(15:0) = F32ToUI16(RbH) RaH(31:16) = 0x0000

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOUI16 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOUI16 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example
MOVIZF32 R4H, #9.0 ; R4H = 9.0 (0x41100000)
F32TOUI16 R5H, R4H ; R5H (15:0) = F32TOUI16 (R4H)

; R5H (31:16) = 0x0000
MOVIZF32 R6H, #-9.0 ; R6H = -9.0 (0xC1100000)

; <-- F32TOUI16 complete, R5H (15:0) = 9.0 (0x0009)
; R5H (31:16) = 0.0 (0x0000)

F32TOUI16 R7H, R6H ; R7H (15:0) = F32TOUI16 (R6H)
; R7H (31:16) = 0x0000

NOP ; 1 Cycle delay for F32TOUI16 to complete
; <-- F32TOUI16 complete, R7H (15:0) = 0.0 (0x0000)
; R7H (31:16) = 0.0 (0x0000)

See also F32TOI16 RaH, RbH
F32TOUI16R RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F32TOUI16R RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round www.ti.com

192 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F32TOUI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1110
MSW: 1000 0000 00bb baaa

Description Convert the 32-bit floating-point value in RbH to an unsigned 16-bit integer and round to
the closest even value. The result will be stored in RaH. To instead truncate the
converted value, use the F32TOUI16 instruction. The instruction will saturate the float to
what can fit in 16bit integer and then convert to 16bit. For example 300000 will be
saturated to 65535.
RaH(15:0) = F32ToUI16round(RbH)
RaH(31:16) = 0x0000

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOUI16R RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOUI16R completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZ R5H, #0x412C ; R5H = 0x412C
MOVXI R5H, #0xCCCD ; R5H = 0xCCCD

; R5H = 10.8 (0x412CCCCD)
F32TOUI16R R6H, R5H ; R6H (15:0) = F32TOUI16round (R5H)

; R6H (31:16) = 0x0000
MOVF32 R7H, #-10.8 ; R7H = -10.8 (0x0xC12CCCCD)

; <-- F32TOUI16R complete,
; R6H (15:0) = 11.0 (0x000B)
; R6H (31:16) = 0.0 (0x0000)

F32TOUI16R R0H, R7H ; R0H (15:0) = F32TOUI16round (R7H)
; R0H (31:16) = 0x0000

NOP ; 1 Cycle delay for F32TOUI16R to complete
; <-- F32TOUI16R complete,
; R0H (15:0) = 0.0 (0x0000)
; R0H (31:16) = 0.0 (0x0000)

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com F32TOUI32 RaH, RbH — Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

193SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F32TOUI32 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1010
MSW: 0000 0000 00bb baaa

Description Convert the 32-bit floating-point value in RbH to an unsigned 32-bit integer and store the
result in RaH.
RaH = F32ToUI32(RbH)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
F32TOUI32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- F32TOUI32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZF32 R6H, #12.5 ; R6H = 12.5 (0x41480000)
F32TOUI32 R7H, R6H ; R7H = F32TOUI32 (R6H)
MOVIZF32 R1H, #-6.5 ; R1H = -6.5 (0xC0D00000)

; <-- F32TOUI32 complete, R7H = 12.0 (0x0000000C)
F32TOUI32 R2H, R1H ; R2H = F32TOUI32 (R1H)
NOP ; 1 Cycle delay for F32TOUI32 to complete

; <-- F32TOUI32 complete, R2H = 0.0 (0x00000000)

See also F32TOI32 RaH, RbH
I32TOF32 RaH, RbH
I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


FRACF32 RaH, RbH — Fractional Portion of a 32-bit Floating-Point Value www.ti.com

194 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

FRACF32 RaH, RbH Fractional Portion of a 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1111 0001
MSW: 0000 0000 00bb baaa

Description Returns in RaH the fractional portion of the 32-bit floating-point value in RbH

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
FRACF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- FRACF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZF32 R2H, #19.625 ; R2H = 19.625 (0x419D0000)
FRACF32 R3H, R2H ; R3H = FRACF32 (R2H)
NOP ; 1 Cycle delay for FRACF32 to complete

; <-- FRACF32 complete, R3H = 0.625 (0x3F200000)

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com I16TOF32 RaH, RbH — Convert 16-bit Integer to 32-bit Floating-Point Value

195SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

I16TOF32 RaH, RbH Convert 16-bit Integer to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1101
MSW: 0000 0000 00bb baaa

Description Convert the 16-bit signed integer in RbH to a 32-bit floating point value and store the
result in RaH.
RaH = I16ToF32 RbH

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

I16TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- I16TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZ R0H, #0x0000 ; R0H[31:16] = 0.0 (0x0000)
MOVXI R0H, #0x0004 ; R0H[15:0] = 4.0 (0x0004)
I16TOF32 R1H, R0H ; R1H = I16TOF32 (R0H)
MOVIZ R2H, #0x0000 ; R2H[31:16] = 0.0 (0x0000)

; <--I16TOF32 complete, R1H = 4.0 (0x40800000)
MOVXI R2H, #0xFFFC ; R2H[15:0] = -
4.0 (0xFFFC) I16TOF32 R3H, R2H ; R3H = I16TOF32 (R2H)
NOP ; 1 Cycle delay for I16TOF32 to complete

; <-- I16TOF32 complete, R3H = -4.0 (0xC0800000)

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


I16TOF32 RaH, mem16 — Convert 16-bit Integer to 32-bit Floating-Point Value www.ti.com

196 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

I16TOF32 RaH, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (R0H to R7H)
mem316 16-bit source memory location to be converted

Opcode LSW: 1110 0010 1100 1000
MSW: 0000 0aaa mem16

Description Convert the 16-bit signed integer indicated by the mem16 pointer to a 32-bit floating-
point value and store the result in RaH.
RaH = I16ToF32[mem16]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
I16TOF32 RaH, mem16 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- I16TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVW DP, #0x0280 ; DP = 0x0280
MOV @0, #0x0004 ; [0x00A000] = 4.0 (0x0004)
I16TOF32 R0H, @0 ; R0H = I16TOF32 [0x00A000]
MOV @1, #0xFFFC ; [0x00A001] = -4.0 (0xFFFC)

; <--I16TOF32 complete, R0H = 4.0 (0x40800000)
I16TOF32 R1H, @1 ; R1H = I16TOF32 [0x00A001]
NOP ; 1 Cycle delay for I16TOF32 to complete

; <-- I16TOF32 complete, R1H = -4.0 (0xC0800000)

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
UI16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com I32TOF32 RaH, mem32 — Convert 32-bit Integer to 32-bit Floating-Point Value

197SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

I32TOF32 RaH, mem32 Convert 32-bit Integer to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (R0H to R7H)
mem32 32-bit source for the MOV32 operation. mem32 means that the operation can only address memory

using any of the direct or indirect addressing modes supported by the C28x CPU

Opcode LSW: 1110 0010 1000 1000
MSW: 0000 0aaa mem32

Description Convert the 32-bit signed integer indicated by the mem32 pointer to a 32-bit floating
point value and store the result in RaH.
RaH = I32ToF32[mem32]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
I32TOF32 RaH, mem32 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- I32TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVW DP, #0x0280 ; DP = 0x0280
MOV @0, #0x1111 ; [0x00A000] = 4369 (0x1111)
MOV @1, #0x1111 ; [0x00A001] = 4369 (0x1111)

; Value of the 32 bit signed integer present in
; 0x00A001 and 0x00A000 is +286331153 (0x11111111)

I32TOF32 R1H, @0 ; R1H = I32TOF32 (0x11111111)
NOP ; 1 Cycle delay for I32TOF32 to complete

; <-- I32TOF32 complete, R1H = 286331153 (0x4D888888)

See also F32TOI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, RbH
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


I32TOF32 RaH, RbH — Convert 32-bit Integer to 32-bit Floating-Point Value www.ti.com

198 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

I32TOF32 RaH, RbH Convert 32-bit Integer to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1001
MSW: 0000 0000 00bb baaa

Description Convert the signed 32-bit integer in RbH to a 32-bit floating-point value and store the
result in RaH.
RaH = I32ToF32(RbH)

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
I32TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- I32TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example MOVIZ R2H, #0x1111 ; R2H[31:16] = 4369 (0x1111)
MOVXI R2H, #0x1111 ; R2H[15:0] = 4369 (0x1111)

; Value of the 32 bit signed integer present
; in R2H is +286331153 (0x11111111)

I32TOF32 R3H, R2H ; R3H = I32TOF32 (R2H)
NOP ; 1 Cycle delay for I32TOF32 to complete

; <-- I32TOF32 complete, R3H = 286331153 (0x4D888888)

See also F32TOI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
UI32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R3H, R2H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

199SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF32 R3H, R2H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:
MPYF32 RdH, ReH, RfH
|| ADDF32 R3H, R3H, R2H

R3H floating-point destination and source register for the ADDF32
R2H Floating-point source register for the ADDF32 operation (R0H to R7H)
RdH Floating-point destination register for MPYF32 operation (R0H to R7H)

RdH cannot be R3H
ReH Floating-point source register for MPYF32 operation (R0H to R7H)
RfH Floating-point source register for MPYF32 operation (R0H to R7H)

Opcode LSW: 1110 0111 0100 00ff
MSW: feee dddc ccbb baaa

Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = ReH * RfH
R3H = R3H + R2H

Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R3H.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 or ADDF32 generates an underflow condition.
• LVF = 1 if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated

NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R3H, R2H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add www.ti.com

200 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example ; Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R2H = A = X0 * Y0
MPYF32 R2H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R3H = B = X1 * Y1
MPYF32 R3H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R3H = A + B
; R2H = C = X2 * Y2

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3
; R3H = (A + B) + C
; R2H = D = X3 * Y3

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; The next MACF32 is an alias for
; MPYF32 || ADDF32

; R2H = E = X4 * Y4
MACF32 R3H, R2H, R2H, R0H, R1H ; in parallel R3H = (A + B + C) + D
NOP ; Wait for MPYF32 || ADDF32 to complete

ADDF32 R3H, R3H, R2H ; R3H = (A + B + C + D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R3H ; Store the result

See also MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R3H, R2H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate
with Parallel Move

201SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF32 R3H, R2H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Multiply and
Accumulate with Parallel Move

Operands

R3H floating-point destination/source register R3H for the add operation
R2H Floating-point source register R2H for the add operation
RdH Floating-point destination register (R0H to R7H) for the multiply operation

RdH cannot be the same register as RaH
ReH Floating-point source register (R0H to R7H) for the multiply operation
RfH Floating-point source register (R0H to R7H) for the multiply operation
RaH Floating-point destination register for the MOV32 operation (R0H to R7H).

RaH cannot be R3H or the same register as RdH.
mem32 32-bit source for the MOV32 operation

Opcode LSW: 1110 0011 0011 fffe
MSW: eedd daaa mem32

Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF32.
R3H = R3H + R2H,
RdH = ReH * RfH,
RaH = [mem32]

Restrictions The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R3H and RaH cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MACF32 (add or multiply) generates an underflow condition.
• LVF = 1 if MACF32 (add or multiply) generates an overflow condition.

MOV32 sets the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:

MACF32 R3H, R2H, RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle

; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay for MACF32

; <-- MACF32 completes, R3H, RdH updated
NOP

Any instruction in the delay slot for this version of MACF32 must not use R3H or RdH as
a destination register or R3H or RdH as a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R3H, R2H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate with Parallel
Move www.ti.com

202 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example ; Perform 5 multiply and accumulate operations:
;
; 1ST multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4TH multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R2H = A = X0 * Y0
MPYF32 R2H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R3H = B = X1 * Y1
MPYF32 R3H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R3H = A + B
; R2H = C = X2 * Y2

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3

; R3H = (A + B) + C
; R2H = D = X3 * Y3

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; R2H = E = X4 * Y4
MPYF32 R2H, R0H, R1H ; in parallel R3H = (A + B + C) + D

|| ADDF32 R3H, R3H, R2H
NOP ; Wait for MPYF32 || ADDF32 to complete

ADDF32 R3H, R3H, R2H ; R3H = (A + B + C + D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R3H ; Store the result

See also MACF32 R3H, R2H, RdH, ReH, RfH
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R7H, R3H, mem32, *XAR7++ — 32-bit Floating-Point Multiply and Accumulate

203SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF32 R7H, R3H, mem32, *XAR7++ 32-bit Floating-Point Multiply and Accumulate

Operands

R7H Floating-point destination register
R3H Floating-point destination register
mem32 pointer to a 32-bit source location
*XAR7++ 32-bit location pointed to by auxiliary register 7, XAR7 is post incremented.

Opcode LSW: 1110 0010 0101 0000
MSW: 0001 1111 mem32

Description Perform a multiply and accumulate operation. When used as a standalone operation, the
MACF32 will perform a single multiply as shown below:
Cycle 1: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

This instruction is the only floating-point instruction that can be repeated using the single
repeat instruction (RPT ||). When repeated, the destination of the accumulate will
alternate between R3H and R7H on each cycle and R2H and R6H are used as
temporary storage for each multiply.
Cycle 1: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]
Cycle 2: R7H = R7H + R6H, R6H = [mem32] * [XAR7++]
Cycle 3: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]
Cycle 4: R7H = R7H + R6H, R6H = [mem32] * [XAR7++]
etc...

Restrictions R2H and R6H will be used as temporary storage by this instruction.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MACF32 generates an underflow condition.
• LVF = 1 if MACF32 generates an overflow condition.

Pipeline When repeated the MACF32 takes 3 + N cycles where N is the number of times the
instruction is repeated. When repeated, this instruction has the following pipeline
restrictions:

<instruction1> ; No restriction
<instruction2> ; Cannot be a 2p instruction that writes

; to R2H, R3H, R6H or R7H
RPT #(N-1) ; Execute N times, where N is even

|| MACF32 R7H, R3H, *XAR6++, *XAR7++
<instruction3> ; No restrictions.

; Can read R2H, R3H, R6H and R7H

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R7H, R3H, mem32, *XAR7++ — 32-bit Floating-Point Multiply and Accumulate www.ti.com

204 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF32 can also be used standalone. In this case, the instruction takes 2 cycles and
the following pipeline restrictions apply:

<instruction1> ; No restriction
<instruction2> ; Cannot be a 2p instruction that writes

; to R2H, R3H, R6H or R7H
MACF32 R7H, R3H, *XAR6, *XAR7 ; R3H = R3H + R2H, R2H = [mem32] * [XAR7++]

; <--
R2H and R3H are valid (note: no delay required)

NOP

Example
ZERO R2H ; Zero the accumulation registers
ZERO R3H ; and temporary multiply storage

registers
ZERO R6H
ZERO R7H
RPT #3 ; Repeat MACF32 N+1 (4) times

|| MACF32 R7H, R3H, *XAR6++, *XAR7++
ADDF32 R7H, R7H, R3H ; Final accumulate
NOP ; <-- ADDF32 completes, R7H valid
NOP

Cascading of RPT || MACF32 is allowed as long as the first and subsequent counts are
even. Cascading is useful for creating interruptible windows so that interrupts are not
delayed too long by the RPT instruction. For example:

ZERO R2H ; Zero the accumulation registers
ZERO R3H ; and temporary multiply storage

registers
ZERO R6H
ZERO R7H
RPT #3 ; Execute MACF32 N+1 (4) times

|| MACF32 R7H, R3H, *XAR6++, *XAR7++ RPT #5 ; Execute MACF32 N+1 (6) times
|| MACF32 R7H, R3H, *XAR6++, *XAR7++ RPT #N ; Repeat MACF32 N+1 times where N+1
is even
|| MACF32 R7H, R3H, *XAR6++, *XAR7++

ADDF32 R7H, R7H, R3H ; Final accumulate
NOP

; <-- ADDF32 completes, R7H valid

See also MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R7H, R6H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

205SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF32 R7H, R6H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands This instruction is an alias for the parallel multiply and add instruction. The operands are
translated by the assembler such that the instruction becomes:

MPYF32 RdH, RaH, RbH || ADDF32 R7H, R7H, R6H

R7H floating-point destination and source register for the ADDF32
R6H Floating-point source register for the ADDF32 operation (R0H to R7H)
RdH Floating-point destination register for MPYF32 operation (R0H to R7H)

RdH cannot be R3H
ReH Floating-point source register for MPYF32 operation (R0H to R7H)
RfH Floating-point source register for MPYF32 operation (R0H to R7H)

Opcode LSW: 1110 0111 0100 00ff
MSW: feee dddc ccbb baaa

Description This instruction is an alias for the parallel multiply and add, MACF32 || ADDF32,
instruction.
RdH = RaH * RbH
R7H = R6H + R6H

Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RdH
cannot be R7H.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 or ADDF32 generates an underflow condition.
• LVF = 1 if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated

NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R7H, R6H, RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add www.ti.com

206 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example ; Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R6H = A = X0 * Y0
MPYF32 R6H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R7H = B = X1 * Y1
MPYF32 R7H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R7H = A + B
; R6H = C = X2 * Y2

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3
; R7H = (A + B) + C
; R6H = D = X3 * Y3

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; Next MACF32 is an alias for
; MPYF32 || ADDF32

MACF32 R7H, R6H, R6H, R0H, R1H ; R6H = E = X4 * Y4
; in parallel R7H = (A + B + C) + D

NOP ; Wait for MPYF32 || ADDF32 to complete
ADDF32 R7H, R7H, R6H ; R7H = (A + B + C + D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R7H ; Store the result

See also MACF32 R3H, R2H, RdH, ReH, RfH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF32 R7H, R6H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate
with Parallel Move

207SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF32 R7H, R6H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Multiply and
Accumulate with Parallel Move

Operands

R7H floating-point destination/source register R7H for the add operation
R6H Floating-point source register R6H for the add operation
RdH Floating-point destination register (R0H to R7H) for the multiply operation.

RdH cannot be the same register as RaH.
ReH Floating-point source register (R0H to R7H) for the multiply operation
RfH Floating-point source register (R0H to R7H) for the multiply operation
RaH Floating-point destination register for the MOV32 operation (R0H to R7H).

RaH cannot be R3H or the same as RdH.
mem32 32-bit source for the MOV32 operation

Opcode LSW: 1110 0011 1100 fffe
MSW: eedd daaa mem32

Description Multiply/accumulate the contents of floating-point registers and move from register to
memory. The destination register for the MOV32 cannot be the same as the destination
registers for the MACF32.
R7H = R7H + R6H
RdH = ReH * RfH,
RaH = [mem32]

Restrictions The destination registers for the MACF32 and the MOV32 must be unique. That is, RaH
cannot be R7H and RaH cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MACF32 (add or multiply) generates an underflow condition.
• LVF = 1 if MACF32 (add or multiply) generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) {ZF = 1;
NF = 0;} NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline The MACF32 takes 2 pipeline cycles (2p) and the MOV32 takes a single cycle. That is:
MACF32 R7H, R6H, RdH, ReH, RfH ; 2 pipeline cycles (2p)

|| MOV32 RaH, mem32 ; 1 cycle
; <-- MOV32 completes, RaH updated

NOP ; 1 cycle delay
; <-- MACF32 completes, R7H, RdH updated

NOP

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF32 R7H, R6H, RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply and Accumulate with Parallel
Move www.ti.com

208 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R6H = A = X0 * Y0
MPYF32 R6H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R7H = B = X1 * Y1
MPYF32 R7H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R7H = A + B
; R6H = C = X2 * Y2

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3

; R7H = (A + B) + C
; R6H = D = X3 * Y3

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; R6H = E = X4 * Y4
MPYF32 R6H, R0H, R1H ; in parallel R7H = (A + B + C) + D

|| ADDF32 R7H, R7H, R6H
NOP ; Wait for MPYF32 || ADDF32 to complete

ADDF32 R7H, R7H, R6H ; R7H = (A + B + C + D) + E
NOP ; Wait for ADDF32 to complete
MOV32 @Result, R7H ; Store the result

See also MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MAXF32 RaH, RbH — 32-bit Floating-Point Maximum

209SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MAXF32 RaH, RbH 32-bit Floating-Point Maximum

Operands

RaH floating-point source/destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1001 0110
MSW: 0000 0000 00bb baaa

Description if(RaH < RbH) RaH = RbH

Special cases for the output from the MAXF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example
MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MAXF32 R2H, R1H ; R2H = -1.5, ZF = NF = 0
MAXF32 R1H, R2H ; R1H = -1.5, ZF = 0, NF = 1
MAXF32 R2H, R0H ; R2H = 5.0, ZF = 0, NF = 1
MAXF32 R0H, R2H ; R2H = 5.0, ZF = 1, NF = 0

See also CMPF32 RaH, RbH
CMPF32 RaH, #16FHi
CMPF32 RaH, #0.0
MAXF32 RaH, RbH || MOV32 RcH, RdH
MAXF32 RaH, #16FHi
MINF32 RaH, RbH
MINF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MAXF32 RaH, #16FHi — 32-bit Floating-Point Maximum www.ti.com

210 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MAXF32 RaH, #16FHi 32-bit Floating-Point Maximum

Operands

RaH floating-point source/destination register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1000 0010 0III
MSW: IIII IIII IIII Iaaa

Description Compare RaH with the floating-point value represented by the immediate operand. If the
immediate value is larger, then load it into RaH.
if(RaH < #16FHi:0) RaH = #16FHi:0

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.

Special cases for the output from the MAXF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == #16FHi:0){ZF=1, NF=0}
if(RaH > #16FHi:0) {ZF=0, NF=0}
if(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MAXF32 R0H, #5.5 ; R0H = 5.5, ZF = 0, NF = 1
MAXF32 R1H, #2.5 ; R1H = 4.0, ZF = 0, NF = 0
MAXF32 R2H, #-1.0 ; R2H = -1.0, ZF = 0, NF = 1
MAXF32 R2H, #-1.0 ; R2H = -1.5, ZF = 1, NF = 0

See also MAXF32 RaH, RbH
MAXF32 RaH, RbH || MOV32 RcH, RdH
MINF32 RaH, RbH
MINF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MAXF32 RaH, RbH ∥∥MOV32 RcH, RdH — 32-bit Floating-Point Maximum with Parallel Move

211SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MAXF32 RaH, RbH ∥∥MOV32 RcH, RdH 32-bit Floating-Point Maximum with Parallel Move

Operands

RaH floating-point source/destination register for the MAXF32 operation (R0H to R7H)
RaH cannot be the same register as RcH

RbH Floating-point source register for the MAXF32 operation (R0H to R7H)
RcH Floating-point destination register for the MOV32 operation (R0H to R7H)

RcH cannot be the same register as RaH
RdH Floating-point source register for the MOV32 operation (R0H to R7H)

Opcode LSW: 1110 0110 1001 1100
MSW: 0000 dddc ccbb baaa

Description If RaH is less than RbH, then load RaH with RbH. Thus RaH will always have the
maximum value. If RaH is less than RbH, then, in parallel, also load RcH with the
contents of RdH.
if(RaH < RbH) { RaH = RbH; RcH = RdH; }

The MAXF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for the output from the MAXF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Restrictions The destination register for the MAXF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MOVIZF32 R3H, #-2.0 ; R3H =-2.0 (0xC0000000)
MAXF32 R0H, R1H ; R0H = 5.0, R3H = -1.5, ZF = 0, NF = 0

|| MOV32 R3H, R2H
MAXF32 R1H, R0H ; R1H = 5.0, R3H = -1.5, ZF = 0, NF = 1

|| MOV32 R3H, R2H
MAXF32 R0H, R1H ; R0H = 5.0, R2H = -1.5, ZF = 1, NF = 0

|| MOV32 R2H, R1H

See also MAXF32 RaH, RbH
MAXF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MINF32 RaH, RbH — 32-bit Floating-Point Minimum www.ti.com

212 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MINF32 RaH, RbH 32-bit Floating-Point Minimum

Operands

RaH floating-point source/destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1001 0111
MSW: 0000 0000 00bb baaa

Description if(RaH > RbH) RaH = RbH

Special cases for the output from the MINF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MINF32 R0H, R1H ; R0H = 4.0, ZF = 0, NF = 0
MINF32 R1H, R2H ; R1H = -1.5, ZF = 0, NF = 0
MINF32 R2H, R1H ; R2H = -1.5, ZF = 1, NF = 0
MINF32 R1H, R0H ; R2H = -1.5, ZF = 0, NF = 1

See also MAXF32 RaH, RbH
MAXF32 RaH, #16FHi
MINF32 RaH, #16FHi
MINF32 RaH, RbH || MOV32 RcH, RdH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MINF32 RaH, #16FHi — 32-bit Floating-Point Minimum

213SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MINF32 RaH, #16FHi 32-bit Floating-Point Minimum

Operands

RaH floating-point source/destination register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1000 0011 0III
MSW: IIII IIII IIII Iaaa

Description Compare RaH with the floating-point value represented by the immediate operand. If the
immidate value is smaller, then load it into RaH.
if(RaH > #16FHi:0) RaH = #16FHi:0

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.

Special cases for the output from the MINF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == #16FHi:0){ZF=1, NF=0}
if(RaH > #16FHi:0) {ZF=0, NF=0}
if(RaH < #16FHi:0) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MINF32 R0H, #5.5 ; R0H = 5.0, ZF = 0, NF = 1
MINF32 R1H, #2.5 ; R1H = 2.5, ZF = 0, NF = 0
MINF32 R2H, #-1.0 ; R2H = -1.5, ZF = 0, NF = 1
MINF32 R2H, #-1.5 ; R2H = -1.5, ZF = 1, NF = 0

See also MAXF32 RaH, #16FHi
MAXF32 RaH, RbH
MINF32 RaH, RbH
MINF32 RaH, RbH || MOV32 RcH, RdH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MINF32 RaH, RbH ∥∥MOV32 RcH, RdH — 32-bit Floating-Point Minimum with Parallel Move www.ti.com

214 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MINF32 RaH, RbH ∥∥MOV32 RcH, RdH 32-bit Floating-Point Minimum with Parallel Move

Operands

RaH floating-point source/destination register for the MIN32 operation (R0H to R7H)
RaH cannot be the same register as RcH

RbH Floating-point source register for the MIN32 operation (R0H to R7H)
RcH Floating-point destination register for the MOV32 operation (R0H to R7H)

RcH cannot be the same register as RaH
RdH Floating-point source register for the MOV32 operation (R0H to R7H)

Opcode LSW: 1110 0110 1001 1101
MSW: 0000 dddc ccbb baaa

Description if(RaH > RbH) { RaH = RbH; RcH = RdH; }

Special cases for the output from the MINF32 operation:
• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Restrictions The destination register for the MINF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RcH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(RaH == RbH){ZF=1, NF=0}
if(RaH > RbH) {ZF=0, NF=0}
if(RaH < RbH) {ZF=0, NF=1}

Pipeline This is a single-cycle instruction.

Example
MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)
MOVIZF32 R3H, #-2.0 ; R3H = -2.0 (0xC0000000)
MINF32 R0H, R1H ; R0H = 4.0, R3H = -1.5, ZF = 0, NF = 0

|| MOV32 R3H, R2H
MINF32 R1H, R0H ; R1H = 4.0, R3H = -1.5, ZF = 1, NF = 0

|| MOV32 R3H, R2H
MINF32 R2H, R1H ; R2H = -1.5, R1H = 4.0, ZF = 1, NF = 1

|| MOV32 R1H, R3H

See also MINF32 RaH, RbH
MINF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV16 mem16, RaH — Move 16-bit Floating-Point Register Contents to Memory

215SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV16 mem16, RaH Move 16-bit Floating-Point Register Contents to Memory

Operands

mem16 points to the 16-bit destination memory
RaH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0010 0001 0011
MSW: 0000 0aaa mem16

Description Move 16-bit value from the lower 16-bits of the floating-point register (RaH[15:0]) to the
location pointed to by mem16.
[mem16] = RaH[15:0]

Flags No flags STF flags are affected.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example MOVW DP, #0x02C0 ; DP = 0x02C0
MOVXI R4H, #0x0003 ; R4H = 3.0 (0x0003)
MOV16 @0, R4H ; [0x00B000] = 3.0 (0x0003

See also MOVIZ RaH, #16FHiHex
MOVIZF32 RaH, #16FHi
MOVXI RaH, #16FLoHex

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 *(0:16bitAddr), loc32 — Move the Contents of loc32 to Memory www.ti.com

216 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 *(0:16bitAddr), loc32 Move the Contents of loc32 to Memory

Operands

0:16bitAddr 16-bit immediate address, zero extended
loc32 32- bit source location

Opcode LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in loc32 to the memory location addressed by 0:16bitAddr. The
EALLOW bit in the ST1 register is ignored by this operation.
[0:16bitAddr] = [loc32]

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a two-cycle instruction.

Example MOVIZ R5H, #0x1234 ; R5H[31:16] = 0x1234
MOVXI R5H, #0xABCD ; R5H[15:0] = 0xABCD
NOP ; 1 Alignment Cycle
MOV32 ACC, R5H ; ACC = 0x1234ABCD
MOV32 *(0xA000), @ACC ; [0x00A000] = ACC NOP

; 1 Cycle delay for MOV32 to complete
; <-- MOV32 *(0:16bitAddr), loc32 complete,
; [0x00A000] = 0xABCD, [0x00A001] = 0x1234

See also MOV32 mem32, RaH
MOV32 mem32, STF
MOV32 loc32, *(0:16bitAddr)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 ACC, RaH — Move 32-bit Floating-Point Register Contents to ACC

217SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 ACC, RaH Move 32-bit Floating-Point Register Contents to ACC

Operands

ACC 28x accumulator
RaH Floating-point source register (R0H to R7H)

Opcode LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
ACC = RaH

Flags No STF flags are affected.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Z and N flag in status register zero (ST0) of the 28x CPU are affected.

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 R0H,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,R0H ; Copy R0H to ACC
NOP ; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle MOV32 ACC, R2H

; copy R2H into ACC, takes 2 cycles
; <-- MOV32 completes, ACC is valid

NOP ; Any instruction

Example
ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; < -- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 2 cycles

; <-- MOV32 completes, ACC is valid
NOP ; Any instruction
MOVIZF32 R0H, #2.5 ; R0H = 2.5 = 0x40200000
F32TOUI32 R0H, R0H
NOP ; Delay for conversion instruction

; < -- Conversion complete, R0H valid
NOP ; Alignment cycle
MOV32 P, R0H ; P = 2 = 0x00000002

See also MOV32 P, RaH
MOV32 XARn, RaH
MOV32 XT, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 loc32, *(0:16bitAddr) — Move 32-bit Value from Memory to loc32 www.ti.com

218 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 loc32, *(0:16bitAddr) Move 32-bit Value from Memory to loc32

Operands

loc32 destination location
0:16bitAddr 16-bit address of the 32-bit source value

Opcode LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description Copy the 32-bit value referenced by 0:16bitAddr to the location indicated by loc32.
[loc32] = [0:16bitAddr]

Flags No STF flags are affected. If loc32 is the ACC register, then the Z and N flag in status
register zero (ST0) of the 28x CPU are affected.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 cycle instruction.

Example MOVW DP, #0x0300 ; DP = 0x0300
MOV @0, #0xFFFF ; [0x00C000] = 0xFFFF;
MOV @1, #0x1111 ; [0x00C001] = 0x1111;
MOV32 @ACC, *(0xC000) ; AL = [0x00C000], AH = [0x00C001]
NOP ; 1 Cycle delay for MOV32 to complete

; <-- MOV32 complete, AL = 0xFFFF, AH = 0x1111

See also MOV32 RaH, mem32{, CNDF}
MOV32 *(0:16bitAddr), loc32
MOV32 STF, mem32
MOVD32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 mem32, RaH — Move 32-bit Floating-Point Register Contents to Memory

219SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 mem32, RaH Move 32-bit Floating-Point Register Contents to Memory

Operands

RaH floating-point register (R0H to R7H)
mem32 points to the 32-bit destination memory

Opcode LSW: 1110 0010 0000 0011
MSW: 0000 0aaa mem32

Description Move from memory to STF.
[mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

Example ; Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R6H = A = X0 * Y0
MPYF32 R6H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R7H = B = X1 * Y1
MPYF32 R7H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R7H = A + B
; R6H = C = X2 * Y2

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3

; R3H = (A + B) + C
; R6H = D = X3 * Y3

MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; R6H = E = X4 * Y4
MPYF32 R6H, R0H, R1H ; in parallel R7H = (A + B + C) + D

|| ADDF32 R7H, R7H, R2H
NOP ; Wait for MPYF32 || ADDF32 to complete

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 mem32, RaH — Move 32-bit Floating-Point Register Contents to Memory www.ti.com

220 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF32 R7H, R7H, R6H ; R7H = (A + B + C + D) + E NOP

; Wait for ADDF32 to complete
MOV32 @Result, R7H ; Store the result

See also MOV32 *(0:16bitAddr), loc32
MOV32 mem32, STF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 mem32, STF — Move 32-bit STF Register to Memory

221SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 mem32, STF Move 32-bit STF Register to Memory

Operands

STF floating-point status register
mem32 points to the 32-bit destination memory

Opcode LSW: 1110 0010 0000 0000
MSW: 0000 0000 mem32

Description Copy the floating-point status register, STF, to memory.
[mem32] = STF

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

Example 1 MOVW DP, #0x0280 ; DP = 0x0280
MOVIZF32 R0H, #2.0 ; R0H = 2.0 (0x40000000)
MOVIZF32 R1H, #3.0 ; R1H = 3.0 (0x40400000)
CMPF32 R0H, R1H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 @0, STF ; [0x00A000] = 0x00000004

Example 2
MOV32 *SP++, STF ; Store STF in stack
MOVF32 R2H, #3.0 ; R2H = 3.0 (0x40400000)
MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)
CMPF32 R2H, R3H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)
MOV32 STF, *--SP ; Restore STF from stack

See also MOV32 mem32, RaH
MOV32 *(0:16bitAddr), loc32
MOVST0 FLAG

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 P, RaH — Move 32-bit Floating-Point Register Contents to P www.ti.com

222 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 P, RaH Move 32-bit Floating-Point Register Contents to P

Operands

P 28x product register P
RaH Floating-point source register (R0H to R7H)

Opcode LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in RaH to the 28x product register P.
P = RaH

Flags No flags affected in floating-point unit.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 R0H,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,R0H ; Copy R0H to ACC
NOP ; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:

ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 1 cycle

; <-- MOV32 completes, ACC is valid NOP ; Any instruction

Example MOVIZF32 R0H, #2.5 ; R0H = 2.5 = 0x40200000
F32TOUI32 R0H, R0H
NOP ; Delay for conversion instruction

; <-- Conversion complete, R0H valid
NOP ; Alignment cycle
MOV32 P, R0H ; P = 2 = 0x00000002

See also MOV32 ACC, RaH
MOV32 XARn, RaH
MOV32 XT, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 RaH, ACC — Move the Contents of ACC to a 32-bit Floating-Point Register

223SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 RaH, ACC Move the Contents of ACC to a 32-bit Floating-Point Register

Operands

RaH Floating-point destination register (R0H to R7H)
ACC accumulator

Opcode LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in ACC to the floating-point register RaH.
RaH = ACC

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 R0H,@ACC ; Copy ACC to R0H
NOP ; Wait 4 cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; I16TOF32, F32TOUI32 or F32TOI32
NOP ;

; <-- ROH is valid

Example MOV AH, #0x0000
MOV AL, #0x0200 ; ACC = 512
MOV32 R0H, ACC
NOP
NOP
NOP
NOP UI32TOF32 R0H, R0H ; R0H = 512.0 (0x44000000)

See also MOV32 RaH, P
MOV32 RaH, XARn
MOV32 RaH, XT

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 RaH, mem32 {, CNDF} — Conditional 32-bit Move www.ti.com

224 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 RaH, mem32 {, CNDF} Conditional 32-bit Move

Operands

RaH Floating-point destination register (R0H to R7H)
mem32 pointer to the 32-bit source memory location
CNDF optional condition.

Opcode LSW: 1110 0010 1010 CNDF
MSW: 0000 0aaa mem32

Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
if (CNDF == TRUE) RaH = [mem32]

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

if(CNDF == UNCF)
{

NF = RaH(31); ZF = 0;
if(RaH[30:23] == 0) { ZF = 1; NF = 0; } NI = RaH[31]; ZI = 0;
if(RaH[31:0] == 0) ZI = 1;

}
else No flags modified;

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 RaH, mem32 {, CNDF} — Conditional 32-bit Move

225SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example MOVW DP, #0x0300 ; DP = 0x0300
MOV @0, #0x5555 ; [0x00C000] = 0x5555
MOV @1, #0x5555 ; [0x00C001] = 0x5555
MOVIZF32 R3H, #7.0 ; R3H = 7.0 (0x40E00000)
MOVIZF32 R4H, #7.0 ; R4H = 7.0 (0x40E00000)
MAXF32 R3H, R4H ; ZF = 1, NF = 0
MOV32 R1H, @0, EQ ; R1H = 0x55555555

See also MOV32 RaH, RbH{, CNDF}
MOVD32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 RaH, P — Move the Contents of P to a 32-bit Floating-Point Register www.ti.com

226 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 RaH, P Move the Contents of P to a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
P product register

Opcode
LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in the product register, P, to the floating-point register RaH.
RaH = P

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 R0H,@P ; Copy P to R0H
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; I16TOF32, F32TOUI32 or F32TOI32
NOP ;

; <-- R0H is valid
; Instruction can use R0H as a source

Example MOV PH, #0x0000
MOV PL, #0x0200 ; P = 512
MOV32 R0H, P
NOP
NOP
NOP
NOP
UI32TOF32 R0H, R0H ; R0H = 512.0 (0x44000000)

See also MOV32 RaH, ACC
MOV32 RaH, XARn
MOV32 RaH, XT

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 RaH, RbH {, CNDF} — Conditional 32-bit Move

227SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 RaH, RbH {, CNDF} Conditional 32-bit Move

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)
CNDF optional condition.

Opcode LSW: 1110 0110 1100 CNDF
MSW: 0000 0000 00bb baaa

Description If the condition is true, then move the 32-bit value referenced by mem32 to the floating-
point register indicated by RaH.
if (CNDF == TRUE) RaH = RbH

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

if(CNDF == UNCF) { NF = RaH(31); ZF = 0;
if(RaH[30:23] == 0) {ZF = 1; NF = 0;} NI = RaH(31); ZI = 0;
if(RaH[31:0] == 0) ZI = 1; } else No flags modified;

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R3H, #8.0 ; R3H = 8.0 (0x41000000)
MOVIZF32 R4H, #7.0 ; R4H = 7.0 (0x40E00000)
MAXF32 R3H, R4H ; ZF = 0, NF = 0
MOV32 R1H, R3H, GT ; R1H = 8.0 (0x41000000)

See also MOV32 RaH, mem32{, CNDF}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 RaH, XARn — Move the Contents of XARn to a 32-bit Floating-Point Register www.ti.com

228 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 RaH, XARn Move the Contents of XARn to a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
XARn auxiliary register (XAR0 - XAR7)

Opcode LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in the auxiliary register XARn to the floating point register RaH.
RaH = XARn

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 R0H,@XAR7 ; Copy XAR7 to R0H
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; I16TOF32, F32TOUI32 or F32TOI32
NOP ;

; <-- R0H is valid
ADDF32 R2H,R1H ,R0H ; Instruction can use R0H as a source

Example MOVL XAR1, #0x0200 ; XAR1 = 512
MOV32 R0H, XAR1
NOP
NOP
NOP
NOP
UI32TOF32 R0H, R0H ; R0H = 512.0 (0x44000000)

See also MOV32 RaH, ACC
MOV32 RaH, P
MOV32 RaH, XT

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 RaH, XT — Move the Contents of XT to a 32-bit Floating-Point Register

229SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 RaH, XT Move the Contents of XT to a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
XT auxiliary register (XAR0 - XAR7)

Opcode LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in temporary register, XT, to the floating-point register RaH.
RaH = XT

Flags This instruction does not modify any STF register flags.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required. Four
alignment cycles are required after any copy from a standard 28x CPU register to a
floating-point register. The four alignment cycles can be filled with any non-conflicting
instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32,
and F32TOI32.
MOV32 R0H, XT ; Copy XT to R0H
NOP ; Wait 4 alignment cycles
NOP ; Do not use FRACF32, UI16TOF32
NOP ; I16TOF32, F32TOUI32 or F32TOI32
NOP ;

; <-- R0H is valid
ADDF32 R2H,R1H,R0H ; Instruction can use R0H as a sourc

Example MOVIZF32 R6H, #5.0 ; R6H = 5.0 (0x40A00000)
NOP ; 1 Alignment cycle
MOV32 XT, R6H ; XT = 5.0 (0x40A00000)
MOV32 R1H, XT ; R1H = 5.0 (0x40A00000)

See also MOV32 RaH, ACC
MOV32 RaH, P
MOV32 RaH, XARn

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 STF, mem32 — Move 32-bit Value from Memory to the STF Register www.ti.com

230 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 STF, mem32 Move 32-bit Value from Memory to the STF Register

Operands

STF floating-point unit status register
mem32 pointer to the 32-bit source memory location

Opcode
LSW: 1110 0010 1000 0000
MSW: 0000 0000 mem32

Description Move from memory to the floating-point unit's status register STF.
STF = [mem32]

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Restoring status register will overwrite all flags.

Pipeline This is a single-cycle instruction.

Example 1 MOVW DP, #0x0300 ; DP = 0x0300
MOV @2, #0x020C ; [0x00C002] = 0x020C
MOV @3, #0x0000 ; [0x00C003] = 0x0000
MOV32 STF, @2 ; STF = 0x0000020C

Example 2 MOV32 *SP++, STF ; Store STF in stack
MOVF32 R2H, #3.0 ; R2H = 3.0 (0x40400000)
MOVF32 R3H, #5.0 ; R3H = 5.0 (0x40A00000)
CMPF32 R2H, R3H ; ZF = 0, NF = 1, STF = 0x00000004
MOV32 R3H, R2H, LT ; R3H = 3.0 (0x40400000)
MOV32 STF, *--SP ; Restore STF from stack

See also MOV32 mem32, STF
MOVST0 FLAG

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 XARn, RaH — Move 32-bit Floating-Point Register Contents to XARn

231SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 XARn, RaH Move 32-bit Floating-Point Register Contents to XARn

Operands

XARn 28x auxiliary register (XAR0 - XAR7)
RaH Floating-point source register (R0H to R7H)

Opcode LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value from the floating-point register RaH to the auxiliary register XARn.
XARn = RaH

Flags No flags affected in floating-point unit.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:
MINF32 R0H,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @ACC,R0H ; Copy R0H to ACC
NOP ; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:
ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 ACC, R2H ; copy R2H into ACC, takes 1 cycle

; <-- MOV32 completes, ACC is valid
NOP ; Any instruction

Example MOVIZF32 R0H, #2.5 ; R0H = 2.5 = 0x40200000
F32TOUI32 R0H, R0H
NOP ; Delay for conversion instruction

; <-- Conversion complete, R0H valid
NOP ; Alignment cycle
MOV32 XAR0, R0H ; XAR0 = 2 = 0x00000002

See also MOV32 ACC, RaH
MOV32 P, RaH
MOV32 XT, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 XT, RaH — Move 32-bit Floating-Point Register Contents to XT www.ti.com

232 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 XT, RaH Move 32-bit Floating-Point Register Contents to XT

Operands

XT temporary register
RaH Floating-point source register (R0H to R7H)

Opcode
LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in RaH to the temporary register XT.
XT = RaH

Flags No flags affected in floating-point unit.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline While this is a single-cycle instruction, additional pipeline alignment is required when
copying a floating-point register to a C28x register. If the move follows a single cycle
floating point instruction, a single alignment cycle must be added. For example:

MINF32 R0H,R1H ; Single-cycle instruction
NOP ; 1 alignment cycle
MOV32 @XT,R0H ; Copy R0H to ACC NOP

; Any instruction

If the move follows a 2 pipeline-cycle floating point instruction, then two alignment cycles
must be used. For example:

ADDF32 R2H, R1H, R0H ; 2 pipeline instruction (2p)
NOP ; 1 cycle delay for ADDF32 to complete

; <-- ADDF32 completes, R2H is valid
NOP ; 1 alignment cycle
MOV32 XT, R2H ; copy R2H into ACC, takes 1 cycle

; <-- MOV32 completes, ACC is valid
NOP ; Any instruction

Example
MOVIZF32 R0H, #2.5 ; R0H = 2.5 = 0x40200000

F32TOUI32 R0H, R0H
NOP ; Delay for conversion instruction

; <-- Conversion complete, R0H valid
NOP ; Alignment cycle
MOV32 XT, R0H ; XT = 2 = 0x00000002

See also MOV32 ACC, RaH
MOV32 P, RaH
MOV32 XARn, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOVD32 RaH, mem32 — Move 32-bit Value from Memory with Data Copy

233SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVD32 RaH, mem32 Move 32-bit Value from Memory with Data Copy

Operands

RaH floating-point register (R0H to R7H)
mem32 pointer to the 32-bit source memory location

Opcode LSW: 1110 0010 0010 0011
MSW: 0000 0aaa mem32

Description Move the 32-bit value referenced by mem32 to the floating-point register indicated by
RaH.
RaH = [mem32] [mem32+2] = [mem32]

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

NF = RaH[31];
ZF = 0;
if(RaH[30:23] == 0){ ZF = 1; NF = 0; }
NI = RaH[31];
ZI = 0;
if(RaH[31:0] == 0) ZI = 1;

Pipeline This is a single-cycle instruction.

Example MOVW DP, #0x02C0 ; DP = 0x02C0
MOV @2, #0x0000 ; [0x00B002] = 0x0000
MOV @3, #0x4110 ; [0x00B003] = 0x4110
MOVD32 R7H, @2 ; R7H = 0x41100000,

; [0x00B004] = 0x0000, [0x00B005] = 0x4110

See also MOV32 RaH, mem32 {,CNDF}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOVF32 RaH, #32F — Load the 32-bits of a 32-bit Floating-Point Register www.ti.com

234 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVF32 RaH, #32F Load the 32-bits of a 32-bit Floating-Point Register

Operands This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:
MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex

RaH Floating-point destination register (R0H to R7H)
#32F immediate float value represented in floating-point representation

Opcode
LSW: 1110 1000 0000 0III (opcode of MOVIZ RaH, #16FHiHex)
MSW: IIII IIII IIII Iaaa

LSW: 1110 1000 0000 1III (opcode of MOVXI RaH, #16FLoHex)
MSW: IIII IIII IIII Iaaa

Description Note: This instruction accepts the immediate operand only in floating-point
representation. To specify the immediate value as a hex value (IEEE 32-bit floating-
point format) use the MOVI32 RaH, #32FHex instruction.

Load the 32-bits of RaH with the immediate float value represented by #32F.

#32F is a float value represented in floating-point representation. The assembler will only
accept a float value represented in floating-point representation. That is, 3.0 can only be
represented as #3.0. #0x40400000 will result in an error.
RaH = #32F

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline Depending on #32FH, this instruction takes one or two cycles. If all of the lower 16-bits
of the IEEE 32-bit floating-point format of #32F are zeros, then the assembler will
convert MOVF32 into only MOVIZ instruction. If the lower 16-bits of the IEEE 32-bit
floating-point format of #32F are not zeros, then the assembler will convert MOVF32 into
MOVIZ and MOVXI instructions.

Example MOVF32 R1H, #3.0 ; R1H = 3.0 (0x40400000)
; Assembler converts this instruction as
; MOVIZ R1H, #0x4040

MOVF32 R2H, #0.0 ; R2H = 0.0 (0x00000000)
; Assembler converts this instruction as
; MOVIZ R2H, #0x0

MOVF32 R3H, #12.265 ; R3H = 12.625 (0x41443D71)
; Assembler converts this instruction as
; MOVIZ R3H, #0x4144
; MOVXI R3H, #0x3D71

See also MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
MOVI32 RaH, #32FHex
MOVIZF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOVI32 RaH, #32FHex — Load the 32-bits of a 32-bit Floating-Point Register with the immediate

235SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVI32 RaH, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediate

Operands This instruction is an alias for MOVIZ and MOVXI instructions. The second operand is
translated by the assembler such that the instruction becomes:
MOVIZ RaH, #16FHiHex

MOVXI RaH, #16FLoHex

RaH floating-point register (R0H to R7H)
#32FHex A 32-bit immediate value that represents an IEEE 32-bit floating-point value.

Opcode
LSW: 1110 1000 0000 0III (opcode of MOVIZ RaH, #16FHiHex)
MSW: IIII IIII IIII Iaaa

LSW: 1110 1000 0000 1III (opcode of MOVXI RaH, #16FLoHex)
MSW: IIII IIII IIII Iaaa

Description Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MOVF32 RaH, #32F
instruction.

Load the 32-bits of RaH with the immediate 32-bit hex value represented by #32Fhex.

#32Fhex is a 32-bit immediate hex value that represents the IEEE 32-bit floating-point
value of a floating-point number. The assembler will only accept a hex immediate value.
That is, 3.0 can only be represented as #0x40400000. #3.0 will result in an error.
RaH = #32FHex

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline Depending on #32FHex, this instruction takes one or two cycles. If all of the lower 16-
bits of #32FHex are zeros, then assembler will convert MOVI32 to the MOVIZ
instruction. If the lower 16-bits of #32FHex are not zeros, then assembler will convert
MOVI32 to a MOVIZ and a MOVXI instruction.

Example MOVI32 R1H, #0x40400000 ; R1H = 0x40400000
; Assembler converts this instruction as
; MOVIZ R1H, #0x4040

MOVI32 R2H, #0x00000000 ; R2H = 0x00000000
; Assembler converts this instruction as
; MOVIZ R2H, #0x0

MOVI32 R3H, #0x40004001 ; R3H = 0x40004001
; Assembler converts this instruction as
; MOVIZ R3H, #0x4000 ; MOVXI R3H, #0x4001

MOVI32 R4H, #0x00004040 ; R4H = 0x00004040
; Assembler converts this instruction as
; MOVIZ R4H, #0x0000 ; MOVXI R4H, #0x4040

See also MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex
MOVF32 RaH, #32F
MOVIZF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOVIZ RaH, #16FHiHex — Load the Upper 16-bits of a 32-bit Floating-Point Register www.ti.com

236 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVIZ RaH, #16FHiHex Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
#16FHiHex A 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

The low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 0000 0III
MSW: IIII IIII IIII Iaaa

Description Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MOVIZF32 pseudo
instruction.

Load the upper 16-bits of RaH with the immediate value #16FHiHex and clear the low
16-bits of RaH.

#16FHiHex is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-
bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. The
assembler will only accept a hex immediate value. That is, -1.5 can only be represented
as #0xBFC0. #-1.5 will result in an error.

By itself, MOVIZ is useful for loading a floating-point register with a constant in which the
lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x40000000), 4.0
(0x40800000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). If a constant requires all 32-
bits of a floating-point register to be initialized, then use MOVIZ along with the MOVXI
instruction.
RaH[31:16] = #16FHiHex

RaH[15:0] = 0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example
; Load R0H with -1.5 (0xBFC00000)

MOVIZ R0H, #0xBFC0 ; R0H = 0xBFC00000

; Load R0H with pi = 3.141593 (0x40490FDB)
MOVIZ R0H, #0x4049 ; R0H = 0x40490000
MOVXI R0H, #0x0FDB ; R0H = 0x40490FDB

See also MOVIZF32 RaH, #16FHi
MOVXI RaH, #16FLoHex

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOVIZF32 RaH, #16FHi — Load the Upper 16-bits of a 32-bit Floating-Point Register

237SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVIZF32 RaH, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands

RaH floating-point register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode
LSW: 1110 1000 0000 0III
MSW: IIII IIII IIII Iaaa

Description Load the upper 16-bits of RaH with the value represented by #16FHi and clear the low
16-bits of RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). #16FHi can be specified in hex or float. That is, -1.5 can be
represented as #-1.5 or #0xBFC0.

MOVIZF32 is an alias for the MOVIZ RaH, #16FHiHex instruction. In the case of
MOVIZF32 the assembler will accept either a hex or float as the immediate value and
encodes it into a MOVIZ instruction. For example, MOVIZF32 RaH, #-1.5 will be
encoded as MOVIZ RaH, 0xBFC0.
RaH[31:16] = #16FHi

RaH[15:0] = 0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example
MOVIZF32 R0H, #3.0 ; R0H = 3.0 = 0x40400000
MOVIZF32 R1H, #1.0 ; R1H = 1.0 = 0x3F800000
MOVIZF32 R2H, #2.5 ; R2H = 2.5 = 0x40200000
MOVIZF32 R3H, #-5.5 ; R3H = -5.5 = 0xC0B00000
MOVIZF32 R4H, #0xC0B0 ; R4H = -5.5 = 0xC0B00000

;
; Load R5H with pi = 3.141593 (0x40490000)
;

MOVIZF32 R5H, #3.141593 ; R5H = 3.140625 (0x40490000)
;
; Load R0H with a more accurate pi = 3.141593 (0x40490FDB)
;

MOVIZF32 R0H,#0x4049 ; R0H = 0x40490000
MOVXI R0H,#0x0FDB ; R0H = 0x40490FDB

See also MOVIZ RaH, #16FHiHex
MOVXI RaH, #16FLoHex

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOVST0 FLAG — Load Selected STF Flags into ST0 www.ti.com

238 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVST0 FLAG Load Selected STF Flags into ST0

Operands

FLAG Selected flag

Opcode LSW: 1010 1101 FFFF FFFF

Description Load selected flags from the STF register into the ST0 register of the 28x CPU where
FLAG is one or more of TF, CI, ZI, ZF, NI, NF, LUF or LVF. The specified flag maps to
the ST0 register as follows:
• Set OV = 1 if LVF or LUF is set. Otherwise clear OV.
• Set N = 1 if NF or NI is set. Otherwise clear N.
• Set Z = 1 if ZF or ZI is set. Otherwise clear Z.
• Set C = 1 if TF is set. Otherwise clear C.
• Set TC = 1 if TF is set. Otherwise clear TF.
If any STF flag is not specified, then the corresponding ST0 register bit is not modified.

Restrictions Do not use the MOVST0 instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the MOVST0 operation.
; The following is INVALID

MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
MOVST0 TF ; INVALID, do not use MOVST0 in a delay slot

; The following is VALID
MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
MOVST0 TF ; VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

When the flags are moved to the C28x ST0 register, the LUF or LVF flags are
automatically cleared if selected.

Pipeline This is a single-cycle instruction.

Example Program flow is controlled by C28x instructions that read status flags in the status
register 0 (ST0) . If a decision needs to be made based on a floating-point operation, the
information in the STF register needs to be loaded into ST0 flags (Z,N,OV,TC,C) so that
the appropriate branch conditional instruction can be executed. The MOVST0 FLAG
instruction is used to load the current value of specified STF flags into the respective bits
of ST0. When this instruction executes, it will also clear the latched overflow and
underflow flags if those flags are specified.
Loop:

MOV32 R0H,*XAR4++
MOV32 R1H,*XAR3++
CMPF32 R1H, R0H
MOVST0 ZF, NF
BF Loop, GT ; Loop if (R1H > R0H)

See also MOV32 mem32, STF
MOV32 STF, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOVXI RaH, #16FLoHex — Move Immediate to the Low 16-bits of a Floating-Point Register

239SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVXI RaH, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register

Operands

Ra floating-point register (R0H to R7H)
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value. The

upper 16-bits will not be modified.

Opcode LSW: 1110 1000 0000 1III MSW: IIII IIII IIII Iaaa

Description Load the low 16-bits of RaH with the immediate value #16FLoHex. #16FLoHex
represents the lower 16-bits of an IEEE 32-bit floating-point value. The upper 16-bits of
RaH will not be modified. MOVXI can be combined with the MOVIZ or MOVIZF32
instruction to initialize all 32-bits of a RaH register.
RaH[15:0] = #16FLoHex
RaH[31:16] = Unchanged

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example ; Load R0H with pi = 3.141593 (0x40490FDB)
MOVIZ R0H,#0x4049 ; R0H = 0x40490000
MOVXI R0H,#0x0FDB ; R0H = 0x40490FDB

See also MOVIZ RaH, #16FHiHex
MOVIZF32 RaH, #16FHi

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RaH, RbH, RcH — 32-bit Floating-Point Multiply www.ti.com

240 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF32 RaH, RbH, RcH 32-bit Floating-Point Multiply

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)
RcH Floating-point source register (R0H to R7H)

Opcode
LSW: 1110 0111 0000 0000
MSW: 0000 000c ccbb baaa

Description Multiply the contents of two floating-point registers.
RaH = RbH * RcH

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example Calculate Y = A * B:
MOVL XAR4, #A

MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, # B
MOV32 R1H, *XAR4 ; Load R1H with B
MPYF32 R0H,R1H,R0H ; Multiply A * B
MOVL XAR4, #Y

; <--MPYF32 complete
MOV32 *XAR4,R0H ; Save the result

See also MPYF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH
MPYF32 RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RaH, #16FHi, RbH — 32-bit Floating-Point Multiply

241SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF32 RaH, #16FHi, RbH 32-bit Floating-Point Multiply

Operands

RaH Floating-point destination register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.
RcH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 1000 01II IIII
MSW: IIII IIII IIbb baaa

Description Multiply RbH with the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = RbH * #16FHi:0

This instruction can also be written as MPYF32 RaH, RbH, #16FHi.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example 1
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, #3.0, R3H ; R4H = 3.0 * R3H
MOVL XAR1, #0xB006 ; <-- Non conflicting instruction

; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in memory location 0xB006

Example 2 ;Same as above example but #16FHi is represented in Hex
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, #0x4040, R3H ; R4H = 0x4040 * R3H

; 3.0 is represented as 0x40400000 in
; IEEE 754 32-bit format

MOVL XAR1, #0xB006 ; <-- Non conflicting instruction
; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)

MOV32 *XAR1, R4H ; Save the result in memory location 0xB006

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RaH, #16FHi, RbH — 32-bit Floating-Point Multiply www.ti.com

242 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

See also MPYF32 RaH, RbH, #16FHi
MPYF32 RaH, RbH, RcH
MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RaH, RbH, #16FHi — 32-bit Floating-Point Multiply

243SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF32 RaH, RbH, #16FHi 32-bit Floating-Point Multiply

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1000 01II IIII
MSW: IIII IIII IIbb baaa

Description Multiply RbH with the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = RbH * #16FHi:0

This instruction can also be writen as MPYF32 RaH, #16FHi, RbH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:

MPYF32 RaH, RbH, #16FHi ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or use RaH
as a source operand.

Example 1
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, R3H, #3.0 ; R4H = R3H * 3.0
MOVL XAR1, #0xB008 ; <-- Non conflicting instruction

; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)
MOV32 *XAR1, R4H ; Save the result in memory location 0xB008

Example 2 ;Same as above example but #16FHi is represented in Hex
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R4H, R3H, #0x4040 ; R4H = R3H * 0x4040

; 3.0 is represented as 0x40400000 in
; IEEE 754 32-bit format

MOVL XAR1, #0xB008 ; <-- Non conflicting instruction
; <-- MPYF32 complete, R4H = 6.0 (0x40C00000)

MOV32 *XAR1, R4H ; Save the result in memory location 0xB008

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RaH, RbH, #16FHi — 32-bit Floating-Point Multiply www.ti.com

244 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

See also MPYF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RaH, RbH, RcH ∥∥ADDF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add

245SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF32 RaH, RbH, RcH ∥∥ADDF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

Operands

RaH Floating-point destination register for MPYF32 (R0H to R7H)
RaH cannot be the same register as RdH

RbH Floating-point source register for MPYF32 (R0H to R7H)
RcH Floating-point source register for MPYF32 (R0H to R7H)
RdH Floating-point destination register for ADDF32 (R0H to R7H)

RdH cannot be the same register as RaH
ReH Floating-point source register for ADDF32 (R0H to R7H)
RfH Floating-point source register for ADDF32 (R0H to R7H)

Opcode LSW: 1110 0111 0100 00ff
MSW: feee dddc ccbb baaa

Description Multiply the contents of two floating-point registers with parallel addition of two registers.
RaH = RbH * RcH
RdH = ReH + RfH

This instruction can also be written as:
MACF32 RaH, RbH, RcH, RdH, ReH, RfH

Restrictions The destination register for the MPYF32 and the ADDF32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 or ADDF32 generates an underflow condition.
• LVF = 1 if MPYF32 or ADDF32 generates an overflow condition.

Pipeline Both MPYF32 and ADDF32 take 2 pipeline cycles (2p) That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| ADDF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, ADDF32 complete, RaH, RdH updated

NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RaH, RbH, RcH ∥∥ADDF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Add www.ti.com

246 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example ; Perform 5 multiply and accumulate operations:
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E

MOV32 R0H, *XAR4++ ; R0H = X0
MOV32 R1H, *XAR5++ ; R1H = Y0

; R2H = A = X0 * Y0
MPYF32 R2H, R0H, R1H ; In parallel R0H = X1

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y1

; R3H = B = X1 * Y1
MPYF32 R3H, R0H, R1H ; In parallel R0H = X2

|| MOV32 R0H, *XAR4++
MOV32 R1H, *XAR5++ ; R1H = Y2

; R3H = A + B
; R2H = C = X2 * Y2

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X3
|| MOV32 R0H, *XAR4++

MOV32 R1H, *XAR5++ ; R1H = Y3

; R3H = (A + B) + C
; R2H = D = X3 * Y3

MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X4
|| MOV32 R0H, *XAR4

MOV32 R1H, *XAR5 ; R1H = Y4

; R2H = E = X4 * Y4
MPYF32 R2H, R0H, R1H ; in parallel R3H = (A + B + C) + D

|| ADDF32 R3H, R3H, R2H
NOP ; Wait for MPYF32 || ADDF32 to complete

ADDF32 R3H, R3H, R2H ; R3H = (A + B + C + D) + E NOP

; Wait for ADDF32 to complete
MOV32 @Result, R3H ; Store the result

See also MACF32 R3H, R2H, RdH, ReH, RfH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++
MACF32 R7H, R6H, RdH, ReH, RfH
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply with Parallel Move

247SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Multiply with Parallel Move

Operands

RdH Floating-point destination register for the MPYF32 (R0H to R7H)
RdH cannot be the same register as RaH

ReH Floating-point source register for the MPYF32 (R0H to R7H)
RfH Floating-point source register for the MPYF32 (R0H to R7H)
RaH Floating-point destination register for the MOV32 (R0H to R7H)

RaH cannot be the same register as RdH
mem32 pointer to a 32-bit memory location. This will be the source of the MOV32.

Opcode LSW: 1110 0011 0000 fffe
MSW: eedd daaa mem32

Description Multiply the contents of two floating-point registers and load another.
RdH = ReH * RfH
RaH = [mem32]

Restrictions The destination register for the MPYF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);

ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:

MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle

; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Multiply with Parallel Move www.ti.com

248 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example Calculate Y = M1*X1 + B1. This example assumes that M1, X1, B1 and Y1 are all on the
same data page.

MOVW DP, #M1 ; Load the data page
MOV32 R0H,@M1 ; Load R0H with M1
MOV32 R1H,@X1 ; Load R1H with X1
MPYF32 R1H,R1H,R0H ; Multiply M1*X1

|| MOV32 R0H,@B1 ; and in parallel load R0H with B1
; <-- MOV32 complete

NOP ; Wait 1 cycle for MPYF32 to complete
; <-- MPYF32 complete

ADDF32 R1H,R1H,R0H ; Add M*X1 to B1 and store in R1H
NOP ; Wait 1 cycle for ADDF32 to complete

; <-- ADDF32 complete
MOV32 @Y1,R1H ; Store the result

Calculate Y = (A * B) * C:
MOVL XAR4, #A

MOV32 R0H, *XAR4 ; Load ROH with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
MPYF32 R1H,R1H,R0H ; Calculate R1H = A * B

|| MOV32 R0H, *XAR4 ; and in parallel load R2H with C
; <-- MOV32 complete

MOVL XAR4, #Y
; <-- MPYF32 complete

MPYF32 R2H,R1H,R0H ; Calculate Y = (A * B) * C
NOP ; Wait 1 cycle for MPYF32 to complete

; MPYF32 complete
MOV32 *XAR4,R2H

See also MPYF32 RdH, ReH, RfH || MOV32 mem32, RaH
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Multiply with Parallel Move

249SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH 32-bit Floating-Point Multiply with Parallel Move

Operands

RdH Floating-point destination register for the MPYF32 (R0H to R7H)
ReH Floating-point source register for the MPYF32 (R0H to R7H)
RfH Floating-point source register for the MPYF32 (R0H to R7H)
mem32 pointer to a 32-bit memory location. This will be the destination of the MOV32.
RaH Floating-point source register for the MOV32 (R0H to R7H)

Opcode LSW: 1110 0000 0000 fffe
MSW: eedd daaa mem32

Description Multiply the contents of two floating-point registers and move from memory to register.
RdH = ReH * RfH, [mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:

MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 mem32, RaH ; 1 cycle

; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- MPYF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

Example
MOVL XAR1, #0xC003 ; XAR1 = 0xC003
MOVIZF32 R3H, #2.0 ; R3H = 2.0 (0x40000000)
MPYF32 R3H, R3H, #5.0 ; R3H = R3H * 5.0
MOVIZF32 R1H, #5.0 ; R1H = 5.0 (0x40A00000)

; <-- MPYF32 complete, R3H = 10.0 (0x41200000)
MPYF32 R3H, R1H, R3H ; R3H = R1H * R3H

|| MOV32 *XAR1, R3H ; and in parallel store previous R3 value
; MOV32 complete, [0xC003] = 0x4120,

; [0xC002] = 0x0000
NOP ; 1 cycle delay for MPYF32 to complete

; <-- MPYF32 , R3H = 50.0 (0x42480000)

See also MPYF32 RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32
MACF32 R7H, R3H, mem32, *XAR7++

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF32 RaH, RbH, RcH ∥∥SUBF32 RdH, ReH, RfH — 32-bit Floating-Point Multiply with Parallel Subtract www.ti.com

250 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF32 RaH, RbH, RcH ∥∥SUBF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel
Subtract

Operands

RaH Floating-point destination register for MPYF32 (R0H to R7H)
RaH cannot be the same register as RdH

RbH Floating-point source register for MPYF32 (R0H to R7H)
RcH Floating-point source register for MPYF32 (R0H to R7H)
RdH Floating-point destination register for SUBF32 (R0H to R7H)

RdH cannot be the same register as RaH
ReH Floating-point source register for SUBF32 (R0H to R7H)
RfH Floating-point source register for SUBF32 (R0H to R7H)

Opcode LSW: 1110 0111 0101 00ff MSW: feee dddc ccbb baaa

Description Multiply the contents of two floating-point registers with parallel subtraction of two
registers.
RaH = RbH * RcH,
RdH = ReH - RfH

Restrictions The destination register for the MPYF32 and the SUBF32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:.

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 or SUBF32 generates an underflow condition.
• LVF = 1 if MPYF32 or SUBF32 generates an overflow condition.

Pipeline MPYF32 and SUBF32 both take 2 pipeline-cycles (2p). That is:

MPYF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
|| SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)

NOP ; 1 cycle delay or non-conflicting instruction
; <-- MPYF32, SUBF32 complete. RaH, RdH updated

NOP

Any instruction in the delay slot must not use RaH or RdH as a destination register or as
a source operand.

Example
MOVIZF32 R4H, #5.0 ; R4H = 5.0 (0x40A00000)
MOVIZF32 R5H, #3.0 ; R5H = 3.0 (0x40400000)
MPYF32 R6H, R4H, R5H ; R6H = R4H * R5H

|| SUBF32 R7H, R4H, R5H ; R7H = R4H - R5H NOP
; 1 cycle delay for MPYF32 || SUBF32 to complete
; <-- MPYF32 || SUBF32 complete,
; R6H = 15.0 (0x41700000), R7H = 2.0 (0x40000000)

See also SUBF32 RaH, RbH, RcH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com NEGF32 RaH, RbH{, CNDF} — Conditional Negation

251SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

NEGF32 RaH, RbH{, CNDF} Conditional Negation

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)
CNDF condition tested

Opcode LSW: 1110 0110 1010 CNDF
MSW: 0000 0000 00bb baaa

Description if (CNDF == true) {RaH = - RbH }
else {RaH = RbH }

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

Pipeline This is a single-cycle instruction.

Example MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)
MOVIZF32 R1H, #4.0 ; R1H = 4.0 (0x40800000)
MOVIZF32 R2H, #-1.5 ; R2H = -1.5 (0xBFC00000)

MPYF32 R4H, R1H, R2H ; R4H = -6.0
MPYF32 R5H, R0H, R1H ; R5H = 20.0

; <-- R4H valid
CMPF32 R4H, #0.0 ; NF = 1

; <-- R5H valid
NEGF32 R4H, R4H, LT ; if NF = 1, R4H = 6.0
CMPF32 R5H, #0.0 ; NF = 0
NEGF32 R5H, R5H, GEQ ; if NF = 0, R4H = -20.0

See also ABSF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


POP RB — Pop the RB Register from the Stack www.ti.com

252 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

POP RB Pop the RB Register from the Stack

Operands

RB repeat block register

Opcode LSW: 1111 1111 1111 0001

Description Restore the RB register from stack. If a high-priority interrupt contains a RPTB
instruction, then the RB register must be stored on the stack before the RPTB block and
restored after the RTPB block. In a low-priority interrupt RB must always be saved and
restored. This save and restore must occur when interrupts are disabled.

Flags This instruction does not affect any flags floating-point Unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
_Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the
ISR
...
...
RPTB #BlockEnd, AL ; Execute the block AL+1 times
...
...
BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register
...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
_Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
... ; ISR may or may not include a RPTB block
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com POP RB — Pop the RB Register from the Stack

253SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

See also PUSH RB
RPTB label, #RC
RPTB label, loc16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


PUSH RB — Push the RB Register onto the Stack www.ti.com

254 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

PUSH RB Push the RB Register onto the Stack

Operands

RB repeat block register

Opcode LSW: 1111 1111 1111 0000

Description Save the RB register on the stack. If a high-priority interrupt contains a RPTB instruction,
then the RB register must be stored on the stack before the RPTB block and restored
after the RTPB block. In a low-priority interrupt RB must always be saved and restored.
This save and restore must occur when interrupts are disabled.

Flags This instruction does not affect any flags floating-point Unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction for the first iteration, and zero cycles thereafter.

Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
_Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the
ISR
...
RPTB #BlockEnd, AL ; Execute the block AL+1 times
...
...
BlockEnd ; End of block to be repeated
...
POP RB ; Restore RB register
...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
_Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
... ; ISR may or may not include a RPTB block
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
RPTB label, #RC
RPTB label, loc16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com RESTORE — Restore the Floating-Point Registers

255SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

RESTORE Restore the Floating-Point Registers

Operands

none This instruction does not have any operands

Opcode LSW: 1110 0101 0110 0010

Description Restore the floating-point register set (R0H - R7H and STF) from their shadow registers.
The SAVE and RESTORE instructions should be used in high-priority interrupts. That is
interrupts that cannot themselves be interrupted. In low-priority interrupt routines the
floating-point registers should be pushed onto the stack.

Restrictions The RESTORE instruction cannot be used in any delay slots for pipelined operations.
Doing so will yield invalid results. To avoid this, the proper number of NOPs or non-
pipelined instructions must be inserted before the RESTORE operation.
; The following is INVALID

MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
RESTORE ; INVALID, do not use RESTORE in a delay slot

; The following is VALID
MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
RESTORE ; VALID

Flags Restoring the status register will overwrite all flags:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RESTORE — Restore the Floating-Point Registers www.ti.com

256 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example The following example shows a complete context save and restore for a high-priority
interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
ST0, ST1, IER, DP, AR0, AR1 and PC. If an interrupt is low priority (that is it can be
interrupted), then push the floating point registers onto the stack instead of using the
SAVE and RESTORE operations.
; Interrupt Save
_HighestPriorityISR: ; Uninterruptable

ASP ; Align stack
PUSH RB ; Save RB register if used in the ISR
PUSH AR1H:AR0H ; Save other registers if used
PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XAR5
PUSH XAR6
PUSH XAR7
PUSH XT
SPM 0 ; Set default C28 modes
CLRC AMODE
CLRC PAGE0,OVM
SAVE RNDF32=1 ; Save all FPU registers
... ; set default FPU modes
...

; Interrupt Restore
...
RESTORE ; Restore all FPU registers
POP XT ; restore other registers
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H
POP RB ; restore RB register
NASP ; un-align stack
IRET ; return from interrupt

See also SAVE FLAG, VALUE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com RPTB label, loc16 — Repeat A Block of Code

257SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

RPTB label, loc16 Repeat A Block of Code

Operands

label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.

loc16 16-bit location for the repeat count value.

Opcode LSW: 1011 0101 0bbb bbbb
MSW: 0000 0000 loc16

Description Initialize repeat block loop, repeat count from [loc16]

Restrictions
• The maximum block size is ≤127 16-bit words.
• An even aligned block must be ≥ 9 16-bit words.
• An odd aligned block must be ≥ 8 16-bit words.
• Interrupts must be disabled when saving or restoring the RB register.
• Repeat blocks cannot be nested.
• Any discontinuity type operation is not allowed inside a repeat block. This includes all

call, branch, or TRAP instructions. Interrupts are allowed.
• Conditional execution operations are allowed.

Flags This instruction does not affect any flags in the floating-point unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes four cycles on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

Example The minimum size for the repeat block is 9 words if the block is even-aligned and 8
words if the block is odd-aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even-
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd-aligned. For blocks of
9 or more words, this is not required.
; Repeat Block of 8 Words (Interruptible)
;
; find the largest element and put its address in XAR6

.align 2

NOP
RPTB VECTOR_MAX_END, AR7 ; Execute the block AR7+1 times
MOVL ACC,XAR0
MOV32 R1H,*XAR0++ ; min size = 8, 9 words
MAXF32 R0H,R1H ; max size = 127 words
MOVST0 NF,ZF
MOVL XAR6,ACC,LT

VECTOR_MAX_END: ; label indicates the end
; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RPTB label, loc16 — Repeat A Block of Code www.ti.com

258 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the

ISR
...

...
RPTB #BlockEnd, AL ; Execute the block AL+1 times
...
...
...

BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register
...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
... ; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
PUSH RB
RPTB label, #RC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com RPTB label, #RC — Repeat a Block of Code

259SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

RPTB label, #RC Repeat a Block of Code

Operands

label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.

#RC 16-bit location

Opcode LSW: 1011 0101 1bbb bbbb
MSW: cccc cccc cccc cccc

Description Repeat a block of code. The repeat count is specified as a immediate value.

Restrictions
• The maximum block size is ≤127 16-bit words.
• An even aligned block must be ≥ 9 16-bit words.
• An odd aligned block must be ≥ 8 16-bit words.
• Interrupts must be disabled when saving or restoring the RB register.
• Repeat blocks cannot be nested.
• Any discontinuity type operation is not allowed inside a repeat block. This includes all

call, branch or TRAP instructions. Interrupts are allowed.
• Conditional execution operations are allowed.

Flags This instruction does not affect any flags int the floating-point unit:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes one cycle on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

Example The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.
; Repeat Block (Interruptible)
;
; find the largest element and put its address in XAR6
.align 2

NOP
RPTB VECTOR_MAX_END, #(4-1) ; Execute the block 4 times
MOVL ACC,XAR0
MOV32 R1H,*XAR0++ ; 8 or 9 words block size 127 words
MAXF32 R0H,R1H
MOVST0 NF,ZF
MOVL XAR6,ACC,LT
VECTOR_MAX_END: ; RE indicates the end address

; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RPTB label, #RC — Repeat a Block of Code www.ti.com

260 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0
...
PUSH RB ; Save RB register only if a RPTB block is used in the
ISR
...
...
RPTB #BlockEnd, #5 ; Execute the block 5+1 times
...
...
...
BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register
...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
... ; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
PUSH RB
RPTB #RSIZE, loc16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SAVE FLAG, VALUE — Save Register Set to Shadow Registers and Execute SETFLG

261SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SAVE FLAG, VALUE Save Register Set to Shadow Registers and Execute SETFLG

Operands

FLAG 11 bit mask indicating which floating-point status flags to change.
VALUE 11 bit mask indicating the flag value; 0 or 1.

Opcode LSW: 1110 0110 01FF FFFF
MSW: FFFF FVVV VVVV VVVV

Description This operation copies the current working floating-point register set (R0H to R7H and
STF) to the shadow register set and combines the SETFLG FLAG, VALUE operation in
a single cycle. The status register is copied to the shadow register before the flag values
are changed. The STF[SHDWM] flag is set to 1 when the SAVE command has been
executed. The SAVE and RESTORE instructions should be used in high-priority
interrupts. That is interrupts that cannot themselves be interrupted. In low-priority
interrupt routines the floating-point registers should be pushed onto the stack.

Restrictions Do not use the SAVE instruction in the delay slots for pipelined operations. Doing so can
yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SAVE operation.
; The following is INVALID

MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
SAVE RNDF32=1 ; INVALID, do not use SAVE in a delay slot

; The following is VALID
MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SAVE RNDF32=1 ; VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Any flag can be modified by this instruction.

Pipeline This is a single-cycle instruction.

Example To make it easier and more legible, the assembler will accept a FLAG=VALUE syntax for
the STFLG operation as shown below:
SAVE RNDF32=0, TF=1, ZF=0 ; FLAG = 01001000100, VALUE = X0XX0XXX1XX
MOVST0 TF, ZF, LUF ; Copy the indicated flags to ST0

; Note: X means this flag will not be modified.
; The assembler will set these X values to 0.

The following example shows a complete context save and restore for a high priority
interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT,
ST0, ST1, IER, DP, AR0, AR1 and PC.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SAVE FLAG, VALUE — Save Register Set to Shadow Registers and Execute SETFLG www.ti.com

262 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

_HighestPriorityISR:
ASP ;Align stack
PUSH RB ; Save RB register if used in the ISR
PUSH AR1H:AR0H ; Save other registers if used
PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XAR5
PUSH XAR6
PUSH XAR7
PUSH XT
SPM 0 ; Set default C28 modes
CLRC AMODE
CLRC PAGE0,OVM
SAVE RNDF32=0 ; Save all FPU registers
... ; set default FPU modes
...
...
...
RESTORE ; Restore all FPU registers
POP XT ; restore other registers
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H
POP RB ; restore RB register
NASP ; un-align stack IRET

; return from interrupt

See also RESTORE
SETFLG FLAG, VALUE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SETFLG FLAG, VALUE — Set or clear selected floating-point status flags

263SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SETFLG FLAG, VALUE Set or clear selected floating-point status flags

Operands

FLAG 11 bit mask indicating which floating-point status flags to change.
VALUE 11 bit mask indicating the flag value; 0 or 1.

Opcode LSW: 1110 0110 00FF FFFF
MSW: FFFF FVVV VVVV VVVV

Description The SETFLG instruction is used to set or clear selected floating-point status flags in the
STF register. The FLAG field is an 11-bit value that indicates which flags will be
changed. That is, if a FLAG bit is set to 1 it indicates that flag will be changed; all other
flags will not be modified. The bit mapping of the FLAG field is shown below:

10 9 8 7 6 5 4 3 2 1 0
reserved RNDF32 reserved reserved TF ZI NI ZF NF LUF LVF

The VALUE field indicates the value the flag should be set to; 0 or 1.

Restrictions Do not use the SETFLG instruction in the delay slots for pipelined operations. Doing so
can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined
instructions must be inserted before the SETFLG operation.
; The following is INVALID

MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
SETFLG RNDF32=1 ; INVALID, do not use SETFLG in a delay slot

; The following is VALID
MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)
NOP ; 1 delay cycle, R2H updated after this instruction
SETFLG RNDF32=1 ; VALID

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes Yes Yes Yes Yes Yes Yes

Any flag can be modified by this instruction.

Pipeline This is a single-cycle instruction.

Example To make it easier and legible, the assembler will accept a FLAG=VALUE syntax for the
STFLG operation as shown below:
SETFLG RNDF32=0, TF=1, ZF=0 ; FLAG = 01001001000, VALUE = X0XX1XX0XXX
MOVST0 TF, ZF, LUF ; Copy the indicated flags to ST0

; X means this flag is not modified.
; The assembler will set X values to 0

See also SAVE FLAG, VALUE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBF32 RaH, RbH, RcH — 32-bit Floating-Point Subtraction www.ti.com

264 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF32 RaH, RbH, RcH 32-bit Floating-Point Subtraction

Operands

RaH Floating-point destination register (R0H to R1)
RbH Floating-point source register (R0H to R1)
RcH Floating-point source register (R0H to R1)

Opcode LSW: 1110 0111 0010 0000
MSW: 0000 000c ccbb baaa

Description Subtract the contents of two floating-point registers
RaH = RbH - RcH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if SUBF32 generates an underflow condition.
• LVF = 1 if SUBF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
SUBF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- SUBF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example Calculate Y - A + B - C:
MOVL XAR4, #A

MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
MOVL XAR4, #C
ADDF32 R0H,R1H,R0H ; Add A + B and in parallel

|| MOV32 R2H,*XAR4 ; Load R2H with C

; <-- ADDF32 complete
SUBF32 R0H,R0H,R2H ; Subtract C from (A + B)
NOP

; <-- SUBF32 completes
MOV32 *XAR4,R0H ; Store the result

See also SUBF32 RaH, #16FHi, RbH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBF32 RaH, #16FHi, RbH — 32-bit Floating Point Subtraction

265SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF32 RaH, #16FHi, RbH 32-bit Floating Point Subtraction

Operands

RaH Floating-point destination register (R0H to R1)
#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.
RbH Floating-point source register (R0H to R1)

Opcode LSW: 1110 1000 11II IIII
MSW: IIII IIII IIbb baaa

Description Subtract RbH from the floating-point value represented by the immediate operand. Store
the result of the addition in RaH.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
RaH = #16FHi:0 - RbH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if MPYF32 generates an underflow condition.
• LVF = 1 if MPYF32 generates an overflow condition.

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
SUBF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- SUBF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example Calculate Y = 2.0 - (A + B):
MOVL XAR4, #A
MOV32 R0H, *XAR4 ; Load R0H with A
MOVL XAR4, #B
MOV32 R1H, *XAR4 ; Load R1H with B
ADDF32 R0H,R1H,R0H ; Add A + B and in parallel
NOP

; <-- ADDF32 complete
SUBF32 R0H,#2.0,R2H ; Subtract (A + B) from 2.0
NOP

; <-- SUBF32 completes
MOV32 *XAR4,R0H ; Store the result

See also SUBF32 RaH, RbH, RcH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Subtraction with Parallel Move www.ti.com

266 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 32-bit Floating-Point Subtraction with Parallel Move

Operands

RdH Floating-point destination register (R0H to R7H) for the SUBF32 operation
RdH cannot be the same register as RaH

ReH Floating-point source register (R0H to R7H) for the SUBF32 operation
RfH Floating-point source register (R0H to R7H) for the SUBF32 operation
RaH Floating-point destination register (R0H to R7H) for the MOV32 operation

RaH cannot be the same register as RdH
mem32 pointer to 32-bit source memory location for the MOV32 operation

Opcode LSW: 1110 0011 0010 fffe
MSW: eedd daaa mem32

Description Subtract the contents of two floating-point registers and move from memory to a floating-
point register.
RdH = ReH - RfH, RaH = [mem32]

Restrictions The destination register for the SUBF32 and the MOV32 must be unique. That is, RaH
cannot be the same register as RdH.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if SUBF32 generates an underflow condition.
• LVF = 1 if SUBF32 generates an overflow condition.

The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:
NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0) { ZF = 1; NF = 0; }
NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0) ZI = 1;

Pipeline SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 RaH, mem32 ; 1 cycle

; <-- MOV32 completes, RaH updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- SUBF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBF32 RdH, ReH, RfH ∥∥MOV32 RaH, mem32 — 32-bit Floating-Point Subtraction with Parallel Move

267SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

Example
MOVL XAR1, #0xC000 ; XAR1 = 0xC000
SUBF32 R0H, R1H, R2H ; (A) R0H = R1H - R2H

|| MOV32 R3H, *XAR1 ;
; <-- R3H valid

MOV32 R4H, *+XAR1[2] ;
; <-- (A) completes, R0H valid, R4H valid

ADDF32 R5H, R4H, R3H ; (B) R5H = R4H + R3H
|| MOV32 *+XAR1[4], R0H ;

; <-- R0H stored
MOVL XAR2, #0xE000 ;

; <-- (B) completes, R5H valid
MOV32 *XAR2, R5H ;

; <-- R5H stored

See also SUBF32 RaH, RbH, RcH
SUBF32 RaH, #16FHi, RbH
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Subtraction with Parallel Move www.ti.com

268 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH 32-bit Floating-Point Subtraction with Parallel Move

Operands

RdH Floating-point destination register (R0H to R7H) for the SUBF32 operation
ReH Floating-point source register (R0H to R7H) for the SUBF32 operation
RfH Floating-point source register (R0H to R7H) for the SUBF32 operation
mem32 pointer to 32-bit destination memory location for the MOV32 operation
RaH Floating-point source register (R0H to R7H) for the MOV32 operation

Opcode LSW: 1110 0000 0010 fffe
MSW: eedd daaa mem32

Description Subtract the contents of two floating-point registers and move from a floating-point
register to memory.
RdH = ReH - RfH,
[mem32] = RaH

Flags This instruction modifies the following flags in the STF register:SUBF32 RdH, ReH, RfH
|| MOV32 RaH, mem32

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The STF register flags are modified as follows:
• LUF = 1 if SUBF32 generates an underflow condition.
• LVF = 1 if SUBF32 generates an overflow condition.

Pipeline SUBF32 is a 2 pipeline-cycle instruction (2p) and MOV32 takes a single cycle. That is:
SUBF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)
|| MOV32 mem32, RaH ; 1 cycle

; <-- MOV32 completes, mem32 updated
NOP ; 1 cycle delay or non-conflicting instruction

; <-- ADDF32 completes, RdH updated
NOP

Any instruction in the delay slot must not use RdH as a destination register or as a
source operand.

Example ADDF32 R3H, R6H, R4H ; (A) R3H = R6H + R4H and R7H = I3
|| MOV32 R7H, *-SP[2] ;

; <-- R7H valid
SUBF32 R6H, R6H, R4H ; (B) R6H = R6H - R4H

; <-- ADDF32 (A) completes, R3H valid
SUBF32 R3H, R1H, R7H ; (C) R3H = R1H - R7H and store R3H (A)

|| MOV32 *+XAR5[2], R3H ;
; <-- SUBF32 (B) completes, R6H valid
; <-- MOV32 completes, (A) stored

ADDF32 R4H, R7H, R1H ; R4H = D = R7H + R1H and store R6H (B)
|| MOV32 *+XAR5[6], R6H ;

; <-- SUBF32 (C) completes, R3H valid
; <-- MOV32 completes, (B) stored

MOV32 *+XAR5[0], R3H ; store R3H (C)
; <-- MOV32 completes, (C) stored
; <-- ADDF32 (D) completes, R4H valid

MOV32 *+XAR5[4], R4H ; store R4H (D)
; <-- MOV32 completes, (D) stored

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBF32 RdH, ReH, RfH ∥∥MOV32 mem32, RaH — 32-bit Floating-Point Subtraction with Parallel Move

269SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

See also SUBF32 RaH, RbH, RcH
SUBF32 RaH, #16FHi, RbH
SUBF32 RdH, ReH, RfH || MOV32 RaH, mem32
MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SWAPF RaH, RbH{, CNDF} — Conditional Swap www.ti.com

270 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SWAPF RaH, RbH{, CNDF} Conditional Swap

Operands

RaH floating-point register (R0H to R7H)
RbH floating-point register (R0H to R7H)
CNDF condition tested

Opcode LSW: 1110 0110 1110 CNDF
MSW: 0000 0000 00bb baaa

Description Conditional swap of RaH and RbH.
if (CNDF == true) swap RaH and RbH

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected

Pipeline This is a single-cycle instruction.

Example ;find the largest element and put it in R1H

MOVL XAR1, #0xB000 ;
MOV32 R1H, *XAR1 ; Initialize R1H
.align 2

NOP
RPTB LOOP_END, #(10-1); Execute the block 10 times
MOV32 R2H, *XAR1++ ; Update R2H with next element
CMPF32 R2H, R1H ; Compare R2H with R1H
SWAPF R1H, R2H, GT ; Swap R1H and R2H if R2 > R1
NOP ; For minimum repeat block size
NOP ; For minimum repeat block size

LOOP_END:

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com TESTTF CNDF — Test STF Register Flag Condition

271SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

TESTTF CNDF Test STF Register Flag Condition

Operands

CNDF condition to test

Opcode LSW: 1110 0101 1000 CNDF

Description Test the floating-point condition and if true, set the TF flag. If the condition is false, clear
the TF flag. This is useful for temporarily storing a condition for later use.
if (CNDF == true) TF = 1; else TF = 0;

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes No No No No No No

TF = 0; if (CNDF == true) TF = 1;

Note: If (CNDF == UNC or UNCF), the TF flag will be set to 1.

Pipeline This is a single-cycle instruction.

Example CMPF32 R0H, #0.0 ; Compare R0H against 0
TESTTF LT ; Set TF if R0H less than 0 (NF == 0)
ABS R0H, R0H ; Get the absolute value of R0H

; Perform calculations based on ABS R0H
MOVST0 TF ; Copy TF to TC in ST0
SBF End, NTC ; Branch to end if TF was not set
NEGF32 R0H, R0H

End

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


UI16TOF32 RaH, mem16 — Convert unsigned 16-bit integer to 32-bit floating-point value www.ti.com

272 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

UI16TOF32 RaH, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value

Operands

RaH Floating-point destination register (R0H to R7H)
mem16 pointer to 16-bit source memory location

Opcode LSW: 1110 0010 1100 0100

MSW: 0000 0aaa mem16

Description RaH = UI16ToF32[mem16]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI16TOF32 RaH, mem16 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- UI16TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example ; float32 y,m,b;
; AdcRegs.RESULT0 is an unsigned int
; Calculate: y = (float)AdcRegs.ADCRESULT0 * m + b;
;

MOVW DP @0x01C4
UI16TOF32 R0H, @8 ; R0H = (float)AdcRegs.RESULT0
MOV32 R1H, *-SP[6] ; R1H = M

; <-- Conversion complete, R0H valid
MPYF32 R0H, R1H, R0H ; R0H = (float)X * M
MOV32 R1H, *-SP[8] ; R1H = B

; <-- MPYF32 complete, R0H valid
ADDF32 R0H, R0H, R1H ; R0H = Y = (float)X * M + B
NOP

; <-- ADDF32 complete, R0H valid
MOV32 *-[SP], R0H ; Store Y

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com UI16TOF32 RaH, RbH — Convert unsigned 16-bit integer to 32-bit floating-point value

273SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

UI16TOF32 RaH, RbH Convert unsigned 16-bit integer to 32-bit floating-point value

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1111

MSW: 0000 0000 00bb baaa

Description RaH = UI16ToF32[RbH]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI16TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- UI16TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example MOVXI R5H, #0x800F ; R5H[15:0] = 32783 (0x800F)
UI16TOF32 R6H, R5H ; R6H = UI16TOF32 (R5H[15:0])
NOP ; 1 cycle delay for UI16TOF32 to complete

; R6H = 32783.0 (0x47000F00)

See also F32TOI16 RaH, RbH
F32TOI16R RaH, RbH
F32TOUI16 RaH, RbH
F32TOUI16R RaH, RbH
I16TOF32 RaH, RbH
I16TOF32 RaH, mem16
UI16TOF32 RaH, mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


UI32TOF32 RaH, mem32 — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value www.ti.com

274 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

UI32TOF32 RaH, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (R0H to R7H)
mem32 pointer to 32-bit source memory location

Opcode LSW: 1110 0010 1000 0100

MSW: 0000 0aaa mem32

Description RaH = UI32ToF32[mem32]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI32TOF32 RaH, mem32 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay non-conflicting instruction

; <-- UI32TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example ; unsigned long X
; float Y, M, B
; ...
; Calculate Y = (float)X * M + B
;

UI32TOF32 R0H, *-SP[2] ; R0H = (float)X
MOV32 R1H, *-SP[6] ; R1H = M

; <-- Conversion complete, R0H valid
MPYF32 R0H, R1H, R0H ; R0H = (float)X * M
MOV32 R1H, *-SP[8] ; R1H = B

; <-- MPYF32 complete, R0H valid
ADDF32 R0H, R0H, R1H ; R0H = Y = (float)X * M + B
NOP

; <-- ADDF32 complete, R0H valid
MOV32 *-[SP], R0H ; Store Y

See also F32TOI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
I32TOF32 RaH, RbH
UI32TOF32 RaH, RbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com UI32TOF32 RaH, RbH — Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

275SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

UI32TOF32 RaH, RbH Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 1011

MSW: 0000 0000 00bb baaa

Description RaH = UI32ToF32[RbH]

Flags This instruction does not affect any flags:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a 2 pipeline cycle (2p) instruction. That is:
UI32TOF32 RaH, RbH ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- UI32TOF32 completes, RaH updated
NOP

Any instruction in the delay slot must not use RaH as a destination register or as a
source operand.

Example MOVIZ R3H, #0x8000 ; R3H[31:16] = 0x8000
MOVXI R3H, #0x1111 ; R3H[15:0] = 0x1111

; R3H = 2147488017
UI32TOF32 R4H, R3H ; R4H = UI32TOF32 (R3H)
NOP ; 1 cycle delay for UI32TOF32 to complete

; R4H = 2147488017.0 (0x4F000011)

See also F32TOI32 RaH, RbH
F32TOUI32 RaH, RbH
I32TOF32 RaH, mem32
I32TOF32 RaH, RbH
UI32TOF32 RaH, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ZERO RaH — Zero the Floating-Point Register RaH www.ti.com

276 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ZERO RaH Zero the Floating-Point Register RaH

Operands

RaH floating-point register (R0H to R7H)

Opcode LSW: 1110 0101 1001 0aaa

Description Zero the indicated floating-point register:
RaH = 0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

Example ;for(i = 0; i < n; i++)
;{
; real += (x[2*i] * y[2*i]) - (x[2*i+1] * y[2*i+1]);
; imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
;}
;Assume AR7 = n-1

ZERO R4H ; R4H = real = 0
ZERO R5H ; R5H = imag = 0

LOOP
MOV AL, AR7
MOV ACC, AL << 2
MOV AR0, ACC
MOV32 R0H, *+XAR4[AR0] ; R0H = x[2*i]
MOV32 R1H, *+XAR5[AR0] ; R1H = y[2*i]
ADD AR0, #2
MPYF32 R6H, R0H, R1H; ; R6H = x[2*i] * y[2*i]

|| MOV32 R2H, *+XAR4[AR0] ; R2H = x[2*i+1]
MPYF32 R1H, R1H, R2H ; R1H = y[2*i] * x[2*i+2]

|| MOV32 R3H, *+XAR5[AR0] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H ; R2H = x[2*i+1] * y[2*i+1]

|| ADDF32 R4H, R4H, R6H ; R4H += x[2*i] * y[2*i]
MPYF32 R0H, R0H, R3H ; R0H = x[2*i] * y[2*i+1]

|| ADDF32 R5H, R5H, R1H ; R5H += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; R4H -= x[2*i+1] * y[2*i+1]
ADDF32 R5H, R5H,R0H ; R5H += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--

See also ZEROA

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ZEROA — Zero All Floating-Point Registers

277SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ZEROA Zero All Floating-Point Registers

Operands

none

Opcode LSW: 1110 0101 0110 0011

Description Zero all floating-point registers:
R0H = 0
R1H = 0
R2H = 0
R3H = 0
R4H = 0
R5H = 0
R6H = 0
R7H = 0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

Example ;for(i = 0; i < n; i++)
;{
; real += (x[2*i] * y[2*i]) - (x[2*i+1] * y[2*i+1]);
; imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
;}
;Assume AR7 = n-1

ZER0A ; Clear all RaH registers
LOOP

MOV AL, AR7
MOV ACC, AL << 2
MOV AR0, ACC
MOV32 R0H, *+XAR4[AR0] ; R0H = x[2*i]
MOV32 R1H, *+XAR5[AR0] ; R1H = y[2*i]
ADD AR0,#2
MPYF32 R6H, R0H, R1H; ; R6H = x[2*i] * y[2*i]

|| MOV32 R2H, *+XAR4[AR0] ; R2H = x[2*i+1]
MPYF32 R1H, R1H, R2H ; R1H = y[2*i] * x[2*i+2]

|| MOV32 R3H, *+XAR5[AR0] ; R3H = y[2*i+1]
MPYF32 R2H, R2H, R3H ; R2H = x[2*i+1] * y[2*i+1]

|| ADDF32 R4H, R4H, R6H ; R4H += x[2*i] * y[2*i]
MPYF32 R0H, R0H, R3H ; R0H = x[2*i] * y[2*i+1]

|| ADDF32 R5H, R5H, R1H ; R5H += y[2*i] * x[2*i+2]
SUBF32 R4H, R4H, R2H ; R4H -= x[2*i+1] * y[2*i+1]
ADDF32 R5H, R5H,R0H ; R5H += x[2*i] * y[2*i+1]
BANZ LOOP , AR7--

See also ZEROA

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOV32 RaL, mem32{, CNDF} — Conditional 32-bit Move www.ti.com

278 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 RaL, mem32{, CNDF} Conditional 32-bit Move

Operands

RaL Floating-point destination register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
CNDF optional condition.

Opcode LSW: 1110 0010 1001 CNDF
MSW: 0000 0aaa mem32

Description If the condition is true, then move the contents of memory referenced by mem32 to
floating-point register indicated by RaL.

if(CNDF == true) RaH = unchanged, RaL = [mem32]

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes No Yes Yes No No

if(CNDF == UNCF)
{
NF = RxH(31);
ZF = 0;
if(RaH(30:20) == 0)

{ ZF = 1; NF = 0; }
if(RaL(31:0) != 0)

ZI = 0;
}

else
No flags modified;

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOVDD32 RaL,mem32 — Move From Register To Memory 32-bit Move

279SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVDD32 RaL,mem32 Move From Register To Memory 32-bit Move

Operands

RaL Floating-point destination register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0010 0100 0010
MSW: 0000 0aaa mem32

Description RaH = [mem32], RaL = unchanged, [mem32+4] = [mem32].

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes No Yes Yes No No

NF = RxH(31);
ZF = 0;
if(RaH(30:20) == 0)

{ ZF = 1; NF = 0; }
if(RaL(31:0) != 0)

ZI = 0;

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOVDD32 RaH,mem32 — Move From Register To Memory 32-bit Move www.ti.com

280 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVDD32 RaH,mem32 Move From Register To Memory 32-bit Move

Operands

RaH Floating-point destination register (R0H to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0010 0100 0011
MSW: 0000 0aaa mem32

Description RaH = [mem32], RaL = unchanged, [mem32+4] = [mem32].

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

NF = RaH(31);
ZF = 0;
if(RaH(30:23) == 0)

{ ZF = 1; NF = 0; }
NI = RaH(31);
ZI = 0;
if(RaH(31:0) == 0)

ZI = 1;

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV32 mem32,RaL — Move From Memory to Register 32-bit Move

281SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV32 mem32,RaL Move From Memory to Register 32-bit Move

Operands

RaL Floating-point source register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0010 0000 0010
MSW: 0000 0aaa mem32

Description [mem32] = RaL.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MOVIX RaL,#16I — Load the Upper 16-bits of a 32-bit Floating-Point Register www.ti.com

282 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVIX RaL,#16I Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands

RaL Floating-point destination register (R0L to R7L)
#16I A 16-bit immediate value.

Opcode LSW: 1110 1001 0000 0III
MSW: IIII IIII IIII Iaaa

Description RaL(15:0) = unchanged RaL(31:16) = #16I.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOVXI RaL, #16I — Load the Lower 16-bits of a 32-bit Floating-Point Register

283SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOVXI RaL, #16I Load the Lower 16-bits of a 32-bit Floating-Point Register

Operands

RaL Floating-point destination register (R0L to R7L)
#16I A 16-bit immediate value.

Opcode LSW: 1110 1001 0000 1III
MSW: IIII IIII IIII Iaaa

Description RaL(15:0) = #16I RaL(31:16) = unchanged.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF64 Rd,Re,Rf ∥∥MOV32 RaL,mem32 — 64-bit Floating-Point Multiply with Parallel Move www.ti.com

284 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF64 Rd,Re,Rf ∥∥MOV32 RaL,mem32 64-bit Floating-Point Multiply with Parallel Move

Operands

Rd Floating-point destination register for the MPYF64 (R0 to R7)
Re Floating-point source register for the MPYF64 (R0 to R7)
Rf Floating-point source register for the MPYF64 (R0 to R7)
RaL Floating-point destination register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 1000 fffe
MSW: eedd daaa mem32

Description Multiply the contents of two floating-point registers and load another

Rd = Re * Rf, RaL = [mem32].

The destination register for the MOV32 cannot be the same as the destination registers
for the MPYF64.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes

The LUF flag is set to 1 if the MPY operation generated an underflow condition.
The LVF flag is set to 1 if the MPY operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.

Pipeline MPYF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF64 Rd,Re,Rf ∥∥MOV32 mem32,RaL — 64-bit Floating-Point Multiply with Parallel Move

285SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF64 Rd,Re,Rf ∥∥MOV32 mem32,RaL 64-bit Floating-Point Multiply with Parallel Move

Operands

Rd Floating-point destination register for the MPYF64 (R0 to R7)
Re Floating-point source register for the MPYF64 (R0 to R7)
Rf Floating-point source register for the MPYF64 (R0 to R7)
RaL Floating-point source register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0000 1000 fffe
MSW: eedd daaa mem32

Description Multiply the contents of two floating-point registers and write from Register to memory.
Rd = Re * Rf, [mem32] = RaL

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if the MPY operation generated an underflow condition.
The LVF flag is set to 1 if the MPY operation generated an overflow condition.

Pipeline MPYF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF64 Rd,Re,Rf ∥∥ MOV32 RaL, mem32 — 64-bit Floating-Point Addition with Parallel Move www.ti.com

286 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF64 Rd,Re,Rf ∥∥ MOV32 RaL, mem32 64-bit Floating-Point Addition with Parallel Move

Operands

Rd Floating-point destination register for the ADDF64 (R0 to R7)
Re Floating-point source register for the ADDF64 (R0 to R7)
Rf Floating-point source register for the ADDF64 (R0 to R7)
RaL Floating-point destination register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 1001 fffe
MSW: eedd daaa mem32

Description Perform an ADDF64 and a MOV32 in parallel.

Rd = Re + Rf, RaL = [mem32]

The destination register for the MOV32 cannot be the same as the destination registers
for the ADDF64.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes

The LUF flag is set to 1 if the ADD operation generated an underflow condition.
The LVF flag is set to 1 if the ADD operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.

Pipeline ADDF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF64 Rd,Re,Rf ∥∥MOV32 mem32, RaL — 64-bit Floating-Point Addition with Parallel Move

287SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF64 Rd,Re,Rf ∥∥MOV32 mem32, RaL 64-bit Floating-Point Addition with Parallel Move

Operands

Rd Floating-point destination register for the ADDF64 (R0 to R7)
Re Floating-point source register for the ADDF64 (R0 to R7)
Rf Floating-point source register for the ADDF64 (R0 to R7)
RaL Floating-point source register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0000 1001 fffe
MSW: eedd daaa mem32

Description Perform an ADDF64 and a MOV32 in parallel.
Rd = Re + Rf, [mem32] = RaL

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if the ADD operation generated an underflow condition.
The LVF flag is set to 1 if the ADD operation generated an overflow condition.

Pipeline ADDF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBF64 Rd,Re,Rf ∥∥MOV32 RaL,mem32 — 64-bit Floating-Point Subtraction with Parallel Move www.ti.com

288 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF64 Rd,Re,Rf ∥∥MOV32 RaL,mem32 64-bit Floating-Point Subtraction with Parallel Move

Operands

Rd Floating-point destination register for the SUBF64 (R0 to R7)
Re Floating-point source register for the SUBF64 (R0 to R7)
Rf Floating-point source register for the SUBF64 (R0 to R7)
RaH Floating-point destination register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 1010 fffe
MSW: eedd daaa mem32

Description Perform an SUBF64 and a MOV32 in parallel.
Rd = Re - Rf, RaL = [mem32]
The destination register for the MOV32 cannot be the same as the destination
registers for the SUBF64.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes

The LUF flag is set to 1 if the SUB operation generated an underflow condition.
The LVF flag is set to 1 if the SUB operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.

Pipeline SUBF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBF64 Rd,Re,Rf ∥∥MOV32 mem32, RaL — 64-bit Floating-Point Subtraction with Parallel Move

289SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF64 Rd,Re,Rf ∥∥MOV32 mem32, RaL 64-bit Floating-Point Subtraction with Parallel Move

Operands

Rd Floating-point destination register for the SUBF64 (R0 to R7)
Re Floating-point source register for the SUBF64 (R0 to R7)
Rf Floating-point source register for the SUBF64 (R0 to R7)
RaL Floating-point source register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0000 1010 fffe
MSW: eedd daaa mem32

Description Perform an SUBF64 and a MOV32 in parallel.
Rd = Re - Rf, [mem32] = RaL

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if the SUB operation generated an underflow condition.
The LVF flag is set to 1 if the SUB operation generated an overflow condition.

Pipeline SUBF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF64 R3,R2,Rd,Re,Rf ∥∥MOV32 RaL, mem32 — 64-bit Floating-Point Multiply and Accumulate with Parallel Move
www.ti.com

290 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF64 R3,R2,Rd,Re,Rf ∥∥MOV32 RaL, mem32 64-bit Floating-Point Multiply and Accumulate with
Parallel Move

Operands

R3 Floating-point destination/source register R3 for the add operation
R2 Floating-point source register R2 for the add operation
Rd Floating-point destination register (R0 to R7) for the multiply operation
Re Floating-point source register (R0 to R7) for the multiply operation
Rf Floating-point source register (R0 to R7) for the multiply operation
RaL Floating-point destination register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 1011 fffe
MSW: eedd daaa mem32

Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF64.

R3 = R3 + R2, Rd = Re * Rf, RaL = [mem32]

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes

The LUF flag is set to 1 if the MAC operation generated an underflow condition.
The LVF flag is set to 1 if the MAC operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.

Pipeline MACF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF64 R7,R6,Rd,Re,Rf ∥∥MOV32 RaL, mem32 — 64-bit Floating-Point Multiply and Accumulate with Parallel
Move

291SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF64 R7,R6,Rd,Re,Rf ∥∥MOV32 RaL, mem32 64-bit Floating-Point Multiply and Accumulate with
Parallel Move

Operands

R7 Floating-point destination/source register R7 for the add operation
R6 Floating-point source register R6 for the add operation
Rd Floating-point destination register (R0 to R7) for the multiply operation
Re Floating-point source register (R0 to R7) for the multiply operation
Rf Floating-point source register (R0 to R7) for the multiply operation
RaL Floating-point destination register (R0L to R7L)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 1110 fffe
MSW: eedd daaa mem32

Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF64.

R7 = R7 + R6, Rd = Re * Rf, RaL = [mem32]

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes No Yes Yes Yes Yes

The LUF flag is set to 1 if the MAC operation generated an underflow condition.
The LVF flag is set to 1 if the MAC operation generated an overflow condition.
The ZI, ZF, NF flags are modified only by the respective MOV32 operations. Refer
to earlier descriptions of MOV32 operations for flag setting details.

Pipeline MACF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF64 Rd,Re,Rf ∥∥MOV32 RaH,mem32 — 64-bit Floating-Point Multiply with Parallel Move www.ti.com

292 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF64 Rd,Re,Rf ∥∥MOV32 RaH,mem32 64-bit Floating-Point Multiply with Parallel Move

Operands

Rd Floating-point destination register for the MPYF64 (R0 to R7)
Re Floating-point source register for the MPYF64 (R0 to R7)
Rf Floating-point source register for the MPYF64 (R0 to R7)
RaH Floating-point destination register (R0H to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 0100 fffe
MSW: eedd daaa mem32

Description Perform a MPYF64 and a MOV32 in parallel.
Rd = Re * Rf, RaH = [mem32]
The destination register for the MOV32 cannot be the same as the destination
registers for the MPYF64.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The LUF flag is set to 1 if the MPY operation generated an underflow condition.
The LVF flag is set to 1 if the MPY operation generated an overflow condition.
The ZI, NI, ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.

Pipeline MPYF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF64 Rd,Re,Rf ∥∥MOV32 mem32, RaH — 64-bit Floating-Point Multiply with Parallel Move

293SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF64 Rd,Re,Rf ∥∥MOV32 mem32, RaH 64-bit Floating-Point Multiply with Parallel Move

Operands

Rd Floating-point destination register for the MPYF64 (R0 to R7)
Re Floating-point source register for the MPYF64 (R0 to R7)
Rf Floating-point source register for the MPYF64 (R0 to R7)
RaH Floating-point source register (R0H to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0000 0100 fffe
MSW: eedd daaa mem32

Description Perform a MPYF64 and a MOV32 in parallel.
Rd = Re * Rf, [mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if the MPY operation generated an underflow condition.
The LVF flag is set to 1 if the MPY operation generated an overflow condition.

Pipeline MPYF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF64 Rd,Re,Rf ∥∥MOV32 RaH,mem32 — 64-bit Floating-Point Addition with Parallel Move www.ti.com

294 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF64 Rd,Re,Rf ∥∥MOV32 RaH,mem32 64-bit Floating-Point Addition with Parallel Move

Operands

Rd Floating-point destination register for the ADDF64 (R0 to R7)
Re Floating-point source register for the ADDF64 (R0 to R7)
Rf Floating-point source register for the ADDF64 (R0 to R7)
RaH Floating-point destination register (R0H to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 0101 fffe
MSW: eedd daaa mem32

Description Perform a ADDF64 and a MOV32 in parallel.
Rd = Re + Rf, RaH = [mem32]
The destination register for the MOV32 cannot be the same as the destination
registers for the ADDF64.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The LUF flag is set to 1 if the ADD operation generated an underflow condition.
The LVF flag is set to 1 if the ADD operation generated an overflow condition.
The ZI, NI, ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.

Pipeline ADDF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF64 Rd,Re,Rf ∥∥MOV32 mem32, RaH — 64-bit Floating-Point Addition with Parallel Move

295SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF64 Rd,Re,Rf ∥∥MOV32 mem32, RaH 64-bit Floating-Point Addition with Parallel Move

Operands

Rd Floating-point destination register for the ADDF64 (R0 to R7)
Re Floating-point source register for the ADDF64 (R0 to R7)
Rf Floating-point source register for the ADDF64 (R0 to R7)
RaH Floating-point source register (R0H to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0000 0101 fffe
MSW: eedd daaa mem32

Description Perform a ADDF64 and a MOV32 in parallel.
Rd = Re + Rf, [mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if the ADD operation generated an underflow condition.
The LVF flag is set to 1 if the ADD operation generated an overflow condition.

Pipeline ADDF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBF64 Rd,Re,Rf ∥∥MOV32 RaH,mem32 — 64-bit Floating-Point Subtraction with Parallel Move www.ti.com

296 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF64 Rd,Re,Rf ∥∥MOV32 RaH,mem32 64-bit Floating-Point Subtraction with Parallel Move

Operands

Rd Floating-point destination register for the SUBF64 (R0 to R7)
Re Floating-point source register for the SUBF64 (R0 to R7)
Rf Floating-point source register for the SUBF64 (R0 to R7)
RaH Floating-point destination register (R0H to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 0110 fffe
MSW: eedd daaa mem32

Description Perform a SUBF64 and a MOV32 in parallel.
Rd = Re - Rf, RaH = [mem32]
The destination register for the MOV32 cannot be the same as the destination
registers for the SUBF64

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The LUF flag is set to 1 if the SUB operation generated an underflow condition.
The LVF flag is set to 1 if the SUB operation generated an overflow condition.
The ZI, NI, ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.

Pipeline SUBF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBF64 Rd,Re,Rf ∥∥MOV32 mem32, RaH — 64-bit Floating-Point Subtraction with Parallel Move

297SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF64 Rd,Re,Rf ∥∥MOV32 mem32, RaH 64-bit Floating-Point Subtraction with Parallel Move

Operands

Rd Floating-point destination register for the SUBF64 (R0 to R7)
Re Floating-point source register for the SUBF64 (R0 to R7)
Rf Floating-point source register for the SUBF64 (R0 to R7)
RaH Floating-point source register (R0H to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0000 0110 fffe
MSW: eedd daaa mem32

Description Perform a SUBF64 and a MOV32 in parallel.
Rd = Re - Rf, [mem32] = RaH

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if the SUB operation generated an underflow condition.
The LVF flag is set to 1 if the SUB operation generated an overflow condition.

Pipeline SUBF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MACF64 R3,R2,Rd,Re,Rf ∥∥MOV32 RaH, mem32 — 64-bit Floating-Point Multiply and Accumulate with Parallel Move
www.ti.com

298 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF64 R3,R2,Rd,Re,Rf ∥∥MOV32 RaH, mem32 64-bit Floating-Point Multiply and Accumulate with
Parallel Move

Operands

R3 Floating-point destination/source register R3 for the add operation
R2 Floating-point source register R2 for the add operation
Rd Floating-point destination register (R0 to R7) for the multiply operation
Re Floating-point source register (R0 to R7) for the multiply operation
Rf Floating-point source register (R0 to R7) for the multiply operation
RaH Floating-point destination register (R0H to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 0111 fffe
MSW: eedd daaa mem32

Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF64.

R3 = R3 + R2, Rd = Re * Rf, RaH = [mem32]

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The LUF flag is set to 1 if the MAC operation generated an underflow condition.
The LVF flag is set to 1 if the MAC operation generated an overflow condition.
The ZI, NI, ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.

Pipeline MACF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MACF64 R7,R6,Rd,Re,Rf ∥∥MOV32 RaH, mem32 — 64-bit Floating-Point Multiply and Accumulate with Parallel
Move

299SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MACF64 R7,R6,Rd,Re,Rf ∥∥MOV32 RaH, mem32 64-bit Floating-Point Multiply and Accumulate with
Parallel Move

Operands

R7 Floating-point destination/source register R7 for the add operation
R6 Floating-point source register R6 for the add operation
Rd Floating-point destination register (R0 to R7) for the multiply operation
Re Floating-point source register (R0 to R7) for the multiply operation
Rf Floating-point source register (R0 to R7) for the multiply operation
RaH Floating-point destination register (R0H to R7H)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0011 1101 fffe
MSW: eedd daaa mem32

Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MOV32 cannot be the same as the
destination registers for the MACF64.

R7 = R7 + R6, Rd = Re * Rf, RaH = [mem32]

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes Yes Yes

The LUF flag is set to 1 if the MAC operation generated an underflow condition.
The LVF flag is set to 1 if the MAC operation generated an overflow condition.
The ZI, NI,ZF, NF flags are modified only by the respective MOV32 operations.
Refer to earlier descriptions of MOV32 operations for flag setting details.

Pipeline MACF64 takes 3 pipeline-cycles (3p) and MOV32 takes a single cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF64 Ra,Rb,Rc ∥∥ADDF64 Rd,Re,Rf — 64-bit Floating-Point Multiply with Parallel Addition www.ti.com

300 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF64 Ra,Rb,Rc ∥∥ADDF64 Rd,Re,Rf 64-bit Floating-Point Multiply with Parallel Addition

Operands

Ra Floating-point destination register for the MPYF64 (R0 to R7)
Rb Floating-point source register for the MPYF64 (R0 to R7)
Rc Floating-point source register for the MPYF64 (R0 to R7)
Rd Floating-point destination register for ADDF64 (R0 to R7)
Re Floating-point source register for ADDF64 (R0 to R7)
Rf Floating-point source register for ADDF64 (R0 to R7)

Opcode LSW: 1110 0111 1100 00ff
MSW: feee dddc ccbb baaa

Description Perform a MPYF64 and a ADDF64 in parallel.
Ra = Rb * Rc, Rd = Re + Rf
The destination register for the ADDF64 cannot be the same as the destination
registers for the MPYF64

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if either the MPY operation or ADD operation generated
an underflow condition.
The LVF flag is set to 1 if either the MPY operation or ADD operation generated
an overflow condition.

Pipeline MPYF64 takes 3 pipeline-cycles (3p) and ADDF64 takes 3 pipeline-cycles (3p)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF64 Ra,Rb,Rc ∥∥SUBF64 Rd,Re,Rf — 64-bit Floating-Point Multiply with Parallel Subtraction

301SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF64 Ra,Rb,Rc ∥∥SUBF64 Rd,Re,Rf 64-bit Floating-Point Multiply with Parallel Subtraction

Operands

Ra Floating-point destination register for the MPYF64 (R0 to R7)
Rb Floating-point source register for the MPYF64 (R0 to R7)
Rc Floating-point source register for the MPYF64 (R0 to R7)
Rd Floating-point destination register for SUBF64 (R0 to R7)
Re Floating-point source register for SUBF64 (R0 to R7)
Rf Floating-point source register for SUBF64 (R0 to R7)

Opcode LSW: 1110 0111 1101 00ff
MSW: feee dddc ccbb baaa

Description Perform a MPYF64 and a SUBF64 in parallel.
Ra = Rb * Rc, Rd = Re - Rf
The destination register for the SUBF64 cannot be the same as the destination
registers for the MPYF64

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if either the MPY operation or SUB operation generated
an underflow condition.
The LVF flag is set to 1 if either the MPY operation or SUB operation generated
an overflow condition.

Pipeline MPYF64 takes 3 pipeline-cycles (3p) and SUBF64 takes 3 pipeline-cycles (3p)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MPYF64 Ra,Rb,Rc — 64-bit Floating-Point Multiply www.ti.com

302 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF64 Ra,Rb,Rc 64-bit Floating-Point Multiply

Operands

Ra Floating-point destination register for the MPYF64 (R0 to R7)
Rb Floating-point source register for the MPYF64 (R0 to R7)
Rc Floating-point source register for the MPYF64 (R0 to R7)

Opcode LSW: 1110 0111 1000 0000
MSW: 0000 000c ccbb baaa

Description Ra = Rb * Rc

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if MPY operation generated an underflow condition.
The LVF flag is set to 1 if MPY operation generated an overflow condition.

Pipeline MPYF64 takes 3 pipeline-cycles (3p)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ADDF64 Ra,Rb,Rc — 64-bit Floating-Point Addition

303SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF64 Ra,Rb,Rc 64-bit Floating-Point Addition

Operands

Ra Floating-point destination register for the ADDF64 (R0 to R7)
Rb Floating-point source register for the ADDF64 (R0 to R7)
Rc Floating-point source register for the ADDF64 (R0 to R7)

Opcode LSW: 1110 0111 1001 0000
MSW: 0000 000c ccbb baaa

Description Ra = Rb + Rc

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if ADD operation generated an underflow condition.
The LVF flag is set to 1 if ADD operation generated an overflow condition.

Pipeline ADDF64 takes 3 pipeline-cycles (3p)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBF64 Ra,Rb,Rc — 64-bit Floating-Point Subtraction www.ti.com

304 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF64 Ra,Rb,Rc 64-bit Floating-Point Subtraction

Operands

Ra Floating-point destination register for the SUBF64 (R0 to R7)
Rb Floating-point source register for the SUBF64 (R0 to R7)
Rc Floating-point source register for the SUBF64 (R0 to R7)

Opcode LSW: 1110 0111 1010 0000
MSW: 0000 000c ccbb baaa

Description Ra = Rb - Rc

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if SUB operation generated an underflow condition.
The LVF flag is set to 1 if SUB operation generated an overflow condition.

Pipeline SUBF64 takes 3 pipeline-cycles (3p)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPYF64 Ra,Rb,#16F OR MPYF64 Ra,#16F, Rb — 64-bit Floating-Point Multiply

305SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MPYF64 Ra,Rb,#16F OR MPYF64 Ra,#16F, Rb 64-bit Floating-Point Multiply

Operands

Ra Floating-point destination register for the MPYF64 (R0 to R7)
Rb Floating-point source register for the MPYF64 (R0 to R7)
#16F 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low

16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1001 01II IIII
MSW: IIII IIII IIbb baaa

Description Ra = Rb * #16F:0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if MPY operation generated an underflow condition.
The LVF flag is set to 1 if MPY operation generated an overflow condition.

Pipeline MPYF64 takes 3 pipeline-cycles (3p)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ADDF64 Ra,Rb,#16F OR ADDF64 Ra,#16F, Rb — 64-bit Floating-Point Addition www.ti.com

306 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ADDF64 Ra,Rb,#16F OR ADDF64 Ra,#16F, Rb 64-bit Floating-Point Addition

Operands

Ra Floating-point destination register for the ADDF64 (R0 to R7)
Rb Floating-point source register for the ADDF64 (R0 to R7)
#16F 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low

16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1001 10II IIII
MSW: IIII IIII IIbb baaa

Description Ra = Rb + #16F:0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if ADD operation generated an underflow condition.
The LVF flag is set to 1 if ADD operation generated an overflow condition.

Pipeline ADDF64 takes 3 pipeline-cycles (3p)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBF64 Ra,#16F,Rb — 64-bit Floating-Point Subtraction

307SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

SUBF64 Ra,#16F,Rb 64-bit Floating-Point Subtraction

Operands

Ra Floating-point destination register for the SUBF64 (R0 to R7)
Rb Floating-point source register for the SUBF64 (R0 to R7)
#16F 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low

16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1001 11II IIII
MSW: IIII IIII IIbb baaa

Description Ra = #16F:0 - Rb

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

The LUF flag is set to 1 if SUB operation generated an underflow condition.
The LVF flag is set to 1 if SUB operation generated an overflow condition.

Pipeline SUBF64 takes 3 pipeline-cycles (3p)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CMPF64 Ra, Rb — 64-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

308 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

CMPF64 Ra, Rb 64-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

Ra Floating-point source register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1001 1000
MSW: 0000 0000 00bb baaa

Description Set ZF and NF flags on the result of Ra - Rb. The CMPF64 instruction is performed as a
logical compare operation. This is possible because of the IEEE format offsetting the
exponent. Basically the bigger the binary number, the bigger the floating-point value.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

If(Ra == Rb/#16F/#0.0) ZF=1, NF=0
If(Ra > Rb/#16F/#0.0) ZF=0, NF=0
If(Ra < Rb/#16F/#0.0) ZF=0, NF=1

Pipeline This is a single cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com CMPF64 Ra,#16F — 64-bit Floating-Point Compare for Equal, Less Than or Greater Than

309SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

CMPF64 Ra,#16F 64-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

Ra Floating-point source register (R0 to R7)
#16F A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1001 0001 0III
MSW: IIII IIII IIII Iaaa

Description Set ZF and NF flags on the result of (Ra - #16F:0). The CMPF64 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

If(Ra == #16F) ZF=1, NF=0
If(Ra > #16F) ZF=0, NF=0
If(Ra < #16F) ZF=0, NF=1

Pipeline This is a single cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


CMPF64 Ra,#0.0 — 64-bit Floating-Point Compare for Equal, Less Than or Greater Than www.ti.com

310 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

CMPF64 Ra,#0.0 64-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands

Ra Floating-point source register (R0 to R7)
#0.0 zero

Opcode LSW: 1110 0101 1011 0aaa

Description Set ZF and NF flags on the result of (Ra - #0.0). The CMPF64 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

If(Ra == #0.0) ZF=1, NF=0
If(Ra > #0.0) ZF=0, NF=0
If(Ra < #0.0) ZF=0, NF=1

Pipeline This is a single cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MAXF64 Ra, Rb — 64-bit Floating-Point Maximum

311SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MAXF64 Ra, Rb 64-bit Floating-Point Maximum

Operands

Ra Floating-point source register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1001 1010
MSW: 0000 0000 00bb baaa

Description if(Ra < Rb) Ra = Rb

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

If(Ra == Rb) ZF=1, NF=0
If(Ra > Rb) ZF=0, NF=0
If(Ra < Rb) ZF=0, NF=1

Pipeline MAXF64 takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MAXF64 Ra, Rb ∥∥MOV64 Rc,Rd — 64-bit Floating-Point Maximum with Parallel Move www.ti.com

312 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MAXF64 Ra, Rb ∥∥MOV64 Rc,Rd 64-bit Floating-Point Maximum with Parallel Move

Operands

Ra floating-point source/destination register for the MAXF64 operation (R0 to R7)
Rb Floating-point source register for the MAXF64 operation (R0 to R7)
Rc Floating-point destination register for the MOV64 operation (R0 to R7)
Rd Floating-point source register for the MOV64 operation (R0 to R7)

Opcode LSW: 1110 0110 1001 1110
MSW: 0000 dddc ccbb baaa

Description if(Ra < Rb) { Ra = Rb; Rc = Rd; }
The destination register for the MOV64 cannot be the same as the destination
registers for the MAXF64

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

If(Ra == Rb) ZF=1, NF=0
If(Ra > Rb) ZF=0, NF=0
If(Ra < Rb) ZF=0, NF=1

Pipeline MAXF64 in parallel with MOV64 takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MAXF64 Ra, #16F — 64-bit Floating-Point Maximum

313SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MAXF64 Ra, #16F 64-bit Floating-Point Maximum

Operands

Ra floating-point source/destination register for the MAXF64 operation (R0 to R7)
#16F A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1001 0010 0III
MSW: IIII IIII IIII Iaaa

Description if(Ra < #16F:0) Ra = #16F:0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

If(Ra == #16F) ZF=1, NF=0
If(Ra > #16F) ZF=0, NF=0
If(Ra < #16F) ZF=0, NF=1

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MINF64 Ra, Rb — 64-bit Floating-Point Minimum www.ti.com

314 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MINF64 Ra, Rb 64-bit Floating-Point Minimum

Operands

Ra floating-point source/destination register for the MINF64 operation (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1001 1011
MSW: 0000 0000 00bb baaa

Description if(Ra > Rb) Ra = Rb

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

If(Ra == Rb) ZF=1, NF=0
If(Ra > Rb) ZF=0, NF=0
If(Ra < Rb) ZF=0, NF=1

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MINF64 Ra, Rb ∥∥MOV64 Rc,Rd — 64-bit Floating-Point Minimum with Parallel Move

315SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MINF64 Ra, Rb ∥∥MOV64 Rc,Rd 64-bit Floating-Point Minimum with Parallel Move

Operands

Ra floating-point source/destination register for the MINF64 operation (R0 to R7)
Rb Floating-point source register for the MINF64 operation (R0 to R7)
Rc Floating-point destination register for the MOV64 operation (R0 to R7)
Rd Floating-point source register for the MOV64 operation (R0 to R7)

Opcode LSW: 1110 0110 1001 1111
MSW: 0000 dddc ccbb baaa

Description if(Ra > Rb) { Ra = Rb; Rc = Rd; }
The destination register for the MOV64 cannot be the same as the destination
registers for the MINF64

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

If(Ra == Rb) ZF=1, NF=0
If(Ra > Rb) ZF=0, NF=0
If(Ra < Rb) ZF=0, NF=1

Pipeline MINF64 in parallel with MOV64 takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MINF64 Ra, #16F — 64-bit Floating-Point Minimum www.ti.com

316 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MINF64 Ra, #16F 64-bit Floating-Point Minimum

Operands

Ra floating-point source/destination register for the MINF64 operation (R0 to R7)
#16F A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The

low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: 1110 1001 0011 0III
MSW: IIII IIII IIII Iaaa

Description if(Ra > #16F:0) Ra = #16F:0

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

If(Ra == #16F) ZF=1, NF=0
If(Ra > #16F) ZF=0, NF=0
If(Ra < #16F) ZF=0, NF=1

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com F64TOI32 RaH,Rb — Convert 64-bit Floating-Point Value to 32-bit Integer

317SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F64TOI32 RaH,Rb Convert 64-bit Floating-Point Value to 32-bit Integer

Operands

RaH Floating-point destination register (R0H to R7H)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1000 0100
MSW: 0000 0000 00bb baaa

Description RaH = F64ToI32(Rb)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F64TOUI32 RaH,Rb — Convert 64-bit Floating-Point Value to 32-bit Unsigned Integer www.ti.com

318 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F64TOUI32 RaH,Rb Convert 64-bit Floating-Point Value to 32-bit Unsigned Integer

Operands

RaH Floating-point destination register (R0H to R7H)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1000 0110
MSW: 0000 0000 00bb baaa

Description RaH = F64ToUI32(Rb)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com I32TOF64 Ra,mem32 — Convert 32-bit Integer to 64-bit Floating-Point Value

319SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

I32TOF64 Ra,mem32 Convert 32-bit Integer to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0010 1000 1001
MSW: 0000 0aaa mem32

Description Ra = I32ToF64[mem32]

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


I32TOF64 Ra,RbH — Convert 32-bit Integer to 64-bit Floating-Point Value www.ti.com

320 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

I32TOF64 Ra,RbH Convert 32-bit Integer to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1000 0101
MSW: 0000 0000 00bb baaa

Description Ra = I32ToF64(RbH)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com UI32TOF64 Ra,mem32 — Convert unsigned 32-bit Integer to 64-bit Floating-Point Value

321SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

UI32TOF64 Ra,mem32 Convert unsigned 32-bit Integer to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0010 1000 0101
MSW: 0000 0aaa mem32

Description Ra = UI32ToF64[men32]

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F64TOI64 Ra,Rb — Convert 64-bit Floating-Point Value to 64-bit Integer www.ti.com

322 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F64TOI64 Ra,Rb Convert 64-bit Floating-Point Value to 64-bit Integer

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1000 0100
MSW: 0000 0000 00bb baaa

Description Ra = F64ToI64(Rb)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com F64TOUI64 Ra,Rb — Convert 64-bit Floating-Point Value to 64-bit unsigned Integer

323SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F64TOUI64 Ra,Rb Convert 64-bit Floating-Point Value to 64-bit unsigned Integer

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1000 0110
MSW: 1000 0000 00bb baaa

Description Ra = F64ToUI64(Rb)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


I64TOF64 Ra,Rb — Convert 64-bit Integer to 64-bit Floating-Point Value www.ti.com

324 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

I64TOF64 Ra,Rb Convert 64-bit Integer to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1000 0101
MSW: 1000 0000 00bb baaa

Description Ra = I64ToF64(Rb)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com UI64TOF64 Ra,Rb — Convert 64-bit unsigned Integer to 64-bit Floating-Point Value

325SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

UI64TOF64 Ra,Rb Convert 64-bit unsigned Integer to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1000 0111
MSW: 1000 0000 00bb baaa

Description Ra = UI64ToF64(Rb)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


I64TOF64 Ra,Rb — Convert 64-bit Integer to 64-bit Floating-Point Value www.ti.com

326 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

I64TOF64 Ra,Rb Convert 64-bit Integer to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1000 0101
MSW: 1000 0000 00bb baaa

Description Ra = I64ToF64(Rb)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com UI64TOF64 Ra,Rb — Convert 64-bit unsigned Integer to 64-bit Floating-Point Value

327SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

UI64TOF64 Ra,Rb Convert 64-bit unsigned Integer to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1000 0111
MSW: 1000 0000 00bb baaa

Description Ra = UI64ToF64(Rb)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


FRACF64 Ra,Rb — Fractional Portion of a 64-bit Floating-Point Value www.ti.com

328 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

FRACF64 Ra,Rb Fractional Portion of a 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1111 0001
MSW: 1000 0000 00bb baaa

Description Returns in Ra the fractional portion of F64 value in Rb.

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com F64TOF32 RaH,Rb — Convert 64-bit Floating-Point Value to 32-bit Floating-Point Value

329SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F64TOF32 RaH,Rb Convert 64-bit Floating-Point Value to 32-bit Floating-Point Value

Operands

RaH Floating-point destination register (R0H to R7H)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1001 0000
MSW: 0000 0000 00bb baaa

Description RaH = F64ToF32(Rb)
(if RNDF32 == 1, round to nearest)

Flags This instruction does not affect any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This instruction takes 2 pipeline-cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F32TOF64 Ra,RbH — Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value www.ti.com

330 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F32TOF64 Ra,RbH Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
RbH Floating-point source register (R0H to R7H)

Opcode LSW: 1110 0110 1001 0001
MSW: 0000 0000 00bb baaa

Description Ra = F32ToF64(RbH)

Flags This instruction affects the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

NF = RaH(31);
ZF = 0;
if(RaH(30:20) == 0)

{ ZF = 1; NF = 0; }

Pipeline This instruction takes 1 cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com F32TOF64 Ra, mem32 — Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value

331SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F32TOF64 Ra, mem32 Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0010 1000 1100
MSW: 0000 0aaa mem32

Description Ra = F32ToF64[mem32]

Flags This instruction affects the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

NF = RaH(31);
ZF = 0;
if(RaH(30:20) == 0)

{ ZF = 1; NF = 0; }

Pipeline This instruction takes 1 cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


F32DTOF64 Ra, mem32 — Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value www.ti.com

332 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

F32DTOF64 Ra, mem32 Convert 32-bit Floating-Point Value to 64-bit Floating-Point Value

Operands

Ra Floating-point destination register (R0 to R7)
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location

Opcode LSW: 1110 0010 0010 0001
MSW: 0000 0aaa mem32

Description Ra = F32ToF64[mem32] ,
[mem32+2] = [mem32]

Flags This instruction affects the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

NF = RaH(31);
ZF = 0;
if(RaH(30:20) == 0)

{ ZF = 1; NF = 0; }

Pipeline This instruction takes 1 cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ABSF64 Ra, Rb — 64-bit Floating-Point Absolute Value

333SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

ABSF64 Ra, Rb 64-bit Floating-Point Absolute Value

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1001 1001
MSW: 0000 0000 00bb baaa

Description if( Rb < 0 ) { Ra = -Rb }
else { Ra = Rb }

Flags This instruction affects the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

NF = 0; ZF = 0;
if(RaH(30:20) == 0)

ZF = 1;

Pipeline This instruction takes 1 cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


NEGF64 Ra, Rb{, CNDF} — Conditional Negation www.ti.com

334 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

NEGF64 Ra, Rb{, CNDF} Conditional Negation

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)
CNDF condition tested

Opcode LSW: 1110 0110 1011 CNDF
MSW: 0000 0000 00bb baaa

Description if(CNDF == true) { Ra = -Rb }

else { Ra = Rb }

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction affects the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No Yes Yes No No

if(CNDF == UNCF)
{
NF = RaH(31); ZF = 0;
if(RaH(30:20) == 0)

{ ZF = 1; NF = 0; }
}

else
No flags modified;

Pipeline This instruction takes 1 cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MOV64 Ra, Rb{, CNDF} — Conditional 64-bit Move

335SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

MOV64 Ra, Rb{, CNDF} Conditional 64-bit Move

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)
CNDF condition tested

Opcode LSW: 1110 0110 1101 CNDF
MSW: 0000 0000 00bb baaa

Description if(CNDF == true) Ra = Rb

CNDF is one of the following conditions:

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified

when a conditional operation is executed. All other conditions will not modify these flags.

Encode (1) CNDF Description STF Flags Tested
0000 NEQ Not equal to zero ZF == 0
0001 EQ Equal to zero ZF == 1
0010 GT Greater than zero ZF == 0 AND NF == 0
0011 GEQ Greater than or equal to zero NF == 0
0100 LT Less than zero NF == 1
0101 LEQ Less than or equal to zero ZF == 1 AND NF == 1
1010 TF Test flag set TF == 1
1011 NTF Test flag not set TF == 0
1100 LU Latched underflow LUF == 1
1101 LV Latched overflow LVF == 1
1110 UNC Unconditional None
1111 UNCF (2) Unconditional with flag modification None

Flags This instruction affects the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes Yes Yes Yes No No

if(CNDF == UNCF)
{
NF = RaH(31); ZF = 0;
if(RaH(30:20) == 0)

{ ZF = 1; NF = 0; }

NI = RaH(31);
ZI = 0;
if(Ra(63:0) == 0)

ZI = 1;
}

else
No flags modified.

Pipeline This instruction takes 1 cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


EISQRTF64 Ra, Rb — 64-bit Floating-Point Square-Root Reciprocal Approximation www.ti.com

336 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

EISQRTF64 Ra, Rb 64-bit Floating-Point Square-Root Reciprocal Approximation

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1001 0010
MSW: 1000 0000 00bb baaa

Description This operation generates an estimate of "1/sqrt(X)" in F64 format and then this value can
be used in a Newton-Raphson algorithm to get a more accurate answer. That is:

Ye = Estimate(1/sqrt(Xi));
Ye = Ye*(1.5 - Ye*Ye*Xi/2.0)
Ye = Ye*(1.5 - Ye*Ye*Xi/2.0)

After about ~4 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to F64 format. On iteration the mantissa bit accuracy approximately doubles.
The EISQRTF64 operation will not generate a -ve, De-Norm or NaN value.

Ra = Estimate Of 1/sqrt(Rb)

Flags This instruction affects the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

Pipeline This instruction takes 2 pipe-line cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com EINVF64 Ra, Rb — 64-bit Floating-Point Reciprocal Approximation

337SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Floating Point Unit (FPU64)

EINVF64 Ra, Rb 64-bit Floating-Point Reciprocal Approximation

Operands

Ra Floating-point destination register (R0 to R7)
Rb Floating-point source register (R0 to R7)

Opcode LSW: 1110 0110 1001 0011
MSW: 1000 0000 00bb baaa

Description This operation generates an estimate of "1/X" in F64 format and then this value can be
used in a Newton-Raphson algorithm to get a more accurate answer. That is:

Ye = Estimate(1/X);
Ye = Ye*(2.0 - Ye*X)
Ye = Ye*(2.0 - Ye*X)

After about ~4 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to F64 format. On iteration the mantissa bit accuracy approximately doubles.
The EINVF64 operation will not generate a -ve zero, De-Norm or NaN value.

Ra = Estimate Of 1/Rb

Flags This instruction affects the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

Pipeline This instruction takes 2 pipe-line cycles (2p).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


338 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Chapter 3
SPRUHS1C–October 2014–Revised November 2019

Viterbi, Complex Math and CRC Unit (VCU)

The C28x Viterbi, Complex Math and CRC Unit (VCU) is a fully programmable block which accelerates
the performance of communications-based algorithms by up to a factor of 8X over C28x CPU alone. In
addition to eliminating the need for a second processor to manage the communications link, the
performance gains of the VCU provides headroom for future system growth and higher bit rates or,
conversely, enables devices to operate at a lower MHz to reduce system cost and power consumption.
This document provides an overview of the architectural structure and instruction set of the C28x VCU.

The VCU module described in this chapter is a Type 0/1 VCU. See the TMS320x28xx, 28xxx DSP
Peripheral Reference Guide (SPRU566) for a list of all devices with a VCU module of the same type, to
determine the differences between the types, and for a list of device-specific differences within a type.
This document describes the architecture, pipeline, instruction set, and interrupts of the C28x+VCU.

Topic ........................................................................................................................... Page

3.1 Overview ......................................................................................................... 339
3.2 Components of the C28x plus VCU..................................................................... 340
3.3 Emulation Logic ............................................................................................... 341
3.4 Register Set ..................................................................................................... 344
3.5 Pipeline ........................................................................................................... 351
3.6 Instruction Set.................................................................................................. 356
3.7 Rounding Mode ................................................................................................ 461

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru566


www.ti.com Overview

339SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.1 Overview
The C28x with VCU (C28x+VCU) processor extends the capabilities of the C28x fixed-point or floating-
point CPU by adding registers and instructions to support the following algorithm types:
• Viterbi decoding

Viterbi decoding is commonly used in baseband communications applications. The viterbi decode
algorithm consists of three main parts: branch metric calculations, compare-select (viterbi butterfly) and
a traceback operation. Table 3-1 shows a summary of the VCU performance for each of these
operations.

(1) C28x CPU takes 15 cycles per butterfly.
(2) C28x CPU takes 22 cycles per stage.

Table 3-1. Viterbi Decode Performance

Viterbi Operation VCU Cycles
Branch Metric Calculation (code rate = 1/2) 1
Branch Metric Calculation (code rate = 1/3) 2p

Viterbi Butterfly (add-compare-select) 2 (1)

Traceback per Stage 3 (2)

• Cyclic redundancy check (CRC)
CRC algorithms provide a straightforward method for verifying data integrity over large data blocks,
communication packets, or code sections. The C28x+VCU can perform 8-, 16-, and 32-bit CRCs. For
example, the VCU can compute the CRC for a block length of 10 bytes in 10 cycles. A CRC result
register contains the current CRC which is updated whenever a CRC instruction is executed.

• Complex math
Complex math is used in many applications. The VCU A few of which are:

– Fast fourier transform (FFT)
The complex FFT is used in spread spectrum communications, as well in many signal processing
algorithms.

– Complex filters
Complex filters improve data reliability, transmission distance, and power efficiency. The
C28x+VCU can perform a complex I and Q multiple with coefficients (four multiplies) in a single
cycle. In addition, the C28x+VCU can read/write the real and imaginary parts of 16-bit complex data
to memory in a single cycle.

Table 3-2 shows a summary of the VCU operations enabled by the VCU:

Table 3-2. Complex Math Performance

Complex Math Operation VCU Cycles Notes
Add Or Subtract 1 32 +/- 32 = 32-bit (Useful for filters)
Add or Subtract 1 16 +/- 32 = 15-bit (Useful for FFT)

Multiply 2p 16 x 16 = 32-bit
Multiply & Accumulate (MAC) 2p 32 + 32 = 32-bit, 16 x 16 = 32-bit

RPT MAC 2p+N Repeat MAC. Single cycle after the first operation.

This C28x+VCU draws from the best features of digital signal processing; reduced instruction set
computing (RISC); and microcontroller architectures, firmware, and tool sets. The C2000 features include
a modified Harvard architecture and circular addressing. The RISC features are single-cycle instruction
execution, register-to-register operations, and modified Harvard architecture (usable in Von Neumann
mode). The microcontroller features include ease of use through an intuitive instruction set, byte packing
and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction
and data fetches to be performed in parallel. The CPU can read instructions and data while it writes data
simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this
over six separate address/data buses.

Throughout this document the following notations are used:

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Program address bus (22)

Program data bus (32)

Read address bus (32)

Read data bus (32)

Write data bus (32)

Existing
memory,

peripherals,
interfaces

PIE

Write address bus (32)

LVF

LUF

C28x
+

FPU
+

Vcu

Memory
bus

Memory
bus

Components of the C28x plus VCU www.ti.com

340 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

• C28x refers to the C28x fixed-point CPU.
• C28x plus Floating-Point and C28x+FPU both refer to the C28x CPU with enhancements to support

IEEE single-precision floating-point operations.
• C28x plus VCU and C28x+VCU both refer to the C28x CPU with enhancements to support viterbi

decode, complex math and CRC.
• Some devices have both the FPU and the VCU. These are refered to as C28x+FPU+VCU.

3.2 Components of the C28x plus VCU
The VCU extends the capabilities of the C28x CPU and C28x+FPU processors by adding additional
instructions. No changes have been made to existing instructions, pipeline, or memory bus architecture.
Therefore, programs written for the C28x are completely compatible with the C28x+VCU. All of the
features of the C28x documented in TMS320C28x DSP CPU and Instruction Set Reference Guide
(literature number SPRU430) apply to the C28x+VCU. All features documented in the TMS320C28x
Floating Point Unit and Instruction Set Reference Guide (SPRUE02) apply to the C28x+FPU+VCU.

Figure 3-1 shows the block diagram of the VCU.

Figure 3-1. C28x + VCU Block Diagram

The C28x+VCU contains the same features as the C28x fixed-point CPU:
• A central processing unit for generating data and program-memory addresses; decoding and executing

instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory.

• Emulation logic for monitoring and controlling various parts and functions of the device and for testing
device operation. This logic is identical to that on the C28x fixed-point CPU.

• Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the
emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic
is identical to the C28x fixed-point CPU.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430


www.ti.com Emulation Logic

341SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

• Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

• Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and
increments or decrements pointers in parallel with ALU operations.

• Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to
that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to
and a read from the same location from occurring out of order.

• Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left
by up to 16 bits and to the right by up to 16 bits.

• Fixed-Point Multiplier. The multiplier performs 32-bit × 32-bit 2s-complement multiplication with a 64-bit
result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one
signed number and one unsigned number.

The VCU adds the following features:
• Instructions to support Cyclic Redundancy Check (CRC) or a polynomial code checksum:

– CRC8
– CRC16
– CRC32

• Clocked at the same rate as the main CPU (SYSCLKOUT).
• Instructions to support a software implementation of a Viterbi Decoder

– Branch metrics calculations
– Add-Compare Select or Viterbi Butterfly
– Traceback

• Complex Math Arithmetic Unit
– Add or Subtract
– Multiply
– Multiply and Accumulate (MAC)
– Repeat MAC (RPT || MAC)

• Independent register space. These registers function as source and destination registers for VCU
instructions.

• Some VCU instructions require pipeline alignment. This alignment is done through software to allow
the user to improve performance by taking advantage of required delay slots. See Section 3.5 for more
information.

Devices with the floating-point unit also include:
• Floating point unit (FPU). The 32-bit FPU performs IEEE single-precision floating-point operations.
• Dedicated floating-point registers.

3.3 Emulation Logic
The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following
features. For more details about these features, refer to the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number SPRU430):
• Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content

of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline

• A counter for performance benchmarking.
• Multiple debug events. Any of the following debug events can cause a break in program execution:

– A breakpoint initiated by the ESTOP0 or ESTOP1 instruction.
– An access to a specified program-space or data-space location. When a debug event causes the

C28x to enter the debug-halt state, the event is called a break event.
• Real-time mode of operation.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Emulation Logic www.ti.com

342 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.3.1 Memory Map
Like the C28x, the C28x+VCU uses 32-bit data addresses and 22-bit program addresses. This allows for a
total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space.
Memory blocks on all C28x+VCU designs are uniformly mapped to both program and data space. For
specific details about each of the map segments, see the data manual for a particular device device.

3.3.2 CPU Interrupt Vectors
The C28x+VCU interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in program
space are set aside for a table of 32 CPU interrupt vectors. For more information about the CPU vectors,
see TMS320C28x CPU and Instruction Set Reference Guide (literature number SPRU430). Typically the
CPU interrupt vectors are only used during the boot up of the device by the boot ROM. Once an
application has taken control it should initalize and enable the peripheral interrupt expansion block (PIE).

3.3.3 Memory Interface
The C28x+VCU memory interface is identical to that on the C28x. The C28x+VCU memory map is
accessible outside the CPU by the memory interface, which connects the CPU logic to memories,
peripherals, or other interfaces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory while data memory is being
accessed. The interface also includes signals that indicate the type of read or write being requested by the
CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In
addition to 16-bit and 32-bit accesses, the CPU supports special byte-access instructions that can access
the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe signals
indicate when such an access is occurring on a data bus.

3.3.4 Address and Data Buses
Like the C28x, the memory interface has three address buses:
• PAB: Program address bus: The 22-bit PAB carries addresses for reads and writes from program

space.
• DRAB: Data-read address bus: The 32-bit DRAB carries addresses for reads from data space.
• DWAB: Data-write address bus: The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:
• PRDB: Program-read data bus: The 32-bit PRDB carries instructions during reads from program

space.
• DRDB: Data-read data bus: The 32-bit DRDB carries data during reads from data space.
• DWDB: Data-/Program-write data bus: The 32-bit DWDB carries data during writes to data space or

program space.

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to
the C28x CPU.

3.3.5 Alignment of 32-Bit Accesses to Even Addresses
The C28x+VPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or write to
an even address. If the address-generation logic generates an odd address, the CPU will begin reading or
writing at the previous even address. This alignment does not affect the address values generated by the
address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Emulation Logic

343SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ACC (32-bit)

R1H (32-bit)

R2H (32-bit)

R3H (32-bit)

R4H (32-bit)

R5H (32-bit)

R6H (32-bit)

R7H (32-bit)

R0H (32-bit)

FPU Status Register (STF)

Repeat Block Register (RB)

P (32-bit)

XT (32-bit)

XAR0 (32-bit)

XAR1 (32-bit)

XAR2 (32-bit)

XAR3 (32-bit)

XAR4 (32-bit)

XAR5 (32-bit)

XAR6 (32-bit)

XAR7 (32-bit)

PC (22-bit)

RPC (22-bit)

DP (16-bit)

SP (16-bit)

ST0 (16-bit)

ST1 (16-bit)

IER (16-bit)

IFR (16-bit)

DBGIER (16-bit)

Standard C28x Register Set Additional 32-bit FPU Registers

FPU registers R0H - R7H and STF
are shadowed for fast context
save and restore

VR0

VR1

VR2

VR3

VR4

VR5

VR6

VR7

VR8

VT0

VT1

VSTATUS

VCRC

Standard VCU Register Set

Register Set www.ti.com

344 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.4 Register Set
Devices with the C28x+VCU include the standard C28x register set plus an additional set of VCU specific
registers. The additional VCU registers are the following:
• Result registers: VR0, VR1... VR8
• Traceback registers: VT0, VT1
• Configuraiton and status register: VSTATUS
• CRC result register: VCRC
• Repeat block register: RB

Figure 3-2 shows the register sets for the 28x CPU, the FPU and the VCU. The following section
discusses the VCU register set in detail.

Figure 3-2. C28x + FPU + VCU Registers

3.4.1 VCU Register Set
The table below describes the VCU module register set. The last three columns indicate whether the
particular module within the VCU can make use of the register.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Register Set

345SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

(1) Debugger writes are not allowed to the VSTATUS register.

Table 3-3. VCU Register Set

Register
Name Size Description Viterbi

Complex
Math CRC

VR0 32-bits General purpose register 0 Yes Yes No
VR1 32-bits General purpose register 1 Yes Yes No
VR2 32-bits General purpose register 2 Yes Yes No
VR3 32-bits General purpose register 3 Yes Yes No
VR4 32-bits General purpose register 4 Yes Yes No
VR5 32-bits General purpose register 5 Yes Yes No
VR6 32-bits General purpose register 6 Yes Yes No
VR7 32-bits General purpose register 7 Yes Yes No
VR8 32-bits General purpose register 8 Yes No No
VT0 32-bits 32-bit transition bit register 0 Yes No No
VT1 32-bits 32-bit transition bit register 1 Yes No No
VSTATUS 32-bits VCU status and configuration register (1) Yes Yes No
VCRC 32-bits Cyclic redundancy check (CRC) result register No No Yes

Table 3-4 lists the CPU registers available on devices with the C28x, the C28x+FPU, the C28x+VCU and
the C28x+FPU+VCU.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Register Set www.ti.com

346 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Table 3-4. 28x CPU Register Summary

Register C28x CPU C28x+FPU C28x+VCU C28x+FPU+VCU Description
ACC Yes Yes Yes Yes Fixed-point accumulator
AH Yes Yes Yes Yes High half of ACC
AL Yes Yes Yes Yes Low half of ACC
XAR0 - XAR7 Yes Yes Yes Yes Auxiliary register 0 - 7
AR0 - AR7 Yes Yes Yes Yes Low half of XAR0 - XAR7
DP Yes Yes Yes Yes Data-page pointer
IFR Yes Yes Yes Yes Interrupt flag register
IER Yes Yes Yes Yes Interrupt enable register
DBGIER Yes Yes Yes Yes Debug interrupt enable register
P Yes Yes Yes Yes Fixed-point product register
PH Yes Yes Yes Yes High half of P
PL Yes Yes Yes Yes Low half of P
PC Yes Yes Yes Yes Program counter
RPC Yes Yes Yes Yes Return program counter
SP Yes Yes Yes Yes Stack pointer
ST0 Yes Yes Yes Yes Status register 0
ST1 Yes Yes Yes Yes Status register 1
XT Yes Yes Yes Yes Fixed-point multiplicand register
T Yes Yes Yes Yes High half of XT
TL Yes Yes Yes Yes Low half of XT
ROH - R7H No Yes No Yes Floating-point Unit result registers
STF No Yes No Yes Floating-point Uint status register
RB No Yes Yes Yes Repeat block register
VR0 - VR8 No No Yes Yes VCU general purpose registers
VT0, VT1 No No Yes Yes VCU transition bit register 0 and 1
VSTATUS No No Yes Yes VCU status and configuration
VCRC No No Yes Yes CRC result register

3.4.2 VCU Status Register (VSTATUS)
The VCU status register (VSTATUS) register is described in Figure 3-3. There is no single instruction to
directly transfer the VSTATUS register to a C28x register. To transfer the contents:
1. Store VSTATUS into memory using VMOV32 mem32, VSTATUS instruction
2. Load the value from memory into a main C28x CPU register.

Configuration bits within the VSTATUS registers are set or cleared using VCU instructions.

Figure 3-3. VCU Status Register (VSTATUS)
31 16

Reserved

R/W-0 R-0

15 14 13 12 11 10 9 5 4 0
Reserved OVRI OVFR RND SAT SHIFTL SHIFTR

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Register Set

347SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Table 3-5. VCU Status (VSTATUS) Register Field Descriptions

Bits Field Value Description
31 - 14 Reserved 0 Reserved for future use

13 OVFI Overflow or Underflow Flag: Imaginary Part
0 No overflow or underflow has been detected.
1 Indiates an overflow or underflow has occurred during the computation of the imaginary part of

operations shown in Table 3-6. This bit will be set regardless of the value of the VSTATUS[SAT] bit.
OVRI bit will remain set until it is cleared by executing the VCLROVFI instruction.

12 OVFR Overflow or Underflow Flag: Real Part
0 No overflow or underflow has been detected.
1 Indicates overflow or underflow has occurred during a real number calculation for operations shown

in Table 3-6. This bit will be set regardless of the value of the VSTATUS[SAT] bit. This bit will remain
set until it is cleared by executing the VCLROVFR instruction.

11 RND Rounding
When a right-shift operation is performed the lower bits of the value will be lost. The RND bit
determines if the shifted value is rounded or if the shifted-out bits are simply truncated. This is
described in . Operations which use right-shift and rounding are shown in Table 3-6.
The RND bit is set by the VRNDON instruction and cleared by the VRNDOFF instruction.

0 Rounding is not performed. Bits shifted out right are truncated.
1 Rounding is performed. Refer to the instruction descriptions for information on how the operation is

affected by the RND bit.
10 SAT Saturation

This bit determines whether saturation will be performed for operations shown in Table 3-6.
The SAT bit is set by the VSATON instruction and is cleared by the VSATOFF instruction.

0 No saturation is performed.
1 Saturation is performed.

9-5 SHIFTL Left Shift
Operations which use left-shift are shown in Table 3-6
The shift SHIFTL field can be set or cleared by the VSETSHL instruction.

0 No left shift.
0x01 -
0x1F

Refer to the instruction description for information on how the operation is affected by the shift value.
During the left-shift, the lower bits are filled with 0's.

4-0 SHIFTR Right Shift
Operations which use right-shift and rounding are shown in Table 3-6.
The shift SHIFTR field can be set or cleared by the VSETSHR instruction.

0 No right shift.
0x01 -
0x1F

Refer to the instruction descriptions for information on how the operation is affected by the shift value.
During the right-shift, the lower bits are lost, and the shifted value is sign extended. If rounding is
enabled (VSTATUS[RND] == 1) , then the value will be rounded instead of truncated.

Table 3-6 shows a summary of the operations that are affected by or modify bits in the VSTATUS register.

(1) Some parallel instructions also include these operations. In this case, the operation will also modify, or be affected by, VSTATUS
bits as when used as part of a parallel instruction.

Table 3-6. Operation Interaction with VSTATUS Bits

Operation (1) Description OVFI OVFR RND SAT SHIFT
L

SHIFT
R

VITDLADDSUB Viterbi Add and Subtract Low - Y - Y - -
VITDHADDSUB Viterbi Add and Subtract High - Y - Y - -
VITDLSUBADD Viterbi Subtract and Add Low - Y - Y - -
VITDHSUBADD Viterbi Subtract and Add High - Y - Y - -

VITBM2 Viterbi Branch Metric CR 1/2 - Y - Y - -
VITBM3 Viterbi Branch Metric CR 1/3 - Y - Y - -
VCADD Complex 32 + 32 = 32 Y Y Y Y - Y

VCDADD16 Complex 16 + 32 = 32 Y Y Y Y Y Y

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Register Set www.ti.com

348 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Table 3-6. Operation Interaction with VSTATUS Bits (continued)

Operation (1) Description OVFI OVFR RND SAT SHIFT
L

SHIFT
R

VCDSUB16 Complex 16 - 32 = 32 Y Y Y Y Y Y

VCMAC Complex 32 + 32 = 32,
16 x 16 = 32 Y Y Y Y - Y

VCMPY Complex 16 x 16 = 32 Y Y Y - -
VCSUB Complex 32 -32 = 32 Y Y Y Y - Y

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Register Set

349SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.4.3 Repeat Block Register (RB)
The repeat block instruction (RPTB) applies to devices with the C28x+FPU and the C28x+VCU. This
instruction allows you to repeat a block of code as shown in Example 3-1.

Example 3-1. The Repeat Block (RPTB) Instruction uses the RB Register

; find the largest element and put its address in XAR6
;
; This example makes use of floating-point (C28x + FPU) instructions
;
;

MOV32 R0H, *XAR0++;
.align 2 ; Aligns the next instruction to an even address
NOP ; Makes RPTB odd aligned - required for a block size of 8
RPTB VECTOR_MAX_END, AR7 ; RA is set to 1
MOVL ACC,XAR0
MOV32 R1H,*XAR0++ ; RSIZE reflects the size of the RPTB block
MAXF32 R0H,R1H ; in this case the block size is 8
MOVST0 NF,ZF
MOVL XAR6,ACC,LT

VECTOR_MAX_END: ; RE indicates the end address. RA is cleared

The C28x FPU or VCU automatically populates the RB register based on the execution of a RPTB
instruction. This register is not normally read by the application and does not accept debugger writes.

Figure 3-4. Repeat Block Register (RB)
31 30 29 23 22 16

RAS RA RSIZE RE
R-0 R-0 R-0 R-0

15 0
RC
R-0

LEGEND: R = Read only; -n = value after reset

Table 3-7. Repeat Block (RB) Register Field Descriptions

Bits Field Value Description
31 RAS Repeat Block Active Shadow Bit

When an interrupt occurs the repeat active, RA, bit is copied to the RAS bit and the RA bit is cleared.
When an interrupt return instruction occurs, the RAS bit is copied to the RA bit and RAS is cleared.

0 A repeat block was not active when the interrupt was taken.
1 A repeat block was active when the interrupt was taken.

30 RA Repeat Block Active Bit
0 This bit is cleared when the repeat counter, RC, reaches zero.

When an interrupt occurs the RA bit is copied to the repeat active shadow, RAS, bit and RA is cleared.
When an interrupt return, IRET, instruction is executed, the RAS bit is copied to the RA bit and RAS is
cleared.

1 This bit is set when the RPTB instruction is executed to indicate that a RPTB is currently active.
29-23 RSIZE Repeat Block Size

This 7-bit value specifies the number of 16-bit words within the repeat block. This field is initialized
when the RPTB instruction is executed. The value is calculated by the assembler and inserted into the
RPTB instruction's RSIZE opcode field.

0-7 Illegal block size.
8/9-0x7F A RPTB block that starts at an even address must include at least 9 16-bit words and a block that

starts at an odd address must include at least 8 16-bit words. The maximum block size is 127 16-bit
words. The codegen assembler will check for proper block size and alignment.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Register Set www.ti.com

350 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Table 3-7. Repeat Block (RB) Register Field Descriptions (continued)
Bits Field Value Description

22-16 RE Repeat Block End Address
This 7-bit value specifies the end address location of the repeat block. The RE value is calculated by
hardware based on the RSIZE field and the PC value when the RPTB instruction is executed.
RE = lower 7 bits of (PC + 1 + RSIZE)

15-0 RC Repeat Count
0 The block will not be repeated; it will be executed only once. In this case the repeat active, RA, bit will

not be set.
1-

0xFFFF
This 16-bit value determines how many times the block will repeat. The counter is initialized when the
RPTB instruction is executed and is decremented when the PC reaches the end of the block. When
the counter reaches zero, the repeat active bit is cleared and the block will be executed one more
time. Therefore the total number of times the block is executed is RC+1.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Fetch

C28x pipeline

Decode Read Exe

W

Write

FPU instruction

Store

Load

Complex ADD/SUB Viterbi ADDSUB/SUBADD

FPU ADD/SUB/MPY, Complex MPY

ER2R1D2D1F2F1

E2
W

E1RD

VCU instruction E2
W

E1RD

www.ti.com Pipeline

351SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.5 Pipeline
This section describes the VCU pipeline stages and presents cases where pipeline alignment must be
considered.

3.5.1 Pipeline Overview
The C28x VCU pipeline is identical to the C28x pipeline for all standard C28x instructions. In the decode2
stage (D2), it is determined if an instruction is a C28x instruction, a FPU instruction, or a VCU instruction.
The pipeline flow is shown in Figure 3-5.

Notice that stalls due to normal C28x pipeline stalls (D2) and memory waitstates (R2 and W) will also stall
any C28x VCU instruction. Most C28x VCU instructions are single cycle and will complete in the VCU E1
or W stage which aligns to the C28x pipeline. Some instructions will take an additional execute cycle (E2).
For these instructions you must wait a cycle for the result from the instruction to be available. The rest of
this section will describe when delay cycles are required. Keep in mind that the assembly tools for the
C28x+VCU will issue an error if a delay slot has not been handled correctly.

Figure 3-5. C28x + FCU + VCU Pipeline

3.5.2 General Guidelines for Floating-Point Pipeline Alignment
The majority of the VCU instructions do not require any special pipeline considerations. This section lists
the few operations that do require special consideration.

While the C28x+VCU assembler will issue errors for pipeline conflicts, you may still find it useful to
understand when software delays are required. This section describes three guidelines you can follow
when writing C28x+VCU assembly code.

VCU instructions that require delay slots have a 'p' after their cycle count. For example '2p' stands for 2
pipelined cycles. This means that an instruction can be started every cycle, but the result of the instruction
will only be valid one instruction later.

There are three general guidelines to determine if an instruction needs a delay slot:
1. Branch metric calculation for a code rate of 1/3 takes 2p cycles.
2. Complex multiply and MAC take 2p cycles.
3. Everything else does not require a delay slot.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

352 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

An example of the complex multiply instruction is shown in Example 3-2. VCMPY is a 2p instruction and
therefore requires one delay slot. The destination registers for the operation, VR2 and VR3, will be
updated one cycle after the instruction for a total of 2 cycles. Therefore, a NOP or instruction that does not
use VR2 or VR3 must follow this instruction.

Any memory stall or pipeline stall will also stall the VCU. This keeps the VCU aligned with the C28x
pipeline and there is no need to change the code based on the waitstates of a memory block.

Example 3-2. 2p Instruction Pipeline Alignment

VCMPY VR3, VR2, VR1, VR0 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- VCMPY completes, VR2 and VR3 updated
NOP ; Any instruction

3.5.3 Parallel Instructions
Parallel instructions are single opcodes that perform two operations in parallel. The guidelines provided in
Section 3.5.2 apply to parallel instructions as well. In this case the cycle count will be given for both
operations. For example, a branch metric calculation for code rate of 1/3 with a parallel load takes 2p/1
cycles. This means the branch metric portion of the operation takes 2 pipelined cycles while the move
portion of the operation is single cycle. NOPs or other non conflicting instructions must be inserted to align
the branch metric calculation portion of the operation as shown in Example 3-4 .

Example 3-3. Branch Metric CR 1/2 Calculation with Parallel Load

; VITBM2 || VMOV32 instruction: branch metrics calculation with parallel load
; VBITM2 is a 1 cycle operation (code rate = 1/2)
; VMOV32 is a 1 cycle operation
;

VITBM2 VR0 ; Load VR0 with the 2 branch metrics
|| VMOV32 VR2, @Val ; VR2 gets the contents of Val

; <-- VMOV32 completes here (VR2 is valid)
; <-- VITBM2 completes here (VR0 is valid)

<instruction 2> ; Any instruction, can use VR2 and/or VR0

Example 3-4. Branch Metric CR 1/3 Calculation with Parallel Load

; VITBM3 || VMOV32 instruction: branch metrics calculation with parallel load
; VBITM3 is a 2p cycle operation (code rate = 1/3)
; VMOV32 is a 1 cycle operation
;

VITBM3 VR0, VR1, VR2 ; Load VR0 and VR1 with the 4 branch metrics
|| VMOV32 VR2, @Val ; VR2 gets the contents of Val

; <-- VMOV32 completes here (VR2 is valid)
<instruciton 2> ; Must not use VR0 or VR1. Can use VR2.

; <-- VITBM3 completes here (VR0, VR1 are valid)
<instruction 3> ; Any instruction, can use VR2 and/or VR0

3.5.4 Invalid Delay Instructions
All VCU, FPU and fixed-point instructions can be used in VCU instruction delay slots as long as source
and destination register conflicts are avoided. The C28x+VCU assembler will issue an error anytime you
use an conflicting instruction within a delay slot. The following guidelines can be used to avoid these
conflicts.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

353SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

NOTE: Destination register conflicts in delay slots:

Any operation used for pipeline alignment delay must not use the same destination register
as the instruction requiring the delay. See Example 3-5.

In Example 3-5 the VCMPY instruction uses VR2 and VR3 as its destination registers. The next instruction
should not use VR2 or VR3 as a destination. Since the VMOV32 instruction uses the VR3 register a
pipeline conflict will be issued by the assembler. This conflict can be resolved by using a register other
than VR2 for the VMOV32 instruction as shown in Example 3-6.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

354 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Example 3-5. Destination Register Conflict

; Invalid delay instruction.
; Both instructions use the same destination register (VR3)
;

VCMPY VR3, VR2, VR1, VR0 ; 2p instruction
VMOV32 VR3, mem32 ; Invalid delay instruction

; <-- VCMPY completes, VR3, VR2 are valid

Example 3-6. Destination Register Conflict Resolved

; Valid delay instruction
;

VCMPY VR3, VR2, VR1, VR0 ; 2p instruction
VMOV32 VR7, mem32 ; Valid delay instruction

NOTE: Instructions in delay slots cannot use the instruction's destination register as a
source register.

Any operation used for pipeline alignment delay must not use the destination register of the
instruction requiring the delay as a source register as shown in Example 3-7. For parallel
instructions, the current value of a register can be used in the parallel operation before it is
overwritten as shown in Example 3-9.

In Example 3-7 the VCMPY instruction again uses VR3 and VR2 as its destination registers. The next
instruction should not use VR3 or VR2 as its source since the VCMPY will take an additional cycle to
complete. Since the VCADD instruction uses the VR2 as a source register a pipeline conflict will be issued
by the assembler. The use of VR3 will also cause a pipeline conflict. This conflict can be resolved by using
a register other than VR2 or VR3 or by inserting a non-conflicting instruction between the VCMPY and
VCADD instructions. Since the VNEG does not use VR2 or VR3 this instruction can be moved before the
VCADD as shown in Example 3-8.

Example 3-7. Destination/Source Register Conflict

; Invalid delay instruction.
; VCADD should not use VR2 or VR3 as a source operand
;

VCMPY VR3, VR2, VR1, VR0 ; 2p instruction
VCADD VR5, VR4, VR3, VR2 ; Invalid delay instruction
VNEG VR0 ; <- VCMPY completes, VR3, VR2 valid

Example 3-8. Destination/Source Register Conflict Resolved

; Valid delay instruction.
;

VCMPY VR3, VR2, VR1, VR0 ; 2p instruction
VNEG VR0 ; Non conflicting instruction or NOP
VCADD VR5, VR4, VR3, VR2 ; <- VCMPY completes, VR3, VR2 valid

It should be noted that a source register for the 2nd operation within a parallel instruction can be the same
as the destination register of the first operation. This is because the two operations are started at the
same time. The 2nd operation is not in the delay slot of the first operation. Consider Example 3-9 where
the VCMPY uses VR3 and VR2 as its destination registers. The VMOV32 is the 2nd operation in the
instruction and can freely use VR3 or VR2 as a source register. In the example, the contents of VR3
before the multiply will be used by MOV32.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

355SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Example 3-9. Parallel Instruction Destination/Source Exception

; Valid parallel operation.
;

VCMPY VR3, VR2, VR1, VR0 ; 2p/1 instruction
|| VMOV32 mem32, VR3 ; <-- Uses VR3 before the VCMPY update

; <-- mem32 updated
NOP ; <-- Delay for VCMPY

; <-- VR2, VR3 updated

Likewise, the source register for the 2nd operation within a parallel instruction can be the same as one of
the source registers of the first operation. The VCMPY operation in Example 3-10 uses the VR0 register
as one of its sources. This register is also updated by the VMOV32 instruction. The multiplication
operation will use the value in VR0 before the VMOV32 updates it.

Example 3-10. Parallel Instruction Destination/Source Exception

; Valid parallel operation.
VCMPY VR3, VR2, VR1, VR0 ; 2p/1 instruction

|| VMOV32 VR0, mem32 ; <-- Uses VR3 before the VCMPY update
; <-- mem32 updated

NOP ; <-- Delay for VCMPY
; <-- VR2, VR3 updated

NOTE: Operations within parallel instructions cannot use the same destination register.

When two parallel operations have the same destination register, the result is invalid.

For example, see Example 3-11.

If both operations within a parallel instruction try to update the same destination register as shown in
Example 3-11 the assembler will issue an error.

Example 3-11. Invalid Destination Within a Parallel Instruction

; Invalid parallel instruction. Both operations use VR3 as a destination register
;

VCMPY VR3, VR2, VR1, VR0 ; 2p/1 instruction
|| VMOV32 VR3, mem32 ; <-- Invalid

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

356 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.6 Instruction Set
This section describes the assembly language instructions of the VCU. Also described are parallel
operations, conditional operations, resource constraints, and addressing modes. The instructions listed
here are independant from C28x and C28x+FPU instruction sets.

3.6.1 Instruction Descriptions
This section gives detailed information on the instruction set. Each instruction may present the following
information:
• Operands
• Opcode
• Description
• Exceptions
• Pipeline
• Examples
• See also

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. VCU instructions follow the same format as the C28x; the source
operand(s) are always on the right and the destination operand(s) are on the left.

The explanations for the syntax of the operands used in the instruction descriptions for the C28x VCU are
given in Table 3-8.

Table 3-8. Operand Nomenclature

Symbol Description
#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value
#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value
#32F Immediate float value represented in floating-point representation
#0.0 Immediate zero
#5-bit 5-bit immediate unsigned value
addr Opcode field indicating the addressing mode
Im(X), Im(Y) Imaginary part of the input X or input Y
Im(Z) Imaginary part of the output Z
Re(X), Re(Y) Real part of the input X or input Y
Re(Z) Real part of the output Z

mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
VRa VR0 - VR8 registers. Some instructions exclude VR8. Refer to the instruction description for details.
VR0H,
VR1H...VR7H

VR0 - VR7 registers, high half.

VR0L, VR1L....VR7L VR0 - VR7 registers, low half.
VT0, VT1 Transition bit register VT0 or VT1.

Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Instruction Set

357SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Table 3-9. INSTRUCTION dest, source1, source2 Short Description

Description
dest1 Description for the 1st operand for the instruction
source1 Description for the 2nd operand for the instruction
source2 Description for the 3rd operand for the instruction
Opcode This section shows the opcode for the instruction
Description Detailed description of the instruction execution is described. Any constraints on the operands imposed by

the processor or the assembler are discussed.
Restrictions Any constraints on the operands or use of the instruction imposed by the processor are discussed.
Pipeline This section describes the instruction in terms of pipeline cycles as described in Section 3.5
Example Examples of instruction execution. If applicable, register and memory values are given before and after

instruction execution. Some examples are code fragments while other examples are full tasks that assume
the VCU is correctly configured and the main CPU has passed it data.

Operands Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

358 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.6.2 General Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 3-10. General Instructions
Title ...................................................................................................................................... Page

POP RB —Pop the RB Register from the Stack ................................................................................... 359
PUSH RB —Push the RB Register onto the Stack ................................................................................ 361
RPTB label, loc16 —Repeat A Block of Code ..................................................................................... 363
RPTB label, #RC —Repeat a Block of Code ....................................................................................... 365
VCLEAR VRa —Clear General Purpose Register ................................................................................. 367
VCLEARALL —Clear All General Purpose and Transition Bit Registers ...................................................... 368
VCLROVFI —Clear Imaginary Overflow Flag ...................................................................................... 369
VCLROVFR —Clear Real Overflow Flag ........................................................................................... 370
VMOV16 mem16, VRaL —Store General Purpose Register, Low Half......................................................... 371
VMOV16 VRaL, mem16 —Load General Purpose Register, Low Half ......................................................... 372
VMOV32 mem32, VRa —Store General Purpose Register ...................................................................... 373
VMOV32 mem32, VSTATUS —Store VCU Status Register ..................................................................... 374
VMOV32 mem32, VTa —Store Transition Bit Register ........................................................................... 375
VMOV32 VRa, mem32 —Load 32-bit General Purpose Register ............................................................... 376
VMOV32 VSTATUS, mem32 —Load VCU Status Register ...................................................................... 377
VMOV32 VTa, mem32 —Load 32-bit Transition Bit Register .................................................................... 378
VMOVD32 VRa, mem32 —Load Register with Data Move....................................................................... 379
VMOVIX VRa, #16I —Load Upper Half of a General Purpose Register with I6-bit Immediate .............................. 380
VMOVZI VRa, #16I —Load General Purpose Register with Immediate......................................................... 381
VMOVXI VRa, #16I —Load Low Half of a General Purpose Register with Immediate........................................ 382
VRNDOFF —Disable Rounding...................................................................................................... 383
VRNDON —Enable Rounding........................................................................................................ 384
VSATOFF —Disable Saturation ..................................................................................................... 385
VSATON —Enable Saturation ....................................................................................................... 386
VSETSHL #5-bit —Initialize the Left Shift Value .................................................................................. 387
VSETSHR #5-bit —Initialize the Left Shift Value.................................................................................. 388

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com POP RB — Pop the RB Register from the Stack

359SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

POP RB Pop the RB Register from the Stack

Operands

RB repeat block register

Opcode LSW: 1111 1111 1111 0001

Description Restore the RB register from stack. If a high-priority interrupt contains a RPTB
instruction, then the RB register must be stored on the stack before the RPTB block and
restored after the RTPB block. In a low-priority interrupt RB must always be saved and
restored. This save and restore must occur when interrupts are disabled.

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the ISR
...
...
RPTB _BlockEnd, AL ; Execute the block AL+1 times
...
...
...

_BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt:

; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
...

; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also PUSH RB

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


POP RB — Pop the RB Register from the Stack www.ti.com

360 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

RPTB label, loc16
RPTB label, #RC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com PUSH RB — Push the RB Register onto the Stack

361SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

PUSH RB Push the RB Register onto the Stack

Operands

RB repeat block register

Opcode LSW: 1111 1111 1111 0000

Description Save the RB register on the stack. If a high-priority interrupt contains a RPTB instruction,
then the RB register must be stored on the stack before the RPTB block and restored
after the RTPB block. In a low-priority interrupt RB must always be saved and restored.
This save and restore must occur when interrupts are disabled.

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the ISR
...
...
RPTB _BlockEnd, AL ; Execute the block AL+1 times
...
...
...

_BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt:

; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
...

; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


PUSH RB — Push the RB Register onto the Stack www.ti.com

362 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

RPTB label, loc16
RPTB label, #RC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com RPTB label, loc16 — Repeat A Block of Code

363SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

RPTB label, loc16 Repeat A Block of Code

Operands

label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.

loc16 16-bit location for the repeat count value.

Opcode LSW: 1011 0101 0bbb bbbb
MSW: 0000 0000 loc16

Description Initialize repeat block loop, repeat count from [loc16]

Restrictions
• The maximum block size is ≤127 16-bit words.
• An even aligned block must be ≥ 9 16-bit words.
• An odd aligned block must be ≥ 8 16-bit words.
• Interrupts must be disabled when saving or restoring the RB register.
• Repeat blocks cannot be nested.
• Any discontinuity type operation is not allowed inside a repeat block. This includes all

call, branch or TRAP instructions. Interrupts are allowed.
• Conditional execution operations are allowed.

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This instruction takes four cycles on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

Example The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.
; Repeat Block of 8 Words (Interruptible)
;
; Note: This example makes use of floating-point (C28x+FPU) instructions
;
;
; find the largest element and put its address in XAR6

.align 2
NOP
RPTB _VECTOR_MAX_END, AR7

; Execute the block AR7+1 times
MOVL ACC,XAR0 MOV32 R1H,*XAR0++ ; min size = 8, 9 words
MAXF32 R0H,R1H ; max size = 127 words
MOVST0 NF,ZF
MOVL XAR6,ACC,LT

_VECTOR_MAX_END: ; label indicates the end
; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RPTB label, loc16 — Repeat A Block of Code www.ti.com

364 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the ISR
...
...
RPTB _BlockEnd, AL ; Execute the block AL+1 times
...
...
...

_BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt:

; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
...

; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
PUSH RB
RPTB label, #RC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com RPTB label, #RC — Repeat a Block of Code

365SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

RPTB label, #RC Repeat a Block of Code

Operands

label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.

#RC 16-bit immediate value for the repeat count.

Opcode LSW: 1011 0101 1bbb bbbb
MSW: cccc cccc cccc cccc

Description Repeat a block of code. The repeat count is specified as a immediate value.

Restrictions
• The maximum block size is ≤127 16-bit words.
• An even aligned block must be ≥ 9 16-bit words.
• An odd aligned block must be ≥ 8 16-bit words.
• Interrupts must be disabled when saving or restoring the RB register.
• Repeat blocks cannot be nested.
• Any discontinuity type operation is not allowed inside a repeat block. This includes all

call, branch or TRAP instructions. Interrupts are allowed.
• Conditional execution operations are allowed.

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This instruction takes one cycle on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

Example The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.
; Repeat Block of 8 Words (Interruptible)
;
; Note: This example makes use of floating-point (C28x+FPU) instructions
;
; find the largest element and put its address in XAR6
;

.align 2
NOP
RPTB _VECTOR_MAX_END, AR7

; Execute the block AR7+1 times
MOVL ACC,XAR0 MOV32 R1H,*XAR0++ ; min size = 8, 9 words
MAXF32 R0H,R1H ; max size = 127 words
MOVST0 NF,ZF
MOVL XAR6,ACC,LT

_VECTOR_MAX_END: ; label indicates the end
; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RPTB label, #RC — Repeat a Block of Code www.ti.com

366 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the ISR
...
...
RPTB #_BlockEnd, #5 ; Execute the block AL+1 times
...
...
...

_BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt:

; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
...

; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
PUSH RB
RPTB label, loc16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCLEAR VRa — Clear General Purpose Register

367SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCLEAR VRa Clear General Purpose Register

Operands
VRa General purpose register: VR0, VR1... VR8

Opcode LSW: 1110 0110 1111 1000
MSW: 0000 0000 0000 aaaa

Description Clear the specified general purpose register.
VRa = 0x00000000;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example ;
; Code fragment from a viterbi traceback
; For the first iteration the previous state metric must be
; initalized to zero (VR0).
;

VCLEAR VR0 ; Clear the VR0 register
MOVL XAR5,*+XAR4[0] ; Point XAR5 to an array

;
; For first stage
;

VMOV32 VT0, *--XAR3
VMOV32 VT1, *--XAR3
VTRACE *XAR5++,VR0,VT0,VT1 ; Uses VR0 (which is zero)

;
; etc...
;

See also VCLEARALL
VTCLEAR

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCLEARALL — Clear All General Purpose and Transition Bit Registers www.ti.com

368 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCLEARALL Clear All General Purpose and Transition Bit Registers

Operands
none

Opcode LSW: 1110 0110 1111 1001
MSW: 0000 0000 0000 0000

Description Clear all of the general purpose registers (VR0, VR1... VR8) and the transition bit
registers (VT0 and VT1).
VR0 = 0x00000000;
VR0 = 0x00000000;
VR2 = 0x00000000;
VR3 = 0x00000000;
VR4 = 0x00000000;
VR5 = 0x00000000;
VR6 = 0x00000000;
VR7 = 0x00000000;
VR8 = 0x00000000;
VT0 = 0x00000000;
VT1 = 0x00000000;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example ;
; Context save all VCU VRa and VTa registers
;

VMOV32 *SP++, VR0
VMOV32 *SP++, VR1
VMOV32 *SP++, VR2
VMOV32 *SP++, VR3
VMOV32 *SP++, VR4
VMOV32 *SP++, VR5
VMOV32 *SP++, VR6
VMOV32 *SP++, VR7
VMOV32 *SP++, VR8
VMOV32 *SP++, VT0
VMOV32 *SP++, VT1

;
; Clear VR0 - VR8, VT0 and VT1
;

VCLEARALL
;
; etc...

See also VCLEAR VRa
VTCLEAR

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCLROVFI — Clear Imaginary Overflow Flag

369SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCLROVFI Clear Imaginary Overflow Flag

Operands
none

Opcode LSW: 1110 0101 0000 1011

Description Clear the imaginary overflow flag in the VSTATUS register. To clear the real flag, use
the VCLROVFR instruction. The imaginary flag bit can be set by instructions shown in
Table 3-6. Refer to invidual instruction descriptions for details.
VSTATUS[OVFI] = 0;

Flags This instruction clears the OVFI flag.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFR
VRNDON
VSATFOFF
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCLROVFR — Clear Real Overflow Flag www.ti.com

370 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCLROVFR Clear Real Overflow Flag

Operands
none

Opcode LSW: 1110 0101 0000 1010

Description Clear the real overflow flag in the VSTATUS register. To clear the imaginary flag, use
the VCLROVFI instruction. The imaginary flag bit can be set by instructions shown in
Table 3-6. Refer to invidual instruction descriptions for details.
VSTATUS[OVFR] = 0;

Flags This instruction clears the OVFR flag.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VRNDON
VSATFOFF
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV16 mem16, VRaL — Store General Purpose Register, Low Half

371SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV16 mem16, VRaL Store General Purpose Register, Low Half

Operands
mem16 Pointer to a 16-bit memory location. This will be the destination of the VMOV16.
VRaL Low word of a general purpose register: VR0L, VR1L...VR8L.

Opcode LSW: 1110 0010 0001 1000
MSW: 0000 aaaa mem16

Description Store the low 16-bits of the specified general purpose register into the 16-bit memory
location.
[mem16] = VRa[15:0];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV16 VRaL, mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV16 VRaL, mem16 — Load General Purpose Register, Low Half www.ti.com

372 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV16 VRaL, mem16 Load General Purpose Register, Low Half

Operands
VRaL Low word of a general purpose register: VR0L, VR1L....VR8L
mem16 Pointer to a 16-bit memory location. This will be the source for the VMOV16.

Opcode LSW: 1110 0010 1100 1001
MSW: 0000 aaaa mem16

Description Load the lower 16 bits of the specified general purpose register with the contents of
memory pointed to by mem16.
VRa[15:0] = [mem16];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
;
; Loop will run 106 times for 212 inputs to decoder
;
; Code fragment from viterbi decoder
;
_LOOP:
;
;
; Calculate the branch metrics for code rate = 1/3
; Load VR0L, VR1L and VR2L with inputs
; to the decoder from the array pointed to by XAR5
;
;

VMOV16 VR0L, *XAR5++
VMOV16 VR1L, *XAR5++
VMOV16 VR2L, *XAR5++

;
; VR0L = BM0
; VR0H = BM1
; VR1L = BM2
; VR1H = BM3
; VR2L = pt_old[0]
; VR2H = pt_old[1]
;

VITBM3 VR0, VR1, VR2
VMOV32 VR2, *XAR1++

; etc...

See also VMOV16 mem16, VRaL

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 mem32, VRa — Store General Purpose Register

373SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV32 mem32, VRa Store General Purpose Register

Operands
mem32 Pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VRa General purpose reigster VR0, VR1... VR8

Opcode LSW: 1110 0010 0000 0100
MSW: 0000 aaaa mem32

Description Store the 32-bit contents of the specified general purpose register into the memory
location pointed to by mem32.
[mem32] = VRa;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 mem32, VSTATUS — Store VCU Status Register www.ti.com

374 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV32 mem32, VSTATUS Store VCU Status Register

Operands
mem32 Pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VSTATUS VCU status register.

Opcode LSW: 1110 0010 0000 1101
MSW: 0000 0000 mem32

Description Store the VSTATUS register into the memory location pointed to by mem32.
[mem32] = VSTATUS;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VRa
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VSTATUS, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 mem32, VTa — Store Transition Bit Register

375SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV32 mem32, VTa Store Transition Bit Register

Operands
mem32 pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VTa Transition bits register VT0 or VT1

Opcode LSW: 1110 0010 0000 0101
MSW: 0000 00tt mem32

Description Store the 32-bits of the specified transition bits register into the memory location pointed
to by mem32.
[mem32] = VTa;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VRa
VMOV32 mem32, VSTATUS
VMOV32 VRa, mem32
VMOV32 VSTATUS, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 VRa, mem32 — Load 32-bit General Purpose Register www.ti.com

376 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV32 VRa, mem32 Load 32-bit General Purpose Register

Operands
VRa General purpose register VR0, VR1....VR8
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode LSW: 1110 0011 1111 0000
MSW: 0000 aaaa mem32

Description Load the specified general purpose register with the 32-bit value in memory pointed to
by mem32.
VRa = [mem32];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VRa
VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VSTATUS, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 VSTATUS, mem32 — Load VCU Status Register

377SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV32 VSTATUS, mem32 Load VCU Status Register

Operands
VSTATUS VCU status register
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode LSW: 1110 0010 1011 0000
MSW: 0000 0000 mem32

Description Load the VSTATUS register with the 32-bit value in memory pointed to by mem32.
VSTATUS = [mem32];

Flags This instruction modifies all bits within the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 VTa, mem32 — Load 32-bit Transition Bit Register www.ti.com

378 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV32 VTa, mem32 Load 32-bit Transition Bit Register

Operands
VTa Transition bit register: VT0, VT1
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode LSW: 1110 0011 1111 0001
MSW: 0000 00tt mem32

Description Load the specified transition bit register with the 32-bit value in memory pointed to by
mem32 .
VTa = [mem32];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VSTATUS, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOVD32 VRa, mem32 — Load Register with Data Move

379SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOVD32 VRa, mem32 Load Register with Data Move

Operands
VRa General purpose registger, VR0, VR1.... VR8
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode LSW: 1110 0010 0010 0100
MSW: 0000 aaaa mem32

Description Load the specified general purpose register with the 32-bit value in memory pointed to
by mem32. In addition, copy the next 32-bit value in memory to the location pointed to by
mem32.
VRa = [mem32];
[mem32 + 2] = [mem32];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOVIX VRa, #16I — Load Upper Half of a General Purpose Register with I6-bit Immediate www.ti.com

380 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOVIX VRa, #16I Load Upper Half of a General Purpose Register with I6-bit Immediate

Operands
VRa General purpose registger, VR0, VR1... VR8
#16I 16-bit immediate value

Opcode LSW: 1110 0111 1110 IIII
MSW: IIII IIII IIII aaaa

Description Load the upper 16-bits of the specified general purpose register with an immediate
value. Leave the lower 16-bits of the register unchanged.
VRa[15:0] = unchanged;
VRa[31:16] = #16I;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOVZI VRa, #16I
VMOVXI VRa, #16I

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOVZI VRa, #16I — Load General Purpose Register with Immediate

381SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOVZI VRa, #16I Load General Purpose Register with Immediate

Operands
VRa General purpose registger, VR0, VR1...VR8
#16I 16-bit immediate value

Opcode LSW: 1110 0111 1111 IIII
MSW: IIII IIII IIII aaaa

Description Load the lower 16-bits of the specified general purpose register with an immediate value.
Clear the upper 16-bits of the register.
VRa[15:0] = #16I;
VRa[31:16] = 0x0000;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOVIX VRa, #16I
VMOVXI VRa, #16I

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOVXI VRa, #16I — Load Low Half of a General Purpose Register with Immediate www.ti.com

382 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOVXI VRa, #16I Load Low Half of a General Purpose Register with Immediate

Operands
VRa General purpose registger, VR0 - VR8
#16I 16-bit immediate value

Opcode LSW: 1110 0111 0111 IIII
MSW: IIII IIII IIII aaaa

Description Load the lower 16-bits of the specified general purpose register with an immediate value.
Leave the upper 16 bits unchanged.
VRa[15:0] = #16I;
VRa[31:16] = unchanged;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOVIX VRa, #16I
VMOVZI VRa, #16I

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VRNDOFF — Disable Rounding

383SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VRNDOFF Disable Rounding

Operands
none

Opcode LSW: 1110 0101 0000 1001

Description This instruction disables the rounding mode by clearning the RND bit in the VSTATUS
register. When rounding is disabled, the result of the shift right operation for addition and
subtraction operations will be truncated instead of rounded. The operations affected by
rounding are shown in Table 3-6. Refer to the individual instruction descriptions for
information on how rounding effects the operation. To enable rounding use the VRNDON
instruction.

For more information on rounding, refer to .
VSTATUS[RND] = 0;

Flags This instruction clears the RND bit in the VSTATUS register. It does not change any
flags.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VCLROVFR
VRNDON
VSATFOFF
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VRNDON — Enable Rounding www.ti.com

384 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VRNDON Enable Rounding

Operands
none

Opcode LSW: 1110 0101 0000 1000

Description This instruction enables the rounding mode by setting the RND bit in the VSTATUS
register. When rounding is enabled, the result of the shift right operation for addition and
subtraction operations will be rounded instead of being truncated. The operations
affected by rounding are shown in Table 3-6. Refer to the individual instruction
descriptions for information on how rounding effects the operation. To disable rounding
use the VRNDOFF instruction.

For more information on rounding, refer to .
VSTATUS[RND] = 1;

Flags This instruction sets the RND bit in the VSTATUS register. It does not change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VCLROVFR
VRNDOFF
VSATFOFF
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VSATOFF — Disable Saturation

385SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VSATOFF Disable Saturation

Operands
none

Opcode LSW: 1110 0101 0000 0111

Description This instruction disables the satuartion mode by clearing the SAT bit in the VSTATUS
register. When saturation is disabled, results of addition and subtraction are allowed to
overflow or underflow. When saturation is enabled, results will instead be set to a
maximum or minimum value instead of being allowed to overflow or underflow. To
enable saturation use the VSATON instruction.
VSTATUS[SAT] = 0

Flags This instruction clears the the SAT bit in the VSTATUS register. It does not change any
flags.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VSATON — Enable Saturation www.ti.com

386 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VSATON Enable Saturation

Operands
none

Opcode LSW: 1110 0101 0000 0110

Description This instruction enables the satuartion mode by setting the SAT bit in the VSTATUS
register. When saturation is enables, results of addition and subtraction are not allowed
to overflow or underflow. Results will, instead, be set to a maximum or minimum value.
To disable saturation use the VSATOFF instruction..
VSTATUS[SAT] = 1

Flags This instruction sets the SAT bit in the VSTATUS register. It does not change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VSETSHL #5-bit — Initialize the Left Shift Value

387SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VSETSHL #5-bit Initialize the Left Shift Value

Operands
#5-bit 5-bit, unsigned, immediate value

Opcode LSW: 1110 0101 110s ssss

Description Load VSTATUS[SHIFTL] with an unsigned, 5-bit, immediate value. The left shift value
specifies the number of bits an operand is shifed by. A value of zero indicates no shift
will be performed. The left shift is used by the and VCDSUB16 and VCDADD16
operations. Refer to the description of these instructions for more information. To load
the right shift value use the VSETSHR #5-bit instruction.
VSTATUS[VSHIFTL] = #5-bit

Flags This instruction changes the VSHIFTL value in the VSTATUS register. It does not
change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VSETSHR #5-bit — Initialize the Left Shift Value www.ti.com

388 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VSETSHR #5-bit Initialize the Left Shift Value

Operands
#5-bit 5-bit, unsigned, immediate value

Opcode LSW: 1110 0101 010s ssss

Description Load VSTATUS[SHIFTR] with an unsigned, 5-bit, immediate value. The right shift value
specifies the number of bits an operand is shifed by. A value of zero indicates no shift
will be performed. The right shift is used by the VCADD, VCSUB, VCDADD16 and
VCDSUB16 operations. It is also used by the addition portion of the VCMAC. Refer to
the description of these instructions for more information.
VSTATUS[VSHIFTR] = #5-bit

Flags This instruction changes the VSHIFTR value in the VSTATUS register. It does not
change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VSETSHL #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Instruction Set

389SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.6.3 Complex Math Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 3-11. Complex Math Instructions
Title ...................................................................................................................................... Page

VCADD VR5, VR4, VR3, VR2 —Complex 32 + 32 = 32 Addition ............................................................... 390
VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex 32+32 = 32 Add with Parallel Load................. 392
VCADD VR7, VR6, VR5, VR4 —Complex 32 + 32 = 32- Addition............................................................... 394
VCDADD16 VR5, VR4, VR3, VR2 —Complex 16 + 32 = 16 Addition .......................................................... 396
VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex Double Add with Parallel Load ................. 400
VCDSUB16 VR6, VR4, VR3, VR2 —Complex 16-32 = 16 Subtract............................................................. 402
VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex 16+32 = 16 Add with Parallel Load ............ 406
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 —Complex Multiply and Accumulate .............................................. 408
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 —Complex Multiply and Accumulate with Parallel

Load ............................................................................................................................ 410
VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ —Complex Multiply and Accumulate ................................... 412
VCMPY VR3, VR2, VR1, VR0 —Complex Multiply ................................................................................ 416
VCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa —Complex Multiply with Parallel Store........................... 418
VCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 —Complex Multiply with Parallel Load ........................... 420
VNEG VRa —Two's Complement Negate........................................................................................... 422
VCSUB VR5, VR4, VR3, VR2 —Complex 32 - 32 = 32 Subtraction ............................................................ 423
VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex Subtraction ............................................. 425

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCADD VR5, VR4, VR3, VR2 — Complex 32 + 32 = 32 Addition www.ti.com

390 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCADD VR5, VR4, VR3, VR2 Complex 32 + 32 = 32 Addition

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
operand for this instruction includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR5 32-bit integer representing the real part of the first input: Re(X)
VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:
Output Register Value
VR5 32-bit integer representing the real part of the result:

Re(Z) = Re(X) + (Re(Y) >> SHIFTR)
VR4 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) + (Im(Y) >> SHIFTR)

Opcode LSW: 1110 0101 0000 0010

Description Complex 32 + 32 = 32-bit addition operation.

The second input operand (stored in VR3 and VR2) is shifted right by VSTATUS[SHIFR]
bits before the addition. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in . If
the VSTATUS[SAT] bit is set, then the result will be saturated in the event of an overflow
or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//
// X: VR5 = Re(X) VR4 = Im(X)
// Y: VR3 = Re(Y) VR2 = Im(Y)
//
// Calculate Z = X + Y
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR); // Re(Z)
VR4 = VR4 + round(VR2 >> SHIFTR); // Im(Z)

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR); // Re(Z)
VR4 = VR4 + (VR2 >> SHIFTR); // Im(Z)

}
if (SAT == 1)
{

sat32(VR5);
sat32(VR4);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR5 computation (real part) overflows or underflows.
• OVFI is set if the VR4 computation (imaginary part) overflows or underflows.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCADD VR5, VR4, VR3, VR2 — Complex 32 + 32 = 32 Addition

391SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Example

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 32+32 = 32 Add with Parallel Load www.ti.com

392 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex 32+32 = 32 Add with Parallel Load

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR5 32-bit integer representing the real part of the first input: Re(X)
VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mem32 pointer to a 32-bit memory location

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:
Output Register Value
VR5 32-bit integer representing the real part of the result:

Re(Z) = Re(X) + (Re(Y) >> SHIFTR)
VR4 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) + (Im(Y) >> SHIFTR)
VRa contents of the memory pointed to by [mem32]. VRa can not be VR5, VR4 or VR8.

Opcode LSW: 1110 0011 1111 1000
MSW: 0000 aaaa mem32

Description Complex 32 + 32 = 32-bit addition operation with parallel register load.

The second input operand (stored in VR3 and VR2) is shifted right by VSTATUS[SHIFR]
bits before the addition. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in . If
the VSTATUS[SAT] bit is set, then the result will be saturated in the event of an overflow
or underflow.

In parallel with the addition, VRa is loaded with the contents of memory pointed to by
mem32.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//
// VR5 = Re(X) VR4 = Im(X)
// VR3 = Re(Y) VR2 = Im(Y)
//
// Z = X + Y
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR); // Re(Z)
VR4 = VR4 + round(VR2 >> SHIFTR); // Im(Z)

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR); // Re(Z)
VR4 = VR4 + (VR2 >> SHIFTR); // Im(Z)

}
if (SAT == 1)
{

sat32(VR5);
sat32(VR4);

}
VRa = [mem32];

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 32+32 = 32 Add with Parallel Load

393SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR5 computation (real part) overflows.
• OVFI is set if the VR4 computation (imaginary part) overflows.

Pipeline Both operations complete in a single cycle (1/1 cycles).

Example

See also VCADD VR7, VR6, VR5, VR4
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCADD VR7, VR6, VR5, VR4 — Complex 32 + 32 = 32- Addition www.ti.com

394 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCADD VR7, VR6, VR5, VR4 Complex 32 + 32 = 32- Addition

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR7 32-bit integer representing the real part of the first input: Re(X)
VR6 32-bit integer representing the imaginary part of the first input: Im(X)
VR5 32-bit integer representing the real part of the 2nd input: Re(Y)
VR4 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR7 and VR6 as shown below:
Output Register Value
VR6 32-bit integer representing the real part of the result:

Re(Z) = Re(X) + (Re(Y) >> SHIFTR)
VR7 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) + (Im(Y) >> SHIFTR)

Opcode LSW: 1110 0101 0010 1010

Description Complex 32 + 32 = 32-bit addition operation.

The second input operand (stored in VR5 and VR4) is shifted right by VSTATUS[SHIFR]
bits before the addition. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in . If
the VSTATUS[SAT] bit is set, then the result will be saturated in the event of an overflow
or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//
// VR5 = Re(X) VR4 = Im(X)
// VR3 = Re(Y) VR2 = Im(Y)
//
// Z = X + Y
//

if (RND == 1)
{

VR7 = VR7 + round(VR5 >> SHIFTR); // Re(Z)
VR6 = VR6 + round(VR4 >> SHIFTR); // Im(Z)

}
else
{

VR7 = VR5 + (VR5 >> SHIFTR); // Re(Z)
VR6 = VR4 + (VR4 >> SHIFTR); // Im(Z)

}
if (SAT == 1)
{

sat32(VR7);
sat32(VR6);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR7 computation (real part) overflows.
• OVFI is set if the VR6 computation (imaginary part) overflows.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCADD VR7, VR6, VR5, VR4 — Complex 32 + 32 = 32- Addition

395SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

See also VCADD VR5, VR4, VR3, VR2
VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition www.ti.com

396 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCDADD16 VR5, VR4, VR3, VR2 Complex 16 + 32 = 16 Addition

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR4H 16-bit integer representing the real part of the first input: Re(X)
VR4L 16-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:
Output Register Value
VR5H 16-bit integer representing the real part of the result:

Re(Z) = (Re(X) << SHIFTL) + (Re(Y) ) >> SHIFTR
VR5L 16-bit integer representing the imaginary part of the result:

Im(Z) = (Im(X) << SHIFTL) + (Im(Y) ) >> SHIFTR

Opcode LSW: 1110 0101 0000 0100

Description Complex 16 + 32 = 16-bit operation. This operation is useful for algorithms similar to a
complex FFT. The first operand is a complex number with a 16-bit real and 16-bit
imaginary part. The second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the addition is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in . If the VSTATUS[SAT] bit is set, then the result will
be saturated in the event of a 16-bit overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit
// VR2 = Im(Y) 32-bit
//
// Calculate Z = X + Y
//

temp1 = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)

temp1 = (temp1 << SHIFTL) + VR3; // Re(Z) intermediate
temp2 = (temp2 << SHIFTL) + VR2; // Im(Z) intermediate

if (RND == 1)
{

temp1 = round(temp1 >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);

}
else
{

temp1 = truncate(temp1 >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition

397SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

if (SAT == 1)
{

VR5H = sat16(temp1);
VR5L = sat16(temp2);

}
else
{

VR5H = temp1[15:0];
VR5L = temp2[15:0];

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the real-part computation (VR5H) overflows or underflows.
• OVFI is set if the imaginary-part computation (VR5L) overflows or underflows.

Pipeline This is a single-cycle instruction.

Example ;
;Example: Z = X + Y
;
; X = 4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 + 12j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = 0x00000004 + 0x0000000D = 0x00000011
; VR5H = temp1[15:0] = 0x0011 = 17
; Imaginary:
; temp2 = 0x00000003 + 0x0000000C = 0x0000000F
; VR5L = temp2[15:0] = 0x000F = 15
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = 0
VSETSHR #0 ; VSTATUS[SHIFTR] = 0
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13
VMOVXI VR2, #12 ; VR2 = Im(Y) = 12
VMOVXI VR4, #3
VMOVIX VR4, #4 ; VR4 = X = 0x00040003 = 4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0x0011000F = 17 + 15j

The next example illustrates the operation with a right shift value defined.
;
; Example: Z = X + Y with Right Shift
;
; X = 4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 + 12j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = (0x00000004 + 0x0000000D ) >> 1
; temp1 = (0x00000011) >> 1 = 0x0000008.8
; VR5H = temp1[15:0] = 0x0008 = 8
; Imaginary:
; temp2 = (0x00000003 + 0x0000000C ) >> 1
; temp2 = (0x0000000F) >> 1 = 0x0000007.8
; VR5L = temp2[15:0] = 0x0007 = 7
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = 0
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13
VMOVXI VR2, #12 ; VR2 = Im(Y) = 12

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition www.ti.com

398 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOVXI VR4, #3
VMOVIX VR4, #4 ; VR4 = X = 0x00040003 = 4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0x00080007 = 8 + 7j

The next example illustrates the operation with a right shift value defined as well as
rounding.
;
; Example: Z = X + Y with Right Shift and Rounding
;
; X = 4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 + 12j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = round((0x00000004 + 0x0000000D ) >> 1)
; temp1 = round(0x00000011 >> 1)
; temp1 = round(0x0000008.8) = 0x00000009
; VR5H = temp1[15:0] = 0x0011 = 8
; Imaginary:
; temp2 = round(0x00000003 + 0x0000000C ) >> 1)
; temp2 = round(0x0000000F >> 1)
; temp2 = round(0x0000007.8) = 0x00000008
; VR5L = temp2[15:0] = 0x0008 = 8
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13
VMOVXI VR2, #12 ; VR2 = Im(Y) = 12
VMOVXI VR4, #3
VMOVIX VR4, #4 ; VR4 = X = 0x00040003 = 4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0x00090008 = 9 + 8j

The next example illustrates the operation with both a right and left shift value defined
along with rounding.
;
; Example: Z = X + Y with Right Shift, Left Shift and Rounding
;
; X = -4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 - 9j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = 0xFFFFFFFC << 2 + 0x0000000D
; temp1 = 0xFFFFFFF0 + 0x0000000D = 0xFFFFFFFD
; temp1 = 0xFFFFFFFD >> 1 = 0xFFFFFFFE.8
; temp1 = round(0xFFFFFFFFE.8) = 0xFFFFFFFF
; VR5H = temp1[15:0] 0xFFFF = -1;
; Imaginary:
; temp2 = 0x00000003 << 2 + 0xFFFFFFF7
; temp2 = 0x0000000C + 0xFFFFFFF7 = 0x00000003
; temp2 = 0x00000003 >> 1 = 0x00000001.8
; temp1 = round(0x000000001.8 = 0x000000002
; VR5L = temp2[15:0] 0x0002 = 2
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #-9 ; VR2 = Im(Y) = -9
VMOVIX VR2, #0xFFFF ; sign extend VR2 = 0xFFFFFFF7
VMOVXI VR4, #3
VMOVIX VR4, #-4 ; VR4 = X = 0xFFFC0003 = -4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0xFFFF0002 = -1 + 2j

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition

399SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Double Add with Parallel Load www.ti.com

400 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex Double Add with Parallel Load

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR4H 16-bit integer representing the real part of the first input: Re(X)
VR4L 16-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mem32 pointer to a 32-bit memory location.

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:
Output Register Value
VR5H 16-bit integer representing the real part of the result:

Re(Z) = (Re(X) << SHIFTL) + (Re(Y) ) >> SHIFTR
VR5L 16-bit integer representing the imaginary part of the result:

Im(Z) = (Im(X) << SHIFTL) + (Im(Y) ) >> SHIFTR
VRa Contents of the memory pointed to by [mem32]. VRa can not be VR5 or VR8.

Opcode LSW: 1110 0011 1111 1010
MSW: 0000 aaaa mem32

Description Complex 16 + 32 = 16-bit operation with parallel register load. This operation is useful
for algorithms similar to a complex FFT.

The first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the addition is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in . If the VSTATUS[SAT] bit is set, then the result will
be saturated in the event of a 16-bit overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit
// VR2 = Im(Y) 32-bit

temp1 = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)

temp1 = (temp1 << SHIFTL) + VR3; // Re(Z) intermediate
temp2 = (temp2 << SHIFTL) + VR2; // Im(Z) intermediate

if (RND == 1)
{

temp1 = round(temp1 >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);

}
else
{

temp1 = truncate(temp1 >> SHIFTR);

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Double Add with Parallel Load

401SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

temp2 = truncate(temp2 >> SHIFTR);
}
if (SAT == 1)
{

VR5H = sat16(temp1);
VR5L = sat16(temp2);

}
else
{

VR5H = temp1[15:0];
VR5L = temp2[15:0];

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the real-part (VR5H) computation overflows or underflows.
• OVFI is set if the imaginary-part (VR5L) computation overflows or underflows.

Pipeline Both operations complete in a single cycle.

Example For more information regarding the addition operation, please refer to the examples for
the VCDADD16 VR5, VR4, VR3, VR2 instruction.
;
;Example: Right Shift, Left Shift and Rounding
;
; X = -4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 - 9j (32-bit real + 32-bit imaginary)
;
;
; Real:
; temp1 = 0xFFFFFFFC << 2 + 0x0000000D
; temp1 = 0xFFFFFFF0 + 0x0000000D = 0xFFFFFFFD
; temp1 = 0xFFFFFFFD >> 1 = 0xFFFFFFFE.8
; temp1 = round(0xFFFFFFFFE.8) = 0xFFFFFFFF
; VR5H = temp1[15:0] 0xFFFF = -1;
; Imaginary:
; temp2 = 0x00000003 << 2 + 0xFFFFFFF7
; temp2 = 0x0000000C + 0xFFFFFFF7 = 0x00000003
; temp2 = 0x00000003 >> 1 = 0x00000001.8
; temp1 = round(0x000000001.8 = 0x000000002
; VR5L = temp2[15:0] 0x0002 = 2
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #-9 ; VR2 = Im(Y) = -9
VMOVIX VR2, #0xFFFF ; sign extend VR2 = 0xFFFFFFF7
VMOVXI VR4, #3
VMOVIX VR4, #-4 ; VR4 = X = 0xFFFC0003 = -4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0xFFFF0002 = -1 + 2j

|| VCMOV32 VR2, *XAR7 ; VR2 = value pointed to by XAR7

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract www.ti.com

402 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCDSUB16 VR6, VR4, VR3, VR2 Complex 16-32 = 16 Subtract

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR4H 16-bit integer representing the real part of the first input: Re(X)
VR4L 16-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR6 as shown below:
Output Register Value
VR6H 16-bit integer representing the real part of the result: Re(Z) = (Re(X) << SHIFTL) -

(Re(Y) ) >> SHIFTR
VR6L 16-bit integer representing the imaginary part of the result: Im(Z) = (Im(X) << SHIFTL) -

(Im(Y) ) >> SHIFTR

Opcode LSW: 1110 0101 0000 0101

Description Complex 16 - 32 = 16-bit operation. This operation is useful for algorithms similar to a
complex FFT.

The first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the subtraction is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in . If the VSTATUS[SAT] bit is set, then the result will
be saturated in the event of a 16-bit overflow or underflow.
// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit
// VR2 = Im(Y) 32-bit

temp1 = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)

temp1 = (temp1 << SHIFTL) - VR3; // Re(Z) intermediate
temp2 = (temp2 << SHIFTL) - VR2; // Im(Z) intermediate

if (RND == 1)
{

temp1 = round(temp1 >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);

}
else
{

temp1 = truncate(temp1 >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);

}
if (SAT == 1)
{

VR5H = sat16(temp1);

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract

403SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VR5L = sat16(temp2);
}
else
{

VR5H = temp1[15:0];
VR5L = temp2[15:0];

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the real-part (VR6H) computation overflows or underflows.
• OVFI is set if the imaginary-part (VR6L) computation overflows or underflows.

Pipeline This is a single-cycle instruction.

Example ;
; Example: Z = X - Y
;
; X = 4 + 6j (16-bit real + 16-bit imaginary)
; Y = 13 + 22j (32-bit real + 32-bit imaginary)
;
; Z = (4 - 13) + (6 - 22)j = -9 - 16j
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = 0
VSETSHR #0 ; VSTATUS[SHIFTR] = 0
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 = 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0xFFF7FFF0 = -9 + -16j

The next example illustrates the operation with a right shift value defined.
;
; Example: Z = X - Y with Right Shift

; Y = 4 + 6j (16-bit real + 16-bit imaginary)
; X = 13 + 22j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = (0x00000004 - 0x0000000D) >> 1
; temp1 = (0xFFFFFFF7) >> 1
; temp1 = 0xFFFFFFFFB
; VR5H = temp1[15:0] = 0xFFFB = -5
; Imaginary:
; temp2 = (0x00000006 - 0x00000016) >> 1
; temp2 = (0xFFFFFFF0) >> 1
; temp2 = 0xFFFFFFF8
; VR5L = temp2[15:0] = 0xFFF8 = -8
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = 0
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0xFFFBFFF8 = -5 + -8j

The next example illustrates rounding with a right shift value defined.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract www.ti.com

404 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

;
; Example: Z = X-Y with Rounding and Right Shift
;
; X = 4 + 6j (16-bit real + 16-bit imaginary)
; Y = -13 + 22j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = round((0x00000004 - 0xFFFFFFF3) >> 1)
; temp1 = round(0x00000011) >> 1)
; temp1 = round(0x000000008.8) = 0x000000009
; VR5H = temp1[15:0] = 0x0009 = 9
; Imaginary:
; temp2 = round((0x00000006 - 0x00000016) >> 1)
; temp2 = round(0xFFFFFFF0) >> 1)
; temp2 = round(0xFFFFFFF8.0) = 0xFFFFFFF8
; VR5L = temp2[15:0] = 0xFFF8 = -8
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #-13 ; VR3 = Re(Y)
VMOVIX VR3, #0xFFFF ; sign extend VR3 = -13 = 0xFFFFFFF3
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0x0009FFF8 = 9 + -8j

The next example illustrates rounding with both a left and a right shift value defined.

;
; Example: Z = X-Y with Rounding and both Left and Right Shift
;
; X = 4 + 6j (16-bit real + 16-bit imaginary)
; Y = -13 + 22j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = round((0x00000004 << 2 - 0xFFFFFFF3) >> 1)
; temp1 = round((0x00000010 - 0xFFFFFFF3) >> 1)
; temp1 = round( 0x0000001D >> 1)
; temp1 = round( 0x0000000E.8) = 0x0000000F
; VR5H = temp1[15:0] = 0x000F = 15
; Imaginary:
; temp2 = round((0x00000006 << 2 - 0x00000016) >> 1)
; temp2 = round((0x00000018 - 0x00000016) >> 1)
; temp2 = round( 0x00000002 >> 1)
; temp1 = round( 0x00000001.0) = 0x00000001
; VR5L = temp2[15:0] = 0x0001 = 1
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #-13 ; VR3 = Re(Y)
VMOVIX VR3, #0xFFFF ; sign extend VR3 = -13 = 0xFFFFFFF3
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0x000F0001 = 15 + 1j

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VRNDOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract

405SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 16+32 = 16 Add with Parallel Load www.ti.com

406 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex 16+32 = 16 Add with Parallel
Load

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR4H 16-bit integer representing the real part of the first input: Re(X)
VR4L 16-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mem32 pointer to a 32-bit memory location.

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR6 as shown below:
Output Register Value
VR6H 16-bit integer representing the real part of the result:

Re(Z) = (Re(X) << SHIFTL) + (Re(Y) ) >> SHIFTR
VR6L 16-bit integer representing the imaginary part of the result:

Im(Z) = (Im(X) << SHIFTL) + (Im(Y) ) >> SHIFTR
VRa Contents of the memory pointed to by [mem32]. VRa can not be VR6 or VR8.

Opcode LSW: 1110 0010 1100 1010
MSW: 0000 0000 mem16

Description Complex 16 - 32 = 16-bit operation with parallel load. This operation is useful for
algorithms similar to a complex FFT.

The first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the subtraction is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in . If the VSTATUS[SAT] bit is set, then the result will
be saturated in the event of a 16-bit overflow or underflow.
// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit
// VR2 = Im(Y) 32-bit

temp1 = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)

if (RND == 1)
{

temp1 = round(temp1 >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);

}
else
{

temp1 = truncate(temp1 >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);

}
if (SAT == 1)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 16+32 = 16 Add with Parallel Load

407SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

{
VR5H = sat16(temp1);
VR5L = sat16(temp2);

}
else
{

VR5H = temp1[15:0];
VR5L = temp2[15:0];

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the real-part (VR6H) computation overflows or underflows.
• OVFI is set if the imaginary-part (VR6l) computation overflows or underflows.

Pipeline Both operations complete in a single cycle.

Example For more information regarding the subtraction operation, please refer to VCDSUB16
VR6, VR4, VR3, VR2.

;
; Example: Z = X-Y with Rounding and both Left and Right Shift
;
; X = 4 + 6j (16-bit real + 16-bit imaginary)
; Y = -13 + 22j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = round((0x00000004 << 2 - 0xFFFFFFF3) >> 1)
; temp1 = round((0x00000010 - 0xFFFFFFF3) >> 1)
; temp1 = round( 0x0000001D >> 1)
; temp1 = round( 0x0000000E.8) = 0x0000000F
; VR5H = temp1[15:0] = 0x000F = 15
; Imaginary:
; temp2 = round((0x00000006 << 2 - 0x00000016) >> 1)
; temp2 = round((0x00000018 - 0x00000016) >> 1)
; temp2 = round( 0x00000002 >> 1)
; temp1 = round( 0x00000001.0) = 0x00000001
; VR5L = temp2[15:0] = 0x0001 = 1
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #-13 ; VR3 = Re(Y)
VMOVIX VR3, #0xFFFF ; sign extend VR3 = -13 = 0xFFFFFFF3
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0x000F0001 = 15 + 1j

|| VCMOV32 VR2, *XAR7 ; VR2 = contents pointed to by XAR7

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMAC VR5, VR4, VR3, VR2, VR1, VR0 — Complex Multiply and Accumulate www.ti.com

408 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCMAC VR5, VR4, VR3, VR2, VR1, VR0 Complex Multiply and Accumulate

Operands Before the operation, the inputs should be loaded into registers as shown below.
Input Register Value
VR5 32-bit integer, previous real-part accumulation
VR4 32-bit integer, previous imaginary-part accumulation
VR3 32-bit integer, real result from the previous multiply
VR2 32-bit integer, imaginary result from the previous multiply
VR0H 16-bit integer representing the real part of the first input: Re(X)
VR0L 16-bit integer representing the imaginary part of the first input: Im(X)
VR1H 16-bit integer representing the real part of the second input: Re(Y)
VR1L 16-bit integer representing the imaginary part of the second input: Im(Y)

Note: The user will need to do one final addition to accumulate the final multiplications
(Real-VR3 and Imaginary-VR2) into the result registers.

The result is stored as shown below:
Output Register Value
VR5 32-bit real part of the total accumulation Re(sum) = Re(sum) + Re(mpy)
VR4 32-bit imaginary part of the total accumulation Im(sum) = Im(sum) + Im(mpy

Opcode LSW: 1110 0101 0011 0001

Description Complex multiply operation.

// VR5 = Accumulation of the real part
// VR4 = Accumulation of the imaginary part
//
// VR0 = X + jX: VR0[31:16] = X, VR0[15:0] = jX
// VR1 = Y + jY: VR1[31:16] = Y, VR1[15:0] = jY
//
// Perform add
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR);
VR4 = VR4 + round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR);
VR4 = VR4 + (VR2 >> SHIFTR);

}
//
// Perform multiply (X + jX) * (Y * jY)
//

VR3 = VR0H * VR1H - VR0L * VR1L; Real result
VR2 = VR0H * VR1L + VR0L * VR1H; Imaginary result
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMAC VR5, VR4, VR3, VR2, VR1, VR0 — Complex Multiply and Accumulate

409SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Example

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Multiply and Accumulate with Parallel Load
www.ti.com

410 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 Complex Multiply and Accumulate
with Parallel Load

Operands Before the operation, the inputs should be loaded into registers as shown below.
Input Register Value
VR5 Previous real-part accumulation
VR4 Previous imaginary-part accumulation
VR3 32-bit real result from the previous multiply
VR2 32-bit imaginary result from the previous multiply
VR0H 16-bit integer representing the real part of the first input: Re(X)
VR0L 16-bit integer representing the imaginary part of the first input: Im(X)
VR1H 16-bit integer representing the real part of the second input: Re(Y)
VR1L 16-bit integer representing the imaginary part of the second input: Im(Y)
mem32 Pointer to 32-bit memory location.

Note: The user will need to do one final addition to accumulate the final multiplications
(Real-VR3 and Imaginary-VR2) into the result registers.

The result is stored as shown below:
Output Register Value
VR5 32-bit real part of the total accumulation Re(sum) = Re(sum) + Re(mpy)
VR4 32-bit imaginary part of the total accumulation Im(sum) = Im(sum) + Im(mpy)
VRa Contents of the memory pointed to by [mem32]. VRa cannot be VR5, VR4 or VR8

Note:

Opcode LSW: 1110 0010 1100 1010
MSW: 0000 0000 mem32

Description Complex multiply operation.

// VR5 = Accumulation of the real part
// VR4 = Accumulation of the imaginary part
//
// VR0 = X + Xj: VR0[31:16] = Re(X), VR0[15:0] = Im(X)
// VR1 = Y + Yj: VR1[31:16] = Re(Y), VR1[15:0] = Im(Y)
//
// Perform add
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR);
VR4 = VR4 + round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR);
VR4 = VR4 + (VR2 >> SHIFTR);

}
//
// Perform multiply Z = (X + Xj) * (Y * Yj)
//

VR3 = VR0H * VR1H - VR0L * VR1L; // Re(Z)
VR2 = VR0H * VR1L + VR0L * VR1H; // Im(Z)
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}
VRa = [mem32];

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Multiply and Accumulate with
Parallel Load

411SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multiply and accumulate is a 2p-cycle operation and
the VMOV32 is a single-cycle operation.

Example

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate www.ti.com

412 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ Complex Multiply and Accumulate

Operands The VMAC alternates which registers are used between each cycle. For odd cycles (1,
3, 5, etc) the following registers are used:
Odd Cycle Input Value
VR5 Previous real-part total accumulation: Re(odd_sum)
VR4 Previous imaginary-part total accumulation: Im(odd-sum)
VR1 Previous real result from the multiply: Re(odd-mpy)
VR0 Previous imaginary result from the multiply Im(odd-mpy)
[mem32] Pointer to a 32-bit memory location representing the first input to the multiply

[mem32][31:16] = Re(X)
[mem32][15:0] = Im(X)

XAR7 Pointer to a 32-bit memory location representing the second input to the multiply
*XAR7[31:16] = Re(Y)
*XAR7[15:0] = Im(Y)

The result from odd cycle is stored as shown below:
Odd Cycle Output Value
VR5 32-bit real part of the total accumulation

Re(odd_sum) = Re(odd_sum) + Re(odd_mpy)
VR4 32-bit imaginary part of the total accumulation

Im(sum) = Im(odd_sum) + Im(odd_mpy)
VR1 32-bit real result from the multiplication:

Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR0 32-bit imaginary result from the multiplication:

Im(Z) = Re(X)*Im(Y) + Re(Y)*Im(X)

For even cycles (2, 4, 6, etc) the following registers are used:
Even Cycle Input Value
VR7 Previous real-part total accumulation: Re(even_sum)
VR6 Previous imaginary-part total accumulation: Im(even-sum)
VR3 Previous real result from the multiply: Re(even-mpy)
VR2 Previous imaginary result from the multiply Im(even-mpy)
[mem32] Pointer to a 32-bit memory location representing the first input to the multiply

[mem32][31:16] = Re(X); (a)
[mem32][15:0] = Im(X); (b)

XAR7 Pointer to a 32-bit memory location representing the second input to the multiply:
*XAR7[31:16] = Re(Y); (c)
*XAR7[15:0] = Im(Y); (d)

The result from even cycles is stored as shown below:
Even Cycle Output Value
VR7 32-bit real part of the total accumulation

Re(even_sum) = Re(even_sum) + Re(even_mpy)
VR6 32-bit imaginary part of the total accumulation

Im(even_sum) = Im(even_sum) + Im(even_mpy)
VR3 32-bit real result from the multiplication:

Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 32-bit imaginary result from the multiplication:

Im(Z) = Re(X)*Im(Y) + Re(Y)*Im(X)

Opcode LSW: 1110 0010 0101 0000
MSW: 00bb baaa mem32

Description Perform a repeated multiply and accumulate operation. This instruction is the only VCU
instruction that can be repeated using the single repeat instruction (RPT ||). When
repeated, the destination of the accumulate will alternate between VR7/VR6 and
VR5/VR4 on each cycle.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate

413SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

// Cycle 1:
//
// Perform accumulate
//

if(RND == 1)
{

VR5 = VR5 + round(VR1 >> SHIFTR)
VR4 = VR4 + round(VR0 >> SHIFTR)

}
else
{

VR5 = VR5 + (VR1 >> SHIFTR)
VR4 = VR4 + (VR0 >> SHIFTR)

}
//
// X and Y array element 0
//
VR1 = Re(X)*Re(Y) - Im(X)*Im(Y)
VR0 = Re(X)*Im(Y) + Re(Y)*Im(X)

//
// Cycle 2:
//
// Perform accumulate
//

if(RND == 1)
{

VR7 = VR7 + round(VR3 >> SHIFTR)
VR6 = VR6 + round(VR2 >> SHIFTR)

}
else
{

VR7 = VR7 + (VR3 >> SHIFTR)
VR6 = VR6 + (VR2 >> SHIFTR)

}
//
// X and Y array element 1
//
VR3 = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = Re(X)*Im(Y) + Re(Y)*Im(X)

//
// Cycle 3:
//
// Perform accumulate
//

if(RND == 1)
{

VR5 = VR5 + round(VR1 >> SHIFTR)
VR4 = VR4 + round(VR0 >> SHIFTR)

}
else
{

VR5 = VR5 + (VR1 >> SHIFTR)
VR4 = VR4 + (VR0 >> SHIFTR)

}
//
// X and Y array element 2
//
VR1 = Re(X)*Re(Y) - Im(X)*Im(Y)
VR0 = Re(X)*Im(Y) + Re(Y)*Im(X)

etc...

Restrictions VR0, VR1, VR2, and VR3 will be used as temporary storage by this instruction.

Flags The VSTATUS register flags are modified as follows:
• OVFR is set in the case of an overflow or underflow of the addition or subtraction

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate www.ti.com

414 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

operations.
• OVFI is set in the case an overflow or underflow of the imaginary part of the addition

or subtraction operations.

Pipeline When repeated the VMAC takes 2p + N cycles where N is the number of times the
instruction is repeated. When repeated, this instruction has the following pipeline
restrictions:

<instruction1> ; No restriction
<instruction2> ; Cannot be a 2p instruction that writes

; to VR0, VR1...VR7 registers
RPT #(N-1) ; Execute N times, where N is even

|| VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++
<instruction3> ; No restrictions.

; Can read VR0, VR1... VR8

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate

415SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

MACF32 can also be used standalone. In this case, the insruction takes 2 cycles and the
following pipeline restrictions apply:

<instruction1> ; No restriction <instruction2> ; Cannot be a 2p instruction that
writes ; to R2H, R3H, R6H or R7H MACF32 R7H, R3H, *XAR6, *XAR7 ; R3H = R3H + R2H,
R2H = [mem32] * [XAR7++] ; <--

R2H and R3H are valid (note: no delay required) NOP

Example Cascading of RPT || VMAC is allowed as long as the first and subsequent counts are
even. Cascading is useful for creating interruptible windows so that interrupts are not
delayed too long by the RPT instruction. For example:
;
; Example of cascaded VMAC instructions
;

VCLEARALL ; Zero the accumulation registers
;
; Execute MACF32 N+1 (4) times
;

RPT #3
|| VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++
;
; Execute MACF32 N+1 (6) times
;

RPT #5
|| VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++
;
; Repeat MACF32 N+1 times where N+1 is even
;

RPT #N
|| MACF32 R7H, R3H, *XAR6++, *XAR7++

ADDF32 VR7, VR6, VR5, VR4

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMPY VR3, VR2, VR1, VR0 — Complex Multiply www.ti.com

416 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCMPY VR3, VR2, VR1, VR0 Complex Multiply

Operands Before the operation, the inputs should be loaded into registers as shown below. Both
inputs are complex numbers with a 16-bit real and 16-bit imaginary part.
Input Register Value
VR0H 16-bit integer representing the real part of the first input: Re(X)
VR0L 16-bit integer representing the imaginary part of the first input: Im(X)
VR1H 16-bit integer representing the real part of the 2nd input: Re(Y)
VR1L 16-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is a complex number with a 32-bit real and a 32-bit imaginary part. The result
is stored in VR2 and VR3 as shown below:
Output Register Value
VR3 16-bit integer representing the real part of the result:

Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 16-bit integer representing the imaginary part of the result:

Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

Opcode LSW: 1110 0101 0000 0000

Description Complex 16 x 16 = 32-bit multiply operation.

If the VSTATUS[SAT] bit is set, then the result will be saturated in the event of a 32-bit
overflow or underflow.

// VR0 = X + Xj: VR0[31:16] = Re(X), VR0[15:0] = Im(X)
// VR1 = Y + Yj: VR1[31:16] = Re(Y), VR1[15:0] = Im(Y)
//
// Calculate: Z = (X + jX) * (Y + jY)
//

VR3 = VR0H * VR1H - VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0H * VR1L + VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p-cycle instruction. The instruciton following this one should not use VR3 or
VR2.

Example ; Example 1
; X = 4 + 6j
; Y = 12 + 9j
;
; Z = X * Y
; Re(Z) = 4*12 - 6*9 = -6
; Im(Z) = 4*9 + 6*12 = 108
;

VSATOFF ; VSTATUS[SAT] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR0, #6
VMOVIX VR0, #4 ; VR0 = X = 0x00040006 = 4 + 6j
VMOVXI VR1, #9
VMOVIX VR1, #12 ; VR1 = Y = 0x000C0009 = 12 + 9j
VCMPY VR3, VR2, VR1, VR0 ; VR3 = Re(Z) = 0xFFFFFFFA = -6

; VR2 = Im(Z) = 0x0000006C = 108

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMPY VR3, VR2, VR1, VR0 — Complex Multiply

417SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

<instruction 1> ; <- Must not use VR2, VR3
; <- VCMPY completes, VR2, VR3 valid

<instruciton 2> ; Can use VR2, VR3

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa — Complex Multiply with Parallel Store www.ti.com

418 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa Complex Multiply with Parallel Store

Operands Before the operation, the inputs should be loaded into registers as shown below. Both
inputs are complex numbers with a 16-bit real and 16-bit imaginary part.
Input Register Value
VR0H 16-bit integer representing the real part of the first input: Re(X)
VR0L 16-bit integer representing the imaginary part of the first input: Im(X)
VR1H 16-bit integer representing the real part of the 2nd input: Re(Y)
VR1L 16-bit integer representing the imaginary part of the 2nd input: Im(Y)
VRa Value to be stored.

The result is a complex number with a 32-bit real and a 32-bit imaginary part. The result
is stored in VR2 and VR3 as shown below:
Output Register Value
VR3 16-bit integer representing the real part of the result:

Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 16-bit integer representing the imaginary part of the result:

Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)
[mem32] Contents of VRa. VRa can be VR0-VR7. VRa can not be VR8.

Opcode LSW: 1110 0010 1100 1010
MSW: 0000 0000 mem16

Description Complex 16 x 16 = 32-bit multiply operation with parallel register load.

If the VSTATUS[SAT] bit is set, then the result will be saturated in the event of a 32-bit
overflow or underflow.

// VR0 = X + jX: VR0[31:16] = Re(X), VR0[15:0] = Im(X)
// VR1 = Y + jY: VR1[31:16] = Re(Y), VR1[15:0] = Im(Y)
//
// Calculate: Z = (X + jX) * (Y + jY)
//

VR3 = VR0H * VR1H - VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0H * VR1L + VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multply operation takes 2p cycles and the VMOV
operation completes in a single cycle. The instruction following this one must not use
VR2 or VR3.

Example ; Example 1
; X = 4 + 6j
; Y = 12 + 9j
;
; Z = X * Y
; Re(Z) = 4*12 - 6*9 = -6
; Im(Z) = 4*9 + 6*12 = 108
;

VSATOFF ; VSTATUS[SAT] = 0
VCLEARALL ; VR0, VR1...VR8 == 0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa — Complex Multiply with Parallel Store

419SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOVXI VR0, #6
VMOVIX VR0, #4 ; VR0 = X = 0x00040006 = 4 + 6j
VMOVXI VR1, #9
VMOVIX VR1, #12 ; VR1 = Y = 0x000C0009 = 12 + 9j

; VR3 = Re(Z) = 0xFFFFFFFA = -6
VCMPY VR3, VR2, VR1, VR0 ; VR2 = Im(Z) = 0x0000006C = 108

|| VMOV32 *XAR7, VR3 ; Location XAR7 points to = VR3 (before
multiply)

<instruction 1> ; <- Must not use VR2, VR3
; <- VCMPY completes, VR2, VR3 valid

<instruciton 2> ; Can use VR2, VR3

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Multiply with Parallel Load www.ti.com

420 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 Complex Multiply with Parallel Load

Operands Before the operation, the inputs should be loaded into registers as shown below. Both
inputs are complex numbers with a 16-bit real and 16-bit imaginary part.
Input Register Value
VR0H 16-bit integer representing the real part of the first input: Re(X)
VR0L 16-bit integer representing the imaginary part of the first input: Im(X)
VR1H 16-bit integer representing the real part of the 2nd input: Re(Y)
VR1L 16-bit integer representing the imaginary part of the 2nd input: Im(Y)
mem32 pointer to 32-bit memory location

The result is a complex number with a 32-bit real and a 32-bit imaginary part. The result
is stored in VR2 and VR3 as shown below:
Output Register Value
VR3 16-bit integer representing the real part of the result:

Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 16-bit integer representing the imaginary part of the result:

Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)
VRa 32-bit value pointed to by [mem32]. VRa can not be VR2, VR3 or VR8.

Opcode LSW: 1110 0011 1111 0110
MSW: 0000 aaaa mem32

Description Complex 16 x 16 = 32-bit multiply operation with parallel register load.

If the VSTATUS[SAT] bit is set, then the result will be saturated in the event of a 32-bit
overflow or underflow.

// VR0 = X + jX: VR0[31:16] = Re(X), VR0[15:0] = Im(X)
// VR1 = Y + jY: VR1[31:16] = Re(Y), VR1[15:0] = Im(Y)
//
// Calculate: Z = (X + jX) * (Y + jY)
//

VR3 = VR0H * VR1H - VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0H * VR1L + VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multply operation takes 2p cycles and the VMOV
operation completes in a single cycle. The instruction following this one must not use
VR2 or VR3.

Example ; Example 1
; X = 4 + 6j
; Y = 12 + 9j
;
; Z = X * Y
; Re(Z) = 4*12 - 6*9 = -6
; Im(Z) = 4*9 + 6*12 = 108
;

VSATOFF ; VSTATUS[SAT] = 0
VCLEARALL ; VR0, VR1...VR8 == 0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Multiply with Parallel Load

421SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOVXI VR0, #6
VMOVIX VR0, #4 ; VR0 = X = 0x00040006 = 4 + 6j
VMOVXI VR1, #9
VMOVIX VR1, #12 ; VR1 = Y = 0x000C0009 = 12 + 9j

; VR3 = Re(Z) = 0xFFFFFFFA = -6
VCMPY VR3, VR2, VR1, VR0 ; VR2 = Im(Z) = 0x0000006C = 108

|| VMOV32 VR0, *XAR7 ; VR0 = contents of location XAR7 points to
<instruction 1> ; <- Must not use VR2, VR3

; <- VCMPY completes, VR2, VR3 valid
<instruciton 2> ; Can use VR2, VR3

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VNEG VRa — Two's Complement Negate www.ti.com

422 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VNEG VRa Two's Complement Negate

Operands
VRa VRa can be VR0 - VR7. VRa can not be VR8.

Opcode LSW: 1110 0101 0001 aaaa

Description Complex add operation.

// SAT is VSTATUS[SAT]
//

if (VRa == 0x800000000)
{

if(SAT == 1)
{

VRa = 0x7FFFFFFF;
}
else
{

VRa = 0x80000000;
}

}
else
{

VRa = - VRa
}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the input to the operation is 0x80000000.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFR
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCSUB VR5, VR4, VR3, VR2 — Complex 32 - 32 = 32 Subtraction

423SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCSUB VR5, VR4, VR3, VR2 Complex 32 - 32 = 32 Subtraction

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR5 32-bit integer representing the real part of the first input: Re(X)
VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:
Output Register Value
VR5 32-bit integer representing the real part of the result:

Re(Z) = Re(X) - (Re(Y) >> SHIFTR)
VR4 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) - (Im(Y) >> SHIFTR)

Opcode LSW: 1110 0101 0000 0011

Description Complex 32 - 32 = 32-bit subtraction operation.

The second input operand (stored in VR3 and VR2) is shifted right by VSTATUS[SHIFR]
bits before the subtraction. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in . If
the VSTATUS[SAT] bit is set, then the result will be saturated in the event of an overflow
or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//

if (RND == 1)
{

VR5 = VR5 - round(VR3 >> SHIFTR);
VR4 = VR4 - round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 - (VR3 >> SHIFTR);
VR4 = VR4 - (VR2 >> SHIFTR);

}
if (SAT == 1)
{

sat32(VR5);
sat32(VR4);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR5 computation (real part) overflows or underflows.
• OVFI is set if the VR6 computation (imaginary part) overflows or underflows.

Pipeline This is a single-cycle instruction.

Example

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCLROVFI

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCSUB VR5, VR4, VR3, VR2 — Complex 32 - 32 = 32 Subtraction www.ti.com

424 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Subtraction

425SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex Subtraction

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR5 32-bit integer representing the real part of the first input: Re(X)
VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mem32 pointer to a 32-bit memory location

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:
Output Register Value
VR5 32-bit integer representing the real part of the result:

Re(Z) = Re(X) - (Re(Y) >> SHIFTR)
VR4 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) - (Im(Y) >> SHIFTR)
VRa contents of the memory pointed to by [mem32]. VRa can not be VR5, VR4 or VR8.

Opcode LSW: 1110 0010 1100 1010
MSW: 0000 0000 mem16

Description Complex 32 - 32 = 32-bit subtraction operation with parallel load.

The second input operand (stored in VR3 and VR2) is shifted right by VSTATUS[SHIFR]
bits before the subtraction. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in . If
the VSTATUS[SAT] bit is set, then the result will be saturated in the event of an overflow
or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//

if (RND == 1)
{

VR5 = VR5 - round(VR3 >> SHIFTR);
VR4 = VR4 - round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 - (VR3 >> SHIFTR);
VR4 = VR4 - (VR2 >> SHIFTR);

}
if (SAT == 1)
{

sat32(VR5);
sat32(VR4);

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR5 computation (real part) overflows or underflows.
• OVFI is set if the VR6 computation (imaginary part) overflows or underflows.

Pipeline This is a single-cycle instruction.

Example

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Subtraction www.ti.com

426 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VCSUB VR5, VR4, VR3, VR2
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Instruction Set

427SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.6.4 Cyclic Redundancy Check (CRC) Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 3-12. CRC Instructions
Title ...................................................................................................................................... Page

VCRC8H_1 mem16 —CRC8, High Byte ............................................................................................ 428
VCRC8L_1 mem16 —CRC8 , Low Byte ............................................................................................ 429
VCRC16P1H_1 mem16 —CRC16, Polynomial 1, High Byte..................................................................... 430
VCRC16P1L_1 mem16 —CRC16, Polynomial 1, Low Byte...................................................................... 431
VCRC16P2H_1 mem16 —CRC16, Polynomial 2, High Byte..................................................................... 432
VCRC16P2L_1 mem16 —CRC16, Polynomial 2, Low Byte...................................................................... 433
VCRC32H_1 mem16 —CRC32, High Byte ......................................................................................... 434
VCRC32L_1 mem16 —CRC32, Low Byte .......................................................................................... 435
VCRCCLR —Clear CRC Result Register .......................................................................................... 436
VMOV32 mem32, VCRC —Store the CRC Result Register ..................................................................... 437
VMOV32 VCRC, mem32 —Load the CRC Result Register ...................................................................... 438

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC8H_1 mem16 — CRC8, High Byte www.ti.com

428 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCRC8H_1 mem16 CRC8, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1100
MSW: 0000 0000 mem16

Description This instruction uses CRC8 polynomial == 0x07.

Calculate the CRC8 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
VCRC = CRC8 (VCRC, mem16[15:8])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC8L_1 mem16

See also VCRC8L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC8L_1 mem16 — CRC8 , Low Byte

429SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCRC8L_1 mem16 CRC8 , Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1011
MSW: 0000 0000 mem16

Description This instruction uses CRC8 polynomial == 0x07.

Calculate the CRC8 of the least significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
VCRC = CRC8 (VCRC, mem16[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
typedef struct {

uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC8(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC8
_CRC8

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC8_done, AL ; Execute block of code AL + 1 times
VCRC8L_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC8H_1 *XAR7++ ; ...
VCRC8L_1 *XAR7 ; ...
VCRC8H_1 *XAR7++ ; ...

_CRC8_done
MOVL XAR7, *_+XAR4[0] ; XAR7 = &CRCResult
MOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC8H_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC16P1H_1 mem16 — CRC16, Polynomial 1, High Byte www.ti.com

430 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCRC16P1H_1 mem16 CRC16, Polynomial 1, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1111
MSW: 0000 0000 mem16

Description This instruction uses CRC16 polynomial 1 == 0x8005.

Calculate the CRC16 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
VCRC = CRC16 (VCRC, mem16[15:8])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example forVCRC16P1L_1 mem16.

See also VCRC16P1L_1 mem16
VCRC16P2H_1 mem16
VCRC16P2L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC16P1L_1 mem16 — CRC16, Polynomial 1, Low Byte

431SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCRC16P1L_1 mem16 CRC16, Polynomial 1, Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1110
MSW: 0000 0000 mem16

Description This instruction uses CRC16 polynomial 1 == 0x8005.

Calculate the CRC16 of the least significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
VCRC = CRC16 (VCRC, mem16[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
typedef struct {

uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC16P1(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC16P1
_CRC16P1

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC16P1_done, AL ; Execute block of code AL + 1 times
VCRC16P1L_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC16P1H_1 *XAR7++ ; ...
VCRC16P1L_1 *XAR7 ; ...
VCRC16P1H_1 *XAR7++ ; ...

_CRC16P1_done
MOVL XAR7, *_+XAR4[0] ; XAR7 = &CRCResult
MOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC16P1H_1 mem16
VCRC16P2H_1 mem16
VCRC16P2L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC16P2H_1 mem16 — CRC16, Polynomial 2, High Byte www.ti.com

432 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCRC16P2H_1 mem16 CRC16, Polynomial 2, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1111
MSW: 0001 0000 mem16

Description This instruction uses CRC16 polynomial 2== 0x1021.

Calculate the CRC16 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
VCRC = CRC16 (VCRC, mem16[15:8])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC16P2L_1 mem16.

See also VCRC16P2L_1 mem16
VCRC16P1H_1 mem16
VCRC16P1L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC16P2L_1 mem16 — CRC16, Polynomial 2, Low Byte

433SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCRC16P2L_1 mem16 CRC16, Polynomial 2, Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1110
MSW: 0001 0000 mem16

Description This instruction uses CRC16 polynomial 2== 0x1021.

Calculate the CRC16 of the least significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
VCRC = CRC16 (VCRC, mem16[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
typedef struct {

uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC16P2(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC16P2
_CRC16P2

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC16P2_done, AL ; Execute block of code AL + 1 times
VCRC16P2L_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC16P2H_1 *XAR7++ ; ...
VCRC16P2L_1 *XAR7 ; ...
VCRC16P2H_1 *XAR7++ ; ...

_CRC16P2_done
MOVL XAR7, *_+XAR4[0] ; XAR7 = &CRCResult
MOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC16P2H_1 mem16
VCRC16P1H_1 mem16
VCRC16P1L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC32H_1 mem16 — CRC32, High Byte www.ti.com

434 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCRC32H_1 mem16 CRC32, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 0010
MSW: 0000 0000 mem16

Description This instruction uses CRC32 polynomial 1 == 0x04C11DB7

Calculate the CRC16 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
VCRC = CRC16 (VCRC, mem16[15:8])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC32L_1 mem16.

See also VCRC32L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC32L_1 mem16 — CRC32, Low Byte

435SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCRC32L_1 mem16 CRC32, Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 0001
MSW: 0000 0000 mem16

Description This instruction uses CRC32 polynomial 1 == 0x04C11DB7

Calculate the CRC32 of the least significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
VCRC = CRC32 (VCRC, mem16[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
typedef struct {

uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC32(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC32
_CRC32

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC16P2_done, AL ; Execute block of code AL + 1 times
VCRC32_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC32_1 *XAR7++ ; ...
VCRC32_1 *XAR7 ; ...
VCRC32_1 *XAR7++ ; ...

_CRC32_done
MOVL XAR7, *_+XAR4[0] ; XAR7 = &CRCResult
MOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC32H_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRCCLR — Clear CRC Result Register www.ti.com

436 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VCRCCLR Clear CRC Result Register

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0101 0010 0100

Description Clear the VCRC register.
VCRC = 0x0000

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC32L_1 mem16.

See also VMOV32 mem32, VCRC
VMOV32 VCRC, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 mem32, VCRC — Store the CRC Result Register

437SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV32 mem32, VCRC Store the CRC Result Register

Operands
mem32 32-bit memory destination
VCRC CRC result register

Opcode LSW: 1110 0010 0000 0110
MSW: 0000 0000 mem32

Description Store the VCRC register.
[mem32] = VCRC

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example X

See also VCRCCLR
VMOV32 VCRC, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 VCRC, mem32 — Load the CRC Result Register www.ti.com

438 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VMOV32 VCRC, mem32 Load the CRC Result Register

Operands
mem32 32-bit memory destination
VCRC CRC result register

Opcode LSW: 1110 0011 1111 0110
MSW: 0000 0000 mem32

Description Load the VCRC register.
VCRC = [mem32]

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VCRCCLR
VMOV32 mem32, VCRC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Instruction Set

439SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.6.5 Viterbi Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 3-13. Viterbi Instructions
Title ...................................................................................................................................... Page

VITBM2 VR0 —Code Rate 1:2 Branch Metric Calculation........................................................................ 440
VITBM2 VR0 || VMOV32 VR2, mem32 — Code Rate 1:2 Branch Metric Calculation with Parallel Load.................. 441
VITBM3 VR0, VR1, VR2 —Code Rate 1:3 Branch Metric Calculation .......................................................... 442
VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32 —Code Rate 1:3 Branch Metric Calculation with Parallel Load ..... 443
VITDHADDSUB VR4, VR3, VR2, VRa —Viterbi Double Add and Subtract, High ............................................. 444
VITDHADDSUB VR4, VR3, VR2, VRa || mem32 VRb —Viterbi Add and Subtract High with Parallel Store.............. 446
VITDHSUBADD VR4, VR3, VR2, VRa —Viterbi Add and Subtract Low........................................................ 447
VITDHSUBADD VR4, VR3, VR2, VRa || mem32 VRb —Viterbi Subtract and Add, High with Parallel Store ............. 448
VITDLADDSUB VR4, VR3, VR2, VRa —Viterbi Add and Subtract Low ....................................................... 449
VITDLADDSUB VR4, VR3, VR2, VRa || mem32 VRb —Viterbi Add and Subtract Low with Parallel Load ............... 450
VITDLSUBADD VR4, VR3, VR2, VRa —Viterbi Subtract and Add Low ....................................................... 451
VITDLSUBADD VR4, VR3, VR2, VRa || mem32 VRb —Viterbi Subtract and Add, Low with Parallel Store .............. 452
VITHSEL VRa, VRb, VR4, VR3 —Viterbi Select High ............................................................................ 453
VITHSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 —Viterbi Select High with Parallel Load ....................... 454
VITLSEL VRa, VRb, VR4, VR3 —Viterbi Select, Low Word ..................................................................... 455
VITLSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 —Viterbi Select Low with Parallel Load ........................ 456
VTCLEAR —Clear Transition Bit Registers ........................................................................................ 457
VTRACE mem32, VR0, VT0, VT1 —Viterbi Traceback, Store to Memory ..................................................... 458
VTRACE VR1, VR0, VT0, VT1 —Viterbi Traceback, Store to Register ......................................................... 460

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITBM2 VR0 — Code Rate 1:2 Branch Metric Calculation www.ti.com

440 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITBM2 VR0 Code Rate 1:2 Branch Metric Calculation

Operands Before the operation, the inputs are loaded into the registers as shown below. Each
operand for the branch metric calculation is 16-bits.
Input Register Value
VR0L 16-bit decoder input 0
VR0H 16-bit decoder input 1

The result of the operation is also stored in VR0 as shown below:
Output Register Value
VR0L 16-bit branch metric 0 = VR0L + VR0H
VR0H 16-bit branch metric 1 = VR0L - VR0L

Opcode LSW: 1110 0101 0000 1100

Description Branch metric calculation for code rate = 1/2.
// SAT is VSTATUS[SAT]
// VR0L is decoder input 0
// VR0H is decoder input 1
//
// Calculate the branch metrics by performing 16-bit signed
// addition and subtraction
//

VR0L = VR0L + VR0H; // VR0L = branch metric 0
VR0H = VR0L - VR0L; // VR0H = branch metric 1
if (SAT == 1)
{

sat16(VR0L);
sat16(VR0H);

}

Flags This instruction sets the real overflow flag, VSTATUS[OVFR] in the event of an overflow
or underflow.

Pipeline This is a single-cycle instruction.

Example

See also VITBM2 VR0 || VMOV32 VR2, mem32
VITBM3 VR0, VR1, VR2

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITBM2 VR0 || VMOV32 VR2, mem32 — Code Rate 1:2 Branch Metric Calculation with Parallel Load

441SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITBM2 VR0 || VMOV32 VR2, mem32 Code Rate 1:2 Branch Metric Calculation with Parallel Load

Operands Before the operation, the inputs are loaded into the registers as shown below. Each
operand for the branch metric calculation is 16-bits.
Input Register Value
VR0L 16-bit decoder input 0
VR0H 16-bit decoder input 1
[mem32] pointer to 32-bit memory location.

The result of the operation is stored in VR0 as shown below:
Output Register Value
VR0L 16-bit branch metric 0 = VR0L + VR0H
VR0H 16-bit branch metric 1 = VR0L - VR0L
VR2 contents of memory pointed to by [mem32]

Opcode LSW: 1110 0011 1111 1100
MSW: 0000 aaaa mem32

Description Branch metric calculation for a code rate of 1/2 with parallel register load.

// SAT is VSTATUS[SAT]
// VR0L is decoder input 0
// VR0H is decoder input 1
//
// Calculate the branch metrics by performing 16-bit signed
// addition and subtraction
//

VR0L = VR0L + VR0H; // VR0L = branch metric 0
VR0H = VR0L - VR0L; // VR0H = branch metric 1
if (SAT == 1)
{

sat16(VR0L);
sat16(VR0H);

}
VR2 = [mem32] // Load VR2L and VR2H with the next state metrics

Flags This instruction sets the real overflow flag, VSTATUS[OVFR] in the event of an overflow
or underflow.

Pipeline Both operations complete in a single cycle.

Example

See also VITBM2 VR0
VITBM3 VR0, VR1, VR2
VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITBM3 VR0, VR1, VR2 — Code Rate 1:3 Branch Metric Calculation www.ti.com

442 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITBM3 VR0, VR1, VR2 Code Rate 1:3 Branch Metric Calculation

Operands Before the operation, the inputs are loaded into the registers as shown below. Each
operand for the branch metric calculation is 16-bits.
Input Register Value
VR0L 16-bit decoder input 0
VR1L 16-bit decoder input 1
VR2L 16-bit decoder input 2

The result of the operation is stored in VR0 and VR1 as shown below:
Output Register Value
VR0L 16-bit branch metric 0 = VR0L + VR1L + VR2L
VR0H 16-bit branch metric 1 = VR0L + VR1L - VR2L
VR1L 16-bit branch metric 2 = VR0L - VR1L + VR2L
VR1H 16-bit branch metric 3 = VR0L - VR1L - VR2L

Opcode LSW: 1110 0101 0000 1101

Description Calculate the four branch metrics for a code rate of 1/3.

// SAT is VSTATUS[SAT]
// VR0L is decoder input 0
// VR1L is decoder input 1
// VR2L is decoder input 2
//
// Calculate the branch metrics by performing 16-bit signed
// addition and subtraction
//

VR0L = VR0L + VR1L + VR2L; // VR0L = branch Metric 0
VR0H = VR0L + VR1L - VR2L; // VR0H = branch Metric 1
VR1L = VR0L - VR1L + VR2L; // VR1L = branch Metric 2
VR1H = VR0L - VR1L - VR2L; // VR1H = branch Metric 3
if(SAT == 1)
{

sat16(VR0L);
sat16(VR0H);
sat16(VR1L);
sat16(VR1H);

}

Flags This instruction sets the real overflow flag, VSTATUS[OVFR] in the event of an overflow
or underflow.

Pipeline This is a 2p-cycle instruction. The instruction following VITBM3 must not use VR0 or
VR1.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITBM2 VR0
VITBM2 VR0 || VMOV32 VR2, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32 — Code Rate 1:3 Branch Metric Calculation with Parallel
Load

443SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32 Code Rate 1:3 Branch Metric Calculation with
Parallel Load

Operands Before the operation, the inputs are loaded into the registers as shown below. Each
operand for the branch metric calculation is 16-bits.
Input Register Value
VR0L 16-bit decoder input 0
VR1L 16-bit decoder input 1
[mem32] pointer to a 32-bit memory location

The result of the operation is stored in VR0 and VR1 and VR2 as shown below:
Output Register Value
VR0L 16-bit branch metric 0 = VR0L + VR1L + VR2L
VR0H 16-bit branch metric 1 = VR0L + VR1L - VR2L
VR1L 16-bit branch metric 2 = VR0L - VR1L + VR2
VR1H 16-bit branch metric 3 = VR0L - VR1L - VR2L
VR2 Contents of the memory pointed to by [mem32]

Opcode LSW: 1110 0011 1111 1101
MSW: 0000 aaaa mem32

Description Calculate the four branch metrics for a code rate of 1/3 with parallel register load.

// SAT is VSTATUS[SAT]
// VR0L is decoder input 0
// VR1L is decoder input 1
// VR2L is decoder input 2
//
// Calculate the branch metrics by performing 16-bit signed
// addition and subtraction
//

VR0L = VR0L + VR1L + VR2L; // VR0L = branch Metric 0
VR0H = VR0L + VR1L - VR2L; // VR0H = branch Metric 1
VR1L = VR0L - VR1L + VR2L; // VR1L = branch Metric 2
VR1H = VR0L - VR1L - VR2L; // VR1H = branch Metric 3
if(SAT == 1)
{

sat16(VR0L);
sat16(VR0H);
sat16(VR1L);
sat16(VR1H);

}
VR2 = [mem32];

Flags This instruction sets the real overflow flag, VSTATUS[OVFR] in the event of an overflow
or underflow.

Pipeline This is a 2p/1-cycle instruction. The VBITM3 operation takes 2p cycles and the VMOV32
completes in a single cycle. The next instruction must not use VR0 or VR1.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITBM2 VR0
VITBM2 VR0 || VMOV32 VR2, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDHADDSUB VR4, VR3, VR2, VRa — Viterbi Double Add and Subtract, High www.ti.com

444 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITDHADDSUB VR4, VR3, VR2, VRa Viterbi Double Add and Subtract, High

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaH.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaH Branch metric 1. VRa must be VR0 or VR1.

The result of the operation is stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L + VRaH
VR3H 16-bit path metric 1 = VR2H - VRaH
VR4L 16-bit path metric 2 = VR2L - VRaH
VR4H 16-bit path metric 3 = VR2H +VRaH

Opcode LSW: 1110 0101 0111 aaaa

Description Viterbi high add and subtract. This instruction is used to calculate four path metrics.

//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

VR3L = VR2L + VRaH // Path metric 0
VR3H = VR2H - VRaH // Path metric 1
VR4L = VR2L - VRaH // Path metric 2
VR4H = VR2H + VRaH // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
; Example Viterbi decoder code fragment
; Viterbi butterfly calculations
; Loop once for each decoder input pair
;
; Branch metrics = BM0 and BM1
; XAR5 points to the input stream to the decoder

...

...
_loop:

VMOV32 VR0, *XAR5++ ; Load two inputs into VR0L, VR0H
VITBM2 VR0 ; VR0L = BM0 VR0H = BM1

|| VMOV32 VR2, *XAR1++ ; Load previous state metrics

;
; 2 cycle Viterbi butterfly
;

VITDLADDSUB VR4,VR3,VR2,VR0 ; Perform add/sub
VITLSEL VR6,VR5,VR4,VR3 ; Perform compare/select

|| VMOV32 VR2, *XAR1++ ; Load previous state metrics

;
; 2 cycle Viterbi butterfly, next stage
;

VITDHADDSUB VR4,VR3,VR2,VR0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITDHADDSUB VR4, VR3, VR2, VRa — Viterbi Double Add and Subtract, High

445SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITHSEL VR6,VR5,VR4,VR3
|| VMOV32 VR2, *XAR1++

;
; 2 cycle Viterbi butterfly, next stage
;

VITDLADDSUB VR4,VR3,VR2,VR0
|| VMOV32 *XAR2++, VR5

...

...

See also VITDHSUBADD VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDHADDSUB VR4, VR3, VR2, VRa || mem32 VRb — Viterbi Add and Subtract High with Parallel Store www.ti.com

446 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITDHADDSUB VR4, VR3, VR2, VRa || mem32 VRb Viterbi Add and Subtract High with Parallel
Store

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaH.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaH Branch metric 1. VRa must be VR0 or VR1.
VRb Value to be stored. VRb can be VR5, VR6, VR7 or VR8.

The result of the operation is stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L + VRaH
VR3H 16-bit path metric 1 = VR2H - VRaH
VR4L 16-bit path metric 2 = VR2L - VRaH
VR4H 16-bit path metric 3 = VR2H +VRaH
[mem32] Contents of VRb. VRb can be VR5, VR6, VR7 or VR8.

Opcode LSW: 1110 0101 0000 1001
MSW: bbbb aaaa mem32

Description Viterbi high add and subtract. This instruction is used to calculate four path metrics.

//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

VR3L = VR2L + VRaH // Path metric 0
VR3H = VR2H - VRaH // Path metric 1
VR4L = VR2L - VRaH // Path metric 2
VR4H = VR2H + VRaH // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VITDHSUBADD VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITDHSUBADD VR4, VR3, VR2, VRa — Viterbi Add and Subtract Low

447SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITDHSUBADD VR4, VR3, VR2, VRa Viterbi Add and Subtract Low

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa must be VR0 or VR1.

The result of the operation is 4 path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L - VRaH
VR3H 16-bit path metric 1 = VR2H + VRaH
VR4L 16-bit path metric 2 = VR2L + VRaH
VR4H 16-bit path metric 3 = VR2H - VRaL

Opcode LSW: 1110 0101 1111 aaaa

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.
//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaL with the branch metric.
//

VR3L = VR2L - VRaL // Path metric 0
VR3H = VR2H + VRaL // Path metric 1
VR4L = VR2L + VRaL // Path metric 2
VR4H = VR2H - VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDHSUBADD VR4, VR3, VR2, VRa || mem32 VRb — Viterbi Subtract and Add, High with Parallel Store www.ti.com

448 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITDHSUBADD VR4, VR3, VR2, VRa || mem32 VRb Viterbi Subtract and Add, High with Parallel
Store

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaH.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaH Branch metric 1. VRa must be VR0 or VR1.
VRb Contents to be stored. VRb can be VR5, VR6, VR7 or VR8.

The result of the operation is stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L -VRaH
VR3H 16-bit path metric 1 = VR2H + VRaH
VR4L 16-bit path metric 2 = VR2L + VRaH
VR4H 16-bit path metric 3 = VR2H - VRaH
[mem32] Contents of VRb. VRb can be VR5, VR6, VR7 or VR8.

Opcode LSW: 1110 0010 0000 0101
MSW: bbbb aaaa mem32

Description Viterbi high subtract and add. This instruction is used to calculate four path metrics.
//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

[mem32] = VRb // Store VRb to memory
VR3L = VR2L - VRaH // Path metric 0

VR3H = VR2H + VRaH // Path metric 1
VR4L = VR2L + VRaH // Path metric 2
VR4H = VR2H - VRaH // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITDLADDSUB VR4, VR3, VR2, VRa — Viterbi Add and Subtract Low

449SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITDLADDSUB VR4, VR3, VR2, VRa Viterbi Add and Subtract Low

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa must be VR0 or VR1.

The result of the operation is 4 path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L + VRaH
VR3H 16-bit path metric 1 = VR2H - VRaH
VR4L 16-bit path metric 2 = VR2L - VRaH
VR4H 16-bit path metric 3 = VR2H + VRaL

Opcode LSW: 1110 0101 0011 aaaa

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.
//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaL with the branch metric.
//

VR3L = VR2L + VRaL // Path metric 0
VR3H = VR2H - VRaL // Path metric 1
VR4L = VR2L - VRaL // Path metric 2
VR4H = VR2H + VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDLADDSUB VR4, VR3, VR2, VRa || mem32 VRb — Viterbi Add and Subtract Low with Parallel Load www.ti.com

450 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITDLADDSUB VR4, VR3, VR2, VRa || mem32 VRb Viterbi Add and Subtract Low with Parallel Load

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa can be VR0 or VR1.
VRb Contents to be stored to memory

The result of the operation is 4 path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L + VRaH
VR3H 16-bit path metric 1 = VR2H - VRaH
VR4L 16-bit path metric 2 = VR2L - VRaH
VR4H 16-bit path metric 3 = VR2H + VRaL
[mem32] Contents of VRb. VRb can be VR5, VR6, VR7 or VR8.

Opcode LSW: 1110 0010 0000 1000
MSW: bbbb aaaa mem32

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.
//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaL with the branch metric.
//

[mem32] = VRb // Store VRb
VR3L = VR2L + VRaL // Path metric 0

VR3H = VR2H - VRaL // Path metric 1
VR4L = VR2L - VRaL // Path metric 2
VR4H = VR2H + VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITDLSUBADD VR4, VR3, VR2, VRa — Viterbi Subtract and Add Low

451SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITDLSUBADD VR4, VR3, VR2, VRa Viterbi Subtract and Add Low

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa must be VR0 or VR1.

The result of the operation is 4 path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0= VR2L - VRaH
VR3H 16-bit path metric 1 = VR2H + VRaH
VR4L 16-bit path metric 2 = VR2L + VRaH
VR4H 16-bit path metric 3 = VR2H - VRaL

Opcode LSW: 1110 0101 1110 aaaa

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.
//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

VR3L = VR2L - VRaL // Path metric 0
VR3H = VR2H + VRaL // Path metric 1
VR4L = VR2L + VRaL // Path metric 2
VR4H = VR2H - VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDLSUBADD VR4, VR3, VR2, VRa || mem32 VRb — Viterbi Subtract and Add, Low with Parallel Store www.ti.com

452 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITDLSUBADD VR4, VR3, VR2, VRa || mem32 VRb Viterbi Subtract and Add, Low with Parallel Store

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa must be VR0 or VR1.
VRb Value to be stored. VRb can be VR5, VR6, VR7 or VR8.

The result of the operation is 4 path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0= VR2L - VRaH
VR3H 16-bit path metric 1 = VR2H + VRaH
VR4L 16-bit path metric 2 = VR2L + VRaH
VR4H 16-bit path metric 3 = VR2H - VRaL
[mem32] Contents of VRb. VRb can be VR5, VR6, VR7 or VR8.

Opcode LSW: 1110 0010 0000 1010
MSW: bbbb aaaa mem32

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.
//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

[mem32] = VRb // Store VRb into mem32
VR3L = VR2L - VRaL // Path metric 0

VR3H = VR2H + VRaL // Path metric 1
VR4L = VR2L + VRaL // Path metric 2
VR4H = VR2H - VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITHSEL VRa, VRb, VR4, VR3 — Viterbi Select High

453SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITHSEL VRa, VRb, VR4, VR3 Viterbi Select High

Operands Before the operation, the path metrics are loaded into the registers as shown below.
Typically this will have been done using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VR3L 16-bit path metric 0
VR3H 16-bit path metric 1
VR4L 16-bit path metric 2
VR4H 16-bit path metric 3

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
VRaH 16-bit state metric 0. VRa can be VR6 or VR8.
VRbH 16-bit state metric 1. VRb can be VR5 or VR7.
VT0 The transition bit is appended to the end of the register.
VT1 The transition bit is appended to the end of the register.

Opcode LSW: 1110 0110 1111 0111
MSW: 0000 0000 bbbb aaaa

Description This instruction computes the new state metrics of a Viterbi butterfly operation and
stores them in the higher 16-bits of the VRa and VRb registers. To instead load the state
metrics into the low 16-bits use the VITLSEL instruction.

T0 = T0 << 1 // Shift previous transition bits left
if (VR3L > VR3H)
{

VRbH = VR3L; // New state metric 0
T0[0:0] = 0; // Store the transition bit

}
else
{

VRbH = VR3H; // New state metric 0
T0[0:0] = 1; // Store the transition bit

}

T1 = T1 << 1 // Shift previous transition bits left
if (VR4L > VR4H)
{

VRaH = VR4L; // New state metric 1
T1[0:0] = 0; // Store the transition bit

}
else
{

VRaH = VR4H; // New state metric 1
T1[0:0] = 1; // Store the transition bit

}

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITLSEL VRa, VRb, VR4, VR3

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITHSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 — Viterbi Select High with Parallel Load www.ti.com

454 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITHSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 Viterbi Select High with Parallel Load

Operands Before the operation, the path metrics are loaded into the registers as shown below.
Typically this will have been done using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VR3L 16-bit path metric 0
VR3H 16-bit path metric 1
VR4L 16-bit path metric 2
VR4H 16-bit path metric 3
[mem32] pointer to 32-bit memory location.

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
VRaH 16-bit state metric 0. VRa can be VR6 or VR8.
VRbH 16-bit state metric 1. VRb can be VR5 or VR7.
VT0 The transition bit is appended to the end of the register.
VT1 The transition bit is appended to the end of the register.
VR2 Contents of the memory pointed to by [mem32].

Opcode LSW: 1110 0011 1111 1111
MSW: bbbb aaaa mem32

Description This instruction computes the new state metrics of a Viterbi butterfly operation and
stores them in the higher 16-bits of the VRa and VRb registers. To instead load the state
metrics into the low 16-bits use the VITLSEL instruction.

T0 = T0 << 1 // Shift previous transition bits left
if (VR3L > VR3H)
{

VRbH = VR3L; // New state metric 0
T0[0:0] = 0; // Store the transition bit

}
else
{

VRbH = VR3H; // New state metric 0
T0[0:0] = 1; // Store the transition bit

}

T1 = T1 << 1 // Shift previous transition bits left
if (VR4L > VR4H)
{

VRaH = VR4L; // New state metric 1
T1[0:0] = 0; // Store the transition bit

}
else
{

VRaH = VR4H; // New state metric 1
T1[0:0] = 1; // Store the transition bit

}
VR2 = [mem32]; // Load VR2

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITLSEL VRa, VRb, VR4, VR3

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITLSEL VRa, VRb, VR4, VR3 — Viterbi Select, Low Word

455SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITLSEL VRa, VRb, VR4, VR3 Viterbi Select, Low Word

Operands Before the operation, the path metrics are loaded into the registers as shown below.
Typically this will have been done using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VR3L 16-bit path metric 0
VR3H 16-bit path metric 1
VR4L 16-bit path metric 2
VR4H 16-bit path metric 3

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
VRaL 16-bit state metric 0. VRa can be VR6 or VR8.
VRbL 16-bit state metric 1. VRb can be VR5 or VR7.
VT0 The transition bit is appended to the end of the register.
VT1 The transition bit is appended to the end of the register.

Opcode LSW: 1110 0110 1111 0110
MSW: 0000 0000 bbbb aaaa

Description This instruction computes the new state metrics of a Viterbi butterfly operation and
stores them in the higher 16-bits of the VRa and VRb registers. To instead load the state
metrics into the low 16-bits use the VITHSEL instruction.

T0 = T0 << 1 // Shift previous transition bits left
if (VR3L > VR3H)
{

VRbL = VR3L; // New state metric 0
T0[0:0] = 0; // Store the transition bit

}
else
{

VRbL = VR3H; // New state metric 0
T0[0:0] = 1; // Store the transition bit

}

T1 = T1 << 1 // Shift previous transition bits left
if (VR4L > VR4H)
{

VRaL = VR4L; // New state metric 1
T1[0:0] = 0; // Store the transition bit

}
else
{

VRaL = VR4H; // New state metric 1
T1[0:0] = 1; // Store the transition bit

}

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITHSEL VRa, VRb, VR4, VR3

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITLSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 — Viterbi Select Low with Parallel Load www.ti.com

456 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VITLSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 Viterbi Select Low with Parallel Load

Operands Before the operation, the path metrics are loaded into the registers as shown below.
Typically this will have been done using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VR3L 16-bit path metric 0
VR3H 16-bit path metric 1
VR4L 16-bit path metric 2
VR4H 16-bit path metric 3
mem32 Pointer to 32-bit memory location.

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
VRaL 16-bit state metric 0. VRa can be VR6 or VR8.
VRbL 16-bit state metric 1. VRb can be VR5 or VR7.
VT0 The transition bit is appended to the end of the register.
VT1 The transition bit is appended to the end of the register.
VR2 Contents of 32-bit memory pointed to by mem32.

Opcode LSW: 1110 0011 1111 1110
MSW: bbbb aaaa mem32

Description This instruction computes the new state metrics of a Viterbi butterfly operation and
stores them in the higher 16-bits of the VRa and VRb registers. To instead load the state
metrics into the low 16-bits use the VITHSEL instruction. In parallel the VR2 register is
loaded with the contents of memory pointed to by [mem32].

T0 = T0 << 1 // Shift previous transition bits left
if (VR3L > VR3H)
{

VRbL = VR3L; // New state metric 0
T0[0:0] = 0; // Store the transition bit

}
else
{

VRbL = VR3H; // New state metric 0
T0[0:0] = 1; // Store the transition bit

}

T1 = T1 << 1 // Shift previous transition bits left
if (VR4L > VR4H)
{

VRaL = VR4L; // New state metric 1
T1[0:0] = 0; // Store the transition bit

}
else
{

VRaL = VR4H; // New state metric 1
T1[0:0] = 1; // Store the transition bit

}
VR2 = [mem32]

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITHSEL VRa, VRb, VR4, VR3

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VTCLEAR — Clear Transition Bit Registers

457SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VTCLEAR Clear Transition Bit Registers

Operands
none

Opcode LSW: 1110 0101 0010 1001

Description Clear the VT0 and VT1 registers.
VT0 = 0;
VT1 = 0;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VCLEARALL
VCLEAR VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VTRACE mem32, VR0, VT0, VT1 — Viterbi Traceback, Store to Memory www.ti.com

458 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VTRACE mem32, VR0, VT0, VT1 Viterbi Traceback, Store to Memory

Operands Before the operation, the path metrics are loaded into the registers as shown below
using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VT0 transition bit register 0
VT1 transiton bit register 1
VR0 Initial value is zero. After the first VTRACE, this contains infromation from the

previous trace-back.

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
[mem32] Traceback result from the transiton bits.

Opcode LSW: 1110 0010 0000 1100
MSW: 0000 0000 mem32

Description Trace-back from the transition bits stored in VT0 and VT1 registers. Write the result to
memory. The transition bits in the VT0 and VT1 registers are stored in the following
format by the VITLSEL and VITHSEL instructions:
VT0[31] Transition bit [State 0]
VT0[30] Transition bit [State 1]
VT0[29] Transition bit [State 2]
... ...
VT0[0] Transition bit [State 31]
VT1[31] Transition bit [State 32]
VT1[30] Transition bit [State 33]
VT1[29] Transition bit [State 34]
... ...
VT1[0] Transition bit [State 63]

//
// Calculate the decoder output bit by performing a
// traceback from the transition bits stored in the VT0 and VT1 registers
//

S = VR0[5:0];
VR0[31:6] = 0;
if (S < 32)
{

temp[0] = VT0[31-S];
}
else
{

temp[0] = VT1[63-S];
}
*[mem32][0] = temp;
*[mem32][31:1] = 0;
VR0[5:0] = 2*VR0[5:0] + temp[0];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
//
// Example traceback code fragment

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VTRACE mem32, VR0, VT0, VT1 — Viterbi Traceback, Store to Memory

459SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

//
// XAR5 points to the beginning of Decoder Output array
//

VCLEAR VR0
MOVL XAR5,*+XAR4[0]

//
// To retrieve each original message:
// Load VT0/VT1 with the stored transition values
// and use VTRACE instruction
//

VMOV32 VT0, *--XAR3
VMOV32 VT1, *--XAR3
VTRACE *XAR5++, VR0, VT0, VT1

VMOV32 VT0, *--XAR3
VMOV32 VT1, *--XAR3
VTRACE *XAR5++, VR0, VT0, VT1
...
...etc for each VT0/VT1 pair

See also VTRACE VR1, VR0, VT0, VT1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VTRACE VR1, VR0, VT0, VT1 — Viterbi Traceback, Store to Register www.ti.com

460 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

VTRACE VR1, VR0, VT0, VT1 Viterbi Traceback, Store to Register

Operands Before the operation, the path metrics are loaded into the registers as shown below
using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VT0 transition bit register 0
VT1 transiton bit register 1
VR0 Initial value is zero. After the first VTRACE, this contains infromation from the

previous trace-back.

The result of the operation is the output of the decoder stored in VR1:
Output Register Value
VR1 Traceback result from the transiton bits.

Opcode LSW: 1110 0101 0010 1000

Description Trace-back from the transition bits stored in VT0 and VT1 registers. Write the result to
VR1. The transition bits in the VT0 and VT1 registers are stored in the following format
by the VITLSEL and VITHSEL instructions:
VT0[31] Transition bit [State 0]
VT0[30] Transition bit [State 1]
VT0[29] Transition bit [State 2]
... ...
VT0[0] Transition bit [State 31]
VT1[31] Transition bit [State 32]
VT1[30] Transition bit [State 33]
VT1[29] Transition bit [State 34]
... ...
VT1[0] Transition bit [State 63]

//
// Calculate the decoder output bit by performing a
// traceback from the transition bits stored in the VT0 and VT1 registers
//

S = VR0[5:0];
VR0[31:6] = 0;
if (S < 32)
{

temp[0] = VT0[31-S];
}
else
{

temp[0] = VT1[63-S];
}
VR1[0] = temp;
VR1[31:1] = 0;
VR0[5:0] = 2*VR0[5:0] + temp[0];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VTRACE mem32, VR0, VT0, VT1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Rounding Mode

461SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

3.7 Rounding Mode
This section details the rounding operation as applied to a right shift. When the rounding mode is enabled
in the VSTATUS register, .5 will be added to the right shifted intermediate value before truncation. If
rounding is disabled the right shifted value is only truncated. Table 3-14shows the bit representation of two
values, 11.0 and 13.0. The columns marked Bit-1, Bit-2 and Bit-3 hold temporary bits resulting from the
right shift operation.

Table 3-14. Example: Values Before Shift Right

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit-1 Bit-2 Bit -3 Value
Val A 0 0 1 0 1 1 0 0 0 11.000
Val B 0 0 0 0 0 1 0 0 0 13.000

Table 3-14Shows the intermediate values after the right shift has been applied to Val B. The columns
marked Bit-1, Bit-2 and Bit-3 hold temporary bits resulting from the right shift operation.

Table 3-15. Example: Values after Shift Right

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit-1 Bit-2 Bit -3 Value
Val A 0 0 1 0 1 1 0 0 0 11.000

Val B >> 3 0 0 0 0 0 1 1 0 1 1.625

When the rounding mode is enabled, .5 will be added to the intermediate result before truncation. Table 3-
16 shows the bit representation of Val A + Val (B >> 3) operation with rounding. Notice .5 is added to the
intermediate shifted right value. After the addition, the bits in Bit-1, Bit-2 and Bit-3 are removed. In this
case the result of the operation will be 13 which is the truncated value after rounding.

Table 3-16. Example: Addition with Right Shift and Rounding

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit-1 Bit-2 Bit -3 Value
Val A 0 0 1 0 1 1 0 0 0 11.000

Val B >> 3 0 0 0 0 0 1 1 0 1 1.625
.5 0 0 0 0 0 0 1 0 0 0 .500

Val A + Val B >> 3 + .5 0 0 1 1 0 1 0 0 1 13.125

When the rounding mode is disabled, the value is simply truncated. Table 3-17 shows the bit
representation of the operation Val A + (Val B >> 3) without rounding. After the addition, the bits in Bit-1,
Bit-2 and Bit-3 are removed. In this case the result of the operation will be 12 which is the truncated value
without rounding.

Table 3-17. Example: Addition with Rounding After Shift Right

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit-1 Bit-2 Bit -3 Value
Val A 0 0 1 0 1 1 0 0 0 11.000

Val B >> 3 0 0 0 0 0 1 1 0 1 1.625
Val A + Val B >> 3 0 0 1 1 0 0 1 0 1 12.625

Table 3-18 shows more examples of the intermediate shifted value along with the result if rounding is
enabled or disabled. In each case, the truncated value is without .5 added and the rounded value is with
.5 added.

Table 3-18. Shift Right Operation With and Without Rounding

Bit2 Bit1 Bit0 Bit -1 Bit -2 Value Result with RND = 0 Result with RND = 1
0 1 0 0 0 2.00 2 2
0 0 1 1 1 1.75 1 2
0 0 1 1 0 1.50 1 2

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Rounding Mode www.ti.com

462 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Viterbi, Complex Math and CRC Unit (VCU)

Table 3-18. Shift Right Operation With and Without Rounding (continued)
Bit2 Bit1 Bit0 Bit -1 Bit -2 Value Result with RND = 0 Result with RND = 1

0 0 1 0 1 1.25 1 1
0 0 0 1 1 0.75 0 1
0 0 0 1 0 0.50 0 1
0 0 0 0 1 0.25 0 0
0 0 0 0 0 0.00 0 0
1 1 1 1 1 -0.25 0 0
1 1 1 1 0 -0.50 0 0
1 1 1 0 1 -0.75 0 -1
1 1 1 0 0 -1.00 -1 -1
1 1 0 1 1 -1.25 -1 -1
1 1 0 1 0 -1.50 -1 -1
1 1 0 0 1 -1.75 -1 -2
1 1 0 0 0 -2.00 -2 -2

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


463SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

Chapter 4
SPRUHS1C–October 2014–Revised November 2019

Cyclic Redundancy Check (VCRC)

This chapter provides an overview of the architectural structure and instruction set of the CRC Unit
(VCRC) and describes the architecture, pipeline, instruction set, and interrupts. The VCRC is a fully-
programmable block.

Topic ........................................................................................................................... Page

4.1 Overview ......................................................................................................... 464
4.2 VCRC Code Development .................................................................................. 464
4.3 Components of the C28x Plus VCRC .................................................................. 464
4.4 Register Set ..................................................................................................... 467
4.5 Pipeline ........................................................................................................... 469
4.6 Instruction Set.................................................................................................. 470

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Program address bus (22)

Program data bus (32)

Read address bus (32)

Read data bus (32)

C28x

+

VCRC

Memory

Bus

Memory

Bus

Existing memory,

Peripherals, interfae

PIE

LVF

LUF

Write data bus (32)

Write address bus (32)

Overview www.ti.com

464 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

4.1 Overview
The C28x with VCRC (C28x+VCRC) processor extends the capabilities of the C28x CPU by adding
registers and instructions to support CRC. CRC algorithms provide a straightforward method for verifying
data integrity over large data blocks, communication packets, or code sections. The C28x+VCRC can
perform 8-, 16-, 24-, and 32-bit CRCs.

4.2 VCRC Code Development
When developing c28x VCRC code for C28x+VCRC, use Code Composer Studio 8.0, or later. The TI
C28x C/C++ Compiler v18.9.0.STS or later is required, use the compiler switches:-v28 and --
vcu_support=vcrc. The support for intrinsic for VCRC will be provided in the compiler 19.6.0.STS release.

4.3 Components of the C28x Plus VCRC
The VCRC extends the capabilities of the C28x CPU by adding additional instructions. No changes have
been made to existing instructions, pipeline, or memory bus architecture. Therefore, programs written for
the C28x are completely compatible with the C28x+VCRC. All of the features of the C28x documented in
TMS320C28x DSP CPU and Instruction Set Reference Guide (literature number SPRU430) apply to the
C28x+VCRC. Figure 4-1 shows the block diagram of the C28x+VCRC.

Figure 4-1. C28x + VCRC Block Diagram

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Components of the C28x Plus VCRC

465SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

The C28x+VCRC contains the same features as the C28x fixed-point CPU:
• A central processing unit for generating data and program-memory addresses; decoding and executing

instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory.

• Emulation logic for monitoring and controlling various parts and functions of the device and for testing
device operation. This logic is identical to that on the C28x fixed-point CPU.

• Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the
emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic
is identical to the C28x fixed-point CPU.

• Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

• Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and
increments or decrements pointers in parallel with ALU operations.

• Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to
that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to
and a read from the same location from occurring out of order.

• Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left
by up to 16 bits and to the right by up to 16 bits.

• Fixed-Point Multiplier. The multiplier performs 32-bit × 32-bit 2s-complement multiplication with a 64-bit
result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one
signed number and one unsigned number.

The VCRC adds the following features:
• Instructions to support Cyclic Redundancy Check (CRC) or a polynomial code checksum are

categorized into 2 categories.
– Fixed polynomial fixed data size (8 bits) instructions that execute in one pipeline cycle (CRC8

,CRC16 ,CRC32, CRC24)
– Configurable polynomial configurable data size instructions that execute in three pipeline cycles.

• Clocked at the same rate as the main CPU (SYSCLKOUT).
• VCRC instructions can perform CRC calculation on the data stored in C28x ROM, RAMs and Flash to

check their integrity during application runtime. CRC can be computed by C28x application code by
using the CRC related VCRC instructions described in this section.

• Some VCRC instructions require pipeline alignment. This alignment is done through software to allow
the user to improve performance by taking advantage of required delay slots. See Section 4.5 for more
information.

4.3.1 Emulation Logic
The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following
features. For more details about these features, refer to the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number SPRU430):
• Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content

of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline

• A counter for performance benchmarking.
• Multiple debug events. Any of the following debug events can cause a break in program execution:

– A breakpoint initiated by the ESTOP0 or ESTOP1 instruction.
– An access to a specified program-space or data-space location. When a debug event causes the

C28x to enter the debug-halt state, the event is called a break event.
• Real-time mode of operation.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/SPRU430


Components of the C28x Plus VCRC www.ti.com

466 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

4.3.2 Memory Map
Like the C28x, the C28x+VCRC uses 32-bit data addresses and 22-bit program addresses. This allows for
a total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space.
Memory blocks on all C28x+VCRC designs are uniformly mapped to both program and data space. For
specific details about each of the map segments, see the device-specific data manual.

4.3.3 CPU Interrupt Vectors
The C28x+VCRC interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in
program space are set aside for a table of 32 CPU interrupt vectors. For more information about the CPU
vectors, see TMS320C28x CPU and Instruction Set Reference Guide (literature number SPRU430).
Typically the CPU interrupt vectors are only used during the boot up of the device by the boot ROM. Once
an application has taken control it should initialize and enable the peripheral interrupt expansion block
(PIE).

4.3.4 Memory Interface
The C28x+VCRC memory interface is identical to that on the C28x. The C28x+VCRC memory map is
accessible outside the CPU by the memory interface, which connects the CPU logic to memories,
peripherals, or other interfaces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory while data memory is being
accessed. The interface also includes signals that indicate the type of read or write being requested by the
CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In
addition to 16-bit and 32-bit accesses, the CPU supports special byte-access instructions that can access
the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe signals
indicate when such an access is occurring on a data bus.

4.3.5 Address and Data Buses
Like the C28x, the memory interface has three address buses:
• PAB: Program address bus: The 22-bit PAB carries addresses for reads and writes from program

space.
• DRAB: Data-read address bus: The 32-bit DRAB carries addresses for reads from data space.
• DWAB: Data-write address bus: The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:
• PRDB: Program-read data bus: The 32-bit PRDB carries instructions during reads from program

space.
• DRDB: Data-read data bus: The 32-bit DRDB carries data during reads from data space.
• DWDB: Data-/Program-write data bus: The 32-bit DWDB carries data during writes to data space or

program space.

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to
the C28x CPU.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ACC (32-bit)

P (32-bit)

XT (32-bit)

XAR0 (32-bit)

XAR1 (32-bit)

XAR2 (32-bit)

XAR3 (32-bit)

XAR4 (32-bit)

XAR5 (32-bit)

XAR6 (32-bit)

XAR7 (32-bit)

PC (22-bit)

RPC (22-bit)

DP (16-bit)

SP (16-bit)

ST0 (16-bit)

ST1 (16-bit)

IER (16-bit)

IFR (16-bit)

DBGIER (16-bit)

VSTATUS (32-bit)

VCRC (32-bit)

VCRCPOLY (32-bit)

VCRCSIZE (32-bit)

VCUREV (32-bit)

Standard C28x 

Register Set

Standard VCRC 

Register Set

www.ti.com Components of the C28x Plus VCRC

467SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

4.3.6 Alignment of 32-Bit Accesses to Even Addresses
The C28x+VCRC expects memory wrappers or peripheral-interface logic to align any 32-bit read or write
to an even address. If the address-generation logic generates an odd address, the CPU will begin reading
or writing at the previous even address. This alignment does not affect the address values generated by
the address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

4.4 Register Set
Devices with the C28x+VCRC include the standard C28x register set plus an additional set of VCRC
specific registers. Figure 4-2 shows a diagram of both register sets and Section 4.4.1 shows a register
summary.

Figure 4-2. C28x + VCRC Registers

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Register Set www.ti.com

468 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

4.4.1 VCRC Register Set

Table 4-1. VCRC Status (VSTATUS) Register Field Descriptions

Bits Field Value Description
31 CRCMSGF

LIP
CRC Message Flip
This bit affects the order in which the bits in the message are taken for CRC calculation by all the
CRC instructions.

0 Message bits are taken starting from most-significant to least-significant for CRC computation. In this
case, bytes loaded from memory are fed directly for CRC computation.

1 Message bits are taken starting from least-significant to most-significant for CRC computation. In this
case, bytes loaded from memory are “flipped” and then fed for CRC computation.

30-0 Reserved

Table 4-2. VCRC: The CRC result register for unsecured memories

Bits Field Value Description
31:0 RESULT The CRC result gets updated in this register. When using a polynomial value less than 32 bits wide,

the VCRC.RESULT will be right justified with the upper bits reading as zero. This register can be
cleared by executing the VCRCCLR instruction.

Table 4-3. VCRCPOLY: The CRC Polynomial register for generic CRC instructions

Bits Field Value Description
31:0 POLY This register defines the polynomial value used by the generic CRC VCRCL/VCRCH instructions.

This register is right justified.

Table 4-4. VCRCSIZE: The CRC Polynomial and Data Size register for generic CRC instructions

Bits Field Value Description
2:0 DSIZE This bit field defines the size of the data value used by the generic CRC VCRCL/VCRCH instructions.

The VCRCL/H instructions always expect the data to be right justified and ignore the upper bits. 0x0:
Data size is 1 bit 0x1: Data size is 2 bits 0x2: Data size is 3 bits … 0x7: Data size is 8 bits

15:3 Reserved
20:16 PSIZE This bit field defines the size of the polynomial value used by the generic CRC VCRCL/VCRCH

instructions. 0x00: Polynomial size is 1 bit 0x01: Polynomial size is 2 bits 0x02: Polynomial size is 3
bits … 0x1F: Polynomial size is 32 bits

31:21 Reserved

Table 4-5. VCUREV: VCU revision register

Bits Field Value Description
31:0 VCUREV 0: Indicates VCU-I 1: Indicates VCU-II 2: Indicates VCU2.1 3: Indicates VCRC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

469SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

4.5 Pipeline
This section describes the VCRC pipeline stages and presents cases where pipeline alignment must be
considered.

4.5.1 Pipeline Overview
The C28x VCRC pipeline is identical to the C28x pipeline for all standard C28x instructions. In the
decode2 stage (D2), it is determined if an instruction is a C28x instruction or a VCRC instruction. C28x
VCRC instructions are single cycle or three cycle instructions. The rest of this section will describe when
delay cycles are required. Keep in mind that the assembly tools for the C28x+VCRC will issue an error if a
delay slot has not been handled correctly.

4.5.2 General Guidelines for VCRC Pipeline Alignment
The majority of the VCRC instructions do not require any special pipeline considerations. This section lists
the few operations that do require special consideration. While the C28x+VCRC assembler will issue
errors for pipeline conflicts, you may still find it useful to understand when software delays are required.

C28x fixed-point instructions can be used in VCRC instruction delay slots as long as source and
destination register conflicts are avoided. The C28x+VCRC assembler will issue an error anytime you use
a conflicting instruction within a delay slot.

Following are the careabouts related to multi-cycle pipelined instructions:

1. All fixed polynomial VCRC instructions are executed in single cycle. However if fixed polynomial VCRC
instructions is followed by an instruction which updates VCRC register then a NOP is necessary before
update of VCRC register.

For example - write of VCRC after CRC calculation (Illegal scenario):

VCRC16P1L_1 *XAR7++
VMOV32 VCRC, *XAR6++

To make the above legal, insert a NOP:

VCRC16P1L_1 *XAR7++
NOP
VMOV32 VCRC, *XAR6++

For example - read of VCRC after CRC calculation (Legal scenario):

VCRC16P1L_1 *XAR7++
VMOV32 *XAR6++, VCRC

2. Configurable polynomial instructions are executed in 3 cycles and hence appropriate NOPs must be
inserted after VCRC instructions for proper execution.

For example - Storing VCRC register to memory (Illegal scenario):

VCRCL *XAR7++
VMOV32 *XAR6++, VCRC

To make the above legal, insert two NOPs

VCRCL *XAR7++
NOP
NOP
VMOV32 *XAR6++, VCRC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

470 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

For example - Loading VCRC register to memory (Illegal scenario):

VCRCL *XAR7++
VMOV32 VCRC, *XAR6++

To make the above legal, insert three NOPs

VCRCL *XAR7++
NOP
NOP
NOP
VMOV32 VCRC, *XAR6++

For example - Swapping VCRC register using VSWAPCRC (Illegal scenario):

VCRCL *XAR7++
VSWAPCRC

To make the above legal, insert two NOPs

VCRCL *XAR7++
NOP
NOP
VSWAPCRC

For example - Clearing VCRC register (Illegal scenario):

VCRCL *XAR7++
VCRCCLR

To make the above legal, insert two NOPs

VCRCL *XAR7++
NOP
NOP
VCRCCLR

4.6 Instruction Set
This section describes the assembly language instructions of the VCRC. Also described are parallel
operations, conditional operations, resource constraints, and addressing modes. The instructions listed
here are independent from C28x and C28x+FPU instruction sets.

4.6.1 Instruction Descriptions
This section gives detailed information on the instruction set. Each instruction may present the following
information:
• Operands
• Opcode
• Description
• Exceptions
• Pipeline
• Examples
• See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Instruction Set

471SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. VCRC instructions follow the same format as the C28x; the source
operand(s) are always on the right and the destination operand(s) are on the left.

The explanations for the syntax of the operands used in the instruction descriptions for the C28x VCRC
are given in Table 4-6.

Table 4-6. Operand Nomenclature

Symbol Description
#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value
#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value
#32F Immediate float value represented in floating-point representation
#0.0 Immediate zero
#5-bit 5-bit immediate unsigned value
addr Opcode field indicating the addressing mode
Im(X), Im(Y) Imaginary part of the input X or input Y
Im(Z) Imaginary part of the output Z
Re(X), Re(Y) Real part of the input X or input Y
Re(Z) Real part of the output Z
mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
VRa VR0 - VR8 registers. Some instructions exclude VR8. Refer to the instruction description for details.
VR0H,
VR1H...VR7H

VR0 - VR7 registers, high half.

VR0L, VR1L....VR7L VR0 - VR7 registers, low half.
VT0, VT1 Transition bit register VT0 or VT1.
VSMn+1: VSMn Pair of State Metric Registers (n = 0 : 62, n is even)
VRx.By 32 bit Aliased address space for each byte of the VRx registers (x=0:7,y =0:3)

Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).

Table 4-7. INSTRUCTION dest, source1, source2 Short Description

Description
dest1 Description for the 1st operand for the instruction
source1 Description for the 2nd operand for the instruction
source2 Description for the 3rd operand for the instruction
Opcode This section shows the opcode for the instruction
Description Detailed description of the instruction execution is described. Any constraints on the operands imposed by

the processor or the assembler are discussed.
Restrictions Any constraints on the operands or use of the instruction imposed by the processor are discussed.
Pipeline This section describes the instruction in terms of pipeline cycles as described in Section 4.5.
Example Examples of instruction execution. If applicable, register and memory values are given before and after

instruction execution. Some examples are code fragments while other examples are full tasks that assume
the VCU is correctly configured and the main CPU has passed it data.

Operands Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

472 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

4.6.2 General Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 4-8. General Instructions
Title ...................................................................................................................................... Page

VMOV32 VCRC, mem32 —32bit write of CRC result register (VCRC) ........................................................ 473
VMOV32 mem32, VCRC —32bit read of CRC result register (VCRC) ........................................................ 474
VNOP —No operation ............................................................................................................... 475
VMOV32 VSTATUS, mem32 —32bit load of VSTATUS register from memory ............................................... 476
VMOV32 mem32, VSTATUS —32bit store of VSTATUS register to memory................................................. 477
VSETCRCMSGFLIP —Set CRCMSGFLIP bit in the VSTATUS Register ..................................................... 478
VCLRCRCMSGFLIP —Clear CRCMSGFLIP bit in the VSTATUS ............................................................. 479
VCRC8L_1 mem16 — CRC8, Lowbyte ............................................................................................ 480
VCRC8H_1 mem16 —CRC8, High Byte ............................................................................................ 481
VCRC16P1L_1 mem16 —CRC16, Polynomial 1, Low Byte..................................................................... 482
VCRC16P1H_1 mem16 —CRC16, Polynomial 1, High Byte..................................................................... 483
VCRC16P2L_1 mem16 —CRC16, Polynomial 2, Low Byte..................................................................... 484
VCRC16P2H_1 mem16 —CRC16, Polynomial 2, High Byte ................................................................... 485
VCRC32L_1 mem16 —CRC32, Polynomial 1, Low Byte ......................................................................... 486
VCRC32H_1 mem16 —CRC32, Polynomial 1, High Byte ...................................................................... 487
VCRC32P2L_1 mem16 —CRC32, Polynomial 2, Low Byte..................................................................... 488
VCRC32P2H_1 mem16 —CRC32, Polynomial 2, High Byte .................................................................... 489
VCRCCLR —Clear CRC Result Register .......................................................................................... 490
VMOV32 loc32,*(0:16bitAddr) —VCRC to CPU register Move ................................................................ 491
VMOV32 *(0:16bitAddr),loc32 —CPU to VCRC register Move ................................................................ 492
VCRC24L_1 mem16 —CRC24, Polynomial 1, Low Byte ......................................................................... 493
VCRC24H_1 mem16 —CRC24, Polynomial 1, High Byte ....................................................................... 494
VMOVZI VCRCPOLY, #16I —16-bit immediate Lower load to VCRCPOLY .................................................. 495
VMOVIX VCRCPOLY, #16I —16-bit immediate Upper load to VCRCPOLY .................................................. 496
VMOV16 VCRCDSIZE, mem16 —16-bit write of the DSIZE half of the VCRCSIZE register from memory .............. 497
VMOV16 VCRCPSIZE, mem16 —16-bit write of the PSIZE half of the VCRCSIZE register from memory............... 498
VSETCRCSIZE #5I:#3i —VCRCSIZE.DSIZE bit field to a 3-bit value and the VCRCSIZE.PSIZE bit field to a 5-bit

value ........................................................................................................................... 499
VCRCL mem16 —compute CRC on VCRCDSIZE bits using polynomial VCRCPOLY of size VCRCPSIZE ............. 500
VCRCH mem16 —compute CRC on VCRCDSIZE bits using polynomial VCRCPOLY of size VCRCPSIZE............. 501
VSWAPCRC —Byte Swap VCRCL ................................................................................................. 502
VMOV32 VCRCPOLY, mem32 —32-bit write of VCRCPOLY rom memory ................................................... 503
VMOV32 VCRCSIZE, mem32 —32-bit write of VCRCSIZE from memory ..................................................... 504
VMOV32 mem32, VCRCPOLY —32-bit read of VCRCPOLY to memory ...................................................... 505
VMOV32 mem32, VCRCSIZE —32-bit read of VCRCSIZE register to memory............................................... 506

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 VCRC, mem32 — 32bit write of CRC result register (VCRC)

473SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 VCRC, mem32 32bit write of CRC result register (VCRC)

Operands
VCRC CRC result register
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory

location

Opcode
LSW: 1110 0011 1111 0010
MSW: 0000 0000 mem32

Description 32bit write of CRC result register (VCRC).
VCRC = [mem32]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 mem32, VCRC — 32bit read of CRC result register (VCRC) www.ti.com

474 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 mem32, VCRC 32bit read of CRC result register (VCRC)

Operands
VCRC CRC result register
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory

location

Opcode
LSW: 1110 0010 0000 0110
MSW: 0000 0000 mem32

Description 32bit read of CRC result register (VCRC).
[mem32] = VCRC

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VNOP — No operation

475SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VNOP No operation

Operands
none

Opcode
LSW: 1110 0101 0010 0111

Description No operation.

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 VSTATUS, mem32 — 32bit load of VSTATUS register from memory www.ti.com

476 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 VSTATUS, mem32 32bit load of VSTATUS register from memory

Operands
VSTATUS VCRC status register
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32

Opcode
LSW: 1110 0010 1011 0000
MSW: 0000 0000 mem32

Description 32bit load of VSTATUS register from memory.
VSTATUS = [mem32]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 mem32, VSTATUS — 32bit store of VSTATUS register to memory

477SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 mem32, VSTATUS 32bit store of VSTATUS register to memory

Operands
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32
VSTATUS VCRC status register

Opcode
LSW: 1110 0010 0000 1101
MSW: 0000 0000 mem32

Description 32bit store of VSTATUS register to memory.
[mem32] = VSTATUS

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VSETCRCMSGFLIP — Set CRCMSGFLIP bit in the VSTATUS Register www.ti.com

478 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VSETCRCMSGFLIP Set CRCMSGFLIP bit in the VSTATUS Register

Operands
none

Opcode LSW: 1110 0101 0010 1100

Description Set the CRCMSGFLIP bit in the VSTATUS register. This causes the VCRC to process
message bits starting from least-significant to most-significant for CRC computation. In
this case, bytes loaded from memory are “flipped” and then fed for CRC computation.

Flags This instruction sets the CRCMSGFLIP bit in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCLRCRCMSGFLIP — Clear CRCMSGFLIP bit in the VSTATUS

479SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCLRCRCMSGFLIP Clear CRCMSGFLIP bit in the VSTATUS

Operands
none

Opcode LSW: 1110 0101 0010 1101

Description Clear the CRCMSGFLIP bit in the VSTATUS register. This causes the VCRC to process
message bits starting from most-significant to least-significant for CRC computation. In
this case, bytes loaded from memory are fed directly for CRC computation.

Flags This instruction clears the CRCMSGFLIP bit in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC8L_1 mem16 — CRC8, Lowbyte www.ti.com

480 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC8L_1 mem16 CRC8, Lowbyte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1011
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x07. Calculate the CRC8 of the least
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][7:0]

else
temp[7:0] = [mem16][0:7]

VCRC[7:0] = CRC8 (VCRC[7:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC8H_1 mem16 — CRC8, High Byte

481SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC8H_1 mem16 CRC8, High Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1100
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x07. Calculate the CRC8 of the most
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][15:8]

else
temp[7:0] = [mem16][8:15]

VCRC[7:0] = CRC8 (VCRC[7:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC16P1L_1 mem16 — CRC16, Polynomial 1, Low Byte www.ti.com

482 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC16P1L_1 mem16 CRC16, Polynomial 1, Low Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1110
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x8005. Calculate the CRC16 of the least
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][7:0]

else
temp[7:0] = [mem16][0:7]

VCRC[15:0] = CRC16 (VCRC[15:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC16P1H_1 mem16 — CRC16, Polynomial 1, High Byte

483SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC16P1H_1 mem16 CRC16, Polynomial 1, High Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1111
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x8005. Calculate the CRC16 of the most
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][15:8]

else
temp[7:0] = [mem16][8:15]

VCRC[15:0] = CRC16(VCRC[15:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC16P2L_1 mem16 — CRC16, Polynomial 2, Low Byte www.ti.com

484 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC16P2L_1 mem16 CRC16, Polynomial 2, Low Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1110
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x1021. Calculate the CRC16 of the least
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][7:0]

else
temp[7:0] = [mem16][0:7]

VCRC[15:0] = CRC16 (VCRC[15:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC16P2H_1 mem16 — CRC16, Polynomial 2, High Byte

485SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC16P2H_1 mem16 CRC16, Polynomial 2, High Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1111
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x1021. Calculate the CRC16 of the most
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][15:8]

else
temp[7:0] = [mem16][8:15]

VCRC[15:0] = CRC16(VCRC[15:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC32L_1 mem16 — CRC32, Polynomial 1, Low Byte www.ti.com

486 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC32L_1 mem16 CRC32, Polynomial 1, Low Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 0001
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x04c11db7. Calculate the CRC32 of the least
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][7:0]

else
temp[7:0] = [mem16][0:7]

VCRC[31:0] = CRC32 (VCRC[31:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC32H_1 mem16 — CRC32, Polynomial 1, High Byte

487SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC32H_1 mem16 CRC32, Polynomial 1, High Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 0010
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x04c11db7. Calculate the CRC32 of the most
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][15:8]

else
temp[7:0] = [mem16][8:15]

VCRC[31:0] = CRC32 (VCRC[31:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC32P2L_1 mem16 — CRC32, Polynomial 2, Low Byte www.ti.com

488 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC32P2L_1 mem16 CRC32, Polynomial 2, Low Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1011
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x1edc6f41. Calculate the CRC32 of the least
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][7:0]

else
temp[7:0] = [mem16][0:7]

VCRC[31:0] = CRC32 (VCRC[31:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC32P2H_1 mem16 — CRC32, Polynomial 2, High Byte

489SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC32P2H_1 mem16 CRC32, Polynomial 2, High Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1011
MSW: 0000 0000 mem16

Description Compute CRC of one byte, Polynomial = 0x1edc6f41. Calculate the CRC32 of the most
significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if VSTATUS.CRCMSGFLIP = 0
temp[7:0] = [mem16][15:8]

else
temp[7:0] = [mem16][8:15]

VCRC[31:0] = CRC32 (VCRC[31:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRCCLR — Clear CRC Result Register www.ti.com

490 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRCCLR Clear CRC Result Register

Operands
None

Opcode
LSW: 1110 0101 0010 0100

Description VCRC = 0x0 Clear the VCRC register.

VCRC = 0x0000

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 loc32,*(0:16bitAddr) — VCRC to CPU register Move

491SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 loc32,*(0:16bitAddr) VCRC to CPU register Move

Operands
loc32 loc32 Destination Location (CPU register)
*(0:16bitAddr) Address of 32-bit Source Value (VCRC register)

Opcode
LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description VCRC to CPU register move is done using this instruction. Copy the 32-bit value
referenced by 0:16bitAddr to the location indicated by loc32.

[loc32] = [0:16bitAddr]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a two-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 *(0:16bitAddr),loc32 — CPU to VCRC register Move www.ti.com

492 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 *(0:16bitAddr),loc32 CPU to VCRC register Move

Operands
*(0:16bitAddr) Address of 32-bit destination (VCRC register)
loc32 loc32 Source Location (CPU register)

Opcode
LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description CPU to VCRC move is done using this instruction. Copy the 32-bit value referenced by
loc32 to the location indicated by (0:16bitAddr).

[0:16bitAddr] = [loc32]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a two-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC24L_1 mem16 — CRC24, Polynomial 1, Low Byte

493SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC24L_1 mem16 CRC24, Polynomial 1, Low Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1011
MSW: 0000 0001 mem16

Description This instruction uses CRC24 polynomial == 0x5D6DCB. Calculate the CRC24 of the
least significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if (VSTATUS[CRCMSGFLIP] == 0){
temp[7:0] = [mem16][7:0];
}else {
temp[7:0] = [mem16][0:7];
}

VCRC[23:0] = CRC24 (VCRC[23:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC24H_1 mem16 — CRC24, Polynomial 1, High Byte www.ti.com

494 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRC24H_1 mem16 CRC24, Polynomial 1, High Byte

Operands
mem16 16-bit memory location

Opcode
LSW: 1110 0010 1100 1011
MSW: 0000 0010 mem16

Description This instruction uses CRC24 polynomial == 0x5D6DCB. Calculate the CRC24 of the
most significant byte pointed to by mem16 and accumulate it with the value in the VCRC
register. Store the result in VCRC.

if (VSTATUS[CRCMSGFLIP] == 0){
temp[7:0] = [mem16][15:8];
}else {
temp[7:0] = [mem16][8:15];
}
VCRC[23:0] = CRC24 (VCRC[23:0], temp[7:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOVZI VCRCPOLY, #16I — 16-bit immediate Lower load to VCRCPOLY

495SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOVZI VCRCPOLY, #16I 16-bit immediate Lower load to VCRCPOLY

Operands
#16I 16-bit immediate value

Opcode
LSW: 1110 0111 0101 0100
MSW: IIII IIII IIII IIII

Description Load the lower 16-bits of the VCRCPOLY register with an immediate value. Clear the
upper 16-bits of the register VCRCPOLY.

VCRCPOLY[31:16] = 0x0000 ;
VCRCPOLY[15:0] = #16I;

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOVIX VCRCPOLY, #16I — 16-bit immediate Upper load to VCRCPOLY www.ti.com

496 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOVIX VCRCPOLY, #16I 16-bit immediate Upper load to VCRCPOLY

Operands
#16I 16-bit immediate value

Opcode
LSW: 1110 0111 0101 0101
MSW: IIII IIII IIII IIII

Description Load the upper 16-bits of the VCRCPLOY register with an immediate value. Leave the
lower 16-bits of the register unchanged.

VCRCPOLY[31:16] = #16I ;
VCRCPOLY[15:0] = unchanged ;

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV16 VCRCDSIZE, mem16 — 16-bit write of the DSIZE half of the VCRCSIZE register from memory

497SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV16 VCRCDSIZE, mem16 16-bit write of the DSIZE half of the VCRCSIZE register from memory

Operands
VCRCDSIZE VCRCDSIZE Register
mem16 Pointer to a 16-bit memory location. This will be the source for the VMOV16

Opcode
LSW: 1110 0010 1100 1011
MSW: 0000 0101 mem16

Description 16-bit write of the DSIZE half of the VCRCSIZE register from memory.

VCRCSIZE.DSIZE = [mem16]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV16 VCRCPSIZE, mem16 — 16-bit write of the PSIZE half of the VCRCSIZE register from memory www.ti.com

498 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV16 VCRCPSIZE, mem16 16-bit write of the PSIZE half of the VCRCSIZE register from memory

Operands
VCRCPSIZE VCRCPSIZE register
mem16 Pointer to a 16-bit memory location. This will be the source for the VMOV16

Opcode
LSW: 1110 0010 1100 1011
MSW: 0000 0100 mem16

Description 16-bit write of the PSIZE half of the VCRCSIZE register from memory.

VCRCSIZE.PSIZE = [mem16]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VSETCRCSIZE #5I:#3i — VCRCSIZE.DSIZE bit field to a 3-bit value and the VCRCSIZE.PSIZE bit field to a 5-
bit value

499SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VSETCRCSIZE #5I:#3i VCRCSIZE.DSIZE bit field to a 3-bit value and the VCRCSIZE.PSIZE bit field to a
5-bit value

Operands
#5I 5-bit immediate value
#3I 3-bit immediate value

Opcode
LSW: 1110 0111 0101 0110
MSW: xxxx xiii xxxI IIII

Description Sets the VCRCSIZE.DSIZE bit field to a 3-bit value (i) and the VCRCSIZE.PSIZE bit field
to a 5-bit value (I).

VCRCSIZE.DSIZE = #3'bi ;
VCRCSIZE.PSIZE = #5'bI ;

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRCL mem16 — compute CRC on VCRCDSIZE bits using polynomial VCRCPOLY of size VCRCPSIZE www.ti.com

500 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRCL mem16 compute CRC on VCRCDSIZE bits using polynomial VCRCPOLY of size
VCRCPSIZE

Operands
mem16 Pointer to a 16-bit memory location

Opcode
LSW: 1110 0010 1100 1011
MSW: 0000 0110 mem16

Description Compute CRC on VCRCDSIZE number of bits of memory using polynomial VCRCPOLY
of size VCRCPSIZE.

if VSTATUS.CRCMSGFLIP = 0
temp[VCRCDSIZE:0] = [mem16][VCRCDSIZE:0]

else
temp[VCRCDSIZE:0] = [mem16][0:VCRCDSIZE]

VCRC[VCRCPSIZE:0] = CRC(VCRC[VCRCPSIZE:0], temp[VCRCDSIZE:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a three-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRCH mem16 — compute CRC on VCRCDSIZE bits using polynomial VCRCPOLY of size VCRCPSIZE

501SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VCRCH mem16 compute CRC on VCRCDSIZE bits using polynomial VCRCPOLY of size
VCRCPSIZE

Operands
mem16 Pointer to a 16-bit memory location

Opcode
LSW: 1110 0010 1100 1011
MSW: 0000 0111 mem16

Description compute CRC on VCRCDSIZE number of bits of memory using polynomial VCRCPOLY
of size VCRCPSIZE.

if VSTATUS.CRCMSGFLIP = 0
temp[VCRCDSIZE:0] = [mem16][VCRCDSIZE+8:8]

else
temp[VCRCDSIZE:0] = [mem16][8:VCRCDSIZE+8]

VCRC[VCRCPSIZE:0] = CRC(VCRC[VCRCPSIZE:0], temp[VCRCDSIZE:0])

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a three-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VSWAPCRC — Byte Swap VCRCL www.ti.com

502 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VSWAPCRC Byte Swap VCRCL

Operands
None

Opcode
LSW: 1110 0101 0010 1110

Description Byte swap VCRCL register.

VCRC[31:16] = unchanged ;
Swap VCRC[15:8] with VCRC[7:0]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 VCRCPOLY, mem32 — 32-bit write of VCRCPOLY rom memory

503SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 VCRCPOLY, mem32 32-bit write of VCRCPOLY rom memory

Operands
VCRCPOLY VCRCPOLY Register (Destination)
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode
LSW: 1110 0011 1111 0010
MSW: 0000 0001 mem32

Description 32-bit write of VCRCPOLY register from memory.

VCRCPOLY = [mem32];

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 VCRCSIZE, mem32 — 32-bit write of VCRCSIZE from memory www.ti.com

504 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 VCRCSIZE, mem32 32-bit write of VCRCSIZE from memory

Operands
VCRCSIZE VCRCSIZE Register (Destination)
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode
LSW: 1110 0011 1111 0010
MSW: 0000 0010 mem32

Description 32-bit write of VCRCSIZE register from memory.

VCRCSIZE = [mem32];

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 mem32, VCRCPOLY — 32-bit read of VCRCPOLY to memory

505SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 mem32, VCRCPOLY 32-bit read of VCRCPOLY to memory

Operands
mem32 Pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VCRCPOLY VCRCPOLY Register (Source).

Opcode
LSW: 1110 0010 0000 0110
MSW: 0000 0001 mem32

Description 32-bit read of VCRCPOLY register to memory.

[mem32] = VCRCPOLY;

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 mem32, VCRCSIZE — 32-bit read of VCRCSIZE register to memory www.ti.com

506 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Cyclic Redundancy Check (VCRC)

VMOV32 mem32, VCRCSIZE 32-bit read of VCRCSIZE register to memory

Operands
mem32 Pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VCRCSIZE VCRCSIZE Register (Source)

Opcode
LSW: 1110 0010 0000 0110
MSW: 0000 0010 mem32

Description 32-bit read of VCRCSIZE register to memory.

[mem32] = VCRCSIZE;

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


507SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Chapter 5
SPRUHS1C–October 2014–Revised November 2019

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

This chapter provides an overview of the architectural structure and instruction set of the Viterbi, Complex
Math and CRC Unit (VCU-II) and describes the architecture, pipeline, instruction set, and interrupts. The
VCU is a fully-programmable block which accelerates the performance of communications-based
algorithms. In addition to eliminating the need for a second processor to manage the communications link,
the performance gains of the VCU provides headroom for future system growth and higher bit rates or,
conversely, enables devices to operate at a lower MHz to reduce system cost and power consumption.

Any references to VCU or VCU-II in this chapter relate to Type 2 specifically. Information pertaining to an
older VCU will have the module type listed explicitly. See the TMS320x28xx, 28xxx DSP Peripheral
Reference Guide (SPRU566) for a list of all devices with a VCU module of the same type, to determine
the differences between the types, and for a list of device-specific differences within a type.

Topic ........................................................................................................................... Page

5.1 Overview ......................................................................................................... 508
5.2 Components of the C28x Plus VCU..................................................................... 509
5.3 Register Set ..................................................................................................... 513
5.4 Pipeline ........................................................................................................... 521
5.5 Instruction Set.................................................................................................. 526
5.6 Rounding Mode ................................................................................................ 746

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru566


Overview www.ti.com

508 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.1 Overview
The C28x with VCU (C28x+VCU) processor extends the capabilities of the C28x fixed-point or floating-
point CPU by adding registers and instructions to support the following algorithm types:
• Viterbi decoding

Viterbi decoding is commonly used in baseband communications applications. The viterbi decode
algorithm consists of three main parts: branch metric calculations, compare-select (viterbi butterfly) and
a traceback operation. shows a summary of the VCU performance for each of these operations.

(1) C28x CPU takes 15 cycles per butterfly.
(2) C28x CPU takes 22 cycles per stage.

Table 5-1. Viterbi Decode Performance

Viterbi Operation VCU Cycles
Branch Metric Calculation (code rate = 1/2) 1
Branch Metric Calculation (code rate = 1/3) 2p

Viterbi Butterfly (add-compare-select) 2 (1)

Traceback per Stage 3 (2)

• Cyclic redundancy check (CRC)
CRC algorithms provide a straightforward method for verifying data integrity over large data blocks,
communication packets, or code sections. The C28x+VCU can perform 8-, 16-, 24-, and 32-bit CRCs.
For example, the VCU can compute the CRC for a block length of 10 bytes in 10 cycles. A CRC result
register contains the current CRC which is updated whenever a CRC instruction is executed.

• Complex math
Complex math is used in many applications. The VCU A few of which are:

– Fast Fourier transform (FFT)
The complex FFT is used in spread spectrum communications, as well in many signal processing
algorithms.

– Complex filters
Complex filters improve data reliability, transmission distance, and power efficiency. The
C28x+VCU can perform a complex I and Q multiply with coefficients (four multiplies) in a single
cycle. In addition, the C28x+VCU can read/write the real and imaginary parts of 16-bit complex data
to memory in a single cycle.

Table 5-2 shows a summary of the VCU operations enabled by the VCU:

Table 5-2. Complex Math Performance

Complex Math Operation VCU Cycles Notes
Add Or Subtract 1 32 +/- 32 = 32-bit (Useful for filters)
Add or Subtract 1 16 +/- 32 = 15-bit (Useful for FFT)

Multiply 2p 16 x 16 = 32-bit
Multiply & Accumulate (MAC) 2p 32 + 32 = 32-bit, 16 x 16 = 32-bit

RPT MAC 2p+N Repeat MAC. Single cycle after the first operation.

This C28x+VCU draws from the best features of digital signal processing; reduced instruction set
computing (RISC); and microcontroller architectures, firmware, and tool sets. The C2000 features include
a modified Harvard architecture and circular addressing. The RISC features are single-cycle instruction
execution, register-to-register operations, and modified Harvard architecture (usable in Von Neumann
mode). The microcontroller features include ease of use through an intuitive instruction set, byte packing
and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction
and data fetches to be performed in parallel. The CPU can read instructions and data while it writes data
simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this
over six separate address/data buses.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Program address bus (22)

Program data bus (32)

Read address bus (32)

Read data bus (32)

Write data bus (32)

Existing
memory,

peripherals,
interfaces

PIE

Write address bus (32)

LVF

LUF

C28x
+

FPU
+

Vcu

Memory
bus

Memory
bus

www.ti.com Components of the C28x Plus VCU

509SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Throughout this document the following notations are used:
• C28x refers to the C28x fixed-point CPU.
• C28x plus Floating-Point and C28x+FPU both refer to the C28x CPU with enhancements to support

IEEE single-precision floating-point operations.
• C28x plus VCU and C28x+VCU both refer to the C28x CPU with enhancements to support viterbi

decode, complex math, forward error correcting algorithms, and CRC.
• Some devices have both the FPU and the VCU. These are referred to as C28x+FPU+VCU.

5.2 Components of the C28x Plus VCU
The VCU extends the capabilities of the C28x CPU and C28x+FPU processors by adding additional
instructions. No changes have been made to existing instructions, pipeline, or memory bus architecture.
Therefore, programs written for the C28x are completely compatible with the C28x+VCU. All of the
features of the C28x documented in TMS320C28x DSP CPU and Instruction Set Reference Guide
(literature number SPRU430) apply to the C28x+VCU. All features documented in the TMS320C28x
Floating Point Unit and Instruction Set Reference Guide (SPRUE02) apply to the C28x+FPU+VCU.

Figure 5-1 shows the block diagram of the VCU.

Figure 5-1. C28x + VCU Block Diagram

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/sprueo2


Components of the C28x Plus VCU www.ti.com

510 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

The C28x+VCU contains the same features as the C28x fixed-point CPU:
• A central processing unit for generating data and program-memory addresses; decoding and executing

instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory.

• Emulation logic for monitoring and controlling various parts and functions of the device and for testing
device operation. This logic is identical to that on the C28x fixed-point CPU.

• Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the
emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic
is identical to the C28x fixed-point CPU.

• Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic
operations.

• Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and
increments or decrements pointers in parallel with ALU operations.

• Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to
that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to
and a read from the same location from occurring out of order.

• Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left
by up to 16 bits and to the right by up to 16 bits.

• Fixed-Point Multiplier. The multiplier performs 32-bit × 32-bit 2s-complement multiplication with a 64-bit
result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one
signed number and one unsigned number.

The VCU adds the following features:
• Instructions to support Cyclic Redundancy Check (CRC) or a polynomial code checksum

– CRC8
– CRC16
– CRC32
– CRC24

• Clocked at the same rate as the main CPU (SYSCLKOUT).
• Instructions to support a software implementation of a Viterbi Decoder of constraint length 4 - 7 and

code rates of 1/2 and 1/3
– Branch metrics calculations
– Add-Compare Select or Viterbi Butterfly
– Traceback

• Complex Math Arithmetic Unit
– Add or Subtract
– Multiply
– Multiply and Accumulate (MAC)
– Repeat MAC (RPT || MAC).

• Independent register space. These registers function as source and destination registers for VCU
instructions.

• Some VCU instructions require pipeline alignment. This alignment is done through software to allow
the user to improve performance by taking advantage of required delay slots. See Section 5.4 for more
information.

Devices with the floating-point unit also include:
• Floating point unit (FPU). The 32-bit FPU performs IEEE single-precision floating-point operations.
• Dedicated floating-point registers.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Components of the C28x Plus VCU

511SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.2.1 Emulation Logic
The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following
features. For more details about these features, refer to the TMS320C28x DSP CPU and Instruction Set
Reference Guide (literature number SPRU430):
• Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content

of registers and memory by taking control of the memory interface during unused cycles of the
instruction pipeline

• A counter for performance benchmarking.
• Multiple debug events. Any of the following debug events can cause a break in program execution:

– A breakpoint initiated by the ESTOP0 or ESTOP1 instruction.
– An access to a specified program-space or data-space location. When a debug event causes the

C28x to enter the debug-halt state, the event is called a break event.
• Real-time mode of operation.

5.2.2 Memory Map
Like the C28x, the C28x+VCU uses 32-bit data addresses and 22-bit program addresses. This allows for a
total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space.
Memory blocks on all C28x+VCU designs are uniformly mapped to both program and data space. For
specific details about each of the map segments, see the device-specific data manual.

5.2.3 CPU Interrupt Vectors
The C28x+VCU interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in program
space are set aside for a table of 32 CPU interrupt vectors. For more information about the CPU vectors,
see TMS320C28x CPU and Instruction Set Reference Guide (literature number SPRU430). Typically the
CPU interrupt vectors are only used during the boot up of the device by the boot ROM. Once an
application has taken control it should initialize and enable the peripheral interrupt expansion block (PIE).

5.2.4 Memory Interface
The C28x+VCU memory interface is identical to that on the C28x. The C28x+VCU memory map is
accessible outside the CPU by the memory interface, which connects the CPU logic to memories,
peripherals, or other interfaces. The memory interface includes separate buses for program space and
data space. This means an instruction can be fetched from program memory while data memory is being
accessed. The interface also includes signals that indicate the type of read or write being requested by the
CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In
addition to 16-bit and 32-bit accesses, the CPU supports special byte-access instructions that can access
the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe signals
indicate when such an access is occurring on a data bus.

5.2.5 Address and Data Buses
Like the C28x, the memory interface has three address buses:
• PAB: Program address bus: The 22-bit PAB carries addresses for reads and writes from program

space.
• DRAB: Data-read address bus: The 32-bit DRAB carries addresses for reads from data space.
• DWAB: Data-write address bus: The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:
• PRDB: Program-read data bus: The 32-bit PRDB carries instructions during reads from program

space.
• DRDB: Data-read data bus: The 32-bit DRDB carries data during reads from data space.
• DWDB: Data-/Program-write data bus: The 32-bit DWDB carries data during writes to data space or

program space.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/SPRU430


Components of the C28x Plus VCU www.ti.com

512 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

A program-space read and a program-space write cannot happen simultaneously because both use the
PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because
both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the
CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and
DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to
the C28x CPU.

5.2.6 Alignment of 32-Bit Accesses to Even Addresses
The C28x+VCU expects memory wrappers or peripheral-interface logic to align any 32-bit read or write to
an even address. If the address-generation logic generates an odd address, the CPU will begin reading or
writing at the previous even address. This alignment does not affect the address values generated by the
address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned
accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When
instructions are stored to program space, they do not have to be aligned to even addresses. Instruction
boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes
to data space.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ACC (32-bit)

R1H (32-bit)

R2H (32-bit)

R3H (32-bit)

R4H (32-bit)

R5H (32-bit)

R6H (32-bit)

R7H (32-bit)

R0H (32-bit)

FPU Status Register (STF)

Repeat Block Register (RB)

P (32-bit)

XT (32-bit)

XAR0 (32-bit)

XAR1 (32-bit)

XAR2 (32-bit)

XAR3 (32-bit)

XAR4 (32-bit)

XAR5 (32-bit)

XAR6 (32-bit)

XAR7 (32-bit)

PC (22-bit)

RPC (22-bit)

DP (16-bit)

SP (16-bit)

ST0 (16-bit)

ST1 (16-bit)

IER (16-bit)

IFR (16-bit)

DBGIER (16-bit)

Standard C28x Register Set Additional 32-bit FPU Registers

FPU registers R0H - R7H and STF
are shadowed for fast context
save and restore

VR0

VR1

VR2

VR3

VR4

VR5

VR6

VR7

VR8

VT0

VT1

VSTATUS

VCRC

VSM0

VSM1

VSM63

Standard VCU Register Set

.

.

.

.

.

.

www.ti.com Register Set

513SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.3 Register Set
Devices with the C28x+VCU include the standard C28x register set plus an additional set of VCU specific
registers. The additional VCU registers are the following:
• Result registers: VR0, VR1... VR8
• Traceback registers: VT0, VT1
• Configuration and status register: VSTATUS
• CRC result register: VCRC
• Repeat block register: RB

Figure 5-2 shows the register sets for the 28x CPU, the FPU and the VCU. The following section
discusses the VCU register set in detail.

Figure 5-2. C28x + FPU + VCU Registers

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Register Set www.ti.com

514 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.3.1 VCU Register Set
Table 5-3 describes the VCU module register set. The last three columns indicate whether the particular
module within the VCU can make use of the register.

Table 5-4 lists the CPU registers available on devices with the C28x, the C28x+FPU, the C28x+VCU and
the C28x+FPU+VCU.

(1) Debugger writes are not allowed to the VSTATUS register.

Table 5-3. VCU Register Set

Register
Name Size Description Viterbi

Complex
Math CRC

VR0 32 bits General purpose register 0 Yes Yes No
VR1 32 bits General purpose register 1 Yes Yes No
VR2 32 bits General purpose register 2 Yes Yes No
VR3 32 bits General purpose register 3 Yes Yes No
VR4 32 bits General purpose register 4 Yes Yes No
VR5 32 bits General purpose register 5 Yes Yes No
VR6 32 bits General purpose register 6 Yes Yes No
VR7 32 bits General purpose register 7 Yes Yes No
VR8 32 bits General purpose register 8 Yes No No
VT0 32 bits 32-bit transition bit register 0 Yes No No
VT1 32 bits 32-bit transition bit register 1 Yes No No
VSTATUS 32 bits VCU status and configuration register (1) Yes Yes No
VCRC 32 bits Cyclic redundancy check (CRC) result register No No Yes
VSM0-
VSM63

32 bits Viterbi Decoding State Metric registers Yes No No

VRx.By
x = 0 – 7
y = 0 - 3

32 bits Aliased address space for each byte of the VRx registers, left-
shifted by one

No No No

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Register Set

515SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

(1) Present on Type-2 VCU only

Table 5-4. 28x CPU Register Summary

Register C28x CPU C28x+FPU C28x+VCU C28x+FPU+VCU Description
ACC Yes Yes Yes Yes Fixed-point accumulator
AH Yes Yes Yes Yes High half of ACC
AL Yes Yes Yes Yes Low half of ACC
XAR0 - XAR7 Yes Yes Yes Yes Auxiliary register 0 - 7
AR0 - AR7 Yes Yes Yes Yes Low half of XAR0 - XAR7
DP Yes Yes Yes Yes Data-page pointer
IFR Yes Yes Yes Yes Interrupt flag register
IER Yes Yes Yes Yes Interrupt enable register
DBGIER Yes Yes Yes Yes Debug interrupt enable register
P Yes Yes Yes Yes Fixed-point product register
PH Yes Yes Yes Yes High half of P
PL Yes Yes Yes Yes Low half of P
PC Yes Yes Yes Yes Program counter
RPC Yes Yes Yes Yes Return program counter
SP Yes Yes Yes Yes Stack pointer
ST0 Yes Yes Yes Yes Status register 0
ST1 Yes Yes Yes Yes Status register 1
XT Yes Yes Yes Yes Fixed-point multiplicand register
T Yes Yes Yes Yes High half of XT
TL Yes Yes Yes Yes Low half of XT
ROH - R7H No Yes No Yes Floating-point Unit result registers
STF No Yes No Yes Floating-point Uint status register
RB No Yes Yes Yes Repeat block register
VR0 - VR8 No No Yes Yes VCU general purpose registers
VT0, VT1 No No Yes Yes VCU transition bit register 0 and 1
VSTATUS No No Yes Yes VCU status and configuration
VCRC No No Yes Yes CRC result register
VSM0-VSM63 No No Yes (1) Yes (1) Viterbi State Metric Registers
VRx.By
x = 0 – 7
y = 0 – 3

No No Yes (1) Yes (1) Aliased address space for each byte of the
VRx registers, left-shifted by one

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Register Set www.ti.com

516 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.3.2 VCU Status Register (VSTATUS)
The VCU status register (VSTATUS) register is described in Figure 5-3. There is no single instruction to
directly transfer the VSTATUS register to a C28x register. To transfer the contents:
1. Store VSTATUS into memory using VMOV32 mem32, VSTATUS instruction
2. Load the value from memory into a main C28x CPU register.

Configuration bits within the VSTATUS registers are set or cleared using VCU instructions.

Figure 5-3. VCU Status Register (VSTATUS)
31 30 29 27 26 24 23 16

CRCMSGFLIP DIVE K GFORDER GFPOLY

R/W-0 R/W-0 R/W-7 R/W-7

15 14 13 12 11 10 9 5 4 0
OPACK CPACK OVRI OVFR RND SAT SHIFTL SHIFTR

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

(1) Present on Type-2 VCU only.

Table 5-5. VCU Status (VSTATUS) Register Field Descriptions

Bits Field Value Description
31 CRCMSGFL

IP (1)
CRC Message Flip
This bit affects the order in which the bits in the message are taken for CRC calculation by all the CRC
instructions.

0 Message bits are taken starting from most-significant to least-significant for CRC computation. In this
case, bytes loaded from memory are fed directly for CRC computation.

1 Message bits are taken starting from least-significant to most-significant for CRC computation. In this
case, bytes loaded from memory are “flipped” and then fed for CRC computation.

30 DIVE (1) Divide-by-zero Error
0 Indicates whether a “divide by zero” occurred during a VMOD32 computation. This bit is cleared by

executing the VCLRDIVE instruction
1

29-27 K (1) Constraint Length for Viterbi Decoding
0x7 This field sets the constraint length for the Viterbi decoding algorithm. It accepts values of 4 to 7.

Values outside this range will be treated as 7 by the hardware.
1

26-24 GFORDER (

1)
Galois Field Polynomial Order

0x7 This field holds the Order of the polynomial for all the Galois Field instructions. This field is initialized
by the VGFINIT mem16 instruction. The actual order of the polynomial is GFORDER+1

23-16 GFPOLY (1) Galois Field Polynomial
0 This field holds the Polynomial for all the Galois Field instructions. This field is initialized by the

VGFINIT mem16 instruction.
1

15 OPACK (1) Viterbi Traceback Packing Order
This bit affects the packing order of the traceback output bits (using the VTRACE instructions)

0 Big-endian (compatible with VCU Type-0 output packing order)
1 Little-endian (VCU Type-2 mode)

14 CPACK (1) Complex Packing Order
This bit affects the packing order of the 16-bit real and 16-bit imaginary part of a complex numbers
inside the 32-bit general purpose VRx register.

0 VRx[31:16] holds Real part, VRx[15:0] holds Imaginary part (VCU-I compatible mode)
1 VRx[31:16] holds Imaginary part; VRx[15:0] holds Real part

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Register Set

517SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Table 5-5. VCU Status (VSTATUS) Register Field Descriptions (continued)
Bits Field Value Description
13 OVRI Overflow or Underflow Flag: Imaginary Part

0 No overflow or underflow has been detected.
1 Indicates an overflow or underflow has occurred during the computation of the imaginary part of

operations shown in Table 10-6 . This bit will be set regardless of the value of the VSTATUS[SAT]
bit.OVRI bit will remain set until it is cleared by executing the VCLROVFI instruction.

12 OVFR Overflow or Underflow Flag: Real Part
0 No overflow or underflow has been detected.
1 Indicates overflow or underflow has occurred during a real number calculation for operations shown in

Table 5-6. This bit will be set regardless of the value of the VSTATUS[SAT] bit. This bit will remain set
until it is cleared by executing the VCLROVFR instruction.

11 RND Rounding
When a right-shift operation is performed the lower bits of the value will be lost. The RND bit
determines if the shifted value is rounded or if the shifted-out bits are simply truncated. This is
described in Section 5.3.2. Operations which use right-shift and rounding are shown in Table 5-6.
The RND bit is set by the VRNDON instruction and cleared by the VRNDOFF instruction.

0 Rounding is not performed. Bits shifted out right are truncated.
1 Rounding is performed. Refer to the instruction descriptions for information on how the operation is

affected by the RND bit.
10 SAT Saturation

This bit determines whether saturation will be performed for operations shown in Table 5-6.
The SAT bit is set by the VSATON instruction and is cleared by the VSATOFF instruction.

0 No saturation is performed.
1 Saturation is performed.

9-5 SHIFTL Left Shift
Operations which use left-shift are shown in Table 5-6
The shift SHIFTL field can be set or cleared by the VSETSHL instruction.

0 No left shift.
0x01 -
0x1F

Refer to the instruction description for information on how the operation is affected by the shift value.
During the left-shift, the lower bits are filled with 0's.

4-0 SHIFTR Right Shift
Operations which use right-shift and rounding are shown in Table 5-6.
The shift SHIFTR field can be set or cleared by the VSETSHR instruction.

0 No right shift.
0x01 -
0x1F

Refer to the instruction descriptions for information on how the operation is affected by the shift value.
During the right-shift, the lower bits are lost, and the shifted value is sign extended. If rounding is
enabled (VSTATUS[RND] == 1) , then the value will be rounded instead of truncated.

Table 5-6 shows a summary of the operations that are affected by or modify bits in the VSTATUS register.

(1) Some parallel instructions also include these operations. In this case, the operation will also modify, or be affected by, VSTATUS
bits as when used as part of a parallel instruction.

(2) Present on Type-2 VCU only.

Table 5-6. Operation Interaction With VSTATUS Bits
Operation (1) Description OVFI OVFR RND SAT SHIFTL SHIFTR CPACK OPACK DIVE

VITDLADDSUB Viterbi Add and Subtract
Low

- Y - Y - - - - -

VITDHADDSUB Viterbi Add and Subtract
High

- Y - Y - - - - -

VITDLSUBADD Viterbi Subtract and Add
Low

- Y - Y - - - - -

VITDHSUBADD Viterbi Subtract and Add
High

- Y - Y - - - - -

VITBM2 Viterbi Branch Metric CR
1/2

- Y - Y - - - - -

VITBM3 Viterbi Branch Metric CR
1/3

- Y - Y - - - - -

VTRACE(2) Viterbi Trace-back - - - - - - - Y -

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Register Set www.ti.com

518 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Table 5-6. Operation Interaction With VSTATUS Bits (continued)
Operation (1) Description OVFI OVFR RND SAT SHIFTL SHIFTR CPACK OPACK DIVE

VITSTAGE (2) Viterbi Compute 32
Butterfly

- Y - Y - - - - -

VCADD Complex 32 + 32 = 32 Y Y Y Y - Y - - -

VCDADD16 Complex 16 + 32 = 32 Y Y Y Y Y Y - - -

VCDSUB16 Complex 16 - 32 = 32 Y Y Y Y Y Y - - -

VCMAC Complex 32 + 32 = 32,
16 x 16 = 32

Y Y Y Y - Y - - -

VCCMAC (2) Complex Conjugate 32 +
32 = 32,
16 x 16 = 32

Y Y Y Y - Y Y - -

VCMPY Complex 16 x 16 = 32 Y Y - Y - - Y - -

VCCMPY (2) Complex Conjugate 16 x
16 = 32

Y Y - Y - - Y - -

VCSUB Complex 32 - 32 = 32 Y Y Y Y - Y - - -

VCCON(2) Complex Conjugate Y - - Y - - Y - -

VCSHL16(2) Complex Shift Left Y Y - Y - - Y - -

VCHR16(2) Complex Shift Right - - Y - - - - - -

VCMAG(2) Complex Number
Magnitude

- Y Y Y - - - - -

VNEG Two’s Complement
Negation

- Y - Y - - - - -

VASHR32(2) Arithmetic Shift Right - - Y - - - - - -

VASHL32 (2) Arithmetic Shift Left - Y - Y - - - - -

VMPYADD (2) Arithmetic Multiply Add
16 + ((16 x 16) >> SHR)
= 16

- Y Y Y - Y - - -

VCFFTx (2) Complex FFT calculation
step
(x = 1 – 10)

Y Y Y Y - Y - - -

VMOD32 Modulo 32 % 16 = 16 - - - - - - - - Y

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Register Set

519SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.3.3 Repeat Block Register (RB)
The repeat block instruction (RPTB) applies to devices with the C28x+FPU and the C28x+VCU. This
instruction allows you to repeat a block of code as shown in Example 5-1.

Example 5-1. The Repeat Block (RPTB) Instruction uses the RB Register

; find the largest element and put its address in XAR6
;
; This example makes use of floating-point (C28x + FPU) instructions
;
;

MOV32 R0H, *XAR0++;
.align 2 ; Aligns the next instruction to an even address
NOP ; Makes RPTB odd aligned - required for a block size of 8
RPTB VECTOR_MAX_END, AR7 ; RA is set to 1
MOVL ACC,XAR0
MOV32 R1H,*XAR0++ ; RSIZE reflects the size of the RPTB block
MAXF32 R0H,R1H ; in this case the block size is 8
MOVST0 NF,ZF
MOVL XAR6,ACC,LT

VECTOR_MAX_END: ; RE indicates the end address. RA is cleared

The C28x FPU or VCU automatically populates the RB register based on the execution of a RPTB
instruction. This register is not normally read by the application and does not accept debugger writes.

Figure 5-4. Repeat Block Register (RB)
31 30 29 23 22 16

RAS RA RSIZE RE
R-0 R-0 R-0 R-0

15 0
RC
R-0

LEGEND: R = Read only; -n = value after reset

Table 5-7. Repeat Block (RB) Register Field Descriptions

Bits Field Value Description
31 RAS Repeat Block Active Shadow Bit

When an interrupt occurs the repeat active, RA, bit is copied to the RAS bit and the RA bit is cleared.
When an interrupt return instruction occurs, the RAS bit is copied to the RA bit and RAS is cleared.

0 A repeat block was not active when the interrupt was taken.
1 A repeat block was active when the interrupt was taken.

30 RA Repeat Block Active Bit
0 This bit is cleared when the repeat counter, RC, reaches zero.

When an interrupt occurs the RA bit is copied to the repeat active shadow, RAS, bit and RA is cleared.
When an interrupt return, IRET, instruction is executed, the RAS bit is copied to the RA bit and RAS is
cleared.

1 This bit is set when the RPTB instruction is executed to indicate that a RPTB is currently active.
29-23 RSIZE Repeat Block Size

This 7-bit value specifies the number of 16-bit words within the repeat block. This field is initialized
when the RPTB instruction is executed. The value is calculated by the assembler and inserted into the
RPTB instruction's RSIZE opcode field.

0-7 Illegal block size.
8/9-0x7F A RPTB block that starts at an even address must include at least 9 16-bit words and a block that

starts at an odd address must include at least 8 16-bit words. The maximum block size is 127 16-bit
words. The codegen assembler will check for proper block size and alignment.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Register Set www.ti.com

520 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Table 5-7. Repeat Block (RB) Register Field Descriptions (continued)
Bits Field Value Description

22-16 RE Repeat Block End Address
This 7-bit value specifies the end address location of the repeat block. The RE value is calculated by
hardware based on the RSIZE field and the PC value when the RPTB instruction is executed.
RE = lower 7 bits of (PC + 1 + RSIZE)

15-0 RC Repeat Count
0 The block will not be repeated; it will be executed only once. In this case the repeat active, RA, bit will

not be set.
1-

0xFFFF
This 16-bit value determines how many times the block will repeat. The counter is initialized when the
RPTB instruction is executed and is decremented when the PC reaches the end of the block. When
the counter reaches zero, the repeat active bit is cleared and the block will be executed one more
time. Therefore the total number of times the block is executed is RC+1.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Fetch

C28x pipeline

Decode Read Exe

W

Write

FPU instruction

Store

Load

Complex ADD/SUB Viterbi ADDSUB/SUBADD

FPU ADD/SUB/MPY, Complex MPY

ER2R1D2D1F2F1

E2
W

E1RD

VCU instruction E2
W

E1RD

www.ti.com Pipeline

521SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.4 Pipeline
This section describes the VCU pipeline stages and presents cases where pipeline alignment must be
considered.

5.4.1 Pipeline Overview
The C28x VCU pipeline is identical to the C28x pipeline for all standard C28x instructions. In the decode2
stage (D2), it is determined if an instruction is a C28x instruction, a FPU instruction, or a VCU instruction.
The pipeline flow is shown in Figure 5-5.

Notice that stalls due to normal C28x pipeline stalls (D2) and memory waitstates (R2 and W) will also stall
any C28x VCU instruction. Most C28x VCU instructions are single cycle and will complete in the VCU E1
or W stage which aligns to the C28x pipeline. Some instructions will take an additional execute cycle (E2).
For these instructions you must wait a cycle for the result from the instruction to be available. The rest of
this section will describe when delay cycles are required. Keep in mind that the assembly tools for the
C28x+VCU will issue an error if a delay slot has not been handled correctly.

Figure 5-5. C28x + FCU + VCU Pipeline

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

522 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.4.2 General Guidelines for VCU Pipeline Alignment
The majority of the VCU instructions do not require any special pipeline considerations. This section lists
the few operations that do require special consideration.

While the C28x+VCU assembler will issue errors for pipeline conflicts, you may still find it useful to
understand when software delays are required. This section describes three guidelines you can follow
when writing C28x+VCU assembly code.

VCU instructions that require delay slots have a 'p' after their cycle count. For example '2p' stands for 2
pipelined cycles. This means that an instruction can be started every cycle, but the result of the instruction
will only be valid one instruction later.

Table 5-8 outlines the instructions that need delay slots.

(1) Some parallel instructions also include these operations. In this case, the operation will also modify, or be affected by, VSTATUS
bits as when used as part of a parallel instruction.

(2) Variations of the instruction execute differently. In these cases, the user is referred to the description Example 5-2 of the
instruction(s) in Section 5.5.

(3) Present on Type-2 VCU only.

Table 5-8. Operations Requiring a Delay Slot(s)

Operation (1) Description Cycles
VITBM3 Viterbi Branch Metric CR 1/3 2p/2 (2)

VCMAC Complex 32 + 32 = 32,
16 x 16 = 32

2p

VCCMAC (3) Complex Conjugate 32 + 32 = 32,
16 x 16 = 32

2p

VCMPY Complex 16 x 16 = 32 2p
VCCMPY (3) Complex Conjugate 16 x 16 = 32 2p
VCMAG (3) Complex Number Magnitude 2
VCFFTx (3) Complex FFT calculation step (x = 1 – 10) 2p/2 (2)

VMOD32 Modulo 32 % 16 = 16 9p
VMPYADD (3) Arithmetic Multiply Add

16 + ((16 x 16) >> SHR) = 16
2p

An example of the complex multiply instruction is shown in Example 5-2. VCMPY is a 2p instruction and
therefore requires one delay slot. The destination registers for the operation, VR2 and VR3, will be
updated one cycle after the instruction for a total of two cycles. Therefore, a NOP or instruction that does
not use VR2 or VR3 must follow this instruction.

Any memory stall or pipeline stall will also stall the VCU. This keeps the VCU aligned with the C28x
pipeline and there is no need to change the code based on the waitstates of a memory block.

Example 5-2. 2p Instruction Pipeline Alignment

VCMPY VR3, VR2, VR1, VR0 ; 2 pipeline cycles (2p)
NOP ; 1 cycle delay or non-conflicting instruction

; <-- VCMPY completes, VR2 and VR3 updated
NOP ; Any instruction

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

523SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.4.3 Parallel Instructions
Parallel instructions are single opcodes that perform two operations in parallel. The guidelines provided in
Section 5.4.2 apply to parallel instructions as well. In this case the cycle count will be given for both
operations. For example, a branch metric calculation for code rate of 1/3 with a parallel load takes 2p/1
cycles. This means the branch metric portion of the operation takes two pipelined cycles while the move
portion of the operation is single cycle. NOPs or other non conflicting instructions must be inserted to align
the branch metric calculation portion of the operation as shown in Example 5-4.

Example 5-3. Branch Metric CR 1/2 Calculation with Parallel Load

; VITBM2 || VMOV32 instruction: branch metrics calculation with parallel load
; VBITM2 is a 1 cycle operation (code rate = 1/2)
; VMOV32 is a 1 cycle operation
;

VITBM2 VR0 ; Load VR0 with the 2 branch metrics
|| VMOV32 VR2, @Val ; VR2 gets the contents of Val

; <-- VMOV32 completes here (VR2 is valid)
; <-- VITBM2 completes here (VR0 is valid)

<instruction 2> ; Any instruction, can use VR2 and/or VR0

Example 5-4. Branch Metric CR 1/3 Calculation with Parallel Load

; VITBM3 || VMOV32 instruction: branch metrics calculation with parallel load
; VBITM3 is a 2p cycle operation (code rate = 1/3)
; VMOV32 is a 1 cycle operation
;

VITBM3 VR0, VR1, VR2 ; Load VR0 and VR1 with the 4 branch metrics
|| VMOV32 VR2, @Val ; VR2 gets the contents of Val

; <-- VMOV32 completes here (VR2 is valid)
<instruciton 2> ; Must not use VR0 or VR1. Can use VR2.

; <-- VITBM3 completes here (VR0, VR1 are valid)
<instruction 3> ; Any instruction, can use VR2 and/or VR0

5.4.4 Invalid Delay Instructions
All VCU, FPU and fixed-point instructions can be used in VCU instruction delay slots as long as source
and destination register conflicts are avoided. The C28x+VCU assembler will issue an error anytime you
use an conflicting instruction within a delay slot. The following guidelines can be used to avoid these
conflicts.

NOTE: Destination register conflicts in delay slots:

Any operation used for pipeline alignment delay must not use the same destination register
as the instruction requiring the delay. See Example 5-5.

In Example 5-5 the VCMPY instruction uses VR2 and VR3 as its destination registers. The next instruction
should not use VR2 or VR3 as a destination. Since the VMOV32 instruction uses the VR3 register a
pipeline conflict will be issued by the assembler. This conflict can be resolved by using a register other
than VR2 for the VMOV32 instruction as shown in Example 5-6.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

524 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Example 5-5. Destination Register Conflict

; Invalid delay instruction.
; Both instructions use the same destination register (VR3)
;

VCMPY VR3, VR2, VR1, VR0 ; 2p instruction
VMOV32 VR3, mem32 ; Invalid delay instruction

; <-- VCMPY completes, VR3, VR2 are valid

Example 5-6. Destination Register Conflict Resolved

; Valid delay instruction
;

VCMPY VR3, VR2, VR1, VR0 ; 2p instruction
VMOV32 VR7, mem32 ; Valid delay instruction

NOTE: Instructions in delay slots cannot use the instruction's destination register as a
source register.

Any operation used for pipeline alignment delay must not use the destination register of the
instruction requiring the delay as a source register as shown in Example 5-7. For parallel
instructions, the current value of a register can be used in the parallel operation before it is
overwritten as shown in Example 5-9.

In Example 5-7 the VCMPY instruction again uses VR3 and VR2 as its destination registers. The next
instruction should not use VR3 or VR2 as its source since the VCMPY will take an additional cycle to
complete. Since the VCADD instruction uses the VR2 as a source register a pipeline conflict will be issued
by the assembler. The use of VR3 will also cause a pipeline conflict. This conflict can be resolved by using
a register other than VR2 or VR3 or by inserting a non-conflicting instruction between the VCMPY and
VCADD instructions. Since the VNEG does not use VR2 or VR3 this instruction can be moved before the
VCADD as shown in Example 5-8.

Example 5-7. Destination/Source Register Conflict

; Invalid delay instruction.
; VCADD should not use VR2 or VR3 as a source operand
;

VCMPY VR3, VR2, VR1, VR0 ; 2p instruction
VCADD VR5, VR4, VR3, VR2 ; Invalid delay instruction
VNEG VR0 ; <- VCMPY completes, VR3, VR2 valid

Example 5-8. Destination/Source Register Conflict Resolved

; Valid delay instruction.
;

VCMPY VR3, VR2, VR1, VR0 ; 2p instruction
VNEG VR0 ; Non conflicting instruction or NOP
VCADD VR5, VR4, VR3, VR2 ; <- VCMPY completes, VR3, VR2 valid

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

525SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

It should be noted that a source register for the second operation within a parallel instruction can be the
same as the destination register of the first operation. This is because the two operations are started at
the same time. The second operation is not in the delay slot of the first operation. Consider Example 5-9
where the VCMPY uses VR3 and VR2 as its destination registers. The VMOV32 is the second operation
in the instruction and can freely use VR3 or VR2 as a source register. In the example, the contents of VR3
before the multiply will be used by MOV32.

Example 5-9. Parallel Instruction Destination/Source Exception

; Valid parallel operation.
;

VCMPY VR3, VR2, VR1, VR0 ; 2p/1 instruction
|| VMOV32 mem32, VR3 ; <-- Uses VR3 before the VCMPY update

; <-- mem32 updated
NOP ; <-- Delay for VCMPY

; <-- VR2, VR3 updated

Likewise, the source register for the second operation within a parallel instruction can be the same as one
of the source registers of the first operation. The VCMPY operation in Example 5-10 uses the VR0 register
as one of its sources. This register is also updated by the VMOV32 instruction. The multiplication
operation will use the value in VR0 before the VMOV32 updates it.

Example 5-10. Parallel Instruction Destination/Source Exception

; Valid parallel operation.
VCMPY VR3, VR2, VR1, VR0 ; 2p/1 instruction

|| VMOV32 VR0, mem32 ; <-- Uses VR3 before the VCMPY update
; <-- mem32 updated

NOP ; <-- Delay for VCMPY
; <-- VR2, VR3 updated

NOTE: Operations within parallel instructions cannot use the same destination register.

When two parallel operations have the same destination register, the result is invalid.

For example, see Example 5-11.

If both operations within a parallel instruction try to update the same destination register as shown in
Example 5-11 the assembler will issue an error.

Example 5-11. Invalid Destination Within a Parallel Instruction

; Invalid parallel instruction. Both operations use VR3 as a destination register
;

VCMPY VR3, VR2, VR1, VR0 ; 2p/1 instruction
|| VMOV32 VR3, mem32 ; <-- Invalid

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

526 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.5 Instruction Set
This section describes the assembly language instructions of the VCU. Also described are parallel
operations, conditional operations, resource constraints, and addressing modes. The instructions listed
here are independent from C28x and C28x+FPU instruction sets.

5.5.1 Instruction Descriptions
This section gives detailed information on the instruction set. Each instruction may present the following
information:
• Operands
• Opcode
• Description
• Exceptions
• Pipeline
• Examples
• See also

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. VCU instructions follow the same format as the C28x; the source
operand(s) are always on the right and the destination operand(s) are on the left.

The explanations for the syntax of the operands used in the instruction descriptions for the C28x VCU are
given in Table 5-9.

Table 5-9. Operand Nomenclature

Symbol Description
#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.

Lower 16-bits of the mantissa are assumed to be zero.
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value
#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value
#32F Immediate float value represented in floating-point representation
#0.0 Immediate zero
#5-bit 5-bit immediate unsigned value
addr Opcode field indicating the addressing mode
Im(X), Im(Y) Imaginary part of the input X or input Y
Im(Z) Imaginary part of the output Z
Re(X), Re(Y) Real part of the input X or input Y
Re(Z) Real part of the output Z
mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
VRa VR0 - VR8 registers. Some instructions exclude VR8. Refer to the instruction description for details.
VR0H,
VR1H...VR7H

VR0 - VR7 registers, high half.

VR0L, VR1L....VR7L VR0 - VR7 registers, low half.
VT0, VT1 Transition bit register VT0 or VT1.
VSMn+1: VSMn Pair of State Metric Registers (n = 0 : 62, n is even)
VRx.By 32 bit Aliased address space for each byte of the VRx registers (x=0:7,y =0:3)

Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Instruction Set

527SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Table 5-10. INSTRUCTION dest, source1, source2 Short Description

Description
dest1 Description for the 1st operand for the instruction
source1 Description for the 2nd operand for the instruction
source2 Description for the 3rd operand for the instruction
Opcode This section shows the opcode for the instruction
Description Detailed description of the instruction execution is described. Any constraints on the operands imposed by

the processor or the assembler are discussed.
Restrictions Any constraints on the operands or use of the instruction imposed by the processor are discussed.
Pipeline This section describes the instruction in terms of pipeline cycles as described in Section 5.4.
Example Examples of instruction execution. If applicable, register and memory values are given before and after

instruction execution. Some examples are code fragments while other examples are full tasks that assume
the VCU is correctly configured and the main CPU has passed it data.

Operands Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

528 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.5.2 General Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 5-11. General Instructions
Title ...................................................................................................................................... Page

POP RB —Pop the RB Register from the Stack ................................................................................... 529
PUSH RB —Push the RB Register onto the Stack ................................................................................ 531
RPTB label, loc16 —Repeat A Block of Code ..................................................................................... 533
RPTB label, #RC —Repeat a Block of Code ....................................................................................... 535
VCLEAR VRa —Clear General Purpose Register ................................................................................. 537
VCLEARALL —Clear All General Purpose and Transition Bit Registers ...................................................... 538
VCLRCPACK —Clears CPACK bit in the VSTATUS Register .................................................................. 539
VCLRCRCMSGFLIP —Clears CRCMSGFLIP bit in the VSTATUS Register ................................................. 540
VCLROPACK —Clears OPACK bit in the VSTATUS Register.................................................................. 541
VCLROVFI —Clear Imaginary Overflow Flag ...................................................................................... 542
VCLROVFR —Clear Real Overflow Flag ........................................................................................... 543
VMOV16 mem16, VRaH —Store General Purpose Register, High Half........................................................ 544
VMOV16 mem16, VRaL —Store General Purpose Register, Low Half......................................................... 545
VMOV16 VRaH, mem16 —Load General Purpose Register, High Half ........................................................ 546
VMOV16 VRaL, mem16 —Load General Purpose Register, Low Half ......................................................... 547
VMOV32 *(0:16bitAddr), loc32 —Move the contents of loc32 to Memory..................................................... 548
VMOV32 loc32, *(0:16bitAddr) —Move 32-bit Value from Memory to loc32 .................................................. 549
VMOV32 mem32, VRa —Store General Purpose Register ...................................................................... 550
VMOV32 mem32, VSTATUS —Store VCU Status Register ..................................................................... 551
VMOV32 mem32, VTa —Store Transition Bit Register ........................................................................... 552
VMOV32 VRa, mem32 —Load 32-bit General Purpose Register ............................................................... 553
VMOV32 VRb, VRa —Move 32-bit Register to Register .......................................................................... 554
VMOV32 VSTATUS, mem32 —Load VCU Status Register ...................................................................... 555
VMOV32 VTa, mem32 —Load 32-bit Transition Bit Register .................................................................... 556
VMOVD32 VRa, mem32 —Load Register with Data Move....................................................................... 557
VMOVIX VRa, #16I —Load Upper Half of a General Purpose Register with I6-bit Immediate .............................. 558
VMOVZI VRa, #16I —Load General Purpose Register with Immediate......................................................... 559
VMOVXI VRa, #16I —Load Low Half of a General Purpose Register with Immediate........................................ 560
VRNDOFF —Disable Rounding...................................................................................................... 561
VRNDON —Enable Rounding........................................................................................................ 562
VSATOFF —Disable Saturation ..................................................................................................... 563
VSATON —Enable Saturation ....................................................................................................... 564
VSETCPACK —Set CPACK bit in the VSTATUS Register ...................................................................... 565
VSETCRCMSGFLIP —Set CRCMSGFLIP bit in the VSTATUS Register ..................................................... 566
VSETOPACK —Set OPACK bit in the VSTATUS Register...................................................................... 567
VSETSHL #5-bit —Initialize the Left Shift Value .................................................................................. 568
VSETSHR #5-bit —Initialize the Left Shift Value.................................................................................. 569
VSWAP32 VRb, VRa —32-bit Register Swap ...................................................................................... 570
VXORMOV32 VRa, mem32 —32-bit Load and XOR From Memory ............................................................ 571

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com POP RB — Pop the RB Register from the Stack

529SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

POP RB Pop the RB Register from the Stack

Operands

RB repeat block register

Opcode LSW: 1111 1111 1111 0001

Description Restore the RB register from stack. If a high-priority interrupt contains a RPTB
instruction, then the RB register must be stored on the stack before the RPTB block and
restored after the RTPB block. In a low-priority interrupt RB must always be saved and
restored. This save and restore must occur when interrupts are disabled.

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the ISR
...
...
RPTB _BlockEnd, AL ; Execute the block AL+1 times
...
...
...

_BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt:

; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
...

; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


POP RB — Pop the RB Register from the Stack www.ti.com

530 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

See also PUSH RB
RPTB label, loc16
RPTB label, #RC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #RPTBRSIZEloc16_1_1

Bad link
Bad link: #RPTBRSIZERC_1_1



www.ti.com PUSH RB — Push the RB Register onto the Stack

531SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

PUSH RB Push the RB Register onto the Stack

Operands

RB repeat block register

Opcode LSW: 1111 1111 1111 0000

Description Save the RB register on the stack. If a high-priority interrupt contains a RPTB instruction,
then the RB register must be stored on the stack before the RPTB block and restored
after the RTPB block. In a low-priority interrupt RB must always be saved and restored.
This save and restore must occur when interrupts are disabled.

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the
interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the ISR
...
...
RPTB _BlockEnd, AL ; Execute the block AL+1 times
...
...
...

_BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt:

; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
...

; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


PUSH RB — Push the RB Register onto the Stack www.ti.com

532 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

See also POP RB
RPTB label, loc16
RPTB label, #RC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #POPRB_1

Bad link
Bad link: #RPTBRSIZERC_1_1



www.ti.com RPTB label, loc16 — Repeat A Block of Code

533SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

RPTB label, loc16 Repeat A Block of Code

Operands

label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.

loc16 16-bit location for the repeat count value.

Opcode LSW: 1011 0101 0bbb bbbb
MSW: 0000 0000 loc16

Description Initialize repeat block loop, repeat count from [loc16]

Restrictions
• The maximum block size is ≤127 16-bit words.
• An even aligned block must be ≥ 9 16-bit words.
• An odd aligned block must be ≥ 8 16-bit words.
• Interrupts must be disabled when saving or restoring the RB register.
• Repeat blocks cannot be nested.
• Any discontinuity type operation is not allowed inside a repeat block. This includes all

call, branch or TRAP instructions. Interrupts are allowed.
• Conditional execution operations are allowed.

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This instruction takes four cycles on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

Example The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.
; Repeat Block of 8 Words (Interruptible)
;
; Note: This example makes use of floating-point (C28x+FPU) instructions
;
;
; find the largest element and put its address in XAR6

.align 2
NOP
RPTB _VECTOR_MAX_END, AR7

; Execute the block AR7+1 times
MOVL ACC,XAR0 MOV32 R1H,*XAR0++ ; min size = 8, 9 words
MAXF32 R0H,R1H ; max size = 127 words
MOVST0 NF,ZF
MOVL XAR6,ACC,LT

_VECTOR_MAX_END: ; label indicates the end
; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RPTB label, loc16 — Repeat A Block of Code www.ti.com

534 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the ISR
...
...
RPTB _BlockEnd, AL ; Execute the block AL+1 times
...
...
...

_BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt:

; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
...

; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
PUSH RB
RPTB label, #RC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com RPTB label, #RC — Repeat a Block of Code

535SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

RPTB label, #RC Repeat a Block of Code

Operands

label This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.
This label should be placed immediately after the last instruction included in the repeat block.

#RC 16-bit immediate value for the repeat count.

Opcode LSW: 1011 0101 1bbb bbbb
MSW: cccc cccc cccc cccc

Description Repeat a block of code. The repeat count is specified as a immediate value.

Restrictions
• The maximum block size is ≤127 16-bit words.
• An even aligned block must be ≥ 9 16-bit words.
• An odd aligned block must be ≥ 8 16-bit words.
• Interrupts must be disabled when saving or restoring the RB register.
• Repeat blocks cannot be nested.
• Any discontinuity type operation is not allowed inside a repeat block. This includes all

call, branch or TRAP instructions. Interrupts are allowed.
• Conditional execution operations are allowed.

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This instruction takes one cycle on the first iteration and zero cycles thereafter. No
special pipeline alignment is required.

Example The minimum size for the repeat block is 8 words if the block is even aligned and 9
words if the block is odd aligned. If you have a block of 8 words, as in the following
example, you can make sure the block is odd aligned by proceeding it by a .align 2
directive and a NOP instruction. The .align 2 directive will make sure the NOP is even
aligned. Since a NOP is a 16-bit instruction the RPTB will be odd aligned. For blocks of
9 or more words, this is not required.
; Repeat Block of 8 Words (Interruptible)
;
; Note: This example makes use of floating-point (C28x+FPU) instructions
;
; find the largest element and put its address in XAR6
;

.align 2
NOP
RPTB _VECTOR_MAX_END, AR7

; Execute the block AR7+1 times
MOVL ACC,XAR0 MOV32 R1H,*XAR0++ ; min size = 8, 9 words
MAXF32 R0H,R1H ; max size = 127 words
MOVST0 NF,ZF
MOVL XAR6,ACC,LT

_VECTOR_MAX_END: ; label indicates the end
; RA is cleared

When an interrupt is taken the repeat active (RA) bit in the RB register is automatically
copied to the repeat active shadow (RAS) bit. When the interrupt exits, the RAS bit is
automatically copied back to the RA bit. This allows the hardware to keep track if a
repeat loop was active whenever an interrupt is taken and restore that state
automatically.

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a
high priority interrupt, the RB register must be saved if a RPTB block is used within the

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


RPTB label, #RC — Repeat a Block of Code www.ti.com

536 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

interrupt. If the interrupt service routine does not include a RPTB block, then you do not
have to save the RB register.
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt: ; RAS = RA, RA = 0

...
PUSH RB ; Save RB register only if a RPTB block is used in the ISR
...
...
RPTB #_BlockEnd, #5 ; Execute the block AL+1 times
...
...
...

_BlockEnd ; End of block to be repeated
...
...
POP RB ; Restore RB register ...
IRET ; RA = RAS, RAS = 0

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The
RB register must always be saved and restored in a low-priority interrupt. The RB
register must stored before interrupts are enabled. Likewise before restoring the RB
register interrupts must first be disabled.
; Repeat Block within a Low-Priority Interrupt (Interruptible)
;
; Interrupt:

; RAS = RA, RA = 0
...
PUSH RB ; Always save RB register
...
CLRC INTM ; Enable interrupts only after saving RB
...
...
...

; ISR may or may not include a RPTB block
...
...
SETC INTM ; Disable interrupts before restoring RB
...
POP RB ; Always restore RB register
...
IRET ; RA = RAS, RAS = 0

See also POP RB
PUSH RB
RPTB label, loc16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCLEAR VRa — Clear General Purpose Register

537SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLEAR VRa Clear General Purpose Register

Operands
VRa General purpose register: VR0, VR1... VR8

Opcode LSW: 1110 0110 1111 1000
MSW: 0000 0000 0000 aaaa

Description Clear the specified general purpose register.
VRa = 0x00000000;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example ;
; Code fragment from a viterbi traceback
; For the first iteration the previous state metric must be
; initalized to zero (VR0).
;

VCLEAR VR0 ; Clear the VR0 register
MOVL XAR5,*+XAR4[0] ; Point XAR5 to an array

;
; For first stage
;

VMOV32 VT0, *--XAR3
VMOV32 VT1, *--XAR3
VTRACE *XAR5++,VR0,VT0,VT1 ; Uses VR0 (which is zero)

;
; etc...
;

See also VCLEARALL
VTCLEAR

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCLEARALL — Clear All General Purpose and Transition Bit Registers www.ti.com

538 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLEARALL Clear All General Purpose and Transition Bit Registers

Operands
none

Opcode LSW: 1110 0110 1111 1001
MSW: 0000 0000 0000 0000

Description Clear all of the general purpose registers (VR0, VR1... VR8) and the transition bit
registers (VT0 and VT1).
VR0 = 0x00000000;
VR0 = 0x00000000;
VR2 = 0x00000000;
VR3 = 0x00000000;
VR4 = 0x00000000;
VR5 = 0x00000000;
VR6 = 0x00000000;
VR7 = 0x00000000;
VR8 = 0x00000000;
VT0 = 0x00000000;
VT1 = 0x00000000;
VSM0 = 0x00000000
VSM1 = 0x00000000

...
VSM63 = 0x00000000

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example ;
; Context save all VCU VRa and VTa registers
;

VMOV32 *SP++, VR0
VMOV32 *SP++, VR1
VMOV32 *SP++, VR2
VMOV32 *SP++, VR3
VMOV32 *SP++, VR4
VMOV32 *SP++, VR5
VMOV32 *SP++, VR6
VMOV32 *SP++, VR7
VMOV32 *SP++, VR8
VMOV32 *SP++, VT0
VMOV32 *SP++, VT1

;
; Clear VR0 - VR8, VT0 and VT1, VSM0 - VSM63
;

VCLEARALL
;
; etc...

See also VCLEAR VRa
VTCLEAR

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCLRCPACK — Clears CPACK bit in the VSTATUS Register

539SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLRCPACK Clears CPACK bit in the VSTATUS Register

Operands
none

Opcode LSW: 1110 0101 0010 0010

MSW: 0000 0000 0000 0000

Description Clears the CPACK bit in the VSTATUS register. This causes the VCU to process
complex data, in complex math operations, in the VRx registers as follows:
VRx[31:16] holds Real part, VRx[15:0] holds Imaginary part

Flags This instruction clears the CPACK bit in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example ; complex conjugate multiply| (jb + a)*(jd + c)=(ac+bd)+j(bc-ad)
VCLRCPACK ; cpack = 0 real part in high word
VMOV32 VR0, *XAR4++ ; load 1st complex input | jb + a
VMOV32 VR1, *XAR4++ ; load second complex input | jd + c
VCCMPY VR3, VR2, VR1, VR0

See also VSETCPACK

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCLRCRCMSGFLIP — Clears CRCMSGFLIP bit in the VSTATUS Register www.ti.com

540 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLRCRCMSGFLIP Clears CRCMSGFLIP bit in the VSTATUS Register

Operands
none

Opcode LSW: 1110 0101 0010 1101

MSW: 0000 0000 0000 0000

Description Clear the CRCMSGFLIP bit in the VSTATUS register. This causes the VCU to process
message bits starting from most-significant to least-significant for CRC computation. In
this case, bytes loaded from memory are fed directly for CRC computation.

Flags This instruction clears the CRCMSGFLIP bit in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example ; Clear the CRCMSGFLIP bit to have the CRC routine process the
; input message in big-endian format. The CRCMSGFLIP bit is
; cleared on reset
;

VCLRCRCMSGFLIP
LCR _CRC_run8Bit

See also VSETCRCMSGFLIP

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCLROPACK — Clears OPACK bit in the VSTATUS Register

541SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLROPACK Clears OPACK bit in the VSTATUS Register

Operands
none

Opcode LSW: 1110 0101 0010 0101

MSW: 0000 0000 0000 0000

Description Clear the OPACK bit in the VSTATUS register. This bit affects the packing order of the
traceback output bits (using the VTRACE instructions). When the bit is set to 0 it forces
the bits generated from the traceback operation to be loaded through the LSb of the
destination register (or memory location) with the older bits being left shifted.

Flags This instruction clears the OPACK bit in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VSETOPACK

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCLROVFI — Clear Imaginary Overflow Flag www.ti.com

542 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLROVFI Clear Imaginary Overflow Flag

Operands
none

Opcode LSW: 1110 0101 0000 1011

Description Clear the real overflow flag in the VSTATUS register. To clear the real flag, use the
VCLROVFR instruction. The imaginary flag bit can be set by instructions shown in
Table 5-6. Refer to individual instruction descriptions for details.
VSTATUS[OVFR] = 0;

Flags This instruction clears the OVFI flag.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFR
VRNDON
VSATFOFF
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCLROVFR — Clear Real Overflow Flag

543SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLROVFR Clear Real Overflow Flag

Operands
none

Opcode LSW: 1110 0101 0000 1010

Description Clear the real overflow flag in the VSTATUS register. To clear the imaginary flag, use
the VCLROVFI instruction. The imaginary flag bit can be set by instructions shown in
Table 5-6. Refer to individual instruction descriptions for details.
VSTATUS[OVFR] = 0;

Flags This instruction clears the OVFR flag.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VRNDON
VSATFOFF
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV16 mem16, VRaH — Store General Purpose Register, High Half www.ti.com

544 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV16 mem16, VRaH Store General Purpose Register, High Half

Operands
mem16 Pointer to a 16-bit memory location. This will be the source for the VMOV16.
VRaH High word of a general purpose register: VR0H, VR1H...VR8H.

Opcode
LSW: 1110 0010 0001 1000
MSW: 0001 aaaa mem16

Description Store the upper 16-bits of the specified general purpose register into the 16-bit memory
location.
[mem16] = VRa[31:6];

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV16 VRaH, mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV16 mem16, VRaL — Store General Purpose Register, Low Half

545SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV16 mem16, VRaL Store General Purpose Register, Low Half

Operands
mem16 Pointer to a 16-bit memory location. This will be the destination of the VMOV16.
VRaL Low word of a general purpose register: VR0L, VR1L...VR8L.

Opcode
LSW: 1110 0010 0001 1000
MSW: 0000 aaaa mem16

Description Store the low 16-bits of the specified general purpose register into the 16-bit memory
location.
[mem16] = VRa[15:0];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV16 VRaL, mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VMOV16VRaLmem16_1



VMOV16 VRaH, mem16 — Load General Purpose Register, High Half www.ti.com

546 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV16 VRaH, mem16 Load General Purpose Register, High Half

Operands
VRHL High word of a general purpose register: VR0H, VR1H....VR8H
mem16 Pointer to a 16-bit memory location. This will be the source for the VMOV16.

Opcode
LSW: 1110 0010 1100 1001
MSW: 0001 aaaa mem16

Description Load the upper 16 bits of the specified general purpose register with the contents of
memory pointed to by mem16.
VRa[31:16] = [mem16];

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
;1st Iteration

VMOV32 VR4, *+XAR3[0] ; VR4H = m, VR4L=n Load m,n
VMOV16 VR0H, *+XAR5[0] ; VR0H = J, VR0L = I Init I, J
VMOV32 VR1, *+XAR3[4] ; VR1H = u, VR1L = a load u, a
VMOV32 VR6, VR0 ; Save current {J,I} in VR6
; etc.

See also VMOV16 mem16, VRaH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV16 VRaL, mem16 — Load General Purpose Register, Low Half

547SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV16 VRaL, mem16 Load General Purpose Register, Low Half

Operands
VRaL Low word of a general purpose register: VR0L, VR1L....VR8L
mem16 Pointer to a 16-bit memory location. This will be the source for the VMOV16.

Opcode LSW: 1110 0010 1100 1001
MSW: 0000 aaaa mem16

Description Load the lower 16 bits of the specified general purpose register with the contents of
memory pointed to by mem16.
VRa[15:0] = [mem16];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
;
; Loop will run 106 times for 212 inputs to decoder
;
; Code fragment from viterbi decoder
;
_LOOP:
;
;
; Calculate the branch metrics for code rate = 1/3
; Load VR0L, VR1L and VR2L with inputs
; to the decoder from the array pointed to by XAR5
;
;

VMOV16 VR0L, *XAR5++
VMOV16 VR1L, *XAR5++
VMOV16 VR2L, *XAR5++

;
; VR0L = BM0
; VR0H = BM1
; VR1L = BM2
; VR1H = BM3
; VR2L = pt_old[0]
; VR2H = pt_old[1]
;

VITBM3 VR0, VR1, VR2
VMOV32 VR2, *XAR1++

; etc...

See also VMOV16 mem16, VRaL

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 *(0:16bitAddr), loc32 — Move the contents of loc32 to Memory www.ti.com

548 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 *(0:16bitAddr), loc32 Move the contents of loc32 to Memory

Operands
*(0:16bitAddr) Address of 32-bit Destination Location (VCU register)
loc32 Source Location (CPU register)

Opcode LSW: 1011 1101 loc32
MSW: IIII IIII IIII IIII

Description Move the 32-bit value in loc32 to the memory location addressed by 0:16bitAddr. The
EALLOW bit in the ST1 register is ignored by this operation.
[0:16bitAddr] = [loc32]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a two-cycle instruction.

Example ; EALLOW ignored on write
; Four NOPs are needed after the operation so that the write to
; the VCU register takes effect before it is used in
; subsequent operations, for example

VMOV32 VRa,@ACC ; VRa = ACC
NOP ; Pipeline alignment
NOP ; Pipeline alignment
NOP ; Pipeline alignment
NOP ; Pipeline alignment
VMOV32 *XAR7++, VRa ; [*XAR] = VRa

See also VMOV32 VRa, mem32
VMOV32 VRb, VRa
VMOV32 loc32, *(0:16bitAddr)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 loc32, *(0:16bitAddr) — Move 32-bit Value from Memory to loc32

549SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 loc32, *(0:16bitAddr) Move 32-bit Value from Memory to loc32

Operands
loc32 Destination Location (CPU register)
*(0:16bitAddr) Address of 32-bit Source Value (VCU register)

Opcode LSW: 1011 1111 loc32
MSW: IIII IIII IIII IIII

Description Copy the 32-bit value referenced by 0:16bitAddr to the location indicated by loc32
[loc32] = [0:16bitAddr]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is two-cycle instruction.

Example ; A single NOP is needed before the operation so as to read the
; correct VCU's VRx register value

VMOV32 VRa,*XAR7++ ; VRa = [*XAR7]
NOP ; Pipeline alignment
VMOV32 @ACC, VRa ; ACC = VRa

; Two NOPs are needed before the operation so as to read the
; correct VCU's VSMx or VRx.By register value.

VMOV32 VSM1: VSM0, *XAR7 ; VSM1:VSM0 = [*XAR7]
NOP ; Pipeline alignment
NOP ; Pipeline alignment
VMOV32 @ACC, VSM0 ; AH:AL = VSM1:VSM0

See also VMOV32 VRa, mem32
VMOV32 VRb, VRa
VMOV32 *(0:16bitAddr), loc32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VMOV3216bitAddrloc_1



VMOV32 mem32, VRa — Store General Purpose Register www.ti.com

550 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 mem32, VRa Store General Purpose Register

Operands
mem32 Pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VRa General purpose register VR0, VR1... VR8

Opcode LSW: 1110 0010 0000 0100
MSW: 0000 aaaa mem32

Description Store the 32-bit contents of the specified general purpose register into the memory
location pointed to by mem32.
[mem32] = VRa;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 mem32, VSTATUS — Store VCU Status Register

551SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 mem32, VSTATUS Store VCU Status Register

Operands
mem32 Pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VSTATUS VCU status register.

Opcode LSW: 1110 0010 0000 1101
MSW: 0000 0000 mem32

Description Store the VSTATUS register into the memory location pointed to by mem32.
[mem32] = VSTATUS;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VRa
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VSTATUS, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VMOV32mem32VRa_1



VMOV32 mem32, VTa — Store Transition Bit Register www.ti.com

552 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 mem32, VTa Store Transition Bit Register

Operands
mem32 pointer to a 32-bit memory location. This will be the destination of the VMOV32.
VTa Transition bits register VT0 or VT1

Opcode LSW: 1110 0010 0000 0101
MSW: 0000 00tt mem32

Description Store the 32-bits of the specified transition bits register into the memory location pointed
to by mem32.
[mem32] = VTa;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VRa
VMOV32 mem32, VSTATUS
VMOV32 VRa, mem32
VMOV32 VSTATUS, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VMOV32mem32VRa_1



www.ti.com VMOV32 VRa, mem32 — Load 32-bit General Purpose Register

553SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 VRa, mem32 Load 32-bit General Purpose Register

Operands
VRa General purpose register VR0, VR1....VR8
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode LSW: 1110 0011 1111 0000
MSW: 0000 aaaa mem32

Description Load the specified general purpose register with the 32-bit value in memory pointed to
by mem32.
VRa = [mem32];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VRa
VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VSTATUS, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VMOV32mem32VRa_1



VMOV32 VRb, VRa — Move 32-bit Register to Register www.ti.com

554 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 VRb, VRa Move 32-bit Register to Register

Operands
VRa General purpose destination register VR0....VR8
VRb General purpose source register VR0...VR8

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 0010 bbbb aaaa

Description Move a 32-bit value from one general purpose VCU register to another.
VRa = [mem32];

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example ; Swap VR0 and VR1 using VR2 as temporary storage
;

VMOV32 VR2, VR1
VMOV32 VR1, VR0
VMOV32 VR0, VR2

See also VMOV32 mem32, VRa
VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VMOV32mem32VRa_1



www.ti.com VMOV32 VSTATUS, mem32 — Load VCU Status Register

555SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 VSTATUS, mem32 Load VCU Status Register

Operands
VSTATUS VCU status register
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode LSW: 1110 0010 1011 0000
MSW: 0000 0000 mem32

Description Load the VSTATUS register with the 32-bit value in memory pointed to by mem32.
VSTATUS = [mem32];

Flags This instruction modifies all bits within the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VTa, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 VTa, mem32 — Load 32-bit Transition Bit Register www.ti.com

556 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 VTa, mem32 Load 32-bit Transition Bit Register

Operands
VTa Transition bit register: VT0, VT1
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode LSW: 1110 0011 1111 0001
MSW: 0000 00tt mem32

Description Load the specified transition bit register with the 32-bit value in memory pointed to by
mem32 .
VTa = [mem32];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32 VSTATUS, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOVD32 VRa, mem32 — Load Register with Data Move

557SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOVD32 VRa, mem32 Load Register with Data Move

Operands
VRa General purpose registger, VR0, VR1.... VR8
mem32 Pointer to a 32-bit memory location. This will be the source of the VMOV32.

Opcode LSW: 1110 0010 0010 0100
MSW: 0000 aaaa mem32

Description Load the specified general purpose register with the 32-bit value in memory pointed to
by mem32. In addition, copy the next 32-bit value in memory to the location pointed to by
mem32.
VRa = [mem32];
[mem32 + 2] = [mem32];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOVIX VRa, #16I — Load Upper Half of a General Purpose Register with I6-bit Immediate www.ti.com

558 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOVIX VRa, #16I Load Upper Half of a General Purpose Register with I6-bit Immediate

Operands
VRa General purpose registger, VR0, VR1... VR8
#16I 16-bit immediate value

Opcode LSW: 1110 0111 1110 IIII
MSW: IIII IIII IIII aaaa

Description Load the upper 16-bits of the specified general purpose register with an immediate
value. Leave the upper 16-bits of the register unchanged.
VRa[15:0] = unchanged;
VRa[31:16] = #16I;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOVZI VRa, #16I
VMOVXI VRa, #16I

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOVZI VRa, #16I — Load General Purpose Register with Immediate

559SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOVZI VRa, #16I Load General Purpose Register with Immediate

Operands
VRa General purpose registger, VR0, VR1...VR8
#16I 16-bit immediate value

Opcode LSW: 1110 0111 1111 IIII
MSW: IIII IIII IIII aaaa

Description Load the lower 16-bits of the specified general purpose register with an immediate value.
Clear the upper 16-bits of the register.
VRa[15:0] = #16I;
VRa[31:16] = 0x0000;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOVIX VRa, #16I
VMOVXI VRa, #16I

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOVXI VRa, #16I — Load Low Half of a General Purpose Register with Immediate www.ti.com

560 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOVXI VRa, #16I Load Low Half of a General Purpose Register with Immediate

Operands
VRa General purpose register, VR0 - VR8
#16I 16-bit immediate value

Opcode LSW: 1110 0111 0111 IIII
MSW: IIII IIII IIII aaaa

Description Load the lower 16-bits of the specified general purpose register with an immediate value.
Leave the upper 16 bits unchanged.
VRa[15:0] = #16I;
VRa[31:16] = unchanged;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VMOVIX VRa, #16I
VMOVZI VRa, #16I

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VRNDOFF — Disable Rounding

561SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VRNDOFF Disable Rounding

Operands
none

Opcode LSW: 1110 0101 0000 1001

Description This instruction disables the rounding mode by clearing the RND bit in the VSTATUS
register. When rounding is disabled, the result of the shift right operation for addition and
subtraction operations will be truncated instead of rounded. The operations affected by
rounding are shown in Table 5-6. Refer to the individual instruction descriptions for
information on how rounding effects the operation. To enable rounding use the VRNDON
instruction.

For more information on rounding, refer to Section 5.3.2.
VSTATUS[RND] = 0;

Flags This instruction clears the RND bit in the VSTATUS register. It does not change any
flags.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VCLROVFR
VRNDON
VSATFOFF
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VRNDON — Enable Rounding www.ti.com

562 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VRNDON Enable Rounding

Operands
none

Opcode LSW: 1110 0101 0000 1000

Description This instruction enables the rounding mode by setting the RND bit in the VSTATUS
register. When rounding is enabled, the result of the shift right operation for addition and
subtraction operations will be rounded instead of being truncated. The operations
affected by rounding are shown in Table 5-6. Refer to the individual instruction
descriptions for information on how rounding effects the operation. To disable rounding
use the VRNDOFF instruction.

For more information on rounding, refer to Section 5.3.2.
VSTATUS[RND] = 1;

Flags This instruction sets the RND bit in the VSTATUS register. It does not change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VCLROVFR
VRNDOFF
VSATFOFF
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VSATOFF — Disable Saturation

563SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSATOFF Disable Saturation

Operands
none

Opcode LSW: 1110 0101 0000 0111

Description This instruction disables the saturation mode by clearing the SAT bit in the VSTATUS
register. When saturation is disabled, results of addition and subtraction are allowed to
overflow or underflow. When saturation is enabled, results will instead be set to a
maximum or minimum value instead of being allowed to overflow or underflow. To
enable saturation use the VSATON instruction.
VSTATUS[SAT] = 0

Flags This instruction clears the the SAT bit in the VSTATUS register. It does not change any
flags.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VSATON — Enable Saturation www.ti.com

564 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSATON Enable Saturation

Operands
none

Opcode LSW: 1110 0101 0000 0110

Description This instruction enables the saturation mode by setting the SAT bit in the VSTATUS
register. When saturation is enables, results of addition and subtraction are not allowed
to overflow or underflow. Results will, instead, be set to a maximum or minimum value.
To disable saturation use the VSATOFF instruction..
VSTATUS[SAT] = 1

Flags This instruction sets the SAT bit in the VSTATUS register. It does not change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VSETCPACK — Set CPACK bit in the VSTATUS Register

565SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSETCPACK Set CPACK bit in the VSTATUS Register

Operands
none

Opcode LSW: 1110 0101 0010 0001

Description Set the CPACK bit in the VSTATUS register. This causes the VCU to process complex
data, in complex math operations, in the VRx registers as follows:
VRx[31:16] holds the Imaginary part, VRx[15:0] holds the Real part

Flags This instruction sets the CPACK bit in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example ; complex conjugate multiply| (a + jb)*(c + jd)=(ac+bd)+j(bc-ad)
VSETCPACK ; cpack = 1 imag part in low word
VMOV32 VR0, *XAR4++ ; load 1st complex input | a + jb
VMOV32 VR1, *XAR4++ ; load second complex input | c + jd
VCCMPY VR3, VR2, VR1, VR0

See also VCLRCPACK

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VSETCRCMSGFLIP — Set CRCMSGFLIP bit in the VSTATUS Register www.ti.com

566 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSETCRCMSGFLIP Set CRCMSGFLIP bit in the VSTATUS Register

Operands
none

Opcode LSW: 1110 0101 0010 1100

Description Set the CRCMSGFLIP bit in the VSTATUS register. This causes the VCU to process
message bits starting from least-significant to most-significant for CRC computation. In
this case, bytes loaded from memory are “flipped” and then fed for CRC computation.

Flags This instruction sets the CRCMSGFLIP bit in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example ; Set the CRCMSGFLIP bit, each word has all its bits reversed
; prior to the CRC being calculated
;

VSETCRCMSGFLIP
LCR _CRC_run8Bit
VCLRCRCMSGFLIP

See also VCLRCRCMSGFLIP

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VSETOPACK — Set OPACK bit in the VSTATUS Register

567SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSETOPACK Set OPACK bit in the VSTATUS Register

Operands
none

Opcode LSW: 1110 0101 0010 0011

Description Set the OPACK bit in the VSTATUS register. This bit affects the packing order of the
traceback output bits (using the instructions). When the bit is set to 1 it forces the bits
generated from the traceback operation to be loaded through the MSb of the destination
register (or memory location) with the older bits being right-shifted. This instruction sets
the OPACK bit in the VSTATUS register.

Flags This instruction sets the OPACK bit in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example VSETOPACK ; VSTATUS.OPACK = 1, start packing the decoded
; bits from trace back into VT1 starting from the
; MSb, this obviates the need to manually flip the
; result each time

; etc…

See also VCLROPACK

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VCLROPACK_1



VSETSHL #5-bit — Initialize the Left Shift Value www.ti.com

568 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSETSHL #5-bit Initialize the Left Shift Value

Operands
#5-bit 5-bit, unsigned, immediate value

Opcode LSW: 1110 0101 110s ssss

Description Load VSTATUS[SHIFTL] with an unsigned, 5-bit, immediate value. The left shift value
specifies the number of bits an operand is shifted by. A value of zero indicates no shift
will be performed. The left shift is used by the and VCDSUB16 and VCDADD16
operations. Refer to the description of these instructions for more information. To load
the right shift value use the VSETSHR #5-bit instruction.
VSTATUS[VSHIFTL] = #5-bit

Flags This instruction changes the VSHIFTL value in the VSTATUS register. It does not
change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VSETSHR #5-bit — Initialize the Left Shift Value

569SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSETSHR #5-bit Initialize the Left Shift Value

Operands
#5-bit 5-bit, unsigned, immediate value

Opcode LSW: 1110 0101 010s ssss

Description Load VSTATUS[SHIFTR] with an unsigned, 5-bit, immediate value. The right shift value
specifies the number of bits an operand is shifted by. A value of zero indicates no shift
will be performed. The right shift is used by the VCADD, VCSUB, VCDADD16 and
VCDSUB16 operations. It is also used by the addition portion of the VCMAC. Refer to
the description of these instructions for more information.
VSTATUS[VSHIFTR] = #5-bit

Flags This instruction changes the VSHIFTR value in the VSTATUS register. It does not
change any flags.

Pipeline This is a single-cycle instruction.

Example

See also VSETSHL #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VSWAP32 VRb, VRa — 32-bit Register Swap www.ti.com

570 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSWAP32 VRb, VRa 32-bit Register Swap

Operands
VRb General purpose register VR0…VR8
VRab General purpose register VR0…VR8

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 0011 bbbb aaaa

Description Swap the contents of the 32-bit general purpose VCU registers VRa and VRb.

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction.

Example ; Swap VR0 and VR1 using VSWAP32 instruction
;

See also VMOV32 mem32, VSTATUS
VMOV32 mem32, VTa
VMOV32 VRa, mem32
VMOV32VRbVRa
VMOV32VTamem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VXORMOV32 VRa, mem32 — 32-bit Load and XOR From Memory

571SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VXORMOV32 VRa, mem32 32-bit Load and XOR From Memory

Operands
Input Register Value
VRa General purpose register VR0...VR8
mem32 Pointer to 32-bit memory location

Opcode
LSW: 1110 0011 1111 0000
MSW: 0000 aaaa MMMM MMMM

Description XOR the contents of the VRa register with a long word from memory and store the result
back into VRa
VRa = VRa ^ mem32

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example VXORMOV32 VR0, *+XAR4[0] ;VR0=VR0 ^ *XAR4[0]

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

572 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.5.3 Arithmetic Math Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 5-12. Arithmetic Math Instructions
Title ...................................................................................................................................... Page

VASHL32 VRa << #5-bit —Arithmetic Shift Left .................................................................................. 573
VASHR32 VRa >> #5-bit —Arithmetic Shift Right ................................................................................ 574
VBITFLIP VRa —Bit Flip............................................................................................................... 575
VLSHL32 VRa << #5-bit —Logical Shift Left ...................................................................................... 576
VLSHR32 VRa >> #5-bit —Logical Shift Right .................................................................................... 577
VNEG VRa —Two's Complement Negate........................................................................................... 578

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VASHL32 VRa << #5-bit — Arithmetic Shift Left

573SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VASHL32 VRa << #5-bit Arithmetic Shift Left

Operands

VRa VRa can be VR0 - VR7. VRa can not be VR8.
#5-bit 5-bit unsigned immediate value

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 0111 IIII Iaaa

Description Arithmetic left shift of VRa
If(VSTATUS[SAT] == 1){

VRa = sat(VRa << #5-bit Immediate)
}else {

VRa = VRa << #5-bit Immediate
}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the 32-bit signed result after the shift left operation overflows

Pipeline This is a single-cycle instruction

Example VASHL32 VR4 << #16 ; VR4 := VR4 << 16

See also VASHR32 VRa>> #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VASHR32_VRa_5bit



VASHR32 VRa >> #5-bit — Arithmetic Shift Right www.ti.com

574 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VASHR32 VRa >> #5-bit Arithmetic Shift Right

Operands

VRa VRa can be VR0 - VR7. VRa can not be VR8.
#5-bit 5-bit unsigned immediate value

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 1000 IIII Iaaa

Description Arithmetic right shift of VRa
If(VSTATUS[RND] == 1){

VRa = rnd(VRa >> #5-bit Immediate)
}else {

VRa = VRa >> #5-bit Immediate
}

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VASHR32 VR1 >> #16 ; VR1 := VR1 >> 16 (sign extended)

See also VASHL32 VRa#5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VBITFLIP VRa — Bit Flip

575SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VBITFLIP VRa Bit Flip

Operands

VRa General purpose register VR0...VR8

Opcode LSW: 1010 0001 0010 aaaa

Description Reverse the bit order of VRa register
VRa[31:0] = VRa[0:31]

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VBITFLIP VR1 ; VR1(31:0) := VR1(0:31)

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VLSHL32 VRa << #5-bit — Logical Shift Left www.ti.com

576 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VLSHL32 VRa << #5-bit Logical Shift Left

Operands

VRa VRa can be VR0 - VR7. VRa can not be VR8.
#5-bit 5-bit unsigned immediate value

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 0101 IIII Iaaa

Description Logical right shift of VRa
VRa = VRa << #5-bit Immediate

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VLSHL32 VR0 << #16 ; VR0 := VR0 << 16

See also VLSHL32 VRa>> #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VLSHR32 VRa >> #5-bit — Logical Shift Right

577SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VLSHR32 VRa >> #5-bit Logical Shift Right

Operands

VRa VRa can be VR0 - VR7. VRa can not be VR8.
#5-bit 5-bit unsigned immediate value

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 0110 IIII Iaaa

Description Logical right shift of VRa
VRa = VRa >> #5-bit Immediate

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VLSHR32 VR0 >> #16 ; VR0 := VR0 >> 16 (no sign extension)

See also VLSHL32 VRa#5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VNEG VRa — Two's Complement Negate www.ti.com

578 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VNEG VRa Two's Complement Negate

Operands
VRa VRa can be VR0 - VR7. VRa can not be VR8.

Opcode LSW: 1110 0101 0001 aaaa

Description Complex add operation.

// SAT is VSTATUS[SAT]
//

if (VRa == 0x800000000)
{

if(SAT == 1)
{

VRa = 0x7FFFFFFF;
}
else
{

VRa = 0x80000000;
}

}
else
{

VRa = - VRa
}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the input to the operation is 0x80000000.

Pipeline This is a single-cycle instruction.

Example

See also VCLROVFR
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Instruction Set

579SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.5.4 Complex Math Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 5-13. Complex Math Instructions
Title ...................................................................................................................................... Page

VCADD VR5, VR4, VR3, VR2 —Complex 32 + 32 = 32 Addition ............................................................... 580
VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex 32+32 = 32 Add with Parallel Load................. 582
VCADD VR7, VR6, VR5, VR4 —Complex 32 + 32 = 32- Addition............................................................... 584
VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 —Complex Conjugate Multiply and Accumulate .............................. 586
VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 —: Complex Conjugate Multiply and

Accumulate with Parallel Load ............................................................................................. 588
VCCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ —Complex Conjugate Multiply and Accumulate .................... 590
VCCMPY VR3, VR2, VR1, VR0 —Complex Conjugate Multiply ................................................................. 593
VCCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa —Complex Conjugate Multiply with Parallel Store............ 595
VCCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 —Complex Conjugate Multiply with Parallel Load ............ 597
VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 —Complex Conjugate Multiply with Parallel Load ............................. 599
VCCON VRa —Complex Conjugate ................................................................................................. 601
VCDADD16 VR5, VR4, VR3, VR2 —Complex 16 + 32 = 16 Addition .......................................................... 602
VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex Double Add with Parallel Load ................. 606
VCDSUB16 VR6, VR4, VR3, VR2 —Complex 16-32 = 16 Subtract............................................................. 609
VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex 16-32 = 16 Subtract with Parallel Load ....... 613
VCFLIP VRa —Swap Upper and Lower Half of VCU Register .................................................................. 616
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 —Complex Multiply and Accumulate .............................................. 617
VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ —Complex Multiply and Accumulate ................................... 619
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 —Complex Multiply and Accumulate with Parallel

Load ............................................................................................................................ 623
VCMAG VRb, VRa —Magnitude of a Complex Number .......................................................................... 625
VCMPY VR3, VR2, VR1, VR0 —Complex Multiply ................................................................................ 626
VCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa —Complex Multiply with Parallel Store........................... 628
VCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 —Complex Multiply with Parallel Load ........................... 630
VCSHL16 VRa << #4-bit —Complex Shift Left.................................................................................... 632
VCSHR16 VRa >> #4-bit —Complex Shift Right.................................................................................. 633
VCSUB VR5, VR4, VR3, VR2 —Complex 32 - 32 = 32 Subtraction ............................................................ 634
VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 —Complex Subtraction ............................................. 636

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCADD VR5, VR4, VR3, VR2 — Complex 32 + 32 = 32 Addition www.ti.com

580 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCADD VR5, VR4, VR3, VR2 Complex 32 + 32 = 32 Addition

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
operand for this instruction includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR5 32-bit integer representing the real part of the first input: Re(X)
VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:
Output Register Value
VR5 32-bit integer representing the real part of the result:

Re(Z) = Re(X) + (Re(Y) >> SHIFTR)
VR4 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) + (Im(Y) >> SHIFTR)

Opcode LSW: 1110 0101 0000 0010

Description Complex 32 + 32 = 32-bit addition operation.

The second input operand (stored in VR3 and VR2) is shifted right by VSTATUS[SHIFR]
bits before the addition. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in
Section 3.4.2. If the VSTATUS[SAT] bit is set, then the result will be saturated in the
event of an overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//
// X: VR5 = Re(X) VR4 = Im(X)
// Y: VR3 = Re(Y) VR2 = Im(Y)
//
// Calculate Z = X + Y
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR); // Re(Z)
VR4 = VR4 + round(VR2 >> SHIFTR); // Im(Z)

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR); // Re(Z)
VR4 = VR4 + (VR2 >> SHIFTR); // Im(Z)

}
if (SAT == 1)
{

sat32(VR5);
sat32(VR4);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR5 computation (real part) overflows or underflows.
• OVFI is set if the VR4 computation (imaginary part) overflows or underflows.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCADD VR5, VR4, VR3, VR2 — Complex 32 + 32 = 32 Addition

581SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Example

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 32+32 = 32 Add with Parallel Load www.ti.com

582 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex 32+32 = 32 Add with Parallel Load

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR5 32-bit integer representing the real part of the first input: Re(X)
VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mem32 pointer to a 32-bit memory location

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:
Output Register Value
VR5 32-bit integer representing the real part of the result:

Re(Z) = Re(X) + (Re(Y) >> SHIFTR)
VR4 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) + (Im(Y) >> SHIFTR)
VRa contents of the memory pointed to by [mem32]. VRa can not be VR5, VR4 or VR8.

Opcode LSW: 1110 0011 1111 1000
MSW: 0000 aaaa mem32

Description Complex 32 + 32 = 32-bit addition operation with parallel register load.

The second input operand (stored in VR3 and VR2) is shifted right by VSTATUS[SHIFR]
bits before the addition. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in
Section 5.3.2. If the VSTATUS[SAT] bit is set, then the result will be saturated in the
event of an overflow or underflow.

In parallel with the addition, VRa is loaded with the contents of memory pointed to by
mem32.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//
// VR5 = Re(X) VR4 = Im(X)
// VR3 = Re(Y) VR2 = Im(Y)
//
// Z = X + Y
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR); // Re(Z)
VR4 = VR4 + round(VR2 >> SHIFTR); // Im(Z)

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR); // Re(Z)
VR4 = VR4 + (VR2 >> SHIFTR); // Im(Z)

}
if (SAT == 1)
{

sat32(VR5);
sat32(VR4);

}
VRa = [mem32];

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 32+32 = 32 Add with Parallel Load

583SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR5 computation (real part) overflows.
• OVFI is set if the VR4 computation (imaginary part) overflows.

Pipeline Both operations complete in a single cycle (1/1 cycles).

Example

See also VCADD VR7, VR6, VR5, VR4
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCADD VR7, VR6, VR5, VR4 — Complex 32 + 32 = 32- Addition www.ti.com

584 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCADD VR7, VR6, VR5, VR4 Complex 32 + 32 = 32- Addition

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR7 32-bit integer representing the real part of the first input: Re(X)
VR6 32-bit integer representing the imaginary part of the first input: Im(X)
VR5 32-bit integer representing the real part of the 2nd input: Re(Y)
VR4 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR7 and VR6 as shown below:
Output Register Value
VR6 32-bit integer representing the real part of the result:

Re(Z) = Re(X) + (Re(Y) >> SHIFTR)
VR7 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) + (Im(Y) >> SHIFTR)

Opcode LSW: 1110 0101 0010 1010

Description Complex 32 + 32 = 32-bit addition operation.

The second input operand (stored in VR5 and VR4) is shifted right by VSTATUS[SHIFR]
bits before the addition. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in
Section 5.3.2. If the VSTATUS[SAT] bit is set, then the result will be saturated in the
event of an overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//
// VR5 = Re(X) VR4 = Im(X)
// VR3 = Re(Y) VR2 = Im(Y)
//
// Z = X + Y
//

if (RND == 1)
{

VR7 = VR7 + round(VR5 >> SHIFTR); // Re(Z)
VR6 = VR6 + round(VR4 >> SHIFTR); // Im(Z)

}
else
{

VR7 = VR5 + (VR5 >> SHIFTR); // Re(Z)
VR6 = VR4 + (VR4 >> SHIFTR); // Im(Z)

}
if (SAT == 1)
{

sat32(VR7);
sat32(VR6);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR7 computation (real part) overflows.
• OVFI is set if the VR6 computation (imaginary part) overflows.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCADD VR7, VR6, VR5, VR4 — Complex 32 + 32 = 32- Addition

585SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Example

See also VCADD VR5, VR4, VR3, VR2
VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VCADDVR5_VR4_VR3_VR2_1



VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 — Complex Conjugate Multiply and Accumulate www.ti.com

586 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 Complex Conjugate Multiply and Accumulate

Operands

(1) The user will need to do one final addition to accumulate the final multiplications (Real-VR3 and Imaginary-
VR2) into the result registers.

Input Register (1) Value
VR0 First Complex Operand
VR1 Second Complex Operand
VR2 Imaginary part of the Result
VR3 Real part of the Result
VR4 Imaginary part of the accumulation
VR5 Real part of the accumulation

Opcode
LSW: 1110 0101 0000 1111

Description Complex Conjugate Multiply Operation
// VR5 = Accumulation of the real part
// VR4 = Accumulation of the imaginary part
//
// VR0 = X + jX: VR0[31:16] = X, VR0[15:0] = jX
// VR1 = Y + jY: VR1[31:16] = Y, VR1[15:0] = jY
//
// Perform add
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR);
VR4 = VR4 + round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR);
VR4 = VR4 + (VR2 >> SHIFTR);

}
//
// Perform multiply (X + jX) * (Y - jY)
//

If(VSTATUS[CPACK] == 0){
VR3 = VR0H * VR1H + VR0L * VR1L; Real result
VR2 = VR0H * VR1L - VR0L * VR1H; Imaginary result

}
else
{

VR3 = VR0L * VR1L + VR0H * VR1H; Real result
VR2 = VR0L * VR1H - VR0H * VR1L; Imaginary result

}
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p-cycle instruction.

See also VCLROVFI

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 — Complex Conjugate Multiply and Accumulate

587SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLROVFR

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0

VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — : Complex Conjugate Multiply and Accumulate with
Parallel Load www.ti.com

588 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 : Complex Conjugate Multiply
and Accumulate with Parallel Load

Operands
Input Register Value
VR0 First Complex Operand
VR1 Second Complex Operand
VR2 Imaginary part of the Result
VR3 Real part of the Result
VR4 Imaginary part of the accumulation
VR5 Real part of the accumulation
VRa Contents of the memory pointed to by mem32. VRa cannot be VR5, VR4 or VR8
mem32 Pointer to 32-bit memory location
Note: The user will need to do one final addition to accumulate the final multiplications (Real-VR3 and
Imaginary-VR2) into the result registers.

Opcode
LSW: 1110 0011 1111 0111
MSW: 0001 aaaa mem32

Description Complex Conjugate Multiply Operation with parallel load.
// VR5 = Accumulation of the real part
// VR4 = Accumulation of the imaginary part
//
// VR0 = X + jX: VR0[31:16] = X, VR0[15:0] = jX
// VR1 = Y + jY: VR1[31:16] = Y, VR1[15:0] = jY
//
// Perform add
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR);
VR4 = VR4 + round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR);
VR4 = VR4 + (VR2 >> SHIFTR);

}
//
// Perform multiply (X + jX) * (Y - jY)
//

If(VSTATUS[CPACK] == 0){
VR3 = VR0H * VR1H + VR0L * VR1L; Real result
VR2 = VR0H * VR1L - VR0L * VR1H; Imaginary result

}
else
{

VR3 = VR0L * VR1L + VR0H * VR1H; Real result
VR2 = VR0L * VR1H - VR0H * VR1L; Imaginary result

}
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}
VRa = [mem32];

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — : Complex Conjugate Multiply and
Accumulate with Parallel Load

589SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p-cycle instruction.

See also VCLROVFI

VCLROVFR

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0

VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Conjugate Multiply and Accumulate www.ti.com

590 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ Complex Conjugate Multiply and Accumulate

Operands The VMAC alternates which registers are used between each cycle. For odd cycles (1,
3, 5, and so on) the following registers are used:

Odd Cycle Input Value
VR5 Previous real-part total accumulation: Re(odd_sum)
VR4 Previous imaginary-part total accumulation: Im(odd-sum)
VR1 Previous real result from the multiply: Re(odd-mpy)
VR0 Previous imaginary result from the multiply Im(odd-mpy)
[mem32] Pointer to a 32-bit memory location representing the first input to the multiply

If(VSTATUS[CPACK] == 0)
[mem32][32:16] = Re(X)
[mem32][15:0] = Im(X)

If(VSTATUS[CPACK] == 1)
[mem32][32:16] = Im(X)
mem32][15:0] = Re(X)

XAR7 Pointer to a 32-bit memory location representing the second input to the multiply
If(VSTATUS[CPACK] == 0)

*XAR7[32:16] = Re(X)
*XAR7[15:0] = Im(X)

If(VSTATUS[CPACK] == 1)
*XAR7[32:16] = Im(X)
*XAR7 [15:0] = Re(X)

The result from the odd cycle is stored as shown below:

Odd Cycle Output Value
VR5 32-bit real part of the total accumulation

Re(odd_sum) = Re(odd_sum) + Re(odd_mpy)
VR4 32-bit imaginary part of the total accumulation

Im(odd_sum) = Im(odd_sum) + Im(odd_mpy)
VR1 32-bit real result from the multiplication:

Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR0 32-bit imaginary result from the multiplication:

Im(Z) = Re(X)*Im(Y) - Re(Y)*Im(X)

For even cycles (2, 4, 6, and so on) the following registers are used:

Even Cycle Input Value
VR7 Previous real-part total accumulation: Re(even_sum)
VR6 Previous imaginary-part total accumulation: Im(even-sum)
VR3 Previous real result from the multiply: Re(even-mpy)
VR2 Previous imaginary result from the multiply Im(even-mpy)
[mem32] Pointer to a 32-bit memory location representing the first input to the multiply

If(VSTATUS[CPACK] == 0)
[mem32][32:16] = Re(X)
[mem32][15:0] = Im(X)

If(VSTATUS[CPACK] == 1)
[mem32][32:16] = Im(X)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Conjugate Multiply and Accumulate

591SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Even Cycle Input Value
mem32][15:0] = Re(X)

XAR7 Pointer to a 32-bit memory location representing the second input to the multiply
If(VSTATUS[CPACK] == 0)

*XAR7[32:16] = Re(X)
*XAR7[15:0] = Im(X)

If(VSTATUS[CPACK] == 1)
*XAR7[32:16] = Im(X)
*XAR7 [15:0] = Re(X)

The result from even cycles is stored as shown below:

Even Cycle Output Value
VR7 32-bit real part of the total accumulation

Re(even_sum) = Re(even_sum) + Re(even_mpy)
VR6 32-bit imaginary part of the total accumulation

Im(even_sum) = Im(even_sum) + Im(even_mpy)
VR3 32-bit real result from the multiplication:

Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 32-bit imaginary result from the multiplication:

Im(Z) = Re(X)*Im(Y) - Re(Y)*Im(X)

Opcode
LSW: 1110 0010 0101 0001
MSW: 0010 1111 mem32

Description Perform a repeated complex conjugate multiply and accumulate operation. This
instruction must be used with the single repeat instruction (RPT ||). The destination of
the accumulate will alternate between VR7/VR6 and VR5/VR4 on each cycle.
// Cycle 1:
//
// Perform accumulate
//

if(RND == 1)
{

VR5 = VR5 + round(VR1 >> SHIFTR)
VR4 = VR4 + round(VR0 >> SHIFTR)

}
else
{

VR5 = VR5 + (VR1 >> SHIFTR)
VR4 = VR4 + (VR0 >> SHIFTR)

}
//
// X and Y array element 0
//

VR1 = Re(X)*Re(Y) + Im(X)*Im(Y)
VR0 = Re(X)*Im(Y) - Re(Y)*Im(X)

//
// Cycle 2:
//
// Perform accumulate
//

if(RND == 1)
{

VR7 = VR7 + round(VR3 >> SHIFTR)
VR6 = VR6 + round(VR2 >> SHIFTR)

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Conjugate Multiply and Accumulate www.ti.com

592 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

else
{
VR7 = VR7 + (VR3 >> SHIFTR)
VR6 = VR6 + (VR2 >> SHIFTR)
}

//
// X and Y array element 1
//

VR3 = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 = Re(X)*Im(Y) - Re(Y)*Im(X)

//
// Cycle 3:
//
// Perform accumulate
//

if(RND == 1)
{
VR5 = VR5 + round(VR1 >> SHIFTR)
VR4 = VR4 + round(VR0 >> SHIFTR)
}
else
{
VR5 = VR5 + (VR1 >> SHIFTR)
VR4 = VR4 + (VR0 >> SHIFTR)
}

//
// X and Y array element 2
//

VR1 = Re(X)*Re(Y) + Im(X)*Im(Y)
VR0 = Re(X)*Im(Y) - Re(Y)*Im(X)

etc...

Restrictions VR0, VR1, VR2, and VR3 will be used as temporary storage by this instruction.

Flags The VSTATUS register flags are modified as follows:
• OVFR is set in the case of an overflow or underflow of the addition or subtraction

operations.
• OVFI is set in the case an overflow or underflow of the imaginary part of the addition

or subtraction operations.

Pipeline

The VCCMAC takes 2p + N cycles where N is the number of times the instruction is
repeated. This instruction has the following pipeline restrictions:

<instruction1> ; No restriction
<instruction2 ; Cannot be a 2p instruction that writes

; to VR0, VR1...VR7 registers
RPT #(N-1) ; Execute N times, where N is even

|| VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++
<instruction3> ; No restrictions.

; Can read VR0, VR1... VR8

See also VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCCMPY VR3, VR2, VR1, VR0 — Complex Conjugate Multiply

593SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCCMPY VR3, VR2, VR1, VR0 Complex Conjugate Multiply

Operands Both inputs are complex numbers with a 16-bit real and 16-bit imaginary part. The result
is a complex number with a 32-bit real and a 32-bit imaginary part. The result is stored in
VR2 and VR3 as shown below:
Input Register Value
VR0 First Complex Operand
VR1 Second Complex Operand
VR2 Imaginary part of the Result
VR3 Real part of the Result

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:

Opcode LSW: 1110 0101 0000 1110

Description Complex Conjugate 16 x 16 = 32-bit multiply operation.

If the VSTATUS[CPACK] bit is set, the low word of the input is treated as the real part
while the upper word is treated as imaginary. If the VSTATUS[SAT] bit is set, then the
result will be saturated in the event of a 32-bit overflow or underflow. The following
operation is carried out:.
if(VSTATUS[CPACK] == 0){

VR3 = VR0H * VR1H + VR0L * VR1L; //Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 = VR0H * VR1L - VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) - Im(X)*Re(Y)

}else{
VR3 = VR0L * VR1L + VR0H * VR1H; // Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 = VR0L * VR1H - VR0H * VR1L; // Im(Z) = Re(X)*Im(Y) - Im(X)*Re(Y)

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p-cycle instruction. The instruction following this one should not use VR3 or
VR2.

VCLRCPACK ; cpack = 0 real part in high word
VMOV32 VR0, *XAR4++ ; load 1st complex input | jb + a
VMOV32 VR1, *XAR4++ ; load second complex input | jd + c
VCCMPY VR3, VR2, VR1, VR0 ; complex conjugate multiply|

; (jb + a)*(jd + c)=(ac+bd)+j(bc-ad)
NOP
VMOV32 *XAR5++, VR3 ; store real part first
VMOV32 *XAR5++, VR2 ; store imag part next
VSETCPACK ; cpack = 1 imag part in low word
VMOV32 VR0, *XAR4++ ; load 1st complex input | a + jb
VMOV32 VR1, *XAR4++ ; load second complex input | c + jd
VCCMPY VR3, VR2, VR1, VR0 ; complex conjugate multiply|

; (a + jb)*(c + jd)=(ac+bd)+j(bc-ad)
NOP
VMOV32 *XAR5++, VR3 ; store real part first
VMOV32 *XAR5++, VR2 ; store imag part next

Example

See also VCLROVFI

VCLROVFR

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCCMPY VR3, VR2, VR1, VR0 — Complex Conjugate Multiply www.ti.com

594 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32

VSETCPACK

VCLRCPACK

VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa — Complex Conjugate Multiply with Parallel Store

595SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa Complex Conjugate Multiply with Parallel
Store

Operands Both inputs are complex numbers with a 16-bit real and 16-bit imaginary part. The result
is a complex number with a 32-bit real and a 32-bit imaginary part. The result is stored in
VR2 and VR3 as shown below:
Input Register Value
VR0 First Complex Operand
VR1 Second Complex Operand
VRa Value to be stored
VR2 Imaginary part of the Result
VR3 Real part of the Result
mem32 Pointer to 32-bit memory location

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:

Opcode LSW: 1110 0011 0000 0111
MSW: 0001 aaaa mem32

Description Complex Conjugate 16 x 16 = 32-bit multiply operation.

If the VSTATUS[CPACK] bit is set, the low word of the input is treated as the real part
while the upper word is treated as imaginary. If the VSTATUS[SAT] bit is set, then the
result will be saturated in the event of a 32-bit overflow or underflow. The following
operation is carried out:
if(VSTATUS[CPACK] == 0){

VR3 = VR0H * VR1H + VR0L * VR1L; //Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 = VR0H * VR1L - VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) - Im(X)*Re(Y)

}else{
VR3 = VR0L * VR1L + VR0H * VR1H; // Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 = VR0L * VR1H - VR0H * VR1L; // Im(Z) = Re(X)*Im(Y) - Im(X)*Re(Y)

}
[mem32] = VRa;

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multply operation takes 2p cycles and the VMOV
operation completes in a single cycle. The instruction following this one should not use
VR3 or VR2.

Example VCLRCPACK ; cpack = 0 real part in high word
VMOV32 VR0, *XAR4++ ; load 1st complex input | jb + a
VMOV32 VR1, *XAR4++ ; load second complex input | jd + c
VCCMPY VR3, VR2, VR1, VR0 ; complex conjugate multiply|

||VMOV32 VR0, *XAR4++ ; (jb + a)*(jd + c)=(ac+bd)+j(bc-ad)
; load 1st complex input | a + jb

NOP ; for next VCCMPY instr |
VMOV32 *XAR5++, VR3 ; store real part first
VSETCPACK ; cpack = 1 imag part in low word
VMOV32 VR1, *XAR4++ ; load second complex input | c + jd
VCCMPY VR3, VR2, VR1, VR0 ; complex conjugate multiply|

||VMOV32 *XAR5++, VR2 ; (a + jb)*(c + jd)=(ac+bd)+j(bc-ad)
; store imag part of first |

NOP ; VCCMPY instruction |
VMOV32 *XAR5++, VR3 ; store real part first
VMOV32 *XAR5++, VR2 ; store imag part next
VCLRCPACK

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa — Complex Conjugate Multiply with Parallel Store www.ti.com

596 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

See also VCLROVFI

VCLROVFR

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0

VCCMAC VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32

VSETCPACK

VCLRCPACK

VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Conjugate Multiply with Parallel Load

597SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 Complex Conjugate Multiply with Parallel
Load

Operands Both inputs are complex numbers with a 16-bit real and 16-bit imaginary part. The result
is a complex number with a 32-bit real and a 32-bit imaginary part. The result is stored in
VR2 and VR3 as shown below:
Input Register Value
VR0 First Complex Operand
VR1 Second Complex Operand
VRa 32-bit value pointed to by mem32. VRa can not be VR2, VR3 or VR8.
VR2 Imaginary part of the Result
VR3 Real part of the Result
mem32 Pointer to 32-bit memory location

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:

Opcode LSW: 1110 0011 1111 0110
MSW: 0001 aaaa mem32

Description Complex Conjugate 16 x 16 = 32-bit multiply operation.

If the VSTATUS[CPACK] bit is set, the low word of the input is treated as the real part
while the upper word is treated as imaginary. If the VSTATUS[SAT] bit is set, then the
result will be saturated in the event of a 32-bit overflow or underflow. The following
operation is carried out:
if(VSTATUS[CPACK] == 0){

VR3 = VR0H * VR1H + VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 = VR0H * VR1L - VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) - Im(X)*Re(Y)

}else{
VR3 = VR0L * VR1L + VR0H * VR1H; // Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 = VR0L * VR1H - VR0H * VR1L; // Im(Z) = Re(X)*Im(Y) - Im(X)*Re(Y)

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multiply operation takes 2p cycles and the VMOV
operation completes in a single cycle. The instruction following this one should not use
VR3 or VR2.

Example
VCLRCPACK ; cpack = 0 real part in high word

VMOV32 VR0, *XAR4++ ; load 1st complex input | jb + a
VMOV32 VR1, *XAR4++ ; load second complex input | jd + c
VCCMPY VR3, VR2, VR1, VR0 ; complex conjugate multiply|

||VMOV32 VR0, *XAR4++ ; (jb + a)*(jd + c)=(ac+bd)+j(bc-ad)
; load 1st complex input | a + jb

NOP ; for next VCCMPY instr |
VMOV32 *XAR5++, VR3 ; store real part first
VSETCPACK ; cpack = 1 imag part in low word
VMOV32 VR1, *XAR4++ ; load second complex input | c + jd
VCCMPY VR3, VR2, VR1, VR0 ; complex conjugate multiply|

||VMOV32 *XAR5++, VR2 ; (a + jb)*(c + jd)=(ac+bd)+j(bc-ad)
; store imag part of first |

NOP ; VCCMPY instruction |
VMOV32 *XAR5++, VR3 ; store real part first
VMOV32 *XAR5++, VR2 ; store imag part next
VCLRCPACK

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Conjugate Multiply with Parallel Load www.ti.com

598 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

See also VCLROVFI

VCLROVFR

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0

VSETCPACK

VCLRCPACK

VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 — Complex Conjugate Multiply with Parallel Load

599SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 Complex Conjugate Multiply with Parallel Load

Operands Both inputs are complex numbers with a 16-bit real and 16-bit imaginary part. The result
is a complex number with a 32-bit real and a 32-bit imaginary part. The result is stored in
VR2 and VR3 as shown below:
Input Register Value
VR0 First Complex Operand
VR1 Second Complex Operand
VRa 32-bit value pointed to by mem32. VRa can not be VR2, VR3 or VR8.
VR2 Imaginary part of the Result
VR3 Real part of the Result
mem32 Pointer to 32-bit memory location

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:

Opcode LSW: 1110 0101 0000 1111

Description Complex Conjugate 16 x 16 = 32-bit multiply operation.

If the VSTATUS[CPACK] bit is set, the low word of the input is treated as the real part
while the upper word is treated as imaginary. If the VSTATUS[SAT] bit is set, then the
result will be saturated in the event of a 32-bit overflow or underflow. The following
operation is carried out:
if(VSTATUS[CPACK] == 0){

VR3 = VR0H * VR1H + VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 = VR0H * VR1L - VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) - Im(X)*Re(Y)

}else{
VR3 = VR0L * VR1L + VR0H * VR1H; // Re(Z) = Re(X)*Re(Y) + Im(X)*Im(Y)
VR2 = VR0L * VR1H - VR0H * VR1L; // Im(Z) = Re(X)*Im(Y) - Im(X)*Re(Y)

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multiply operation takes 2p cycles and the VMOV
operation completes in a single cycle. The instruction following this one should not use
VR3 or VR2.

Example
VCLRCPACK ; cpack = 0 real part in high word

VMOV32 VR0, *XAR4++ ; load 1st complex input | jb + a
VMOV32 VR1, *XAR4++ ; load second complex input | jd + c
VCCMPY VR3, VR2, VR1, VR0 ; complex conjugate multiply|

||VMOV32 VR0, *XAR4++ ; (jb + a)*(jd + c)=(ac+bd)+j(bc-ad)
; load 1st complex input | a + jb

NOP ; for next VCCMPY instr |
VMOV32 *XAR5++, VR3 ; store real part first
VSETCPACK ; cpack = 1 imag part in low word
VMOV32 VR1, *XAR4++ ; load second complex input | c + jd
VCCMPY VR3, VR2, VR1, VR0 ; complex conjugate multiply|

||VMOV32 *XAR5++, VR2 ; (a + jb)*(c + jd)=(ac+bd)+j(bc-ad)
; store imag part of first |

NOP ; VCCMPY instruction |
VMOV32 *XAR5++, VR3 ; store real part first
VMOV32 *XAR5++, VR2 ; store imag part next
VCLRCPACK

See also VCLROVFI

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 — Complex Conjugate Multiply with Parallel Load www.ti.com

600 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLROVFR

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0

VCCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32

VSETCPACK

VCLRCPACK

VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCCON VRa — Complex Conjugate

601SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCCON VRa Complex Conjugate

Operands

VRa General purpose register: VR0, VR1....VR7. Cannot be VR8.

Opcode LSW: 1110 0001 0001 aaaa

Description if(VSTATUS[CPACK] == 0){
if(VSTATUS[SAT] == 1){

VRaL = sat(- VraL)
}else {

VRaL = - VRaL
}

}else {
if(VSTATUS[SAT] == 1){

VRaH = sat(- VraH)
}else {

VRaH = - VRaH
}

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFI is set in the case an overflow or underflow of the imaginary part of the

conjugate operation.

Pipeline This is a single-cycle instruction.

Example VCCON VR1 ; VR1 := VR1^*

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition www.ti.com

602 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCDADD16 VR5, VR4, VR3, VR2 Complex 16 + 32 = 16 Addition

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR4H 16-bit integer:

if(VSTATUS[CPACK]==0)
Re(X)

else
Im(X)

VR4L 16-bit integer:

if(VSTATUS[CPACK]==0)
Im(X)

else
Re(X)

VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:
Output Register Value
VR5H 16-bit integer:

if (VSTATUS[CPACK]==0){
Re(Z) = (Re(X) << SHIFTL) + (Re(Y)) >> SHIFTR

} else {
Im(Z) = (Im(X) << SHIFTL) + (Im(Y)) >> SHIFTR

}

VR5L 16-bit integer:

if (VSTATUS[CPACK]==0){
Im(Z) = (Im(X) << SHIFTL) + (Im(Y)) >> SHIFTR

} else {
Re(Z) = (Re(X) << SHIFTL) + (Re(Y)) >> SHIFTR

}

Opcode LSW: 1110 0101 0000 0100

Description Complex 16 + 32 = 16-bit operation. This operation is useful for algorithms similar to a
complex FFT. The first operand is a complex number with a 16-bit real and 16-bit
imaginary part. The second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the addition is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in Section 3.4.2. If the VSTATUS[SAT] bit is set, then
the result will be saturated in the event of a 16-bit overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//
// VSTATUS[CPACK] = 0
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit
// VR2 = Im(Y) 32-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition

603SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

//
// Calculate Z = X + Y
//

temp1 = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)

temp1 = (temp1 << SHIFTL) + VR3; // Re(Z) intermediate
temp2 = (temp2 << SHIFTL) + VR2; // Im(Z) intermediate

if (RND == 1)
{

temp1 = round(temp1 >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);

}
else
{

temp1 = truncate(temp1 >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);

}
if (SAT == 1)
{

VR5H = sat16(temp1);
VR5L = sat16(temp2);

}
else
{

VR5H = temp1[15:0];
VR5L = temp2[15:0];

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the real-part computation (VR5H) overflows or underflows.
• OVFI is set if the imaginary-part computation (VR5L) overflows or underflows.

Pipeline This is a single-cycle instruction.

Example ;
;Example: Z = X + Y
;
; X = 4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 + 12j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = 0x00000004 + 0x0000000D = 0x00000011
; VR5H = temp1[15:0] = 0x0011 = 17
; Imaginary:
; temp2 = 0x00000003 + 0x0000000C = 0x0000000F
; VR5L = temp2[15:0] = 0x000F = 15
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = 0
VSETSHR #0 ; VSTATUS[SHIFTR] = 0
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13
VMOVXI VR2, #12 ; VR2 = Im(Y) = 12
VMOVXI VR4, #3
VMOVIX VR4, #4 ; VR4 = X = 0x00040003 = 4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0x0011000F = 17 + 15j

The next example illustrates the operation with a right shift value defined.
;
; Example: Z = X + Y with Right Shift

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition www.ti.com

604 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

;
; X = 4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 + 12j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = (0x00000004 + 0x0000000D ) >> 1
; temp1 = (0x00000011) >> 1 = 0x0000008.8
; VR5H = temp1[15:0] = 0x0008 = 8
; Imaginary:
; temp2 = (0x00000003 + 0x0000000C ) >> 1
; temp2 = (0x0000000F) >> 1 = 0x0000007.8
; VR5L = temp2[15:0] = 0x0007 = 7
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = 0
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13
VMOVXI VR2, #12 ; VR2 = Im(Y) = 12
VMOVXI VR4, #3
VMOVIX VR4, #4 ; VR4 = X = 0x00040003 = 4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0x00080007 = 8 + 7j

The next example illustrates the operation with a right shift value defined as well as
rounding.
;
; Example: Z = X + Y with Right Shift and Rounding
;
; X = 4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 + 12j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = round((0x00000004 + 0x0000000D ) >> 1)
; temp1 = round(0x00000011 >> 1)
; temp1 = round(0x0000008.8) = 0x00000009
; VR5H = temp1[15:0] = 0x0011 = 8
; Imaginary:
; temp2 = round(0x00000003 + 0x0000000C ) >> 1)
; temp2 = round(0x0000000F >> 1)
; temp2 = round(0x0000007.8) = 0x00000008
; VR5L = temp2[15:0] = 0x0008 = 8
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13
VMOVXI VR2, #12 ; VR2 = Im(Y) = 12
VMOVXI VR4, #3
VMOVIX VR4, #4 ; VR4 = X = 0x00040003 = 4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0x00090008 = 9 + 8j

The next example illustrates the operation with both a right and left shift value defined
along with rounding.
;
; Example: Z = X + Y with Right Shift, Left Shift and Rounding
;
; X = -4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 - 9j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = 0xFFFFFFFC << 2 + 0x0000000D
; temp1 = 0xFFFFFFF0 + 0x0000000D = 0xFFFFFFFD
; temp1 = 0xFFFFFFFD >> 1 = 0xFFFFFFFE.8

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDADD16 VR5, VR4, VR3, VR2 — Complex 16 + 32 = 16 Addition

605SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

; temp1 = round(0xFFFFFFFFE.8) = 0xFFFFFFFF
; VR5H = temp1[15:0] 0xFFFF = -1;
; Imaginary:
; temp2 = 0x00000003 << 2 + 0xFFFFFFF7
; temp2 = 0x0000000C + 0xFFFFFFF7 = 0x00000003
; temp2 = 0x00000003 >> 1 = 0x00000001.8
; temp1 = round(0x000000001.8 = 0x000000002
; VR5L = temp2[15:0] 0x0002 = 2
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #-9 ; VR2 = Im(Y) = -9
VMOVIX VR2, #0xFFFF ; sign extend VR2 = 0xFFFFFFF7
VMOVXI VR4, #3
VMOVIX VR4, #-4 ; VR4 = X = 0xFFFC0003 = -4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0xFFFF0002 = -1 + 2j

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Double Add with Parallel Load www.ti.com

606 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex Double Add with Parallel Load

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Input Register Value
VR4H 16-bit integer:

if (VSTATUS[CPACK]==0)
Re(X)

else
Im(X)

VR4L 16-bit integer:

if (VSTATUS[CPACK]==0)
Im(X)

else
Re(X)

VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mem32 pointer to a 32-bit memory location.

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR5 as shown below:

Output Register Value
VR5H 16-bit integer:

if (VSTATUS[CPACK]==0){
Re(Z) = (Re(X) << SHIFTL) + (Re(Y) ) >> SHIFTR

} else {
Im(Z) = (Im(X) << SHIFTL) + (Im(Y) ) >> SHIFTR

}

VR5L 16-bit integer:

if (VSTATUS[CPACK]==0){
Im(Z) = (Im(X) << SHIFTL) + (Im(Y) ) >> SHIFTR

} else {
Re(Z) = (Re(X) << SHIFTL) + (Re(Y) ) >> SHIFTR

}

VRa Contents of the memory pointed to by [mem32]. VRa can not be VR5 or VR8.

Opcode LSW: 1110 0011 1111 1010
MSW: 0000 aaaa mem32

Description Complex 16 + 32 = 16-bit operation with parallel register load. This operation is useful
for algorithms similar to a complex FFT.

The first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the addition is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in Section 5.3.2. If the VSTATUS[SAT] bit is set, then
the result will be saturated in the event of a 16-bit overflow or underflow.

// RND is VSTATUS[RND]

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Double Add with Parallel Load

607SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//
// VSTATUS[CPACK] = 0
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit
// VR2 = Im(Y) 32-bit

temp1 = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)

temp1 = (temp1 << SHIFTL) + VR3; // Re(Z) intermediate
temp2 = (temp2 << SHIFTL) + VR2; // Im(Z) intermediate

if (RND == 1)
{

temp1 = round(temp1 >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);

}
else
{

temp1 = truncate(temp1 >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);

}
if (SAT == 1)
{

VR5H = sat16(temp1);
VR5L = sat16(temp2);

}
else
{

VR5H = temp1[15:0];
VR5L = temp2[15:0];

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the real-part (VR5H) computation overflows or underflows.
• OVFI is set if the imaginary-part (VR5L) computation overflows or underflows.

Pipeline Both operations complete in a single cycle.

Example For more information regarding the addition operation, see the examples for the
VCDADD16 VR5, VR4, VR3, VR2 instruction.
;
;Example: Right Shift, Left Shift and Rounding
;
; X = -4 + 3j (16-bit real + 16-bit imaginary)
; Y = 13 - 9j (32-bit real + 32-bit imaginary)
;
;
; Real:
; temp1 = 0xFFFFFFFC << 2 + 0x0000000D
; temp1 = 0xFFFFFFF0 + 0x0000000D = 0xFFFFFFFD
; temp1 = 0xFFFFFFFD >> 1 = 0xFFFFFFFE.8
; temp1 = round(0xFFFFFFFFE.8) = 0xFFFFFFFF
; VR5H = temp1[15:0] 0xFFFF = -1;
; Imaginary:
; temp2 = 0x00000003 << 2 + 0xFFFFFFF7
; temp2 = 0x0000000C + 0xFFFFFFF7 = 0x00000003
; temp2 = 0x00000003 >> 1 = 0x00000001.8
; temp1 = round(0x000000001.8 = 0x000000002
; VR5L = temp2[15:0] 0x0002 = 2

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDADD16 VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Double Add with Parallel Load www.ti.com

608 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

;
VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #-9 ; VR2 = Im(Y) = -9
VMOVIX VR2, #0xFFFF ; sign extend VR2 = 0xFFFFFFF7
VMOVXI VR4, #3
VMOVIX VR4, #-4 ; VR4 = X = 0xFFFC0003 = -4 + 3j
VCDADD16 VR5, VR4, VR3, VR2 ; VR5 = Z = 0xFFFF0002 = -1 + 2j

|| VCMOV32 VR2, *XAR7 ; VR2 = value pointed to by XAR7

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract

609SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCDSUB16 VR6, VR4, VR3, VR2 Complex 16-32 = 16 Subtract

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Input Register Value
VR4H 16-bit integer:

if(VSTATUS[CPACK]==0)
Re(X)

else
Im(X)

VR4L 16-bit integer:
if VSTATUS[CPACK]==0)

Im(X)
else

Re(X)

VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR6 as shown below:

Output Register Value
VR6H 16-bit integer:

if (VSTATUS[CPACK]==0){
Re(Z) = (Re(X) << SHIFTL) -(Re(Y) ) >> SHIFTR

} else {
Im(Z) = (Im(X) << SHIFTL) -(Im(Y) ) >> SHIFTR

}

VR6L 16-bit integer:

if(VSTATUS[CPACK]==0){
Im(Z) = (Im(X) << SHIFTL) -(Im(Y) ) >> SHIFTR

} else {
Re(Z) = (Re(X) << SHIFTL) -(Re(Y) ) >> SHIFTR

}

Opcode LSW: 1110 0101 0000 0101

Description Complex 16 - 32 = 16-bit operation. This operation is useful for algorithms similar to a
complex FFT.

The first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the subtraction is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in Section 5.3.2. If the VSTATUS[SAT] bit is set, then
the result will be saturated in the event of a 16-bit overflow or underflow.
// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
// SHIFTL is VSTATUS[SHIFTL]
//
// VSTATUS[CPACK] = 0
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract www.ti.com

610 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

// VR2 = Im(Y) 32-bit

temp1 = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)

temp1 = (temp1 << SHIFTL) - VR3; // Re(Z) intermediate
temp2 = (temp2 << SHIFTL) - VR2; // Im(Z) intermediate

if (RND == 1)
{

temp1 = round(temp1 >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);

}
else
{

temp1 = truncate(temp1 >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);

}
if (SAT == 1)
{

VR5H = sat16(temp1);
VR5L = sat16(temp2);

}
else
{

VR5H = temp1[15:0];
VR5L = temp2[15:0];

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the real-part (VR6H) computation overflows or underflows.
• OVFI is set if the imaginary-part (VR6L) computation overflows or underflows.

Pipeline This is a single-cycle instruction.

Example ;
; Example: Z = X - Y
;
; X = 4 + 6j (16-bit real + 16-bit imaginary)
; Y = 13 + 22j (32-bit real + 32-bit imaginary)
;
; Z = (4 - 13) + (6 - 22)j = -9 - 16j
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = 0
VSETSHR #0 ; VSTATUS[SHIFTR] = 0
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 = 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0xFFF7FFF0 = -9 + -16j

The next example illustrates the operation with a right shift value defined.
;
; Example: Z = X - Y with Right Shift

; Y = 4 + 6j (16-bit real + 16-bit imaginary)
; X = 13 + 22j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = (0x00000004 - 0x0000000D) >> 1
; temp1 = (0xFFFFFFF7) >> 1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract

611SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

; temp1 = 0xFFFFFFFFB
; VR5H = temp1[15:0] = 0xFFFB = -5
; Imaginary:
; temp2 = (0x00000006 - 0x00000016) >> 1
; temp2 = (0xFFFFFFF0) >> 1
; temp2 = 0xFFFFFFF8
; VR5L = temp2[15:0] = 0xFFF8 = -8
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDOFF ; VSTATUS[RND] = 0
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #13 ; VR3 = Re(Y) = 13 = 0x0000000D
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0xFFFBFFF8 = -5 + -8j

The next example illustrates rounding with a right shift value defined.
;
; Example: Z = X-Y with Rounding and Right Shift
;
; X = 4 + 6j (16-bit real + 16-bit imaginary)
; Y = -13 + 22j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = round((0x00000004 - 0xFFFFFFF3) >> 1)
; temp1 = round(0x00000011) >> 1)
; temp1 = round(0x000000008.8) = 0x000000009
; VR5H = temp1[15:0] = 0x0009 = 9
; Imaginary:
; temp2 = round((0x00000006 - 0x00000016) >> 1)
; temp2 = round(0xFFFFFFF0) >> 1)
; temp2 = round(0xFFFFFFF8.0) = 0xFFFFFFF8
; VR5L = temp2[15:0] = 0xFFF8 = -8
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #0 ; VSTATUS[SHIFTL] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #-13 ; VR3 = Re(Y)
VMOVIX VR3, #0xFFFF ; sign extend VR3 = -13 = 0xFFFFFFF3
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0x0009FFF8 = 9 + -8j

The next example illustrates rounding with both a left and a right shift value defined.

;
; Example: Z = X-Y with Rounding and both Left and Right Shift
;
; X = 4 + 6j (16-bit real + 16-bit imaginary)
; Y = -13 + 22j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = round((0x00000004 << 2 - 0xFFFFFFF3) >> 1)
; temp1 = round((0x00000010 - 0xFFFFFFF3) >> 1)
; temp1 = round( 0x0000001D >> 1)
; temp1 = round( 0x0000000E.8) = 0x0000000F
; VR5H = temp1[15:0] = 0x000F = 15
; Imaginary:
; temp2 = round((0x00000006 << 2 - 0x00000016) >> 1)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDSUB16 VR6, VR4, VR3, VR2 — Complex 16-32 = 16 Subtract www.ti.com

612 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

; temp2 = round((0x00000018 - 0x00000016) >> 1)
; temp2 = round( 0x00000002 >> 1)
; temp1 = round( 0x00000001.0) = 0x00000001
; VR5L = temp2[15:0] = 0x0001 = 1
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #-13 ; VR3 = Re(Y)
VMOVIX VR3, #0xFFFF ; sign extend VR3 = -13 = 0xFFFFFFF3
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0x000F0001 = 15 + 1j

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 16-32 = 16 Subtract with Parallel Load

613SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex 16-32 = 16 Subtract with Parallel
Load

Operands Before the operation, the inputs should be loaded into registers as shown below. The
first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR4H 16-bit integer:

if(VSTATUS[CPACK]==0)
Re(X)

else
Im(X)

VR4L 16-bit integer:

if(VSTATUS[CPACK]==0)
Im(X)

else
Re(X)

VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mem32 pointer to a 32-bit memory location.

The result is a complex number with a 16-bit real and a 16-bit imaginary part. The result
is stored in VR6 as shown below:

Output Register Value
VR6H 16-bit integer:

if (VSTATUS[CPACK]==0){
Re(Z) = (Re(X) << SHIFTL) - (Re(Y) ) >> SHIFTR

} else {
Im(Z) = (Im(X) << SHIFTL) - (Im(Y) ) >> SHIFTR

}

VR6L 16-bit integer:

if(VSTATUS[CPACK]==0){
Im(Z) = (Im(X) << SHIFTL) - (Im(Y)) >> SHIFTR

} else {
Re(Z) = (Re(X) << SHIFTL) - (Re(Y)) >> SHIFTR

}

VRa Contents of the memory pointed to by [mem32]. VRa cannot be VR6 or VR8.

Opcode
LSW: 1110 0011 1111 1011
MSW: 0000 aaaa mem32

Description Complex 16 - 32 = 16-bit operation with parallel load. This operation is useful for
algorithms similar to a complex FFT.

The first operand is a complex number with a 16-bit real and 16-bit imaginary part. The
second operand has a 32-bit real and a 32-bit imaginary part.

Before the addition, the first input is sign extended to 32-bits and shifted left by
VSTATUS[VSHIFTL] bits. The result of the subtraction is left shifted by
VSTATUS[VSHIFTR] before it is stored in VR5H and VR5L. If VSTATUS[RND] is set,
then bits shifted out to the right are rounded, otherwise these bits are truncated. The
rounding operation is described in Section 5.3.2. If the VSTATUS[SAT] bit is set, then
the result will be saturated in the event of a 16-bit overflow or underflow.
// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 16-32 = 16 Subtract with Parallel Load www.ti.com

614 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

// SHIFTL is VSTATUS[SHIFTL]
//
// VSTATUS[CPACK] = 0
// VR4H = Re(X) 16-bit
// VR4L = Im(X) 16-bit
// VR3 = Re(Y) 32-bit
// VR2 = Im(Y) 32-bit

temp1 = sign_extend(VR4H); // 32-bit extended Re(X)
temp2 = sign_extend(VR4L); // 32-bit extended Im(X)

if (RND == 1)
{

temp1 = round(temp1 >> SHIFTR);
temp2 = round(temp2 >> SHIFTR);

}
else
{

temp1 = truncate(temp1 >> SHIFTR);
temp2 = truncate(temp2 >> SHIFTR);

}
if (SAT == 1)
{

VR5H = sat16(temp1);
VR5L = sat16(temp2);

}
else
{

VR5H = temp1[15:0];
VR5L = temp2[15:0];

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the real-part (VR6H) computation overflows or underflows.
• OVFI is set if the imaginary-part (VR6l) computation overflows or underflows.

Pipeline Both operations complete in a single cycle.

Example For more information regarding the subtraction operation, please refer to VCDSUB16
VR6, VR4, VR3, VR2.

;
; Example: Z = X-Y with Rounding and both Left and Right Shift
;
; X = 4 + 6j (16-bit real + 16-bit imaginary)
; Y = -13 + 22j (32-bit real + 32-bit imaginary)
;
; Real:
; temp1 = round((0x00000004 << 2 - 0xFFFFFFF3) >> 1)
; temp1 = round((0x00000010 - 0xFFFFFFF3) >> 1)
; temp1 = round( 0x0000001D >> 1)
; temp1 = round( 0x0000000E.8) = 0x0000000F
; VR5H = temp1[15:0] = 0x000F = 15
; Imaginary:
; temp2 = round((0x00000006 << 2 - 0x00000016) >> 1)
; temp2 = round((0x00000018 - 0x00000016) >> 1)
; temp2 = round( 0x00000002 >> 1)
; temp1 = round( 0x00000001.0) = 0x00000001
; VR5L = temp2[15:0] = 0x0001 = 1
;

VSATOFF ; VSTATUS[SAT] = 0
VRNDON ; VSTATUS[RND] = 1
VSETSHR #1 ; VSTATUS[SHIFTR] = 1
VSETSHL #2 ; VSTATUS[SHIFTL] = 2

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCDSUB16 VR6, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex 16-32 = 16 Subtract with Parallel Load

615SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR3, #-13 ; VR3 = Re(Y)
VMOVIX VR3, #0xFFFF ; sign extend VR3 = -13 = 0xFFFFFFF3
VMOVXI VR2, #22 ; VR2 = Im(Y) = 22j = 0x00000016
VMOVXI VR4, #6
VMOVIX VR4, #4 ; VR4 = X = 0x00040006 = 4 + 6j
VCDSUB16 VR6, VR4, VR3, VR2 ; VR5 = Z = 0x000F0001 = 15 + 1j

|| VCMOV32 VR2, *XAR7 ; VR2 = contents pointed to by XAR7

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHL #5-bit
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFLIP VRa — Swap Upper and Lower Half of VCU Register www.ti.com

616 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFLIP VRa Swap Upper and Lower Half of VCU Register

Operands

VRa General purpose register: VR0, VR1....VR7. Cannot be VR8.

Opcode LSW: 1010 0001 0000 aaaa

Description Swap VRaL and VRaH

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction.

Example VCFLIP VR7 ; VR7H := VR7L | VR7L := VR7H

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMAC VR5, VR4, VR3, VR2, VR1, VR0 — Complex Multiply and Accumulate

617SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCMAC VR5, VR4, VR3, VR2, VR1, VR0 Complex Multiply and Accumulate

Operands
Input Register Value
VR5 Real part of the accumulation
VR4 Imaginary part of the accumulation
VR3 Real part of the product
VR2 Imaginary part of the product
VR1 Second Complex Operand
VR0 First Complex Operand

NOTE: The user will need to do one final addition to accumulate the final
multiplications (Real-VR3 and Imaginary-VR2) into the result registers.

Opcode LSW: 1110 0101 0000 0001

Description Complex multiply operation.

// VR5 = Accumulation of the real part
// VR4 = Accumulation of the imaginary part
//
// VR0 = X + jX: VR0[31:16] = X, VR0[15:0] = jX
// VR1 = Y + jY: VR1[31:16] = Y, VR1[15:0] = jY
//
// Perform add
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR);
VR4 = VR4 + round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR);
VR4 = VR4 + (VR2 >> SHIFTR);

}
//
// Perform multiply (X + jX) * (Y + jY)
//

if(VSTATUS[CPACK] == 0){
VR3 = VR0H * VR1H - VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0H * VR1L + VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

}else{
VR3 = VR0L * VR1L - VR0H * VR1H; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0L * VR1H + VR0H * VR1L; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

}
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p-cycle instruction.

Example

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMAC VR5, VR4, VR3, VR2, VR1, VR0 — Complex Multiply and Accumulate www.ti.com

618 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate

619SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ Complex Multiply and Accumulate

Operands The VMAC alternates which registers are used between each cycle. For odd cycles (1,
3, 5, and so on) the following registers are used:

Odd Cycle Input Value
VR5 Previous real-part total accumulation: Re(odd_sum)
VR4 Previous imaginary-part total accumulation: Im(odd-sum)
VR1 Previous real result from the multiply: Re(odd-mpy)
VR0 Previous imaginary result from the multiply Im(odd-mpy)
[mem32] Pointer to a 32-bit memory location representing the first input to the multiply

If(VSTATUS[CPACK] == 0)
[mem32][32:16] = Re(X)
[mem32][15:0] = Im(X)

If(VSTATUS[CPACK] == 1)
[mem32][32:16] = Im(X)
mem32][15:0] = Re(X)

XAR7 Pointer to a 32-bit memory location representing the second input to the multiply
If(VSTATUS[CPACK] == 0)

*XAR7[32:16] = Re(X)
*XAR7[15:0] = Im(X)

If(VSTATUS[CPACK] == 1)
*XAR7[32:16] = Im(X)
*XAR7 [15:0] = Re(X)

The result from odd cycle is stored as shown below:

Odd Cycle Output Value
VR5 32-bit real part of the total accumulation

Re(odd_sum) = Re(odd_sum) + Re(odd_mpy)
VR4 32-bit imaginary part of the total accumulation

Im(odd_sum) = Im(odd_sum) + Im(odd_mpy)
VR1 32-bit real result from the multiplication:

Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR0 32-bit imaginary result from the multiplication:

Im(Z) = Re(X)*Im(Y) + Re(Y)*Im(X)

For even cycles (2, 4, 6, and so on) the following registers are used:

Even Cycle Input Value
VR7 Previous real-part total accumulation: Re(even_sum)
VR6 Previous imaginary-part total accumulation: Im(even-sum)
VR3 Previous real result from the multiply: Re(even-mpy)
VR2 Previous imaginary result from the multiply Im(even-mpy)
[mem32] Pointer to a 32-bit memory location representing the first input to the multiply

If(VSTATUS[CPACK] == 0)
[mem32][32:16] = Re(X)
[mem32][15:0] = Im(X)

If(VSTATUS[CPACK] == 1)
[mem32][32:16] = Im(X)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate www.ti.com

620 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Even Cycle Input Value
mem32][15:0] = Re(X)

XAR7 Pointer to a 32-bit memory location representing the second input to the multiply
If(VSTATUS[CPACK] == 0)

*XAR7[32:16] = Re(X)
*XAR7[15:0] = Im(X)

If(VSTATUS[CPACK] == 1)
*XAR7[32:16] = Im(X)
*XAR7 [15:0] = Re(X)

The result from even cycles is stored as shown below:

Even Cycle Output Value
VR7 32-bit real part of the total accumulation

Re(even_sum) = Re(even_sum) + Re(even_mpy)
VR6 32-bit imaginary part of the total accumulation

Im(even_sum) = Im(even_sum) + Im(even_mpy)
VR3 32-bit real result from the multiplication:

Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 32-bit imaginary result from the multiplication:

Im(Z) = Re(X)*Im(Y) + Re(Y)*Im(X)

Opcode LSW: 1110 0010 0101 0001
MSW: 0000 0000 mem32

Description Perform a repeated multiply and accumulate operation. This instruction must be used
with the repeat instruction (RPT||). The destination of the accumulate will alternate
between VR7/VR6 and VR5/VR4 on each cycle.
// Cycle 1:
//
// Perform accumulate
//

if(RND == 1)
{

VR5 = VR5 + round(VR1 >> SHIFTR)
VR4 = VR4 + round(VR0 >> SHIFTR)

}
else
{

VR5 = VR5 + (VR1 >> SHIFTR)
VR4 = VR4 + (VR0 >> SHIFTR)

}
//
// X and Y array element 0
//
VR1 = Re(X)*Re(Y) - Im(X)*Im(Y)
VR0 = Re(X)*Im(Y) + Re(Y)*Im(X)

//
// Cycle 2:
//
// Perform accumulate
//

if(RND == 1)
{

VR7 = VR7 + round(VR3 >> SHIFTR)
VR6 = VR6 + round(VR2 >> SHIFTR)

}
else
{

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate

621SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VR7 = VR7 + (VR3 >> SHIFTR)
VR6 = VR6 + (VR2 >> SHIFTR)

}
//
// X and Y array element 1
//
VR3 = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = Re(X)*Im(Y) + Re(Y)*Im(X)

//
// Cycle 3:
//
// Perform accumulate
//

if(RND == 1)
{

VR5 = VR5 + round(VR1 >> SHIFTR)
VR4 = VR4 + round(VR0 >> SHIFTR)

}
else
{

VR5 = VR5 + (VR1 >> SHIFTR)
VR4 = VR4 + (VR0 >> SHIFTR)

}
//
// X and Y array element 2
//
VR1 = Re(X)*Re(Y) - Im(X)*Im(Y)
VR0 = Re(X)*Im(Y) + Re(Y)*Im(X)

etc...

Restrictions VR0, VR1, VR2, and VR3 will be used as temporary storage by this instruction.

Flags The VSTATUS register flags are modified as follows:
• OVFR is set in the case of an overflow or underflow of the addition or subtraction

operations.
• OVFI is set in the case an overflow or underflow of the imaginary part of the addition

or subtraction operations.

Pipeline The VCCMAC takes 2p + N cycles where N is the number of times the instruction is
repeated. This instruction has the following pipeline restrictions:

<<instruction1>> ; No restrictions
<<instruction2>> ; Cannot be a 2p instruction that writes

; to VR0, VR1...VR7 registers
RPT #(N-1) ; Execute N times, where N is even

|| VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++
<<instruction3>> ; No restrictions

; Can read VR0, VR1...VR8

Example Cascading of RPT || VCMAC is allowed as long as the first and subsequent counts are
even. Cascading is useful for creating interruptible windows so that interrupts are not
delayed too long by the RPT instruction. For example:
;
; Example of cascaded VMAC instructions
;

VCLEARALL ; Zero the accumulation registers
;
; Execute MACF32 N+1 (4) times
;

RPT #3
|| VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++
;
; Execute MACF32 N+1 (6) times
;

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++ — Complex Multiply and Accumulate www.ti.com

622 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

RPT #5
|| VCMAC VR7, VR6, VR5, VR4, *XAR6++, *XAR7++
;
; Repeat MACF32 N+1 times where N+1 is even
;

RPT #N
|| MACF32 R7H, R3H, *XAR6++, *XAR7++

ADDF32 VR7, VR6, VR5, VR4

See also VCCMAC VR7, VR6, VR5, VR4, mem32, *XAR7++

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Multiply and Accumulate with
Parallel Load

623SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 Complex Multiply and Accumulate
with Parallel Load

Operands
Input Register Value
VR0 First Complex Operand
VR1 Second Complex Operand
VR2 Imaginary part of the product
VR3 Real part of the product
VR4 Imaginary part of the accumulation
VR5 Real part of the accumulation
VRa Contents of the memory pointed to by mem32. VRa cannot be VR5, VR4, or VR8
mem32 Pointer to 32-bit memory location

NOTE: The user will need to do one final addition to accumulate the final
multiplications (Real-VR3 and Imaginary-VR2) into the result registers.

Opcode LSW: 1110 0011 1111 0111
MSW: 0000 aaaa mem32

Description Complex multiply operation.

// VR5 = Accumulation of the real part
// VR4 = Accumulation of the imaginary part
//
// VR0 = X + Xj: VR0[31:16] = Re(X), VR0[15:0] = Im(X)
// VR1 = Y + Yj: VR1[31:16] = Re(Y), VR1[15:0] = Im(Y)
//
// Perform add
//

if (RND == 1)
{

VR5 = VR5 + round(VR3 >> SHIFTR);
VR4 = VR4 + round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 + (VR3 >> SHIFTR);
VR4 = VR4 + (VR2 >> SHIFTR);

}
//
// Perform multiply Z = (X + Xj) * (Y + Yj)
//

if(VSTATUS[CPACK] == 0){
VR3 = VR0H * VR1H - VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0H * VR1L + VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

}else{
VR3 = VR0L * VR1L - VR0H * VR1H; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0L * VR1H + VR0H * VR1L; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

})
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Multiply and Accumulate with Parallel Load
www.ti.com

624 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multiply and accumulate is a 2p-cycle operation and
the VMOV32 is a single-cycle operation.

Example

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMAG VRb, VRa — Magnitude of a Complex Number

625SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCMAG VRb, VRa Magnitude of a Complex Number

Operands VRb General purpose register VR0…VR8

VRa General purpose register VR0…VR8

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 0100 bbbb aaaa

Description Compute the magnitude of the Complex value in VRa

If the VSTATUS[SAT] bit is set, then the result will be saturated in the event of a 32-bit
overflow or underflow.

If(VSTATUS[SAT] == 1){
If(VSTATUS[RND] == 1){

VRb = rnd(sat(VRaH*VRaH + VRaL*VRaL)>>VSTATUS[SHIFTR])
}else {

VRb = sat(VRaH*VRaH + VRaL*VRaL)>>VSTATUS[SHIFTR]
}

}else { //VSTATUS[SAT] = 0
If(VSTATUS[RND] == 1){

VRb = rnd((VRaH*VRaH + VRaL*VRaL)>>VSTATUS[SHIFTR])
}else {

VRb = (VRaH*VRaH + VRaL*VRaL)>>VSTATUS[SHIFTR]
}

}

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if overflow is detected in the complex magnitude operation of the real

32-bit result

Pipeline This is a 2 cycle instruction

Example VMOV32 VR1, VR0 ; VR1 := VR0
VCCON VR1 ; VR1 := VR1^*
VCMAG VR2 , VR0 ; VR2 := magnitude(VR0)
and so forth

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMPY VR3, VR2, VR1, VR0 — Complex Multiply www.ti.com

626 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCMPY VR3, VR2, VR1, VR0 Complex Multiply

Operands Both inputs are complex numbers with a 16-bit real and 16-bit imaginary part. The result
is a complex number with a 32-bit real and a 32-bit imaginary part. The result is stored in
VR2 and VR3 as shown below:

Input Register Value
VR3 Real part of the Result
VR2 Imaginary part of the Result
VR1 Second Complex Operand
VR0 First Complex Operand

Opcode LSW: 1110 0101 0000 0000

Description Complex 16 x 16 = 32-bit multiply operation.

If the VSTATUS[CPACK] bit is set, the low word of the input is treated as the real part
while the upper word is treated as imaginary. If the VSTATUS[SAT] bit is set, the result
will be saturated in the event of a 32-bit overflow or underflow.
// Calculate: Z = (X + jX) * (Y + jY)
//

if(VSTATUS[CPACK] == 0){
VR3 = VR0H * VR1H - VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0H * VR1L + VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

}else{
VR3 = VR0L * VR1L - VR0H * VR1H; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0L * VR1H + VR0H * VR1L; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

}
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p-cycle instruction. The instruction following this one should not use VR3 or
VR2.

Example ; Example 1
; X = 4 + 6j
; Y = 12 + 9j
;
; Z = X * Y
; Re(Z) = 4*12 - 6*9 = -6
; Im(Z) = 4*9 + 6*12 = 108
;

VSATOFF ; VSTATUS[SAT] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR0, #6
VMOVIX VR0, #4 ; VR0 = X = 0x00040006 = 4 + 6j
VMOVXI VR1, #9
VMOVIX VR1, #12 ; VR1 = Y = 0x000C0009 = 12 + 9j
VCMPY VR3, VR2, VR1, VR0 ; VR3 = Re(Z) = 0xFFFFFFFA = -6

; VR2 = Im(Z) = 0x0000006C = 108
<instruction 1> ; <- Must not use VR2, VR3

; <- VCMPY completes, VR2, VR3 valid
<instruction 2> ; Can use VR2, VR3

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMPY VR3, VR2, VR1, VR0 — Complex Multiply

627SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa — Complex Multiply with Parallel Store www.ti.com

628 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa Complex Multiply with Parallel Store

Operands Both inputs are complex numbers with a 16-bit real and 16-bit imaginary part. The result
is a complex number with a 32-bit real and a 32-bit imaginary part. The result is stored in
VR2 and VR3 as shown below:

Input Register Value
VR3 Real part of the Result
VR2 Imaginary part of the Result
VR1 Second Complex Operand
VR0 First Complex Operand
VRa Value to be stored
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 1100 1010
MSW: 0000 aaaa mem16

Description Complex 16 x 16 = 32-bit multiply operation with parallel register load.

If the VSTATUS[CPACK] bit is set, the low word of the input is treated as the real part
while the upper word is treated as imaginary. If the VSTATUS[SAT] bit is set, then the
result will be saturated in the event of a 32-bit overflow or underflow.
// Calculate: Z = (X + jX) * (Y + jY)
//

if(VSTATUS[CPACK] == 0){
VR3 = VR0H * VR1H - VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0H * VR1L + VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

}else{
VR3 = VR0L * VR1L - VR0H * VR1H; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0L * VR1H + VR0H * VR1L; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

}
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multiply operation takes 2p cycles and the VMOV
operation completes in a single cycle. The instruction following this one must not use
VR2 or VR3.

Example ; Example 1
; X = 4 + 6j
; Y = 12 + 9j
;
; Z = X * Y
; Re(Z) = 4*12 - 6*9 = -6
; Im(Z) = 4*9 + 6*12 = 108
;

VSATOFF ; VSTATUS[SAT] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR0, #6
VMOVIX VR0, #4 ; VR0 = X = 0x00040006 = 4 + 6j
VMOVXI VR1, #9
VMOVIX VR1, #12 ; VR1 = Y = 0x000C0009 = 12 + 9j

; VR3 = Re(Z) = 0xFFFFFFFA = -6

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMPY VR3, VR2, VR1, VR0 || VMOV32 mem32, VRa — Complex Multiply with Parallel Store

629SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCMPY VR3, VR2, VR1, VR0 ; VR2 = Im(Z) = 0x0000006C = 108
|| VMOV32 *XAR7, VR3 ; Location XAR7 points to = VR3 (before
multiply)

<instruction 1> ; <- Must not use VR2, VR3
; <- VCMPY completes, VR2, VR3 valid

<instruction 2> ; Can use VR2, VR3

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Multiply with Parallel Load www.ti.com

630 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 Complex Multiply with Parallel Load

Operands Both inputs are complex numbers with a 16-bit real and 16-bit imaginary part. The result
is a complex number with a 32-bit real and a 32-bit imaginary part. The result is stored in
VR2 and VR3 as shown below:

Input Register Value
VR3 Real part of the Result
VR2 Imaginary part of the Result
VR1 Second Complex Operand
VR0 First Complex Operand
VRa 32-bit value pointed to by mem32. VRa can not be VR2, VR3 or VR8.
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0011 1111 0110
MSW: 0000 aaaa mem32

Description Complex 16 x 16 = 32-bit multiply operation with parallel register load.

If the VSTATUS[CPACK] bit is set, the low word of the input is treated as the real part
while the upper word is treated as imaginary. If the VSTATUS[SAT] bit is set, then the
result will be saturated in the event of a 32-bit overflow or underflow.
// Calculate: Z = (X + jX) * (Y + jY)
//

if(VSTATUS[CPACK] == 0){
VR3 = VR0H * VR1H - VR0L * VR1L; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0H * VR1L + VR0L * VR1H; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

}else{
VR3 = VR0L * VR1L - VR0H * VR1H; // Re(Z) = Re(X)*Re(Y) - Im(X)*Im(Y)
VR2 = VR0L * VR1H + VR0H * VR1L; // Im(Z) = Re(X)*Im(Y) + Im(X)*Re(Y)

}
if(SAT == 1)
{

sat32(VR3);
sat32(VR2);

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR3 computation (real part) overflows or underflows.
• OVFI is set if the VR2 computation (imaginary part) overflows or underflows.

Pipeline This is a 2p/1-cycle instruction. The multiply operation takes 2p cycles and the VMOV
operation completes in a single cycle. The instruction following this one must not use
VR2 or VR3.

Example ; Example 1
; X = 4 + 6j
; Y = 12 + 9j
;
; Z = X * Y
; Re(Z) = 4*12 - 6*9 = -6
; Im(Z) = 4*9 + 6*12 = 108
;

VSATOFF ; VSTATUS[SAT] = 0
VCLEARALL ; VR0, VR1...VR8 == 0
VMOVXI VR0, #6
VMOVIX VR0, #4 ; VR0 = X = 0x00040006 = 4 + 6j
VMOVXI VR1, #9
VMOVIX VR1, #12 ; VR1 = Y = 0x000C0009 = 12 + 9j

; VR3 = Re(Z) = 0xFFFFFFFA = -6

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCMPY VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32 — Complex Multiply with Parallel Load

631SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCMPY VR3, VR2, VR1, VR0 ; VR2 = Im(Z) = 0x0000006C = 108
|| VMOV32 VR0, *XAR7 ; VR0 = contents of location XAR7 points to

<instruction 1> ; <- Must not use VR2, VR3
; <- VCMPY completes, VR2, VR3 valid

<instruciton 2> ; Can use VR2, VR3

See also VCLROVFI
VCLROVFR
VCMAC VR5, VR4, VR3, VR2, VR1, VR0
VCMAC VR5, VR4, VR3, VR2, VR1, VR0 || VMOV32 VRa, mem32
VSATON
VSATOFF

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCSHL16 VRa << #4-bit — Complex Shift Left www.ti.com

632 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCSHL16 VRa << #4-bit Complex Shift Left

Operands
VRa General purpose register VR0…VR8
#4-bit 4-bit unsigned immediate value

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 0000 IIII aaaa

Description Left Shift the Real and Imaginary parts of the complex value in VRa.

if(VSTATUS[CPACK] == 0){
if(VSTATUS[SAT] == 1){

VRaL = sat(VRaL <<#4-bit Immediate) (imaginary result)
VRaH = sat(VRaH << #4-bit Immediate) (real result)

}else {
VRaL = VRaL << #4-bit Immediate (imaginary result)
VRaH = VRaH << #4-bit Immediate (real result)

}
}else {

If(VSTATUS[SAT] == 1){
VRaL = sat(VRaL << #4-bit Immediate) (real result)
VRaH = sat(VRaH << #4-bit Immediate) (imaginary result)

}else {
VRaL = VRaL << #4-bit Immediate (real result)
VRaH = VRaH << #4-bit Immediate (imaginary result)

}
}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if overflow is detected in the shift left operation of the real signed-16-bit

result.
• OVFI is set if overflow is detected in the shift left operation of the imaginary signed-

16-bit result.

Pipeline This is a single-cycle instruction.

Example VSATOFF ; turn off saturation
VCSHL16 VR5 << #8 ; VR5L := VR5L << 8 | VR5H := VR5H << 8

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCSHR16 VRa >> #4-bit — Complex Shift Right

633SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCSHR16 VRa >> #4-bit Complex Shift Right

Operands
VRa General purpose register VR0…VR8
#4-bit 4-bit unsigned immediate value

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 0001 IIII aaaa

Description Right Shift the Real and Imaginary parts of the complex value in VRa.

if(VSTATUS[CPACK] == 0){
if(VSTATUS[RND] == 1){

VRaL = rnd(VRaL >> #4-bit Immediate) (imaginary result)
VRaH = rnd(VRaH >> #4-bit Immediate) (real result)

}else {
VRaL = VRaL >> #4-bit Immediate (imaginary result)
VRaH = VRaH >> #4-bit Immediate (real result)

}
}else {

If(VSTATUS[RND] == 1){
VRaL = rnd(VRaL >> #4-bit Immediate) (real result)
VRaH = rnd(VRaH >> #4-bit Immediate) (imaginary result)

}else {
VRaL = VRaL >> #4-bit Immediate (real result)
VRaH = VRaH >> #4-bit Immediate (imaginary result)

}
}

Sign-Extension is automatically done for the shift right operations

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example VSATOFF ; turn off saturation
VCSHR16 VR6 >> #8 ; VR6L := VR6L >> 8 | VR6H := VR6H >> 8

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCSUB VR5, VR4, VR3, VR2 — Complex 32 - 32 = 32 Subtraction www.ti.com

634 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCSUB VR5, VR4, VR3, VR2 Complex 32 - 32 = 32 Subtraction

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR5 32-bit integer representing the real part of the first input: Re(X)
VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:
Output Register Value
VR5 32-bit integer representing the real part of the result:

Re(Z) = Re(X) - (Re(Y) >> SHIFTR)
VR4 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) - (Im(Y) >> SHIFTR)

Opcode LSW: 1110 0101 0000 0011

Description Complex 32 - 32 = 32-bit subtraction operation.

The second input operand (stored in VR3 and VR2) is shifted right by VSTATUS[SHIFR]
bits before the subtraction. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in
Section 5.3.2. If the VSTATUS[SAT] bit is set, then the result will be saturated in the
event of an overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//

if (RND == 1)
{

VR5 = VR5 - round(VR3 >> SHIFTR);
VR4 = VR4 - round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 - (VR3 >> SHIFTR);
VR4 = VR4 - (VR2 >> SHIFTR);

}
if (SAT == 1)
{

sat32(VR5);
sat32(VR4);

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR5 computation (real part) overflows or underflows.
• OVFI is set if the VR6 computation (imaginary part) overflows or underflows.

Pipeline This is a single-cycle instruction.

Example

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCLROVFI

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCSUB VR5, VR4, VR3, VR2 — Complex 32 - 32 = 32 Subtraction

635SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Subtraction www.ti.com

636 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 Complex Subtraction

Operands Before the operation, the inputs should be loaded into registers as shown below. Each
complex number includes a 32-bit real and a 32-bit imaginary part.
Input Register Value
VR5 32-bit integer representing the real part of the first input: Re(X)
VR4 32-bit integer representing the imaginary part of the first input: Im(X)
VR3 32-bit integer representing the real part of the 2nd input: Re(Y)
VR2 32-bit integer representing the imaginary part of the 2nd input: Im(Y)
mem32 pointer to a 32-bit memory location

The result is also a complex number with a 32-bit real and a 32-bit imaginary part. The
result is stored in VR5 and VR4 as shown below:
Output Register Value
VR5 32-bit integer representing the real part of the result:

Re(Z) = Re(X) - (Re(Y) >> SHIFTR)
VR4 32-bit integer representing the imaginary part of the result:

Im(Z) = Im(X) - (Im(Y) >> SHIFTR)
VRa contents of the memory pointed to by [mem32]. VRa can not be VR5, VR4 or VR8.

Opcode LSW: 1110 0011 1111 1001
MSW: 0000 aaaa mem32

Description Complex 32 - 32 = 32-bit subtraction operation with parallel load.

The second input operand (stored in VR3 and VR2) is shifted right by VSTATUS[SHIFR]
bits before the subtraction. If VSTATUS[RND] is set, then bits shifted out to the right are
rounded, otherwise these bits are truncated. The rounding operation is described in
Section 5.3.2. If the VSTATUS[SAT] bit is set, then the result will be saturated in the
event of an overflow or underflow.

// RND is VSTATUS[RND]
// SAT is VSTATUS[SAT]
// SHIFTR is VSTATUS[SHIFTR]
//

if (RND == 1)
{

VR5 = VR5 - round(VR3 >> SHIFTR);
VR4 = VR4 - round(VR2 >> SHIFTR);

}
else
{

VR5 = VR5 - (VR3 >> SHIFTR);
VR4 = VR4 - (VR2 >> SHIFTR);

}
if (SAT == 1)
{

sat32(VR5);
sat32(VR4);

}
VRa = [mem32];

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if the VR5 computation (real part) overflows or underflows.
• OVFI is set if the VR6 computation (imaginary part) overflows or underflows.

Pipeline This is a single-cycle instruction.

Example

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCSUB VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32 — Complex Subtraction

637SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

See also VCADD VR5, VR4, VR3, VR2 || VMOV32 VRa, mem32
VCADD VR7, VR6, VR5, VR4
VCSUB VR5, VR4, VR3, VR2
VCLROVFI
VCLROVFR
VRNDOFF
VRNDON
VSATON
VSATOFF
VSETSHR #5-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

638 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.5.5 Cyclic Redundancy Check (CRC) Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 5-14. CRC Instructions
Title ...................................................................................................................................... Page

VCRC8H_1 mem16 —CRC8, High Byte ............................................................................................ 639
VCRC8L_1 mem16 —CRC8 , Low Byte ............................................................................................ 640
VCRC16P1H_1 mem16 —CRC16, Polynomial 1, High Byte..................................................................... 641
VCRC16P1L_1 mem16 —CRC16, Polynomial 1, Low Byte...................................................................... 642
VCRC16P2H_1 mem16 —CRC16, Polynomial 2, High Byte..................................................................... 643
VCRC16P2L_1 mem16 —CRC16, Polynomial 2, Low Byte...................................................................... 644
VCRC24H_1 mem16 —CRC24, High Byte ......................................................................................... 645
VCRC24L_1 mem16 —CRC24, Low Byte .......................................................................................... 646
VCRC32H_1 mem16 —CRC32, High Byte ......................................................................................... 647
VCRC32L_1 mem16 —CRC32, Low Byte .......................................................................................... 648
VCRC32P2H_1 mem16 —CRC32, Polynomial 2, High Byte..................................................................... 649
VCRC32P2L_1 mem16 —CRC32, Low Byte....................................................................................... 650
VCRCCLR —Clear CRC Result Register .......................................................................................... 651
VMOV32 mem32, VCRC —Store the CRC Result Register ..................................................................... 652
VMOV32 VCRC, mem32 —Load the CRC Result Register ...................................................................... 653

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC8H_1 mem16 — CRC8, High Byte

639SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC8H_1 mem16 CRC8, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1100
MSW: 0000 0000 mem16

Description This instruction uses CRC8 polynomial == 0x07.

Calculate the CRC8 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
if (VSTATUS[CRCMSGFLIP == 0){

temp[7:0] = [mem16][15:8];
}else {

temp[7:0] = [mem16][8:15];
}

VCRC[7:0] = CRC8 (VCRC[7:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC8L_1 mem16

See also VCRC8L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC8L_1 mem16 — CRC8 , Low Byte www.ti.com

640 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC8L_1 mem16 CRC8 , Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1011
MSW: 0000 0000 mem16

Description This instruction uses CRC8 polynomial == 0x07.

Calculate the CRC8 of the least significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
if (VSTATUS[CRCMSGFLIP] == 0){

temp[7:0] = [mem16][7:0];
}else{

temp[7:0] = [mem16][0:7];
}
VCRC[7:0] = CRC8 (VCRC[7:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
typedef struct {

uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC8(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC8
_CRC8

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC8_done, AL ; Execute block of code AL + 1 times
VCRC8L_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC8H_1 *XAR7++ ; ...
VCRC8L_1 *XAR7 ; ...
VCRC8H_1 *XAR7++ ; ...

_CRC8_done
MOVL XAR7, *+XAR4[0] ; XAR7 = &CRCResult
VMOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC8H_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC16P1H_1 mem16 — CRC16, Polynomial 1, High Byte

641SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC16P1H_1 mem16 CRC16, Polynomial 1, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1111
MSW: 0000 0000 mem16

Description This instruction uses CRC16 polynomial 1 == 0x8005.

Calculate the CRC16 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
if (VSTATUS[CRCMSGFLIP] == 0){

temp[7:0] = [mem16][15:8];
}else {

temp[7:0] = [mem16][8:15];
}

VCRC[15:0] = CRC16(VCRC[15:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example forVCRC16P1L_1 mem16.

See also VCRC16P1L_1 mem16
VCRC16P2H_1 mem16
VCRC16P2L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC16P1L_1 mem16 — CRC16, Polynomial 1, Low Byte www.ti.com

642 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC16P1L_1 mem16 CRC16, Polynomial 1, Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1110
MSW: 0000 0000 mem16

Description This instruction uses CRC16 polynomial 1 == 0x8005.

Calculate the CRC16 of the least significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
if (VSTATUS[CRCMSGFLIP] == 0){

temp[7:0] = [mem16][7:0];
}else {

temp[7:0] = [mem16][0:7];
}

VCRC[15:0] = CRC16 (VCRC[15:0], temp[7:0]))

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
typedef struct {

uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC16P1(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC16P1
_CRC16P1

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC16P1_done, AL ; Execute block of code AL + 1 times
VCRC16P1L_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC16P1H_1 *XAR7++ ; ...
VCRC16P1L_1 *XAR7 ; ...
VCRC16P1H_1 *XAR7++ ; ...

_CRC16P1_done
MOVL XAR7, *+XAR4[0] ; XAR7 = &CRCResult
VMOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC16P1H_1 mem16
VCRC16P2H_1 mem16
VCRC16P2L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC16P2H_1 mem16 — CRC16, Polynomial 2, High Byte

643SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC16P2H_1 mem16 CRC16, Polynomial 2, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1111
MSW: 0001 0000 mem16

Description This instruction uses CRC16 polynomial 2== 0x1021.

Calculate the CRC16 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
if (VSTATUS[CRCMSGFLIP] == 0){

temp[7:0] = [mem16][15:8];
}else {

temp[7:0] = [mem16][8:15];
}

VCRC[15:0] = CRC16(VCRC[15:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC16P2L_1 mem16.

See also VCRC16P2L_1 mem16
VCRC16P1H_1 mem16
VCRC16P1L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC16P2L_1 mem16 — CRC16, Polynomial 2, Low Byte www.ti.com

644 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC16P2L_1 mem16 CRC16, Polynomial 2, Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1110
MSW: 0001 0000 mem16

Description This instruction uses CRC16 polynomial 2== 0x1021.

Calculate the CRC16 of the least significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
if (VSTATUS[CRCMSGFLIP] == 0){

temp[7:0] = [mem16][7:0];
}else {

temp[7:0] = [mem16][0:7];
}

VCRC[15:0] = CRC16 (VCRC[15:0], temp[7:0]

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
typedef struct {

uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC16P2(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC16P2
_CRC16P2

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC16P2_done, AL ; Execute block of code AL + 1 times
VCRC16P2L_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC16P2H_1 *XAR7++ ; ...
VCRC16P2L_1 *XAR7 ; ...
VCRC16P2H_1 *XAR7++ ; ...

_CRC16P2_done
MOVL XAR7, *+XAR4[0] ; XAR7 = &CRCResult
VMOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC16P2H_1 mem16
VCRC16P1H_1 mem16
VCRC16P1L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC24H_1 mem16 — CRC24, High Byte

645SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC24H_1 mem16 CRC24, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1011
MSW: 0000 0010 mem16

Description This instruction uses CRC24 polynomial == 0x5D6DCB

Calculate the CRC24 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.

if (VSTATUS[CRCMSGFLIP] == 0){
temp[7:0] = [mem16][15:8];

}else {
temp[7:0] = [mem16][8:15];

}
VCRC[23:0] = CRC24 (VCRC[23:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC24L_1 mem16.

See also VCRC24L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC24L_1 mem16 — CRC24, Low Byte www.ti.com

646 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC24L_1 mem16 CRC24, Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1011
MSW: 0000 0001 mem16

Description This instruction uses CRC24 polynomial == 0x5D6DCB

Calculate the CRC24 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
if (VSTATUS[CRCMSGFLIP] == 0){

temp[7:0] = [mem16][7:0];
}else {

temp[7:0] = [mem16][0:7];
}
VCRC[23:0] = CRC24 (VCRC[23:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example typedef struct {
uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC24(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC24
_CRC24

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC24_done, AL ; Execute block of code AL + 1 times
VCRC24L_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC24H_1 *XAR7++ ; ...
VCRC24L_1 *XAR7 ; ...
VCRC24H_1 *XAR7++ ; ...

_CRC24_done
MOVL XAR7, *+XAR4[0] ; XAR7 = &CRCResult
VMOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC24H_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC32H_1 mem16 — CRC32, High Byte

647SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC32H_1 mem16 CRC32, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 0010
MSW: 0000 0000 mem16

Description This instruction uses CRC32 polynomial 1 == 0x04C11DB7

Calculate the CRC32 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
if (VSTATUS[CRCMSGFLIP] == 0){

temp[7:0] = [mem16][15:8];
}else {

temp[7:0] = [mem16][8:15];
}

VCRC[31:0] = CRC32 (VCRC[31:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC32L_1 mem16.

See also VCRC32L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC32L_1 mem16 — CRC32, Low Byte www.ti.com

648 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC32L_1 mem16 CRC32, Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 0001
MSW: 0000 0000 mem16

Description This instruction uses CRC32 polynomial 1 == 0x04C11DB7

Calculate the CRC32 of the least significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.
if (VSTATUS[CRCMSGFLIP] == 0){

temp[7:0] = [mem16][7:0];
}else {

temp[7:0] = [mem16][0:7];
}

VCRC[31:0] = CRC32 (VCRC[31:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
typedef struct {

uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC32(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC32
_CRC32

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC32_done, AL ; Execute block of code AL + 1 times
VCRC32L_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC32H_1 *XAR7++ ; ...
VCRC32L_1 *XAR7 ; ...
VCRC32H_1 *XAR7++ ; ...
_CRC32_done
MOVL XAR7, *+XAR4[0] ; XAR7 = &CRCResult
VMOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC32H_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRC32P2H_1 mem16 — CRC32, Polynomial 2, High Byte

649SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC32P2H_1 mem16 CRC32, Polynomial 2, High Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1011
MSW: 0000 0100 mem16

Description This instruction uses CRC32 polynomial == 0x1EDC6F41

Calculate the CRC32 of the most significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.

if (VSTATUS[CRCMSGFLIP] == 0){
temp[7:0] = [mem16][15:8];

}else {
temp[7:0] = [mem16][8:15];

}

VCRC[31:0] = CRC32 (VCRC[31:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC32P2L_1 mem16.

See also VCRC32L_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCRC32P2L_1 mem16 — CRC32, Low Byte www.ti.com

650 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRC32P2L_1 mem16 CRC32, Low Byte

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0010 1100 1011
MSW: 0000 0011 mem16

Description This instruction uses CRC32 polynomial == 0x04C11DB7

Calculate the CRC32 of the least significant byte pointed to by mem16 and accumulate it
with the value in the VCRC register. Store the result in VCRC.

if (VSTATUS[CRCMSGFLIP] == 0){
temp[7:0] = [mem16][7:0];

}else {
temp[7:0] = [mem16][0:7];

}

VCRC[31:0] = CRC32 (VCRC[31:0], temp[7:0])

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example typedef struct {
uint32_t *CRCResult; // Address where result should be stored
uint16_t *CRCData; // Start of data
uint16_t CRCLen; // Length of data in bytes

}CRC_CALC;

CRC_CALC mycrc;
...
CRC32P2(&mycrc);
...

; -------------------
; Calculate the CRC of a block of data
; This function assumes the block is a multiple of 2 16-bit words
;

.global _CRC32P2
_CRC32P2

VCRCCLR ; Clear the result register
MOV AL, *+XAR4[4] ; AL = CRCLen
ASR AL, 2 ; AL = CRCLen/4
SUBB AL, #1 ; AL = CRCLen/4 - 1
MOVL XAR7, *+XAR4[2] ; XAR7 = &CRCData
.align 2
NOP ; Align RPTB to an odd address
RPTB _CRC32P2_done, AL ; Execute block of code AL + 1 times
VCRC32P2L_1 *XAR7 ; Calculate CRC for 4 bytes
VCRC32P2H_1 *XAR7++ ; ...
VCRC32P2L_1 *XAR7 ; ...
VCRC32P2H_1 *XAR7++ ; ...

_CRC32P2_done
MOVL XAR7, *+XAR4[0] ; XAR7 = &CRCResult
VMOV32 *+XAR7[0], VCRC ; Store the result
LRETR ; return to caller

See also VCRC32P2H_1 mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCRCCLR — Clear CRC Result Register

651SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCRCCLR Clear CRC Result Register

Operands
mem16 16-bit memory location

Opcode LSW: 1110 0101 0010 0100

Description Clear the VCRC register.
VCRC = 0x0000

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VCRC32L_1 mem16.

See also VMOV32 mem32, VCRC
VMOV32 VCRC, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 mem32, VCRC — Store the CRC Result Register www.ti.com

652 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 mem32, VCRC Store the CRC Result Register

Operands
mem32 32-bit memory destination
VCRC CRC result register

Opcode LSW: 1110 0010 0000 0110
MSW: 0000 0000 mem32

Description Store the VCRC register.
[mem32] = VCRC

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VCRCCLR
VMOV32 VCRC, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 VCRC, mem32 — Load the CRC Result Register

653SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 VCRC, mem32 Load the CRC Result Register

Operands
mem32 32-bit memory source
VCRC CRC result register

Opcode LSW: 1110 0011 1111 0110
MSW: 0000 0000 mem32

Description Load the VCRC register.
VCRC = [mem32]

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VCRCCLR
VMOV32 mem32, VCRC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

654 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.5.6 Deinterleaver Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 5-15. Deinterleaver Instructions
Title ...................................................................................................................................... Page

VCLRDIVE —Clear DIVE bit in the VSTATUS Register.......................................................................... 655
VDEC VRaL —16-bit Decrement ..................................................................................................... 656
VDEC VRaL || VMOV32 VRb, mem32 —16-bit Decrement with Parallel Load................................................ 657
VINC VRaL —16-bit Increment ....................................................................................................... 658
VINC VRaL || VMOV32 VRb, mem32 —16-bit Increment with Parallel Load .................................................. 659
VMOD32 VRaH, VRb, VRcH —Modulo Operation................................................................................. 660
VMOD32 VRaH, VRb, VRcH || VMOV32 VRd, VRe —Modulo Operation with Parallel Move .............................. 661
VMOD32 VRaH, VRb, VRcL —Modulo Operation ................................................................................. 662
VMOD32 VRaH, VRb, VRcL || VMOV32 VRd, VRe —Modulo Operation with Parallel Move .............................. 663
VMOV16 VRaL, VRbH —16-bit Register Move.................................................................................... 664
VMOV16 VRaH, VRbL —16-Bit Register Move ................................................................................... 665
VMOV16 VRaH, VRbH —16-Bit Register Move ................................................................................... 666
VMOV16 VRaL, VRbL —16-Bit Register Move.................................................................................... 667
VMPYADD VRa, VRaL, VRaH, VRbH —Multiply Add 16-Bit..................................................................... 668
VMPYADD VRa, VRaL, VRaH, VRbL —Multiply Add 16-bit ..................................................................... 669

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCLRDIVE — Clear DIVE bit in the VSTATUS Register

655SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCLRDIVE Clear DIVE bit in the VSTATUS Register

Operands none

Opcode LSW: 1110 0101 0010 0000

Description Clear the DIVE (Divide by zero error) bit in the VSTATUS register.

Flags This instruction clears the DIVE bit in the VSTATUS register

Pipeline This is a single-cycle operation

Example

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VDEC VRaL — 16-bit Decrement www.ti.com

656 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VDEC VRaL 16-bit Decrement

Operands

VRaL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 1011 0000 1aaa

Description 16-bit Increment
VRaL = VRaL - 1

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VDEC VR0L ; VR0L = VR0L - 1

See also VINC VRaL || VMOV32 VRb, mem32
VINC VRaL
VDEC VRaL || VMOV32 VRb, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VDEC VRaL || VMOV32 VRb, mem32 — 16-bit Decrement with Parallel Load

657SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VDEC VRaL || VMOV32 VRb, mem32 16-bit Decrement with Parallel Load

Operands

VRaL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L
VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 1000 0001
MSW: 01bb baaa mem32

Description 16-bit Decrement with Parallel Load
VRaL = VRaL - 1
VRb = [mem32]

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VDEC VR0L || VMOV32 VR1, *+XAR3[4]

See also VINC VRaL
VDEC VRaL
VINC VRaL || VMOV32 VRb, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VINC VRaL — 16-bit Increment www.ti.com

658 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VINC VRaL 16-bit Increment

Operands

VRaL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 1011 0000 0aaa

Description 16-bit Increment
VRaL = VRaL + 1

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VINC VR0L ; VR0L = VR0L + 1

See also VINC VRaL || VMOV32 VRb, mem32
VDEC VRaL
VDEC VRaL || VMOV32 VRb, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VINC VRaL || VMOV32 VRb, mem32 — 16-bit Increment with Parallel Load

659SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VINC VRaL || VMOV32 VRb, mem32 16-bit Increment with Parallel Load

Operands

VRaL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L
VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 1000 0001
MSW: 00bb baaa mem32

Description 16-bit Increment with parallel load
VRaL = VRaL +1
VRb = [mem32]

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VINC VR0L || VMOV32 VR1, *+XAR3[4]

See also VINC VRaL
VDEC VRaL
VDEC VRaL || VMOV32 VRb, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOD32 VRaH, VRb, VRcH — Modulo Operation www.ti.com

660 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOD32 VRaH, VRb, VRcH Modulo Operation

Operands

VRaH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRcH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H

Opcode LSW: 1110 0110 1000 0000
MSW: 0010 100a aabb bccc

Description Modulo operation: 32-bit signed %16 bit unsigned
if(VRcH == 0x0){

VSTATUS[DIVE] = 1
}else{

VRaH = VRb % VRcH
}

Flags This instruction modifies the following bits in the VSTATUS register:
• DIVE is set if VRcH is 0 i.e. a divide by zero error.

Pipeline This is a 9p cycle instruction. No VMOD32 related instruction can be present in the delay
slot of this instruction.

Example
VMOD32 VR5H, VR3, VR4H ; VR5H = VR3%VR4H = j

; compute j = (b * J - v * i) % n;
NOP ; D1
MOV *+XAR1[AR0], AL ; D2 Save previous Y(i+j*m)
NOP ; D3
NOP ; D4
MOV AL, *XAR4++ ; D5 AL = X(I) load X(I)
NOP ; D6
NOP ; D7
NOP ; D8
VMPYADD VR5, VR5L, VR5H, VR4H

; VR5 = VR5L + VR5H*VR4H
; = i + j*m compute i + j*m

See also VMOD32 VRaH, VRb, VRcL
VMOD32 VRaH, VRb, VRcL || VMOV32 VRd, VRe
VMOD32 VRaH, VRb, VRcH || VMOV32 VRd, Vre
VCLRDIVE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOD32 VRaH, VRb, VRcH || VMOV32 VRd, VRe — Modulo Operation with Parallel Move

661SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOD32 VRaH, VRb, VRcH || VMOV32 VRd, VRe Modulo Operation with Parallel Move

Operands

VRaH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRcH Low word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRd General purpose register: VR0, VR1....VR7. Cannot be VR8
VRe General purpose register: VR0, VR1....VR7. Cannot be VR8

Opcode LSW: 1110 0110 1111 0011
MSW: 1eee dddc ccbb baaa

Description Modulo operation: 32-bit signed %16 bit unsigned
if(VRcL == 0x0){

VSTATUS[DIVE] = 1
}else{

VRaH = VRb % VRcH
}

VRd = VRe

Flags This instruction modifies the following bits in the VSTATUS register:
• DIVE is set if VRcH is 0, that is, a divide by zero error.

Pipeline This is a 9p/1 cycle instruction. The VMOD32 instruction takes 9p cycles while the
VMOV32 operation completes in a single cycle. No VMOD32 related instruction can be
present in the delay slot of this instruction.

Example
VMOD32 VR5H, VR3, VR4H ; VR5H = VR3%VR4H = j; VR0 = {J,I}

|| VMOV32 VR0, VR6 ; compute j = (b * J - v * i) % n;
; load back saved J,I

VINC VR0L ; D1 VR1H = u, VR1L = a
|| VMOV32 VR1, *+XAR3[4] ; increment I; load u, a

MOV *+XAR1[AR0], AL ; D2 Save previous Y(i+j*m)
VCMPY VR3, VR2, VR1, VR0 ; D3 VR3 = a*I - u*J

; compute a * I - u * J
VMOV32 VR1, *+XAR3[2] ; D4/D1 VR1H = v, VR1L = b load v,b
MOV AL, *XAR4++ ; D5 AL = X(I) load X(I)
NOP ; D6
VMOV32 VR6, VR0 ; D7 VR6 = {J,I} save current {J,I}
VMOV16 VR0L, *+XAR5[0] ; D8 VR0L = J load J
VMOD32 VR0H, VR3, VR4H ; VR0H = (VR3 % VR4H) = i

; compute i = (a * I - u * J) % m;

See also VMOD32 VRaH, VRb, VRcH
VMOD32 VRaH, VRb, VRcL
VMOD32 VRaH, VRb, VRcL || VMOV32 VRd, VRe
VCLRDIVE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOD32 VRaH, VRb, VRcL — Modulo Operation www.ti.com

662 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOD32 VRaH, VRb, VRcL Modulo Operation

Operands

VRaH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRcL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L

Opcode LSW: 1110 0110 1000 0000
MSW: 0010 011a aabb bccc

Description Modulo operation: 32-bit signed %16 bit unsigned
if(VRcL == 0x0){

VSTATUS[DIVE] = 1
}else{

VRaH = VRb % VRcL
}

Flags This instruction modifies the following bits in the VSTATUS register:
• DIVE is set if VRcL is 0, that is, a divide by zero error.

Pipeline This is a 9p cycle instruction. No VMOD32 related instruction can be present in the delay
slot of this instruction.

Example
VMOD32 VR5H, VR3, VR4L ; VR5H = VR3%VR4L = j

; compute j = (b * J - v * i) % n;
NOP ; D1
MOV *+XAR1[AR0], AL ; D2 Save previous Y(i+j*m)
NOP ; D3
NOP ; D4
MOV AL, *XAR4++ ; D5 AL = X(I) load X(I)
NOP ; D6
NOP ; D7
NOP ; D8
VMPYADD VR5, VR5L, VR5H, VR4H

; VR5 = VR5L + VR5H*VR4H
; = i + j*m compute i + j*m

See also VMOD32 VRaH, VRb, VRcH
VMOD32 VRaH, VRb, VRcL || VMOV32 VRd, VRe
VMOD32 VRaH, VRb, VRcH || VMOV32 VRd, Vre
VCLRDIVE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOD32 VRaH, VRb, VRcL || VMOV32 VRd, VRe — Modulo Operation with Parallel Move

663SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOD32 VRaH, VRb, VRcL || VMOV32 VRd, VRe Modulo Operation with Parallel Move

Operands

VRaH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRcL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L
VRd General purpose register: VR0, VR1....VR7. Cannot be VR8
VRe General purpose register: VR0, VR1....VR7. Cannot be VR8

Opcode LSW: 1110 0110 1111 0011
MSW: 0eee dddc ccbb baaa

Description Modulo operation: 32-bit signed %16 bit unsigned
if(VRcL == 0x0){

VSTATUS[DIVE] = 1
}else{

VRaH = VRb % VRcL
}

VRd = VRe

Flags This instruction modifies the following bits in the VSTATUS register:
• DIVE is set if VRcH is 0, that is, a divide by zero error.

Pipeline This is a 9p/1 cycle instruction. The VMOD32 instruction takes 9p cycles while the
VMOV32 operation completes in a single cycle. No VMOD32 related instruction can be
present in the delay slot of this instruction.

Example
VMOD32 VR5H, VR3, VR4L ; VR5H = VR3%VR4L = j; VR0 = {J,I}

|| VMOV32 VR0, VR6 ; compute j = (b * J - v * i) % n;
; load back saved J,I

VINC VR0L ; D1 VR1H = u, VR1L = a
|| VMOV32 VR1, *+XAR3[4] ; increment I; load u, a

MOV *+XAR1[AR0], AL ; D2 Save previous Y(i+j*m)
VCMPY VR3, VR2, VR1, VR0 ; D3 VR3 = a*I - u*J

; compute a * I - u * J
VMOV32 VR1, *+XAR3[2] ; D4/D1 VR1H = v, VR1L = b load v,b
MOV AL, *XAR4++ ; D5 AL = X(I) load X(I)
NOP ; D6
VMOV32 VR6, VR0 ; D7 VR6 = {J,I} save current {J,I}
VMOV16 VR0L, *+XAR5[0] ; D8 VR0L = J load J
VMOD32 VR0H, VR3, VR4H ; VR0H = (VR3 % VR4H) = i

; compute i = (a * I - u * J) % m;

See also VMOD32 VRaH, VRb, VRcH
VMOD32 VRaH, VRb, VRcL
VMOD32 VRaH, VRb, VRcH || VMOV32 VRd, Vre
VCLRDIVE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV16 VRaL, VRbH — 16-bit Register Move www.ti.com

664 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV16 VRaL, VRbH 16-bit Register Move

Operands

VRbH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRaL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 1010 00bb baaa

Description 16-bit Register Move
VRaL = VRbH

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VMOV16 VR5L, VR0H ; VR5L = VR0H

See also VMOV16 VRaH, VRbL
VMOV16 VRaH, VRbH
VMOV16 VRaL, VRbL

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV16 VRaH, VRbL — 16-Bit Register Move

665SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV16 VRaH, VRbL 16-Bit Register Move

Operands

VRbL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L
VRaH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 1010 01bb baaa

Description 16-bit Register Move
VRaH = VRbL

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VMOV16 VR5H, VR0L ; VR5H = VR0L

See also VMOV16 VRaL, VRbH
VMOV16 VRaH, VRbH
VMOV16 VRaL, VRbL

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV16 VRaH, VRbH — 16-Bit Register Move www.ti.com

666 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV16 VRaH, VRbH 16-Bit Register Move

Operands

VRbH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRaH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 1010 10bb baaa

Description 16-bit Register Move
VRaH = VRbH

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VMOV16 VR5H, VR0H ; VR5H = VR0H

See also VMOV16 VRaL, VRbH
VMOV16 VRaH, VRbL
VMOV16 VRaL, VRbL

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV16 VRaL, VRbL — 16-Bit Register Move

667SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV16 VRaL, VRbL 16-Bit Register Move

Operands

VRbL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L
VRaL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 1010 11bb baaa

Description 16-bit Register Move
VRaL = VRbL

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example VMOV16 VR5L, VR0L ; VR5L = VR0L

See also VMOV16 VRaL, VRbH
VMOV16 VRaH, VRbL
VMOV16 VRaH, VRbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMPYADD VRa, VRaL, VRaH, VRbH — Multiply Add 16-Bit www.ti.com

668 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMPYADD VRa, VRaL, VRaH, VRbH Multiply Add 16-Bit

Operands

VRbH High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRaH Low word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRaL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8

Opcode LSW: 1110 0110 1111 0010
MSW: 0000 1100 00bb baaa

Description Performs p + q*r, where p,q, and r are 16-bit values
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VRa = rnd(sat(VRaL + VRaH * VRbH)>>VSTATUS[SHIFTR]);

}else {
VRa = sat(VRaL + VRaH * VRbH)>>VSTATUS[SHIFTR];

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VRa = rnd((VRaL + VRaH * VRbH)>>VSTATUS[SHIFTR]);

}else {
VRa = (VRaL + VRaH * VRbH)>>VSTATUS[SHIFTR];

}
}

It should be noted that:
• VRaH*VRbH is represented as 32-bit temp value
• VRaL should be sign extended to 32-bit before performing add
• The add operation is a 32-bit operation

Flags This instruction modifies the following bits in the VSTATUS register:
• • OVFR is set if signed overflow if 32-bit signed overflow is detected in the add

operation.

Pipeline This is a 2p cycle operation

Example
VMPYADD VR5, VR5L, VR5H, VR4H ; VR5 = VR5L + VR5H*VR4H

; = i + j*m compute i + j*m
NOP ; D1

See also VMPYADD VRa, VRaL, VRaH, VRbL

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMPYADD VRa, VRaL, VRaH, VRbL — Multiply Add 16-bit

669SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMPYADD VRa, VRaL, VRaH, VRbL Multiply Add 16-bit

Operands

VRbL High word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRaH Low word of a general purpose register: VR0H, VR1H....VR7H. Cannot be VR8H
VRaL Low word of a general purpose register: VR0L, VR1L....VR7L. Cannot be VR8L
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8

Opcode
LSW: 1110 0110 1111 0010
MSW: 0000 1100 01bb baaa

Description Performs p + q*r, where p,q, and r are 16-bit values
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VRa = rnd(sat(VRaL + VRaH * VRbL)>>VSTATUS[SHIFTR]);

}else {
VRa = sat(VRaL + VRaH * VRbL)>>VSTATUS[SHIFTR];

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VRa = rnd((VRaL + VRaH * VRbL)>>VSTATUS[SHIFTR]);

}else {
VRa = (VRaL + VRaH * VRbL)>>VSTATUS[SHIFTR];

}
}

It should be noted that:
• VRaH* VRbL is represented as 32-bit temp value
• VRaL should be sign extended to 32-bit before performing add
• The add operation is a 32-bit operation

Flags This instruction modifies the following bits in the VSTATUS register:
• • OVFR is set if signed overflow if 32-bit signed overflow is detected in the add

operation.

Pipeline This is a 2p cycle operation

Example
VMPYADD VR5, VR5L, VR5H, VR4L ; VR5 = VR5L + VR5H*VR4L

; = i + j*m compute i + j*m
NOP ; D1

See also VMPYADD VRa, VRaL, VRaH, VRbH

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

670 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.5.7 FFT Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 5-16. FFT Instructions
Title ...................................................................................................................................... Page

VCFFT1 VR2, VR5, VR4 —Complex FFT calculation instruction ................................................................ 671
VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1-bit —Complex FFT calculation instruction .................................. 672
VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 —Complex FFT calculation instruction

with Parallel Store ............................................................................................................ 674
VCFFT3 VR5, VR4, VR3, VR2, VR0, #1-bit —Complex FFT calculation instruction......................................... 676
VCFFT3 VR5, VR4, VR3, VR2, VR0, #1-bit || VMOV32 VR5, mem32 —Complex FFT calculation instruction with

Parallel Load .................................................................................................................. 678
VCFFT4 VR4, VR2, VR1, VR0, #1-bit —Complex FFT calculation instruction................................................ 680
VCFFT4 VR4, VR2, VR1, VR0, #1-bit || VMOV32 VR7, mem32 —Complex FFT calculation instruction with Parallel

Load ............................................................................................................................ 682
VCFFT5 VR5, VR4, VR3, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 —Complex FFT calculation instruction

with Parallel Load ............................................................................................................ 684
VCFFT6 VR3, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 —Complex FFT calculation instruction with Parallel

Load ............................................................................................................................ 686
VCFFT7 VR1, VR0, #1-bit || VMOV32 VR2, mem32 —Complex FFT calculation instruction with Parallel Load ......... 687
VCFFT8 VR3, VR2, #1-bit —Complex FFT calculation instruction ............................................................. 688
VCFFT8 VR3, VR2, #1-bit || VOMV32 mem32, VR4 —Complex FFT calculation instruction with Parallel Store ........ 689
VCFFT9 VR5, VR4, VR3, VR2, VR1, VR0 #1-bit —Complex FFT calculation instruction................................... 690
VCFFT9 VR5, VR4, VR3, VR2, VR1, VR0 #1-bit || VMOVE32 mem32, VR5 —Complex FFT calculation instruction

with Parallel Store ............................................................................................................ 691
VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0 #1-bit —Complex FFT calculation instruction ................................. 693
VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0 #1-bit || VMOV32 VR0, mem32 —Complex FFT calculation instruction

with Parallel Load ............................................................................................................ 697

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT1 VR2, VR5, VR4 — Complex FFT calculation instruction

671SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT1 VR2, VR5, VR4 Complex FFT calculation instruction

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR4 First Complex Input
VR5 Second Complex Input
VR2 Complex Output

Opcode LSW: 1110 0101 0010 1011

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR2H = rnd(sat(VR5H*VR4L - VR5L*VR4H)>>VSTATUS[SHIFTR])
VR2L = rnd(sat(VR5L*VR4L + VR5H*VR4H)>>VSTATUS[SHIFTR])

}else {
VR2H = sat(VR5H*VR4L - VR5L*VR4H)>>VSTATUS[SHIFTR]
VR2H = sat(VR5L*VR4L + VR5H*VR4H)>>VSTATUS[SHIFTR]

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR2H = rnd((VR5H*VR4L - VR5L*VR4H)>>VSTATUS[SHIFTR])
VR2H = rnd((VR5L*VR4L + VR5H*VR4H)>>VSTATUS[SHIFTR])

}else {
VR2H = (VR5H*VR4L - VR5L*VR4H)>>VSTATUS[SHIFTR]
VR2L = (VR5L*VR4L + VR5H*VR4H)>>VSTATUS[SHIFTR]

}
}

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH
• The OVFR and OVFI flags are also set if, after shift right operation, the 32-bit

temporary result can't fit in 16-bit destination

Pipeline This is a two cycle instruction

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1-bit — Complex FFT calculation instruction www.ti.com

672 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1-bit Complex FFT calculation instruction

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR7 Complex Input
VR6 Complex Input
VR4 Complex Input
VR2 Complex Output
VR1 Complex Output
VR0 Complex Output
#1-bit 1-bit immediate value

Opcode LSW: 1010 0001 0011 000I

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR0H = rnd(sat(VR7H + VR2H)>>#1-bit);
VR0L = rnd(sat(VR7L + VR2L)>>#1-bit);
VR1L = rnd(sat(VR7L - VR2L)>>#1-bit);
VR1H = rnd(sat(VR7H - VR2H)>>#1-bit);
VR2H = rnd(sat(VR6H * VR4L - VR6L * VR4H)>> VSTATUS[SHIFTR]);
VR2L = rnd(sat(VR6L * VR4L + VR6H * VR4H)>> VSTATUS[SHIFTR]);

}else {
VR0H = sat(VR7H + VR2H)>>#1-bit;
VR0L = sat(VR7L + VR2L)>>#1-bit;
VR1L = sat(VR7L - VR2L)>>#1-bit;
VR1H = sat(VR7H - VR2H)>>#1-bit;
VR2H = sat(VR6H * VR4L - VR6L * VR4H)>> VSTATUS[SHIFTR];
VR2L = sat(VR6L * VR4L + VR6H * VR4H)>> VSTATUS[SHIFTR];

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR0H = rnd((VR7H + VR2H)>>#1-bit);
VR0L = rnd((VR7L + VR2L)>>#1-bit);
VR1L = rnd((VR7L - VR2L)>>#1-bit);
VR1H = rnd((VR7H - VR2H)>>#1-bit);
VR2H = rnd((VR6H * VR4L - VR6L * VR4H)>> VSTATUS[SHIFTR]);
VR2L = rnd((VR6L * VR4L + VR6H * VR4H)>> VSTATUS[SHIFTR]);

}else {
VR0H = (VR7H + VR2H)>>#1-bit;
VR0L = (VR7L + VR2L)>>#1-bit;
VR1L = (VR7L - VR2L)>>#1-bit;
VR1H = (VR7H - VR2H)>>#1-bit;
VR2H = (VR6H * VR4L - VR6L * VR4H)>> VSTATUS[SHIFTR];
VR2L = (VR6L * VR4L + VR6H * VR4H)>> VSTATUS[SHIFTR];

}
}

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH
• The OVFR and OVFI flags are also set if, after shift right operation, the 32-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1-bit — Complex FFT calculation instruction

673SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

temporary result can't fit in 16-bit destination

Pipeline This is a two cycle instruction

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 — Complex FFT calculation instruction with
Parallel Store www.ti.com

674 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 Complex FFT calculation
instruction with Parallel Store

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR7 Complex Input
VR6 Complex Input
VR4 Complex Input
VR2 Complex Output
VR1 Complex Output
VR0 Complex Output
#1-bit 1-bit immediate value
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 0000 0111
MSW: 0010 000I mem32

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR0H = rnd(sat(VR7H + VR2H)>>#1-bit);
VR0L = rnd(sat(VR7L + VR2L)>>#1-bit);
VR1L = rnd(sat(VR7L - VR2L)>>#1-bit);
VR1H = rnd(sat(VR7H - VR2H)>>#1-bit);
VR2H = rnd(sat(VR6H * VR4L - VR6L * VR4H)>> VSTATUS[SHIFTR]);
VR2L = rnd(sat(VR6L * VR4L + VR6H * VR4H)>> VSTATUS[SHIFTR]);

}else {
VR0H = sat(VR7H + VR2H)>>#1-bit;
VR0L = sat(VR7L + VR2L)>>#1-bit;
VR1L = sat(VR7L - VR2L)>>#1-bit;
VR1H = sat(VR7H - VR2H)>>#1-bit;
VR2H = sat(VR6H * VR4L - VR6L * VR4H)>> VSTATUS[SHIFTR];
VR2L = sat(VR6L * VR4L + VR6H * VR4H)>> VSTATUS[SHIFTR];

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR0H = rnd((VR7H + VR2H)>>#1-bit);
VR0L = rnd((VR7L + VR2L)>>#1-bit);
VR1L = rnd((VR7L - VR2L)>>#1-bit);
VR1H = rnd((VR7H - VR2H)>>#1-bit);
VR2H = rnd((VR6H * VR4L - VR6L * VR4H)>> VSTATUS[SHIFTR]);
VR2L = rnd((VR6L * VR4L + VR6H * VR4H)>> VSTATUS[SHIFTR]);

}else {
VR0H = (VR7H + VR2H)>>#1-bit;
VR0L = (VR7L + VR2L)>>#1-bit;
VR1L = (VR7L - VR2L)>>#1-bit;
VR1H = (VR7H - VR2H)>>#1-bit;
VR2H = (VR6H * VR4L - VR6L * VR4H)>> VSTATUS[SHIFTR];
VR2L = (VR6L * VR4L + VR6H * VR4H)>> VSTATUS[SHIFTR];

}
}
[mem32] = VR1;

Sign-Extension is automatically done for the shift right operations

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 — Complex FFT calculation
instruction with Parallel Store

675SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH
• The OVFR and OVFI flags are also set if, after shift right operation, the 32-bit

temporary result can't fit in 16-bit destination

Pipeline This is a 2p/1-cycle instruction. The VCFFT operation takes 2p cycles and the VMOV
operation completes in a single cycle.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT3 VR5, VR4, VR3, VR2, VR0, #1-bit — Complex FFT calculation instruction www.ti.com

676 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT3 VR5, VR4, VR3, VR2, VR0, #1-bit Complex FFT calculation instruction

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR5 Complex Input
VR4 Complex Input
VR3 Complex Output
VR2 Complex Output/Complex Input from previous operation
VR0 Complex Output/Complex Input from previous operation
#1-bit 1-bit immediate value

Opcode LSW: 1010 0001 0011 001I

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR0H = rnd(sat(VR5H + VR2H)>>#1-bit);
VR0L = rnd(sat(VR5L + VR2L)>>#1-bit);
VR3H = rnd(sat(VR5H - VR2H)>>#1-bit);
VR3L = rnd(sat(VR5L - VR2L)>>#1-bit);
VR2H = rnd(sat(VR0H * VR4L - VR0L * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd(sat(VR0L * VR4L + VR0H * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = sat(VR5H + VR2H)>>#1-bit;
VR0L = sat(VR5L + VR2L)>>#1-bit;
VR3H = sat(VR5H - VR2H)>>#1-bit;
VR3L = sat(VR5L - VR2L)>>#1-bit;
VR2H = sat(VR0H * VR4L - VR0L * VR4H)>>VSTATUS[SHIFTR];
VR2L = sat(VR0L * VR4L + VR0H * VR4H)>>VSTATUS[SHIFTR];

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR0H = rnd((VR5H + VR2H)>>#1-bit);
VR0L = rnd((VR5L + VR2L)>>#1-bit);
VR3H = rnd((VR5H - VR2H)>>#1-bit);
VR3L = rnd((VR5L - VR2L)>>#1-bit);
VR2H = rnd((VR0H * VR4L - VR0L * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd((VR0L * VR4L + VR0H * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = (VR5H + VR2H)>>#1-bit;
VR0L = (VR5L + VR2L)>>#1-bit;
VR3H = (VR5H - VR2H)>>#1-bit;
VR3L = (VR5L - VR2L)>>#1-bit;
VR2H = (VR0H * VR4L - VR0L * VR4H)>>VSTATUS[SHIFTR];
VR2L = (VR0L * VR4L + VR0H * VR4H)>>VSTATUS[SHIFTR];

}
}

Sign-Extension is automatically done for the shift right operations

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT3 VR5, VR4, VR3, VR2, VR0, #1-bit — Complex FFT calculation instruction

677SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH
• The OVFR and OVFI flags are also set if, after shift right operation, the 32-bit

temporary result can't fit in 16-bit destination

Pipeline This is a 2p/1-cycle instruction. The VCFFT operation takes 2p cycles and the VMOV
operation completes in a single cycle.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT3 VR5, VR4, VR3, VR2, VR0, #1-bit || VMOV32 VR5, mem32 — Complex FFT calculation instruction with Parallel
Load www.ti.com

678 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT3 VR5, VR4, VR3, VR2, VR0, #1-bit || VMOV32 VR5, mem32 Complex FFT calculation
instruction with Parallel Load

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR5 Complex Input
VR4 Complex Input
VR3 Complex Output
VR2 Complex Output/Complex Input from previous operation
VR0 Complex Output/Complex Input from previous operation
#1-bit 1-bit immediate value
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 1011 0000
MSW: 0000 001I mem32

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR0H = rnd(sat(VR5H + VR2H)>>#1-bit);
VR0L = rnd(sat(VR5L + VR2L)>>#1-bit);
VR3H = rnd(sat(VR5H - VR2H)>>#1-bit);
VR3L = rnd(sat(VR5L - VR2L)>>#1-bit);
VR2H = rnd(sat(VR0H * VR4L - VR0L * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd(sat(VR0L * VR4L + VR0H * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = sat(VR5H + VR2H)>>#1-bit;
VR0L = sat(VR5L + VR2L)>>#1-bit;
VR3H = sat(VR5H - VR2H)>>#1-bit;
VR3L = sat(VR5L - VR2L)>>#1-bit;
VR2H = sat(VR0H * VR4L - VR0L * VR4H)>>VSTATUS[SHIFTR];
VR2L = sat(VR0L * VR4L + VR0H * VR4H)>>VSTATUS[SHIFTR];

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR0H = rnd((VR5H + VR2H)>>#1-bit);
VR0L = rnd((VR5L + VR2L)>>#1-bit);
VR3H = rnd((VR5H - VR2H)>>#1-bit);
VR3L = rnd((VR5L - VR2L)>>#1-bit);
VR2H = rnd((VR0H * VR4L - VR0L * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd((VR0L * VR4L + VR0H * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = (VR5H + VR2H)>>#1-bit;
VR0L = (VR5L + VR2L)>>#1-bit;
VR3H = (VR5H - VR2H)>>#1-bit;
VR3L = (VR5L - VR2L)>>#1-bit;
VR2H = (VR0H * VR4L - VR0L * VR4H)>>VSTATUS[SHIFTR];
VR2L = (VR0L * VR4L + VR0H * VR4H)>>VSTATUS[SHIFTR];

}
}
VR5 = [mem32];

Sign-Extension is automatically done for the shift right operations

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT3 VR5, VR4, VR3, VR2, VR0, #1-bit || VMOV32 VR5, mem32 — Complex FFT calculation instruction
with Parallel Load

679SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH
• The OVFR and OVFI flags are also set if, after shift right operation, the 32-bit

temporary result can't fit in 16-bit destination

Pipeline This is a 2p cycle instruction.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT4 VR4, VR2, VR1, VR0, #1-bit — Complex FFT calculation instruction www.ti.com

680 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT4 VR4, VR2, VR1, VR0, #1-bit Complex FFT calculation instruction

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR4 Complex Input
VR2 Complex Output/Complex Input from previous operation
VR1 Complex Output/Complex Input from previous operation
VR0 Complex Output/Complex Input from previous operation
#1-bit 1-bit immediate value

Opcode LSW: 1010 0001 0011 010I

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR0H = rnd(sat(VR0H + VR2H)>>#1-bit);
VR0L = rnd(sat(VR0L + VR2L)>>#1-bit);
VR1H = rnd(sat(VR0H - VR2H)>>#1-bit);
VR1L = rnd(sat(VR0L - VR2L)>>#1-bit);
VR2H = rnd(sat(VR1L * VR4L + VR1H * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd(sat(VR1H * VR4L - VR1L * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = sat(VR0H + VR2H)>>#1-bit;
VR0L = sat(VR0L + VR2L)>>#1-bit;
VR1H = sat(VR0H - VR2H)>>#1-bit;
VR1L = sat(VR0L - VR2L)>>#1-bit;
VR2H = sat(VR1L * VR4L + VR1H * VR4H)>>VSTATUS[SHIFTR];
VR2L = sat(VR1H * VR4L - VR1L * VR4H)>>VSTATUS[SHIFTR];

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR0H = rnd((VR0H + VR2H)>>#1-bit);
VR0L = rnd((VR0L + VR2L)>>#1-bit);
VR1H = rnd((VR0H - VR2H)>>#1-bit);
VR1L = rnd((VR0L - VR2L)>>#1-bit);
VR2H = rnd((VR1L * VR4L + VR1H * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd((VR1H * VR4L - VR1L * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = (VR0H + VR2H)>>#1-bit;
VR0L = (VR0L + VR2L)>>#1-bit;
VR1H = (VR0H - VR2H)>>#1-bit;
VR1L = (VR0L - VR2L)>>#1-bit;
VR2H = (VR1L * VR4L + VR1H * VR4H)>>VSTATUS[SHIFTR];
VR2L = (VR1H * VR4L - VR1L * VR4H)>>VSTATUS[SHIFTR];

}
}

Sign-Extension is automatically done for the shift right operations

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT4 VR4, VR2, VR1, VR0, #1-bit — Complex FFT calculation instruction

681SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH
• The OVFR and OVFI flags are also set if, after shift right operation, the 32-bit

temporary result can't fit in 16-bit destination

Pipeline This is a 2p cycle instruction.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT4 VR4, VR2, VR1, VR0, #1-bit || VMOV32 VR7, mem32 — Complex FFT calculation instruction with Parallel Load
www.ti.com

682 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT4 VR4, VR2, VR1, VR0, #1-bit || VMOV32 VR7, mem32 Complex FFT calculation instruction
with Parallel Load

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR4 Complex Input
VR2 Complex Output/Complex Input from previous operation
VR1 Complex Output/Complex Input from previous operation
VR0 Complex Output/Complex Input from previous operation
#1-bit 1-bit immediate value
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 1011 0000
MSW: 0000 010I mem32

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR0H = rnd(sat(VR0H + VR2H)>>#1-bit);
VR0L = rnd(sat(VR0L + VR2L)>>#1-bit);
VR1H = rnd(sat(VR0H - VR2H)>>#1-bit);
VR1L = rnd(sat(VR0L - VR2L)>>#1-bit);
VR2H = rnd(sat(VR1L * VR4L + VR1H * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd(sat(VR1H * VR4L - VR1L * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = sat(VR0H + VR2H)>>#1-bit;
VR0L = sat(VR0L + VR2L)>>#1-bit;
VR1H = sat(VR0H - VR2H)>>#1-bit;
VR1L = sat(VR0L - VR2L)>>#1-bit;
VR2H = sat(VR1L * VR4L + VR1H * VR4H)>>VSTATUS[SHIFTR];
VR2L = sat(VR1H * VR4L - VR1L * VR4H)>>VSTATUS[SHIFTR];

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR0H = rnd((VR0H + VR2H)>>#1-bit);
VR0L = rnd((VR0L + VR2L)>>#1-bit);
VR1H = rnd((VR0H - VR2H)>>#1-bit);
VR1L = rnd((VR0L - VR2L)>>#1-bit);
VR2H = rnd((VR1L * VR4L + VR1H * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd((VR1H * VR4L - VR1L * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = (VR0H + VR2H)>>#1-bit;
VR0L = (VR0L + VR2L)>>#1-bit;
VR1H = (VR0H - VR2H)>>#1-bit;
VR1L = (VR0L - VR2L)>>#1-bit;
VR2H = (VR1L * VR4L + VR1H * VR4H)>>VSTATUS[SHIFTR];
VR2L = (VR1H * VR4L - VR1L * VR4H)>>VSTATUS[SHIFTR];

}
}
VR7 = [mem32];

Sign-Extension is automatically done for the shift right operations

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT4 VR4, VR2, VR1, VR0, #1-bit || VMOV32 VR7, mem32 — Complex FFT calculation instruction with
Parallel Load

683SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH
• The OVFR and OVFI flags are also set if, after shift right operation, the 32-bit

temporary result can't fit in 16-bit destination

Pipeline This is a 2p cycle instruction.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT5 VR5, VR4, VR3, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 — Complex FFT calculation instruction with
Parallel Load www.ti.com

684 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT5 VR5, VR4, VR3, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 Complex FFT calculation
instruction with Parallel Load

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR5 Complex Input
VR4 Complex Input
VR3 Complex Input
VR2 Complex Output/Complex Input from previous operation
VR1 Complex Output/Complex Input from previous operation
VR0 Complex Output/Complex Input from previous operation
#1-bit 1-bit immediate value
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 0000 0111
MSW: 0010 001I mem32

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR0H = rnd(sat(VR3H - VR2H)>>#1-bit);
VR0L = rnd(sat(VR3L + VR2L)>>#1-bit);
VR1H = rnd(sat(VR3H + VR2H)>>#1-bit);
VR1L = rnd(sat(VR3L - VR2L)>>#1-bit);
VR2H = rnd(sat(VR5H * VR4L - VR5L * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd(sat(VR5L * VR4L + VR5H * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = sat(VR3H - VR2H)>>#1-bit;
VR0L = sat(VR3L + VR2L)>>#1-bit;
VR1H = sat(VR3H + VR2H)>>#1-bit;
VR1L = sat(VR3L - VR2L)>>#1-bit;
VR2H = sat(VR5H * VR4L - VR5L * VR4H)>>VSTATUS[SHIFTR];
VR2L = sat(VR5L * VR4L + VR5H * VR4H)>>VSTATUS[SHIFTR];

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR0H = rnd((VR3H - VR2H)>>#1-bit);
VR0L = rnd((VR3L + VR2L)>>#1-bit);
VR1H = rnd((VR3H + VR2H)>>#1-bit);
VR1L = rnd((VR3L - VR2L)>>#1-bit);
VR2H = rnd((VR5H * VR4L - VR5L * VR4H)>>VSTATUS[SHIFTR]);
VR2L = rnd((VR5L * VR4L + VR5H * VR4H)>>VSTATUS[SHIFTR]);

}else {
VR0H = (VR3H - VR2H)>>#1-bit;
VR0L = (VR3L + VR2L)>>#1-bit;
VR1H = (VR3H + VR2H)>>#1-bit;
VR1L = (VR3L - VR2L)>>#1-bit;
VR2H = (VR5H * VR4L - VR5L * VR4H)>>VSTATUS[SHIFTR];
VR2L = (VR5L * VR4L + VR5H * VR4H)>>VSTATUS[SHIFTR];

}
}
[mem32] = VR1;

Sign-Extension is automatically done for the shift right operations

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT5 VR5, VR4, VR3, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 — Complex FFT calculation
instruction with Parallel Load

685SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH
• The OVFR and OVFI flags are also set if, after shift right operation, the 32-bit

temporary result can't fit in 16-bit destination

Pipeline This is a 2p cycle instruction.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT6 VR3, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 — Complex FFT calculation instruction with Parallel Load
www.ti.com

686 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT6 VR3, VR2, VR1, VR0, #1-bit || VMOV32 mem32, VR1 Complex FFT calculation instruction
with Parallel Load

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR3 Complex Input
VR2 Complex Output/Complex Input from previous operation
VR1 Complex Output/Complex Input from previous operation
VR0 Complex Output/Complex Input from previous operation
#1-bit 1-bit immediate value
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 0000 0111
MSW: 0010 010I mem32

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR0H = rnd(sat(VR3H - VR2H)>>#1-bit);
VR0L = rnd(sat(VR3L + VR2L)>>#1-bit);
VR1H = rnd(sat(VR3H + VR2H)>>#1-bit);
VR1L = rnd(sat(VR3L - VR2L)>>#1-bit);

}else {
VR0H = sat(VR3H - VR2H)>>#1-bit;
VR0L = sat(VR3L + VR2L)>>#1-bit;
VR1H = sat(VR3H + VR2H)>>#1-bit;
VR1L = sat(VR3L - VR2L)>>#1-bit;

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR0H = rnd((VR3H - VR2H)>>#1-bit);
VR0L = rnd((VR3L + VR2L)>>#1-bit);
VR1H = rnd((VR3H + VR2H)>>#1-bit);
VR1L = rnd((VR3L - VR2L)>>#1-bit);

}else {
VR0H = (VR3H - VR2H)>>#1-bit;
VR0L = (VR3L + VR2L)>>#1-bit;
VR1H = (VR3H + VR2H)>>#1-bit;
VR1L = (VR3L - VR2L)>>#1-bit;

}
}
[mem32] = VR1;

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH

Pipeline This is a 1/1-cycle instruction. The VCFFT and VMOV operations are completed in one
cycle.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT7 VR1, VR0, #1-bit || VMOV32 VR2, mem32 — Complex FFT calculation instruction with Parallel Load

687SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT7 VR1, VR0, #1-bit || VMOV32 VR2, mem32 Complex FFT calculation instruction with Parallel
Load

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR3 Complex Input
VR2 Complex Output/Complex Input from previous operation
VR1 Complex Output/Complex Input from previous operation
VR0 Complex Output/Complex Input from previous operation
#1-bit 1-bit immediate value
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 1011 0000
MSW: 0000 011I mem32

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR0L = rnd(sat(VR0L + VR1L)>>#1-bit);
VR0H = rnd(sat(VR0L - VR1L)>>#1-bit);
VR1L = rnd(sat(VR0H + VR1H)>>#1-bit);
VR1H = rnd(sat(VR0H - VR1H)>>#1-bit);

}else {
VR0L = sat(VR0L + VR1L)>>#1-bit;
VR0H = sat(VR0L - VR1L)>>#1-bit;
VR1L = sat(VR0H + VR1H)>>#1-bit;
VR1H = sat(VR0H - VR1H)>>#1-bit;

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR0L = rnd((VR0L + VR1L)>>#1-bit);
VR0H = rnd((VR0L - VR1L)>>#1-bit);
VR1L = rnd((VR0H + VR1H)>>#1-bit);
VR1H = rnd((VR0H - VR1H)>>#1-bit);

}else {
VR0L = (VR0L + VR1L)>>#1-bit;
VR0H = (VR0L - VR1L)>>#1-bit;
VR1L = (VR0H + VR1H)>>#1-bit;
VR1H = (VR0H - VR1H)>>#1-bit;

}
}
VR2 = [mem32];

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH

Pipeline This is a 1/1-cycle instruction. The VCFFT and VMOV operations are completed in one
cycle.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT8 VR3, VR2, #1-bit — Complex FFT calculation instruction www.ti.com

688 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT8 VR3, VR2, #1-bit Complex FFT calculation instruction

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR2 Complex Output/Complex Input from previous operation
VR3 Complex Output/Complex Input from previous operation
#1-bit 1-bit immediate value

Opcode LSW: 1010 0001 0011 011I

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR2L = rnd(sat(VR2L + VR3L)>>#1-bit);
VR2H = rnd(sat(VR2L - VR3L)>>#1-bit);
VR3L = rnd(sat(VR2H + VR3H)>>#1-bit);
VR3H = rnd(sat(VR2H - VR3H)>>#1-bit);

}else {
VR2L = sat(VR2L + VR3L)>>#1-bit;
VR2H = sat(VR2L - VR3L)>>#1-bit;
VR3L = sat(VR2H + VR3H)>>#1-bit;
VR3H = sat(VR2H - VR3H)>>#1-bit;

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR2L = rnd((VR2L + VR3L)>>#1-bit);
VR2H = rnd((VR2L - VR3L)>>#1-bit);
VR3L = rnd((VR2H + VR3H)>>#1-bit);
VR3H = rnd((VR2H - VR3H)>>#1-bit);

}else {
VR2L = (VR2L + VR3L)>>#1-bit;
VR2H = (VR2L - VR3L)>>#1-bit;
VR3L = (VR2H + VR3H)>>#1-bit;
VR3H = (VR2H - VR3H)>>#1-bit;

}
}

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH

Pipeline This is a single cycle instruction.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT8 VR3, VR2, #1-bit || VOMV32 mem32, VR4 — Complex FFT calculation instruction with Parallel Store

689SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT8 VR3, VR2, #1-bit || VOMV32 mem32, VR4 Complex FFT calculation instruction with Parallel
Store

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR4 Complex Input from previous operation
VR2 Complex Output/Complex Input from previous operation
VR3 Complex Output/Complex Input from previous operation
#1-bit 1-bit immediate value
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 0000 0111
MSW: 0010 011I mem32

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR2L = rnd(sat(VR2L + VR3L)>>#1-bit);
VR2H = rnd(sat(VR2L - VR3L)>>#1-bit);
VR3L = rnd(sat(VR2H + VR3H)>>#1-bit);
VR3H = rnd(sat(VR2H - VR3H)>>#1-bit);

}else {
VR2L = sat(VR2L + VR3L)>>#1-bit;
VR2H = sat(VR2L - VR3L)>>#1-bit;
VR3L = sat(VR2H + VR3H)>>#1-bit;
VR3H = sat(VR2H - VR3H)>>#1-bit;

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR2L = rnd((VR2L + VR3L)>>#1-bit);
VR2H = rnd((VR2L - VR3L)>>#1-bit);
VR3L = rnd((VR2H + VR3H)>>#1-bit);
VR3H = rnd((VR2H - VR3H)>>#1-bit);

}else {
VR2L = (VR2L + VR3L)>>#1-bit;
VR2H = (VR2L - VR3L)>>#1-bit;
VR3L = (VR2H + VR3H)>>#1-bit;
VR3H = (VR2H - VR3H)>>#1-bit;

}
}
[mem32] = VR4;

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH

Pipeline This is a single cycle instruction.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT9 VR5, VR4, VR3, VR2, VR1, VR0 #1-bit — Complex FFT calculation instruction www.ti.com

690 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT9 VR5, VR4, VR3, VR2, VR1, VR0 #1-bit Complex FFT calculation instruction

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR0 Complex Input
VR1 Complex Input
VR2 Complex Input
VR3 Complex Input
VR4 Complex Output
VR5 Complex Output
#1-bit 1-bit immediate value

Opcode LSW: 1010 0001 0011 100I

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR4L = rnd(sat(VR0L + VR2L)>>#1-bit);
VR4H = rnd(sat(VR1L + VR3L)>>#1-bit);
VR5L = rnd(sat(VR0L - VR2L)>>#1-bit);
VR5H = rnd(sat(VR1L - VR3L)>>#1-bit);

}else {
VR4L = sat(VR0L + VR2L)>>#1-bit;
VR4H = sat(VR1L + VR3L)>>#1-bit;
VR5L = sat(VR0L - VR2L)>>#1-bit;
VR5H = sat(VR1L - VR3L)>>#1-bit;

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR4L = rnd((VR0L + VR2L)>>#1-bit);
VR4H = rnd((VR1L + VR3L)>>#1-bit);
VR5L = rnd((VR0L - VR2L)>>#1-bit);
VR5H = rnd((VR1L - VR3L)>>#1-bit);

}else {
VR4L = (VR0L + VR2L)>>#1-bit;
VR4H = (VR1L + VR3L)>>#1-bit;
VR5L = (VR0L - VR2L)>>#1-bit;
VR5H = (VR1L - VR3L)>>#1-bit;

}
}

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH

Pipeline This is a single cycle instruction.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT9 VR5, VR4, VR3, VR2, VR1, VR0 #1-bit || VMOVE32 mem32, VR5 — Complex FFT calculation
instruction with Parallel Store

691SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT9 VR5, VR4, VR3, VR2, VR1, VR0 #1-bit || VMOVE32 mem32, VR5 Complex FFT calculation
instruction with Parallel Store

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR0 Complex Input
VR1 Complex Input
VR2 Complex Input
VR3 Complex Input
VR4 Complex Output
VR5 Complex Output
#1-bit 1-bit immediate value
mem32 Pointer to 32-bit memory location

Opcode
LSW: 1110 0010 0000 0111
MSW: 0010 100I mem32

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR4L = rnd(sat(VR0L + VR2L)>>#1-bit);
VR4H = rnd(sat(VR1L + VR3L)>>#1-bit);
VR5L = rnd(sat(VR0L - VR2L)>>#1-bit);
VR5H = rnd(sat(VR1L - VR3L)>>#1-bit);

}else {
VR4L = sat(VR0L + VR2L)>>#1-bit;
VR4H = sat(VR1L + VR3L)>>#1-bit;
VR5L = sat(VR0L - VR2L)>>#1-bit;
VR5H = sat(VR1L - VR3L)>>#1-bit;

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR4L = rnd((VR0L + VR2L)>>#1-bit);
VR4H = rnd((VR1L + VR3L)>>#1-bit);
VR5L = rnd((VR0L - VR2L)>>#1-bit);
VR5H = rnd((VR1L - VR3L)>>#1-bit);

}else {
VR4L = (VR0L + VR2L)>>#1-bit;
VR4H = (VR1L + VR3L)>>#1-bit;
VR5L = (VR0L - VR2L)>>#1-bit;
VR5H = (VR1L - VR3L)>>#1-bit;

}
}
[mem32] = VR5;

Sign-Extension is automatically done for the shift right operations

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT9 VR5, VR4, VR3, VR2, VR1, VR0 #1-bit || VMOVE32 mem32, VR5 — Complex FFT calculation instruction with
Parallel Store www.ti.com

692 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH

Pipeline This is a 1/1-cycle instruction. The VCFFT and VMOV operations are completed in one
cycle.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0 #1-bit — Complex FFT calculation instruction

693SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0 #1-bit Complex FFT calculation instruction

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR0 Complex Input
VR1 Complex Input
VR2 Complex Input
VR3 Complex Input
VR6 Complex Output
VR7 Complex Output
#1-bit 1-bit immediate value

Opcode LSW: 1010 0001 0011 101I

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR6L = rnd(sat(VR0H + VR3H)>>#1-bit);
VR6H = rnd(sat(VR1H - VR2H)>>#1-bit);
VR7L = rnd(sat(VR0H - VR3H)>>#1-bit);
VR7H = rnd(sat(VR1H + VR2H)>>#1-bit);

}else {
VR6L = sat(VR0H + VR3H)>>#1-bit;
VR6H = sat(VR1H - VR2H)>>#1-bit;
VR7L = sat(VR0H - VR3H)>>#1-bit;
VR7H = sat(VR1H + VR2H)>>#1-bit;

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR6L = rnd((VR0H + VR3H)>>#1-bit);
VR6H = rnd((VR1H - VR2H)>>#1-bit);
VR7L = rnd((VR0H - VR3H)>>#1-bit);
VR7H = rnd((VR1H + VR2H)>>#1-bit);

}else {
VR6L = (VR0H + VR3H)>>#1-bit;
VR6H = (VR1H - VR2H)>>#1-bit;
VR7L = (VR0H - VR3H)>>#1-bit;
VR7H = (VR1H + VR2H)>>#1-bit;

}
}

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH

Pipeline This is a single cycle instruction.

Example _CFFT_run1024Pt:
...
etc ...
...
MOVL *-SP[ARG_OFFSET], XAR4
VSATON

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0 #1-bit — Complex FFT calculation instruction www.ti.com

694 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

_CFFT_run1024Pt_stages1and2Combined:
MOVZ AR0, *+XAR4[NSAMPLES_OFFSET]
MOVL XAR2, *+XAR4[INBUFFER_OFFSET]
MOVL XAR1, *+XAR4[OUTBUFFER_OFFSET]

.lp_amode
SETC AMODE

NOP *,ARP2
VMOV32 VR0, *BR0++
VMOV32 VR1, *BR0++
VCFFT7 VR1, VR0, #1

|| VMOV32 VR2, *BR0++

VMOV32 VR3, *BR0++
VCFFT8 VR3, VR2, #1

VCFFT9 VR5, VR4, VR3, VR2, VR1, VR0, #1

.align 2
RPTB _CFFT_run1024Pt_stages1and2CombinedLoop, #S12_LOOP_COUNT

VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1
|| VMOV32 VR0, *BR0++

VMOV32 VR1, *BR0++
VCFFT7 VR1, VR0, #1

|| VMOV32 VR2, *BR0++

VMOV32 VR3, *BR0++
VCFFT8 VR3, VR2, #1

|| VMOV32 *XAR1++, VR4

VMOV32 *XAR1++, VR6
VCFFT9 VR5, VR4, VR3, VR2, VR1, VR0, #1

|| VMOV32 *XAR1++, VR5

VMOV32 *++, VR7, ARP2

_CFFT_run1024Pt_stages1and2CombinedLoop:

VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1

VMOV32 *XAR1++, VR4
VMOV32 *XAR1++, VR6
VMOV32 *XAR1++, VR5
VMOV32 *XAR1++, VR7

_CFFT_run1024Pt_stages1and2CombinedEnd:
.c28_amode
CLRC AMODE

_CFFT_run1024Pt_stages3and4Combined:
...
etc ...
...
VSETSHR #15
VRNDON
MOVL XAR2, *+XAR4[S34_INPUT_OFFSET]
MOVL XAR1, #S34_INSEP
MOVL XAR0, #S34_OUTSEP
MOVL XAR6, *+XAR4[S34_OUTPUT_OFFSET]

MOVL XAR7, XAR6
ADDB XAR7, #S34_GROUPSEP
MOVL XAR3, #_vcu2_twiddleFactors

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0 #1-bit — Complex FFT calculation instruction

695SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

MOVL *-SP[TFPTR_OFFSET], XAR3
MOVL XAR4, XAR2
ADDB XAR4, #S34_GROUPSEP
MOVL XAR5, #S34_OUTER_LOOP_COUNT

_CFFT_run1024Pt_stages3and4OuterLoop:

MOVL XAR3, *-SP[TFPTR_OFFSET]

; Inner Butterfly Loop
VMOV32 VR5, *+XAR4[AR1]
VMOV32 VR6, *+XAR2[AR1]
VMOV32 VR7, *XAR4++
VMOV32 VR4, *XAR3++
VCFFT1 VR2, VR5, VR4

VMOV32 VR5, *XAR2++
VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1

.align 2
RPTB _CFFT_run1024Pt_stages3and4InnerLoop, #S34_INNER_LOOP_COUNT
VMOV32 VR4, *XAR3++
VCFFT3 VR5, VR4, VR3, VR2, VR0, #1

|| VMOV32 VR5, *+XAR4[AR1]

VMOV32 VR6, *+XAR2[AR1]
VCFFT4 VR4, VR2, VR1, VR0, #1

|| VMOV32 VR7, *XAR4++

VMOV32 VR4, *XAR3++
VMOV32 *XAR6++, VR0

VCFFT5 VR5, VR4, VR3, VR2, VR1, VR0, #1
|| VMOV32 *XAR7++, VR1

VMOV32 VR5, *XAR2++
VMOV32 *+XAR6[AR0], VR0

VCFFT2 VR7, VR6, VR4, VR2, VR1, VR0, #1
|| VMOV32 *+XAR7[AR0], VR1

_CFFT_run1024Pt_stages3and4InnerLoop:

VMOV32 VR4, *XAR3++
VCFFT3 VR5, VR4, VR3, VR2, VR0, #1

NOP
VCFFT4 VR4, VR2, VR1, VR0, #1

NOP
VMOV32 *XAR6++, VR0
VCFFT6 VR3, VR2, VR1, VR0, #1

|| VMOV32 *XAR7++, VR1

NOP
VMOV32 *+XAR6[AR0], VR0
VMOV32 *+XAR7[AR0], VR1

ADDB XAR2, #S34_POST_INCREMENT
ADDB XAR4, #S34_POST_INCREMENT
ADDB XAR6, #S34_POST_INCREMENT
ADDB XAR7, #S34_POST_INCREMENT

BANZ _CFFT_run1024Pt_stages3and4OuterLoop, AR5--

_CFFT_run1024Pt_stages3and4CombinedEnd:

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0 #1-bit — Complex FFT calculation instruction www.ti.com

696 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

See also The entire FFT implementation, with accompanying code comments, can be found in the
VCU Library in controlSUITE.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0 #1-bit || VMOV32 VR0, mem32 — Complex FFT calculation
instruction with Parallel Load

697SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0 #1-bit || VMOV32 VR0, mem32 Complex FFT calculation
instruction with Parallel Load

Operands This operation assumes the following complex packing order for complex operands:
VRa[31:16] = Imaginary Part
VRa[15:0] = Real Part
It ignores the VSTATUS[CPACK] bit.

VR0 Complex Input
VR1 Complex Input
VR2 Complex Input
VR3 Complex Input
VR6 Complex Output
VR7 Complex Output
#1-bit 1-bit immediate value
mem32 pointer to 32-bit memory location

Opcode LSW: 1110 0010 1011 0000

MSW: 0000 100I mem32

Description This operation is used in the butterfly operation of the FFT:
If(VSTATUS[SAT] == 1){

If(VSTATUS[RND] == 1){
VR6L = rnd(sat(VR0H + VR3H)>>#1-bit);
VR6H = rnd(sat(VR1H - VR2H)>>#1-bit);
VR7L = rnd(sat(VR0H - VR3H)>>#1-bit);
VR7H = rnd(sat(VR1H + VR2H)>>#1-bit);

}else {
VR6L = sat(VR0H + VR3H)>>#1-bit;
VR6H = sat(VR1H - VR2H)>>#1-bit;
VR7L = sat(VR0H - VR3H)>>#1-bit;
VR7H = sat(VR1H + VR2H)>>#1-bit;

}
}else { //VSTATUS[SAT] = 0

If(VSTATUS[RND] == 1){
VR6L = rnd((VR0H + VR3H)>>#1-bit);
VR6H = rnd((VR1H - VR2H)>>#1-bit);
VR7L = rnd((VR0H - VR3H)>>#1-bit);
VR7H = rnd((VR1H + VR2H)>>#1-bit);

}else {
VR6L = (VR0H + VR3H)>>#1-bit;
VR6H = (VR1H - VR2H)>>#1-bit;
VR7L = (VR0H - VR3H)>>#1-bit;
VR7H = (VR1H + VR2H)>>#1-bit;

}
}
VR0 = [mem32];

Sign-Extension is automatically done for the shift right operations

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if signed overflow is detected for add/sub calculation in which destination

is VRxL
• OVFI is set if signed overflow is detected for add/sub calculation in which destination

is VRxH

Pipeline This is a 1/1-cycle instruction. The VCFFT and VMOV operations are completed in one
cycle.

Example See the example for VCFFT10 VR7, VR6, VR3, VR2, VR1, VR0, #1-bit

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Instruction Set www.ti.com

698 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.5.8 Galois Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 5-17. Galois Field Instructions
Title ...................................................................................................................................... Page

VGFACC VRa, VRb, #4-bit —Galois Field Instruction ........................................................................... 699
VGFACC VRa, VRb, VR7 —Galois Field Instruction ............................................................................. 700
VGFACC VRa, VRb, VR7 || VMOV32 VRc, mem32 —Galois Field Instruction with Parallel Load ......................... 701
VGFADD4 VRa, VRb, VRc, #4-bit —Galois Field Four Parallel Byte X Byte Add............................................ 702
VGFINIT mem16 —Initialize Galois Field Polynomial and Order ............................................................... 703
VGFMAC4 VRa, VRb, VRc —Galois Field Four Parallel Byte X Byte Multiply and Accumulate ............................ 704
VGFMPY4 VRa, VRb, VRc —Galois Field Four Parallel Byte X Byte Multiply................................................. 705
VGFMPY4 VRa, VRb, VRc || VMOV32 VR0, mem32 —Galois Field Four Parallel Byte X Byte Multiply with Parallel

Load ............................................................................................................................ 706
VGFMAC4 VRa, VRb, VRc || PACK4 VR0, mem32, #2-bit —Galois Field Four Parallel Byte X Byte Multiply and

Accumulate with Parallel Byte Packing.................................................................................... 707
VPACK4 VRa, mem32, #2-bit —Byte Packing.................................................................................... 708
VREVB VRa —Byte Reversal......................................................................................................... 709
VSHLMB VRa, VRb —Shift Left and Merge Right Bytes ......................................................................... 710

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VGFACC VRa, VRb, #4-bit — Galois Field Instruction

699SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VGFACC VRa, VRb, #4-bit Galois Field Instruction

Operands

VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
#4-bit 4-bit Immediate Value

Opcode
LSW: 1110 0110 1000 0001
MSW: 0000 00aa abbb IIII

Description Performs the following sequence of operations
If (I[0:0] == 1 )

VRa[7:0] = VRa[7:0] ^ VRb[7:0]

If (I[1:1] == 1 )
VRa[7:0] = VRa[7:0] ^ VRb[15:8]

If (I[2:2] == 1 )
VRa[7:0] = VRa[7:0] ^ VRb[23:16]

If (I[3:3] == 1 )
VRa[7:0] = VRa[7:0] ^ VRb[31:24]

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also VGFACC VRa, VRb, VR7
VGFACC VRa, VRb, VR7 || VMOV32 VRc, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VGFACC_VRa_VRb_VR7_1



VGFACC VRa, VRb, VR7 — Galois Field Instruction www.ti.com

700 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VGFACC VRa, VRb, VR7 Galois Field Instruction

Operands

VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
VR7 General purpose register: VR7

Opcode LSW: 1110 0110 1000 0001
MSW: 0000 0100 00aa abbb

Description Performs the following sequence of operations
If (VR7[0:0] == 1 )

VRa[7:0] = VRa[7:0] ^ VRb[7:0]

If (VR7[1:1] == 1 )
VRa[7:0] = VRa[7:0] ^ VRb[15:8]

If (VR7[2:2] == 1 )
VRa[7:0] = VRa[7:0] ^ VRb[23:16]

If (VR7[3:3] == 1 )
VRa[7:0] = VRa[7:0] ^ VRb[31:24]

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also VGFACC VRa, VRb, #4-bit
VGFACC VRa, VRb, VR7 || VMOV32 VRc, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VGFACC VRa, VRb, VR7 || VMOV32 VRc, mem32 — Galois Field Instruction with Parallel Load

701SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VGFACC VRa, VRb, VR7 || VMOV32 VRc, mem32 Galois Field Instruction with Parallel Load

Operands

VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
VRc General purpose register: VR0, VR1....VR7. Cannot be VR8
VR7 General purpose register: VR7
mem32 Pointer to a 32-bit memory location

Opcode LSW: 1110 0010 1011 011a
MSW: aabb bccc mem32

Description Performs the following sequence of operations
If (VR7[0:0] == 1 )

VRa[7:0] = VRa[7:0] ^ VRb[7:0]

If (VR7[1:1] == 1 )
VRa[7:0] = VRa[7:0] ^ VRb[15:8]

If (VR7[2:2] == 1 )
VRa[7:0] = VRa[7:0] ^ VRb[23:16]

If (VR7[3:3] == 1 )
VRa[7:0] = VRa[7:0] ^ VRb[31:24]

VRc = [mem32]

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a 1/1-cycle instruction. Both the VGFACC and VMOV32 operation complete in a
single cycle.

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also VGFACC VRa, VRb, #4-bit
VGFACC VRa, VRb, VR7

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VGFACC_VRa_VRb_VR7_1



VGFADD4 VRa, VRb, VRc, #4-bit — Galois Field Four Parallel Byte X Byte Add www.ti.com

702 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VGFADD4 VRa, VRb, VRc, #4-bit Galois Field Four Parallel Byte X Byte Add

Operands

VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
VRc General purpose register: VR0, VR1....VR7. Cannot be VR8
#4-bit 4-bit Immediate Value

Opcode LSW: 1110 0110 1000 0000
MSW: 000a aabb bccc IIII

Description Performs the following sequence of operations
If (I[0:0] == 1 )

VRa[7:0] = VRb[7:0] ^ VRc[7:0]
else

VRa[7:0] = VRb[7:0]

If (I[1:1] == 1 )
VRa[15:8] = VRb[15:8] ^ VRc[15:8]

else
VRa[15:8] = VRb[15:8]

If (I[2:2] == 1 )
VRa[23:16] = VRb[23:16] ^ VRc[23:16]

else
VRa[23:16] = VRb[23:16]

If (I[3:3] == 1 )
VRa[31:24] = VRb[31:24] ^ VRc[31:24]

else
VRa[31:24] = VRb[31:24]

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single cycle instruction

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VGFINIT mem16 — Initialize Galois Field Polynomial and Order

703SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VGFINIT mem16 Initialize Galois Field Polynomial and Order

Operands

mem16 Pointer to 16-bit memory location

Opcode LSW: 1110 0010 1100 0101
MSW: 0000 0000 mem16

Description Initialize GF Polynomial and Order
VSTATUS[GFPOLY] = [mem16][7:0]
VSTATUS[GFORDER] = [mem16][10:8]

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VGFMAC4 VRa, VRb, VRc — Galois Field Four Parallel Byte X Byte Multiply and Accumulate www.ti.com

704 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VGFMAC4 VRa, VRb, VRc Galois Field Four Parallel Byte X Byte Multiply and Accumulate

Operands

VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
VRc General purpose register: VR0, VR1....VR7. Cannot be VR8

Opcode LSW: 1110 0110 1000 0000
MSW: 0010 001a aabb bccc

Description Performs the follow sequence of operations:
VRa[7:0] = (VRa[7:0] * VRb[7:0]) ^ VRc[7:0]
VRa[15:8] = (VRa[15:8] * VRb[15:8]) ^ VRc[15:8]
VRa[23:16] = (VRa[23:16] * VRb[23:16]) ^ VRc[23:16]
VRa[31:24] = (VRa[31:24] * VRb[31:24]) ^ VRc[31:24]

The GF multiply operation is defined by VSTATUS[GFPOLY] and VSTATUS[GFORDER]
bits.

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also VGFMPY4 VRa, VRb, VRc || VMOV32 VR0, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
Bad link
Bad link: #VGFMAC4_VRa_VRb_VRc_mem32_1



www.ti.com VGFMPY4 VRa, VRb, VRc — Galois Field Four Parallel Byte X Byte Multiply

705SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VGFMPY4 VRa, VRb, VRc Galois Field Four Parallel Byte X Byte Multiply

Operands

VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
VRc General purpose register: VR0, VR1....VR7. Cannot be VR8

Opcode LSW: 1110 0110 1000 0000
MSW: 0010 000a aabb bccc

Description Performs the following sequence of operations
VRa[7:0] = VRb[7:0] * VRc[7:0]
VRa[15:8] = VRb[15:8] * VRc[15:8]
VRa[23:16] = VRb[23:16] * VRc[23:16]
VRa[31:24] = VRb[31:24] * VRc[31:24]

The GF multiply operation is defined by VSTATUS[GFPOLY] and VSTATUS[GFORDER]
bits.

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single cycle instruction

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also VGFMPY4 VRa, VRb, VRc || VMOV32 VR0, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VGFMPY4 VRa, VRb, VRc || VMOV32 VR0, mem32 — Galois Field Four Parallel Byte X Byte Multiply with Parallel Load
www.ti.com

706 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VGFMPY4 VRa, VRb, VRc || VMOV32 VR0, mem32 Galois Field Four Parallel Byte X Byte Multiply
with Parallel Load

Operands

VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
VRc General purpose register: VR0, VR1....VR7. Cannot be VR8
VR0 General purpose register: VR0
mem32 Pointer to a 32-bit memory location

Opcode LSW: 1110 0010 1011 010a
MSW: aabb bccc mem32

Description Performs the following sequence of operations
VRa[7:0] = VRb[7:0] * VRc[7:0]
VRa[15:8] = VRb[15:8] * VRc[15:8]
VRa[23:16] = VRb[23:16] * VRc[23:16]
VRa[31:24] = VRb[31:24] * VRc[31:24]
VR0 = [mem32]

The GF multiply operation is defined by VSTATUS[GFPOLY] and VSTATUS[GFORDER]
bits.

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a 1/1-cycle instruction. Both the VGFMPY4 and VMOV32 operation complete in a
single cycle.

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also VGFMPY4 VRa, VRb, VRc

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VGFMAC4 VRa, VRb, VRc || PACK4 VR0, mem32, #2-bit — Galois Field Four Parallel Byte X Byte Multiply
and Accumulate with Parallel Byte Packing

707SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VGFMAC4 VRa, VRb, VRc || PACK4 VR0, mem32, #2-bit Galois Field Four Parallel Byte X Byte
Multiply and Accumulate with Parallel Byte Packing

Operands

VRb General purpose register: VR0, VR1....VR7. Cannot be VR8
VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
VRc General purpose register: VR0, VR1....VR7. Cannot be VR8
VR0 General purpose register: VR0
mem32 Pointer to 32-bit memory location
#2-bit 2-bit Immediate Value

Opcode LSW: 1110 0010 1011 1IIa
MSW: aabb bccc mem32

Description Performs the follow sequence of operations:
VRa[7:0] = (VRa[7:0] * VRb[7:0]) ^ VRc[7:0]
VRa[15:8] = (VRa[15:8] * VRb[15:8]) ^ VRc[15:8]
VRa[23:16] = (VRa[23:16] * VRb[23:16]) ^ VRc[23:16]
VRa[31:24] = (VRa[31:24] * VRb[31:24]) ^ VRc[31:24]

If (I == 0)
VR0[7:0] = [mem32][7:0]
VR0[15:8] = [mem32][7:0]
VR0[23:16] = [mem32][7:0]
VR0[31:24] = [mem32][7:0]

Else If (I == 1)
VR0[7:0] = [mem32][15:8]
VR0[15:8] = [mem32][15:8]
VR0[23:16] = [mem32][15:8]
VR0[31:24] = [mem32][15:8]

Else If (I == 2)
VR0[7:0] = [mem32][23:16]
VR0[15:8] = [mem32][23:16]
VR0[23:16] = [mem32][23:16]
VR0[31:24] = [mem32][23:16]

Else If (I == 3)
VR0[7:0] = [mem32][31:24]
VR0[15:8] = [mem32][31:24]
VR0[23:16] = [mem32][31:24]
VR0[31:24] = [mem32][31:24]

The GF multiply operation is defined by VSTATUS[GFPOLY] and VSTATUS[GFORDER]
bits.

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a 1/1-cycle instruction. Both the VGFMAC4 and PACK4 operations complete in a
single cycle.

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VPACK4 VRa, mem32, #2-bit — Byte Packing www.ti.com

708 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VPACK4 VRa, mem32, #2-bit Byte Packing

Operands

VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
mem32 Pointer to a 32-bit memory location
#2-bit 2-bit Immediate Value

Opcode LSW: 1110 0010 1011 0001
MSW: 000a aaII mem32

Description Pack Ith byte from a memory location 4 times in VRa
If (I == 0)

VRa[7:0] = [mem32][7:0]
VRa[15:8] = [mem32][7:0]
VRa[23:16] = [mem32][7:0]
VRa[31:24] = [mem32][7:0]

Else If (I == 1)
VRa[7:0] = [mem32][15:8]
VRa[15:8] = [mem32][15:8]
VRa[23:16] = [mem32][15:8]
VRa[31:24] = [mem32][15:8]

Else If (I == 2)
VRa[7:0] = [mem32][23:16]
VRa[15:8] = [mem32][23:16]
VRa[23:16] = [mem32][23:16]
VRa[31:24] = [mem32][23:16]

Else If (I == 3)
VRa[7:0] = [mem32][31:24]
VRa[15:8] = [mem32][31:24]
VRa[23:16] = [mem32][31:24]
VRa[31:24] = [mem32][31:24]

The GF multiply operation is defined by VSTATUS[GFPOLY] and VSTATUS[GFORDER]
bits.

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VREVB VRa — Byte Reversal

709SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VREVB VRa Byte Reversal

Operands

VRa General purpose register: VR0, VR1....VR7. Cannot be VR8

Opcode LSW: 1110 0110 1000 0000
MSW: 0010 0100 0000 0aaa

Description Reverse Bytes
Input: VRa = {B3,B2,B1,B0}
Output: VRa = {B0,B1,B2,B3}

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VSHLMB VRa, VRb — Shift Left and Merge Right Bytes www.ti.com

710 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSHLMB VRa, VRb Shift Left and Merge Right Bytes

Operands

VRa General purpose register: VR0, VR1....VR7. Cannot be VR8
VRb General purpose register: VR0, VR1....VR7. Cannot be VR8

Opcode LSW: 1110 0110 1000 0000
MSW: 0010 0100 01aa abbb

Description Shift Left and Merge Bytes
Input: VRa = {B7,B6,B5,B4}
Input: VRb = {B3,B2,B1,B0}

Output: VRa = {B6,B5,B4,B3}
Output: VRb = {B2,B1,B0,8'b0}

Restrictions VRa != VRb. The source and destination registers must be different

Flags This instruction does not affect any flags in the VSTATUS register

Pipeline This is a single-cycle instruction

Example See the Reed-Solomon algorithm implementation in the VCU library in controlSUITE

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Instruction Set

711SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.5.9 Viterbi Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 5-18. Viterbi Instructions
Title ...................................................................................................................................... Page

VITBM2 VR0 —Code Rate 1:2 Branch Metric Calculation........................................................................ 712
VITBM2 VR0, mem32 —Branch Metric Calculation CR=1/2 ..................................................................... 713
VITBM2 VR0 || VMOV32 VR2, mem32 — Code Rate 1:2 Branch Metric Calculation with Parallel Load.................. 714
VITBM3 VR0, VR1, VR2 —Code Rate 1:3 Branch Metric Calculation .......................................................... 715
VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32 —Code Rate 1:3 Branch Metric Calculation with Parallel Load .... 716
VITBM3 VR0L, VR1L, mem16 —Branch Metric Calculation CR=1/3 ........................................................... 717
VITDHADDSUB VR4, VR3, VR2, VRa —Viterbi Double Add and Subtract, High ............................................. 718
VITDHADDSUB VR4, VR3, VR2, VRa || VMOV32 mem32, VRb —Viterbi Add and Subtract High with Parallel Store . 720
VITDHSUBADD VR4, VR3, VR2, VRa —Viterbi Add and Subtract Low........................................................ 721
VITDHSUBADD VR4, VR3, VR2, VRa || VMOV32 mem32, VRb —Viterbi Subtract and Add, High with Parallel Store 722
VITDLADDSUB VR4, VR3, VR2, VRa —Viterbi Add and Subtract Low ....................................................... 723
VITDLADDSUB VR4, VR3, VR2, VRa || VMOV32 mem32, VRb —Viterbi Add and Subtract Low with Parallel Load... 724
VITDLSUBADD VR4, VR3, VR2, VRa —Viterbi Subtract and Add Low ....................................................... 725
VITDLSUBADD VR4, VR3, VR2, VRa || VMOV32 mem32, VRb —Viterbi Subtract and Add, Low with Parallel Store . 726
VITHSEL VRa, VRb, VR4, VR3 —Viterbi Select High ............................................................................ 727
VITHSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 —Viterbi Select High with Parallel Load ....................... 728
VITLSEL VRa, VRb, VR4, VR3 —Viterbi Select, Low Word ..................................................................... 729
VITLSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 —Viterbi Select Low with Parallel Load ........................ 730
VITSTAGE —Parallel Butterfly Computation....................................................................................... 732
VITSTAGE || VITBM2 VR0, mem32 —Parallel Butterfly Computation with Parallel Branch Metric Calculation CR=1/2 733
VITSTAGE || VMOV16 VR0L, mem1 —Parallel Butterfly Computation with Parallel Load ................................. 735
VMOV32 VSM (k+1):VSM(k), mem32 —Load Consecutive State Metrics .................................................... 736
VMOV32 mem32, VSM (k+1):VSM(k) —Store Consecutive State Metrics ................................................... 737
VSETK #3-bit —Set Constraint Length for Viterbi Operation .................................................................... 738
VSMINIT mem16 —State Metrics Register initialization .......................................................................... 739
VTCLEAR —Clear Transition Bit Registers ........................................................................................ 740
VTRACE mem32, VR0, VT0, VT1 —Viterbi Traceback, Store to Memory ..................................................... 741
VTRACE VR1, VR0, VT0, VT1 —Viterbi Traceback, Store to Register ......................................................... 743
VTRACE VR1, VR0, VT0, VT1 || VMOV32 VT0, mem32 —Trace-back with Parallel Load.................................. 745

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITBM2 VR0 — Code Rate 1:2 Branch Metric Calculation www.ti.com

712 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITBM2 VR0 Code Rate 1:2 Branch Metric Calculation

Operands Before the operation, the inputs are loaded into the registers as shown below. Each
operand for the branch metric calculation is 16-bits.

Input Register Value
VR0L 16-bit decoder input 0
VR0H 16-bit decoder input 1

The result of the operation is also stored in VR0 as shown below:
Output Register Value
VR0L 16-bit branch metric 0 = VR0L + VR0H
VR0H 16-bit branch metric 1 = VR0L - VR0L

Opcode LSW: 1110 0101 0000 1100

Description Branch metric calculation for code rate = 1/2.
// SAT is VSTATUS[SAT]
// VR0L is decoder input 0
// VR0H is decoder input 1
//
// Calculate the branch metrics by performing 16-bit signed
// addition and subtraction
//

VR0L = VR0L + VR0H; // VR0L = branch metric 0
VR0H = VR0L - VR0L; // VR0H = branch metric 1
if (SAT == 1)
{

sat16(VR0L);
sat16(VR0H);

}

Flags This instruction sets the real overflow flag, VSTATUS[OVFR] in the event of an overflow
or underflow.

Pipeline This is a single-cycle instruction.

Example

See also VITBM2 VR0 || VMOV32 VR2, mem32
VITBM3 VR0, VR1, VR2

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITBM2 VR0, mem32 — Branch Metric Calculation CR=1/2

713SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITBM2 VR0, mem32 Branch Metric Calculation CR=1/2

Operands Before the operation, the inputs are loaded into the registers as shown below.

Opcode LSW: 1110 0010 1000 0000
MSW: 0000 0001 mem16

Description Calculates two Branch-Metrics (BMs) for CR = ½
If(VSTATUS[SAT] == 1){

VR0L = sat([mem32][15:0] + [mem32][31:16]);
VR0H = sat([mem32][15:0] - [mem32][31:16]);

}else {
VR0L = [mem32][15:0] + [mem32][31:16];
VR0H = [mem32][15:0] - [mem32][31:16];

}

Flags This instruction modifies the following bits in the VSTATUS register:
• OVFR is set if overflow is detected in the computation of 16-bit signed result

Pipeline This is a single-cycle instruction.

Example ;
; Viterbi K=4 CR = 1/2
;
;etc ...
;

VSETK #CONSTRAINT_LENGTH ; Set constraint length
MOV AR1, #SMETRICINIT_OFFSET
VSMINIT *+XAR4[AR1] ; Initialize the state metrics
MOV AR1, #NBITS_OFFSET
MOV AL, *+XAR4[AR1]
LSR AL, 2
SUBB AL, #2
MOV AR3, AL ; Initialize the BMSEL register

; for butterfly 0 to K-1
MOVL XAR6, *+XAR4[BMSELINIT_OFFSET]
VMOV32 VR2, *XAR6 ; Initialize BMSEL for

; butterfly 0 to 7
VITBM2 VR0, *XAR0++ ; Calculate and store BMs in

; VR0L and VR0H
;
;etc ...

See also VITBM2 VR0

VITBM2 VR0 || VMOV32 VR2, mem32

VITSTAGE_VITBM2_VR0_mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITBM2 VR0 || VMOV32 VR2, mem32 — Code Rate 1:2 Branch Metric Calculation with Parallel Load www.ti.com

714 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITBM2 VR0 || VMOV32 VR2, mem32 Code Rate 1:2 Branch Metric Calculation with Parallel Load

Operands Before the operation, the inputs are loaded into the registers as shown below. Each
operand for the branch metric calculation is 16-bits.

Input Register Value
VR0L 16-bit decoder input 0
VR0H 16-bit decoder input 1
[mem32] pointer to 32-bit memory location.

The result of the operation is stored in VR0 as shown below:
Output Register Value
VR0L 16-bit branch metric 0 = VR0L + VR0H
VR0H 16-bit branch metric 1 = VR0L - VR0L
VR2 contents of memory pointed to by [mem32]

Opcode
LSW: 1110 0011 1111 1100
MSW: 0000 0000 mem32

Description Branch metric calculation for a code rate of 1/2 with parallel register load.

// SAT is VSTATUS[SAT]
// VR0L is decoder input 0
// VR0H is decoder input 1
//
// Calculate the branch metrics by performing 16-bit signed
// addition and subtraction
//

VR0L = VR0L + VR0H; // VR0L = branch metric 0
VR0H = VR0L - VR0L; // VR0H = branch metric 1
if (SAT == 1)
{

sat16(VR0L);
sat16(VR0H);

}
VR2 = [mem32] // Load VR2L and VR2H with the next state metrics

Flags This instruction sets the real overflow flag, VSTATUS[OVFR] in the event of an overflow
or underflow.

Pipeline Both operations complete in a single cycle.

Example

See also VITBM2 VR0
VITBM3 VR0, VR1, VR2
VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITBM3 VR0, VR1, VR2 — Code Rate 1:3 Branch Metric Calculation

715SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITBM3 VR0, VR1, VR2 Code Rate 1:3 Branch Metric Calculation

Operands Before the operation, the inputs are loaded into the registers as shown below. Each
operand for the branch metric calculation is 16-bits.
Input Register Value
VR0L 16-bit decoder input 0
VR1L 16-bit decoder input 1
VR2L 16-bit decoder input 2

The result of the operation is stored in VR0 and VR1 as shown below:
Output Register Value
VR0L 16-bit branch metric 0 = VR0L + VR1L + VR2L
VR0H 16-bit branch metric 1 = VR0L + VR1L - VR2L
VR1L 16-bit branch metric 2 = VR0L - VR1L + VR2L
VR1H 16-bit branch metric 3 = VR0L - VR1L - VR2L

Opcode LSW: 1110 0101 0000 1101

Description Calculate the four branch metrics for a code rate of 1/3.

// SAT is VSTATUS[SAT]
// VR0L is decoder input 0
// VR1L is decoder input 1
// VR2L is decoder input 2
//
// Calculate the branch metrics by performing 16-bit signed
// addition and subtraction
//

VR0L = VR0L + VR1L + VR2L; // VR0L = branch Metric 0
VR0H = VR0L + VR1L - VR2L; // VR0H = branch Metric 1
VR1L = VR0L - VR1L + VR2L; // VR1L = branch Metric 2
VR1H = VR0L - VR1L - VR2L; // VR1H = branch Metric 3
if(SAT == 1)
{

sat16(VR0L);
sat16(VR0H);
sat16(VR1L);
sat16(VR1H);

}

Flags This instruction sets the real overflow flag, VSTATUS[OVFR] in the event of an overflow
or underflow.

Pipeline This is a 2p-cycle instruction. The instruction following VITBM3 must not use VR0 or
VR1.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITBM2 VR0
VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32
VITBM2 VR0 || VMOV32 VR2, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32 — Code Rate 1:3 Branch Metric Calculation with Parallel Load
www.ti.com

716 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32 Code Rate 1:3 Branch Metric Calculation with
Parallel Load

Operands Before the operation, the inputs are loaded into the registers as shown below. Each
operand for the branch metric calculation is 16-bits.
Input Register Value
VR0L 16-bit decoder input 0
VR1L 16-bit decoder input 1
[mem32] pointer to a 32-bit memory location

The result of the operation is stored in VR0 and VR1 and VR2 as shown below:
Output Register Value
VR0L 16-bit branch metric 0 = VR0L + VR1L + VR2L
VR0H 16-bit branch metric 1 = VR0L + VR1L - VR2L
VR1L 16-bit branch metric 2 = VR0L - VR1L + VR2
VR1H 16-bit branch metric 3 = VR0L - VR1L - VR2L
VR2 Contents of the memory pointed to by [mem32]

Opcode
LSW: 1110 0011 1111 1101
MSW: 0000 0000 mem32

Description Calculate the four branch metrics for a code rate of 1/3 with parallel register load.

// SAT is VSTATUS[SAT]
// VR0L is decoder input 0
// VR1L is decoder input 1
// VR2L is decoder input 2
//
// Calculate the branch metrics by performing 16-bit signed
// addition and subtraction
//

VR0L = VR0L + VR1L + VR2L; // VR0L = branch Metric 0
VR0H = VR0L + VR1L - VR2L; // VR0H = branch Metric 1
VR1L = VR0L - VR1L + VR2L; // VR1L = branch Metric 2
VR1H = VR0L - VR1L - VR2L; // VR1H = branch Metric 3
if(SAT == 1)
{

sat16(VR0L);
sat16(VR0H);
sat16(VR1L);
sat16(VR1H);

}
VR2 = [mem32];

Flags This instruction sets the real overflow flag, VSTATUS[OVFR] in the event of an overflow
or underflow.

Pipeline This is a 2p/1-cycle instruction. The VBITM3 operation takes 2p cycles and the VMOV32
completes in a single cycle. The next instruction must not use VR0 or VR1.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITBM2 VR0
VITBM2 VR0 || VMOV32 VR2, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITBM3 VR0L, VR1L, mem16 — Branch Metric Calculation CR=1/3

717SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITBM3 VR0L, VR1L, mem16 Branch Metric Calculation CR=1/3

Operands
Input Output
VR0L Low word of the general purpose register VR0
VR1L Low word of the general purpose register VR1
mem16 Pointer to 16-bit memory location

Opcode
LSW: 1110 0010 1100 0101
MSW: 0000 0010 mem16

Description Calculates four Branch-Metrics (BMs) for CR = 1/3
If(VSTATUS[SAT] == 1){

VR0L = sat(VR0L + VR1L + [mem16]);
VR0H = sat(VR0L + VR1L – [mem16]);
VR1L = sat(VR0L – VR1L + [mem16]);
VR1H = sat(VR0L – VR1L – [mem16]);

}else {
VR0L = VR0L + VR1L + [mem16];
VR0H = VR0L + VR1L – [mem16];
VR1L = VR0L – VR1L + [mem16];
VR1H = VR0L – VR1L – [mem16];

}

Flags This instruction modifies the following bits in the VSTATUS register.
• OVFR is set if overflow is detected in the computation of a 16-bit signed result

Pipeline This is a single-cycle instruction.

Example See the example for VITSTAGE || VMOV16 VROL, mem16

See also VITBM3

VITBM3 VR0, VR1, VR2 || VMOV32 VR2, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDHADDSUB VR4, VR3, VR2, VRa — Viterbi Double Add and Subtract, High www.ti.com

718 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITDHADDSUB VR4, VR3, VR2, VRa Viterbi Double Add and Subtract, High

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaH.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaH Branch metric 1. VRa must be VR0 or VR1.

The result of the operation is stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L + VRaH
VR3H 16-bit path metric 1 = VR2H - VRaH
VR4L 16-bit path metric 2 = VR2L - VRaH
VR4H 16-bit path metric 3 = VR2H +VRaH

Opcode LSW: 1110 0101 0111 aaaa

Description Viterbi high add and subtract. This instruction is used to calculate four path metrics.

//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

VR3L = VR2L + VRaH // Path metric 0
VR3H = VR2H - VRaH // Path metric 1
VR4L = VR2L - VRaH // Path metric 2
VR4H = VR2H + VRaH // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
; Example Viterbi decoder code fragment
; Viterbi butterfly calculations
; Loop once for each decoder input pair
;
; Branch metrics = BM0 and BM1
; XAR5 points to the input stream to the decoder

...

...
_loop:

VMOV32 VR0, *XAR5++ ; Load two inputs into VR0L, VR0H
VITBM2 VR0 ; VR0L = BM0 VR0H = BM1

|| VMOV32 VR2, *XAR1++ ; Load previous state metrics

;
; 2 cycle Viterbi butterfly
;

VITDLADDSUB VR4,VR3,VR2,VR0 ; Perform add/sub
VITLSEL VR6,VR5,VR4,VR3 ; Perform compare/select

|| VMOV32 VR2, *XAR1++ ; Load previous state metrics

;
; 2 cycle Viterbi butterfly, next stage
;

VITDHADDSUB VR4,VR3,VR2,VR0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITDHADDSUB VR4, VR3, VR2, VRa — Viterbi Double Add and Subtract, High

719SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITHSEL VR6,VR5,VR4,VR3
|| VMOV32 VR2, *XAR1++

;
; 2 cycle Viterbi butterfly, next stage
;

VITDLADDSUB VR4,VR3,VR2,VR0
|| VMOV32 *XAR2++, VR5

...

...

See also VITDHSUBADD VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDHADDSUB VR4, VR3, VR2, VRa || VMOV32 mem32, VRb — Viterbi Add and Subtract High with Parallel Store
www.ti.com

720 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITDHADDSUB VR4, VR3, VR2, VRa || VMOV32 mem32, VRb Viterbi Add and Subtract High with
Parallel Store

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaH.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaH Branch metric 1. VRa must be VR0 or VR1.
VRb Value to be stored. VRb can be VR5, VR6, VR7 or VR8.

The result of the operation is stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L + VRaH
VR3H 16-bit path metric 1 = VR2H - VRaH
VR4L 16-bit path metric 2 = VR2L - VRaH
VR4H 16-bit path metric 3 = VR2H +VRaH
[mem32] Contents of VRb. VRb can be VR5, VR6, VR7 or VR8.

Opcode LSW: 1110 0010 0000 1001
MSW: bbbb aaaa mem32

Description Viterbi high add and subtract. This instruction is used to calculate four path metrics.

//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

VR3L = VR2L + VRaH // Path metric 0
VR3H = VR2H - VRaH // Path metric 1
VR4L = VR2L - VRaH // Path metric 2
VR4H = VR2H + VRaH // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VITDHSUBADD VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITDHSUBADD VR4, VR3, VR2, VRa — Viterbi Add and Subtract Low

721SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITDHSUBADD VR4, VR3, VR2, VRa Viterbi Add and Subtract Low

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa must be VR0 or VR1.

The result of the operation is 4 path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L - VRaH
VR3H 16-bit path metric 1 = VR2H + VRaH
VR4L 16-bit path metric 2 = VR2L + VRaH
VR4H 16-bit path metric 3 = VR2H - VRaL

Opcode LSW: 1110 0101 1111 aaaa

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.

//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaL with the branch metric.
//

VR3L = VR2L - VRaL // Path metric 0
VR3H = VR2H + VRaL // Path metric 1
VR4L = VR2L + VRaL // Path metric 2
VR4H = VR2H - VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDHSUBADD VR4, VR3, VR2, VRa || VMOV32 mem32, VRb — Viterbi Subtract and Add, High with Parallel Store
www.ti.com

722 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITDHSUBADD VR4, VR3, VR2, VRa || VMOV32 mem32, VRb Viterbi Subtract and Add, High with
Parallel Store

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaH.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaH Branch metric 1. VRa must be VR0 or VR1.
VRb Contents to be stored. VRb can be VR5, VR6, VR7 or VR8.

The result of the operation is stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L -VRaH
VR3H 16-bit path metric 1 = VR2H + VRaH
VR4L 16-bit path metric 2 = VR2L + VRaH
VR4H 16-bit path metric 3 = VR2H - VRaH
[mem32] Contents of VRb. VRb can be VR5, VR6, VR7 or VR8.

Opcode
LSW: 1110 0010 0000 1011
MSW: bbbb aaaa mem32

Description Viterbi high subtract and add. This instruction is used to calculate four path metrics.

//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

[mem32] = VRb // Store VRb to memory
VR3L = VR2L - VRaH // Path metric 0
VR3H = VR2H + VRaH // Path metric 1
VR4L = VR2L + VRaH // Path metric 2
VR4H = VR2H - VRaH // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITDLADDSUB VR4, VR3, VR2, VRa — Viterbi Add and Subtract Low

723SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITDLADDSUB VR4, VR3, VR2, VRa Viterbi Add and Subtract Low

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa must be VR0 or VR1.

The result of the operation is 4 path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L + VRaH
VR3H 16-bit path metric 1 = VR2H - VRaH
VR4L 16-bit path metric 2 = VR2L - VRaH
VR4H 16-bit path metric 3 = VR2H + VRaL

Opcode LSW: 1110 0101 0011 aaaa

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.
//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaL with the branch metric.
//

VR3L = VR2L + VRaL // Path metric 0
VR3H = VR2H - VRaL // Path metric 1
VR4L = VR2L - VRaL // Path metric 2
VR4H = VR2H + VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDLADDSUB VR4, VR3, VR2, VRa || VMOV32 mem32, VRb — Viterbi Add and Subtract Low with Parallel Load
www.ti.com

724 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITDLADDSUB VR4, VR3, VR2, VRa || VMOV32 mem32, VRb Viterbi Add and Subtract Low with
Parallel Load

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa can be VR0 or VR1.
VRb Contents to be stored to memory

The result of the operation is four path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0 = VR2L + VRaH
VR3H 16-bit path metric 1 = VR2H - VRaH
VR4L 16-bit path metric 2 = VR2L - VRaH
VR4H 16-bit path metric 3 = VR2H + VRaL
[mem32] Contents of VRb. VRb can be VR5, VR6, VR7 or VR8.

Opcode
LSW: 1110 0010 0000 1000
MSW: bbbb aaaa mem32

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.

//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaL with the branch metric.
//

[mem32] = VRb // Store VRb
VR3L = VR2L + VRaL // Path metric 0
VR3H = VR2H - VRaL // Path metric 1
VR4L = VR2L - VRaL // Path metric 2
VR4H = VR2H + VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLSUBADD VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITDLSUBADD VR4, VR3, VR2, VRa — Viterbi Subtract and Add Low

725SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITDLSUBADD VR4, VR3, VR2, VRa Viterbi Subtract and Add Low

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa must be VR0 or VR1.

The result of the operation is four path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0= VR2L - VRaH
VR3H 16-bit path metric 1 = VR2H + VRaH
VR4L 16-bit path metric 2 = VR2L + VRaH
VR4H 16-bit path metric 3 = VR2H - VRaL

Opcode LSW: 1110 0101 1110 aaaa

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.

//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

VR3L = VR2L - VRaL // Path metric 0
VR3H = VR2H + VRaL // Path metric 1
VR4L = VR2L + VRaL // Path metric 2
VR4H = VR2H - VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITDLSUBADD VR4, VR3, VR2, VRa || VMOV32 mem32, VRb — Viterbi Subtract and Add, Low with Parallel Store
www.ti.com

726 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITDLSUBADD VR4, VR3, VR2, VRa || VMOV32 mem32, VRb Viterbi Subtract and Add, Low with
Parallel Store

Operands Before the operation, the inputs are loaded into the registers as shown below. This
operation uses the branch metric stored in VRaL.
Input Register Value
VR2L 16-bit state metric 0
VR2H 16-bit state metric 1
VRaL Branch metric 0. VRa must be VR0 or VR1.
VRb Value to be stored. VRb can be VR5, VR6, VR7 or VR8.

The result of the operation is 4 path metrics stored in VR3 and VR4 as shown below:
Output Register Value
VR3L 16-bit path metric 0= VR2L - VRaH
VR3H 16-bit path metric 1 = VR2H + VRaH
VR4L 16-bit path metric 2 = VR2L + VRaH
VR4H 16-bit path metric 3 = VR2H - VRaL
[mem32] Contents of VRb. VRb can be VR5, VR6, VR7 or VR8.

Opcode
LSW: 1110 0010 0000 1010
MSW: bbbb aaaa mem32

Description This instruction is used to calculate four path metrics in the Viterbi butterfly. This
operation uses the branch metric stored in VRaL.

//
// Calculate the four path metrics by performing 16-bit signed
// addition and subtraction
//
// Before this operation VR2L and VR2H are loaded with the state
// metrics and VRaH with the branch metric.
//

[mem32] = VRb // Store VRb into mem32
VR3L = VR2L - VRaL // Path metric 0
VR3H = VR2H + VRaL // Path metric 1
VR4L = VR2L + VRaL // Path metric 2
VR4H = VR2H - VRaL // Path metric 3

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITDHADDSUB VR4, VR3, VR2, VRa
VITDHSUBADD VR4, VR3, VR2, VRa
VITDLADDSUB VR4, VR3, VR2, VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITHSEL VRa, VRb, VR4, VR3 — Viterbi Select High

727SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITHSEL VRa, VRb, VR4, VR3 Viterbi Select High

Operands Before the operation, the path metrics are loaded into the registers as shown below.
Typically this will have been done using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VR3L 16-bit path metric 0
VR3H 16-bit path metric 1
VR4L 16-bit path metric 2
VR4H 16-bit path metric 3

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
VRaH 16-bit state metric 0. VRa can be VR6 or VR8.
VRbH 16-bit state metric 1. VRb can be VR5 or VR7.
VT0 The transition bit is appended to the end of the register.
VT1 The transition bit is appended to the end of the register.

Opcode
LSW: 1110 0110 1111 0111
MSW: 0000 0000 bbbb aaaa

Description This instruction computes the new state metrics of a Viterbi butterfly operation and
stores them in the higher 16 bits of the VRa and VRb registers. To instead load the state
metrics into the low 16-bits use the VITLSEL instruction.

T0 = T0 << 1 // Shift previous transition bits left
if (VR3L > VR3H)
{

VRbH = VR3L; // New state metric 0
T0[0:0] = 0; // Store the transition bit

}
else
{

VRbH = VR3H; // New state metric 0
T0[0:0] = 1; // Store the transition bit

}

T1 = T1 << 1 // Shift previous transition bits left
if (VR4L > VR4H)
{

VRaH = VR4L; // New state metric 1
T1[0:0] = 0; // Store the transition bit

}
else
{

VRaH = VR4H; // New state metric 1
T1[0:0] = 1; // Store the transition bit

}

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITLSEL VRa, VRb, VR4, VR3

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITHSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 — Viterbi Select High with Parallel Load www.ti.com

728 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITHSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 Viterbi Select High with Parallel Load

Operands Before the operation, the path metrics are loaded into the registers as shown below.
Typically this will have been done using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VR3L 16-bit path metric 0
VR3H 16-bit path metric 1
VR4L 16-bit path metric 2
VR4H 16-bit path metric 3
[mem32] pointer to 32-bit memory location.

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
VRaH 16-bit state metric 0. VRa can be VR6 or VR8.
VRbH 16-bit state metric 1. VRb can be VR5 or VR7.
VT0 The transition bit is appended to the end of the register.
VT1 The transition bit is appended to the end of the register.
VR2 Contents of the memory pointed to by [mem32].

Opcode
LSW: 1110 0011 1111 1111
MSW: bbbb aaaa mem32

Description This instruction computes the new state metrics of a Viterbi butterfly operation and
stores them in the higher 16-bits of the VRa and VRb registers. To instead load the state
metrics into the low 16-bits use the VITLSEL instruction.

T0 = T0 << 1 // Shift previous transition bits left
if (VR3L > VR3H)
{

VRbH = VR3L; // New state metric 0
T0[0:0] = 0; // Store the transition bit

}
else
{

VRbH = VR3H; // New state metric 0
T0[0:0] = 1; // Store the transition bit

}

T1 = T1 << 1 // Shift previous transition bits left
if (VR4L > VR4H)
{

VRaH = VR4L; // New state metric 1
T1[0:0] = 0; // Store the transition bit

}
else
{

VRaH = VR4H; // New state metric 1
T1[0:0] = 1; // Store the transition bit

}
VR2 = [mem32]; // Load VR2

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITLSEL VRa, VRb, VR4, VR3

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITLSEL VRa, VRb, VR4, VR3 — Viterbi Select, Low Word

729SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITLSEL VRa, VRb, VR4, VR3 Viterbi Select, Low Word

Operands Before the operation, the path metrics are loaded into the registers as shown below.
Typically this will have been done using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VR3L 16-bit path metric 0
VR3H 16-bit path metric 1
VR4L 16-bit path metric 2
VR4H 16-bit path metric 3

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
VRaL 16-bit state metric 0. VRa can be VR6 or VR8.
VRbL 16-bit state metric 1. VRb can be VR5 or VR7.
VT0 The transition bit is appended to the end of the register.
VT1 The transition bit is appended to the end of the register.

Opcode
LSW: 1110 0110 1111 0110
MSW: 0000 0000 bbbb aaaa

Description This instruction computes the new state metrics of a Viterbi butterfly operation and
stores them in the higher 16-bits of the VRa and VRb registers. To instead load the state
metrics into the low 16-bits use the VITHSEL instruction.

T0 = T0 << 1 // Shift previous transition bits left
if (VR3L > VR3H)
{

VRbL = VR3L; // New state metric 0
T0[0:0] = 0; // Store the transition bit

}
else
{

VRbL = VR3H; // New state metric 0
T0[0:0] = 1; // Store the transition bit

}

T1 = T1 << 1 // Shift previous transition bits left
if (VR4L > VR4H)
{

VRaL = VR4L; // New state metric 1
T1[0:0] = 0; // Store the transition bit

}
else
{

VRaL = VR4H; // New state metric 1
T1[0:0] = 1; // Store the transition bit

}

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

See also VITHSEL VRa, VRb, VR4, VR3

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITLSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 — Viterbi Select Low with Parallel Load www.ti.com

730 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITLSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 Viterbi Select Low with Parallel Load

Operands Before the operation, the path metrics are loaded into the registers as shown below.
Typically this will have been done using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VR3L 16-bit path metric 0
VR3H 16-bit path metric 1
VR4L 16-bit path metric 2
VR4H 16-bit path metric 3
mem32 Pointer to 32-bit memory location.

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
VRaL 16-bit state metric 0. VRa can be VR6 or VR8.
VRbL 16-bit state metric 1. VRb can be VR5 or VR7.
VT0 The transition bit is appended to the end of the register.
VT1 The transition bit is appended to the end of the register.
VR2 Contents of 32-bit memory pointed to by mem32.

Opcode
LSW: 1110 0011 1111 1110
MSW: bbbb aaaa mem32

Description This instruction computes the new state metrics of a Viterbi butterfly operation and
stores them in the higher 16-bits of the VRa and VRb registers. To instead load the state
metrics into the low 16-bits use the VITHSEL instruction. In parallel the VR2 register is
loaded with the contents of memory pointed to by [mem32].

T0 = T0 << 1 // Shift previous transition bits left
if (VR3L > VR3H)
{

VRbL = VR3L; // New state metric 0
T0[0:0] = 0; // Store the transition bit

}
else
{

VRbL = VR3H; // New state metric 0
T0[0:0] = 1; // Store the transition bit

}

T1 = T1 << 1 // Shift previous transition bits left
if (VR4L > VR4H)
{

VRaL = VR4L; // New state metric 1
T1[0:0] = 0; // Store the transition bit

}
else
{

VRaL = VR4H; // New state metric 1
T1[0:0] = 1; // Store the transition bit

}
VR2 = [mem32]

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example Refer to the example for VITDHADDSUB VR4, VR3, VR2, VRa.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITLSEL VRa, VRb, VR4, VR3 || VMOV32 VR2, mem32 — Viterbi Select Low with Parallel Load

731SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

See also VITHSEL VRa, VRb, VR4, VR3

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITSTAGE — Parallel Butterfly Computation www.ti.com

732 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITSTAGE Parallel Butterfly Computation

Operands None

Opcode LSW: 1110 0101 0010 0110

Description VITSTAGE instruction performs 32 viterbi butterflies in a single cycle. This instructions
does the following:
• Depends on the Initial 64 State Metrics of the current stage stored in registers VSM0

to VSM63
• Depends on the Branch Metrics Select configuration stored in registers VR2 to VR5
• Depends on the Computed Branch Metrics of the current stage stored in registers

VR0 and VR1
• Computes the State Metrics for the next stage and updates registers VSM0 to

VSM63. The 16-bit signed result of the computation is saturated if VSTATUS[SAT]
== 1

• Computes transition bits for all 64 states and updates registers VT0 and VT1

Flags This instruction modifies the following bits in the VSTATUS register.
• OVFR is set if overflow is detected in the computation of a 16-bit signed result

Pipeline This is a single-cycle instruction.

Example ;
; Viterbi K=4 CR = 1/2
;
;etc ...
;

VSETK #CONSTRAINT_LENGTH ; Set constraint length
MOV AR1, #SMETRICINIT_OFFSET
VSMINIT *+XAR4[AR1] ; Initialize the state metrics
MOV AR1, #NBITS_OFFSET
MOV AL, *+XAR4[AR1]
LSR AL, 2
SUBB AL, #2
MOV AR3, AL ; Initialize the BMSEL register

; for butterfly 0 to K-1
MOVL XAR6, *+XAR4[BMSELINIT_OFFSET]
VMOV32 VR2, *XAR6 ; Initialize BMSEL for

; butterfly 0 to 7
VITBM2 VR0, *XAR0++ ; Calculate and store BMs in

; VR0L and VR0H
.align 2
RPTB _VITERBI_runK4CR12_stageAandB, AR3

_VITERBI_runK4CR12_stageA:
VITSTAGE ; Compute NSTATES/2 butterflies

; in parallel,
VITBM2 VR0, *XAR0++ ; compute branch metrics for

; next butterfly
VMOV32 *XAR2++, VT1 ; Store VT1
VMOV32 *XAR2++, VT0 ; Store VT0

;
;etc ...
;

See also VITSTAGE || VITBM2 VR0, mem32

VITSTAGE || VMOV16 VROL, mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITSTAGE || VITBM2 VR0, mem32 — Parallel Butterfly Computation with Parallel Branch Metric Calculation
CR=1/2

733SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITSTAGE || VITBM2 VR0, mem32 Parallel Butterfly Computation with Parallel Branch Metric
Calculation CR=1/2

Operands
Input Output
VR0 Destination register
mem32 Pointer to 32-bit memory location

Opcode
LSW: 1110 0010 1000 0000
MSW: 0000 0010 mem32

Description VITSTAGE instruction performs 32 viterbi butterflies in a single cycle. This instructions
does the following:
• Depends on the Initial 64 State Metrics of the current stage stored in registers VSM0

to VSM63
• Depends on the Branch Metrics Select configuration stored in registers VR2 to VR5
• Depends on the Computed Branch Metrics of the current stage stored in registers

VR0 and VR1
• Computes the State Metrics for the next stage and updates registers VSM0 to

VSM63. The 16-bit signed result of the computation is saturated if VSTATUS[SAT]
== 1

• Computes transition bits for all 64 states and updates registers VT0 and VT1
VR0L = [mem32][15:0] + [mem32][31:16]
VR0H = [mem32][15:0] - [mem32][31:16]

Flags This instruction modifies the following bits in the VSTATUS register.
• OVFR is set if overflow is detected in the computation of a 16-bit signed result

Pipeline This is a single-cycle instruction.

Example ;
; Viterbi K=4 CR = 1/2
;
;etc ...
;

VSETK #CONSTRAINT_LENGTH ; Set constraint length
MOV AR1, #SMETRICINIT_OFFSET
VSMINIT *+XAR4[AR1] ; Initialize the state metrics
MOV AR1, #NBITS_OFFSET
MOV AL, *+XAR4[AR1]
LSR AL, 2
SUBB AL, #2
MOV AR3, AL ; Initialize the BMSEL register

; for butterfly 0 to K-1
MOVL XAR6, *+XAR4[BMSELINIT_OFFSET]
VMOV32 VR2, *XAR6 ; Initialize BMSEL for

; butterfly 0 to 7
VITBM2 VR0, *XAR0++ ; Calculate and store BMs in

; VR0L and VR0H
.align 2
RPTB _VITERBI_runK4CR12_stageAandB, AR3

_VITERBI_runK4CR12_stageA:
VITSTAGE ; Compute NSTATES/2 butterflies

; in parallel,
||VITBM2 VR0, *XAR0++ ; compute branch metrics for

; next butterfly
VMOV32 *XAR2++, VT1 ; Store VT1
VMOV32 *XAR2++, VT0 ; Store VT0

;

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VITSTAGE || VITBM2 VR0, mem32 — Parallel Butterfly Computation with Parallel Branch Metric Calculation CR=1/2
www.ti.com

734 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

;etc ...
;

See also VITSTAGE

VITSTAGE || VMOV16 VROL, mem16

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VITSTAGE || VMOV16 VR0L, mem1 — Parallel Butterfly Computation with Parallel Load

735SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VITSTAGE || VMOV16 VR0L, mem1 Parallel Butterfly Computation with Parallel Load

Operands
Input Output
VR0L Low word of the destination register
mem16 Pointer to 16-bit memory location

Opcode
LSW: 1110 0010 1100 0101
MSW: 0000 0011 mem16

Description VITSTAGE instruction performs 32 viterbi butterflies in a single cycle. This instructions
does the following:
• Depends on the Initial 64 State Metrics of the current stage stored in registers VSM0

to VSM63
• Depends on the Branch Metrics Select configuration stored in registers VR2 to VR5
• Depends on the Computed Branch Metrics of the current stage stored in registers

VR0 and VR1
• Computes the State Metrics for the next stage and updates registers VSM0 to

VSM63. The 16-bit signed result of the computation is saturated if VSTATUS[SAT]
== 1

• Computes transition bits for all 64 states and updates registers VT0 and VT1
VR0L = [mem16]

Flags This instruction modifies the following bits in the VSTATUS register.
• OVFR is set if overflow is detected in the computation of a 16-bit signed result

Pipeline This is a single-cycle instruction.

Example ;
; Viterbi K=7 CR = 1/3
;
;etc ...
;
_VITERBI_runK7CR13_stageA:

VITSTAGE ; Compute NSTATES/2 butterflies in
; parallel,

||VMOV16 VR0L, *XAR0++ ; Load LLR(A) for next butterfly
VMOV16 VR1L, *XAR0++ ; Load LLR(B) for next butterfly
VITBM3 VR0L, VR1L, *XAR0++ ; Load LLR(C) and compute branch

; metric for next butterfly
VMOV32 *XAR2++, VT1 ; Store VT1
VMOV32 *XAR2++, VT0 ; Store VT0

;
;etc ...
;

See also VITSTAGE

VITSTAGE || VITBM2 VR0, mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VMOV32 VSM (k+1):VSM(k), mem32 — Load Consecutive State Metrics www.ti.com

736 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 VSM (k+1):VSM(k), mem32 Load Consecutive State Metrics

Operands
Input Output
VSM(k+1):VSM(k) Consecutive State Metric Registers (VSM1:VSM0 …. VSM63:VSM62)
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 1000 0000
MSW: 001n nnnn mem32

Description Load a pair of Consecutive State Metrics from memory:
VSM(k+1) = [mem32][31:16];
VSM(k) = [mem32][15:0];

Note:
• n-k/2, used in opcode assignment
• k is always even

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example VMOV32 VSM63: VSM62, *XAR7++

See also VMOV32 mem32, VSM (k+1):VSM(k)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VMOV32 mem32, VSM (k+1):VSM(k) — Store Consecutive State Metrics

737SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VMOV32 mem32, VSM (k+1):VSM(k) Store Consecutive State Metrics

Operands
Input Output
VSM(k+1):VSM(k) Consecutive State Metric Registers (VSM1:VSM0 …. VSM63:VSM62)
mem32 Pointer to 32-bit memory location

Opcode LSW: 1110 0010 0000 1110
MSW: 000n nnnn mem32

Description Store a pair of Consecutive State Metrics from memory:
[mem32] [31:16] = VSM(k+1);
[mem32] [15:0] = VSM(k);

NOTE:
• n-k/2, used in opcode assignment
• k is always even

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example VMOV32 *XAR7++ VSM63: VSM62

See also VMOV32 VSM (k+1):VSM(k), mem32

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VSETK #3-bit — Set Constraint Length for Viterbi Operation www.ti.com

738 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSETK #3-bit Set Constraint Length for Viterbi Operation

Operands
Input Output
#3-bit 3-bit immediate value

Opcode
LSW: 1110 0110 1111 0010
MSW: 0000 1001 0000 0III

Description VSTATUS[K] = #3-bit Immediate

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VSMINIT mem16 — State Metrics Register initialization

739SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VSMINIT mem16 State Metrics Register initialization

Operands
Input Output
mem16 Pointer to 16-bit memory location

Opcode
LSW: 1111 0010 1100 0101
MSW: 0000 0001 mem16

Description Initializes the state metric registers.
VSM0 = 0
VSM1 to VSM63 = [mem16]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example VSMINIT *+XAR4[AR1] ; Initialize the state metrics

See also

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VTCLEAR — Clear Transition Bit Registers www.ti.com

740 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VTCLEAR Clear Transition Bit Registers

Operands
none

Opcode LSW: 1110 0101 0010 1001

Description Clear the VT0 and VT1 registers.
VT0 = 0;
VT1 = 0;

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example

See also VCLEARALL
VCLEAR VRa

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VTRACE mem32, VR0, VT0, VT1 — Viterbi Traceback, Store to Memory

741SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VTRACE mem32, VR0, VT0, VT1 Viterbi Traceback, Store to Memory

Operands Before the operation, the path metrics are loaded into the registers as shown below
using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VT0 transition bit register 0
VT1 transition bit register 1
VR0 Initial value is zero. After the first VTRACE, this contains information from the

previous trace-back.

The result of the operation is the new state metrics stored in VRa and VRb as shown
below:
Output Register Value
[mem32] Traceback result from the transition bits.

Opcode
LSW: 1110 0010 0000 1100
MSW: 0000 0000 mem32

Description Trace-back from the transition bits stored in VT0 and VT1 registers. Write the result to
memory. The transition bits in the VT0 and VT1 registers are stored in the following
format by the VITLSEL and VITHSEL instructions:
VT0[31] Transition bit [State 0]
VT0[30] Transition bit [State 1]
VT0[29] Transition bit [State 2]
... ...
VT0[0] Transition bit [State 31]
VT1[31] Transition bit [State 32]
VT1[30] Transition bit [State 33]
VT1[29] Transition bit [State 34]
... ...
VT1[0] Transition bit [State 63]

//
// Calculate the decoder output bit by performing a
// traceback from the transition bits stored in the VT0 and VT1 registers
//

K = VSTATUS[K];
S = VR0[K-2:0];
VR0[31:K-1] = 0;
if (S < (1<<(K-2))){

temp[0] = VT0[(1 << (K-2))- 1 -S];
}else{

temp[0] = VT1[(1 << (K-1))- 1 -S];
}

[mem32][0] = temp;
[mem32][31:1] = 0;

VR0[K-2:0] = 2*VR0[K-2:0] + temp[0];

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

Example
//
// Example traceback code fragment

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VTRACE mem32, VR0, VT0, VT1 — Viterbi Traceback, Store to Memory www.ti.com

742 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

//
// XAR5 points to the beginning of Decoder Output array
//

VCLEAR VR0
MOVL XAR5,*+XAR4[0]

//
// To retrieve each original message:
// Load VT0/VT1 with the stored transition values
// and use VTRACE instruction
//

VMOV32 VT0, *--XAR3
VMOV32 VT1, *--XAR3
VTRACE *XAR5++, VR0, VT0, VT1

VMOV32 VT0, *--XAR3
VMOV32 VT1, *--XAR3
VTRACE *XAR5++, VR0, VT0, VT1
...
...etc for each VT0/VT1 pair

See also VTRACE VR1, VR0, VT0, VT1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VTRACE VR1, VR0, VT0, VT1 — Viterbi Traceback, Store to Register

743SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VTRACE VR1, VR0, VT0, VT1 Viterbi Traceback, Store to Register

Operands Before the operation, the path metrics are loaded into the registers as shown below
using a Viterbi AddSub or SubAdd instruction.
Input Register Value
VT0 transition bit register 0
VT1 transiton bit register 1
VR0 Initial value is zero. After the first VTRACE, this contains information from the

previous trace-back.

The result of the operation is the output of the decoder stored in VR1:
Output Register Value
VR1 Traceback result from the transition bits.

Opcode LSW: 1110 0101 0010 1000

Description Trace-back from the transition bits stored in VT0 and VT1 registers. Write the result to
VR1. The transition bits in the VT0 and VT1 registers are stored in the following format
by the VITLSEL and VITHSEL instructions:
VT0[31] Transition bit [State 0]
VT0[30] Transition bit [State 1]
VT0[29] Transition bit [State 2]
... ...
VT0[0] Transition bit [State 31]
VT1[31] Transition bit [State 32]
VT1[30] Transition bit [State 33]
VT1[29] Transition bit [State 34]
... ...
VT1[0] Transition bit [State 63]

//
// Calculate the decoder output bit by performing a
// traceback from the transition bits stored in the VT0 and VT1 registers
//

K = VSTATUS[K];
S = VR0[K-2:0];
VR0[31:K-1] = 0;

if (S < (1<<(K-2))) {
temp[0] = VT0[(1<<(K-2))- 1 -S];

}else{
temp[0] = VT1[(1<<(K-1))- 1 -S];

}

if(VSTATUS[OPACK]==0){
VR1 = VR1<<1;
VR1[0:0] = temp[0] ;
VR0[K-2:0] = 2*VR0[K-2:0] + temp[0];

}else{
VR1 = VR1>>1
VR1[31:31] = temp[0] ;
VR0[K-2:0] = 2*VR0[K-2:0] + temp[0];

}

Flags This instruction does not modify any flags in the VSTATUS register.

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


VTRACE VR1, VR0, VT0, VT1 — Viterbi Traceback, Store to Register www.ti.com

744 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Example

See also VTRACE mem32, VR0, VT0, VT1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com VTRACE VR1, VR0, VT0, VT1 || VMOV32 VT0, mem32 — Trace-back with Parallel Load

745SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

VTRACE VR1, VR0, VT0, VT1 || VMOV32 VT0, mem32 Trace-back with Parallel Load

Operands
Input Register Value
VT0 Traceback register
VT1 Traceback register
VR0 Decoded output bits register
VR1 Decoded output bits register
mem32 Pointer to 32-bit memory location

Opcode
LSW: 1110 0010 1011 0000
MSW: 0000 0001 mem32

Description Trace-back with Parallel Load
K = VSTATUS[K];

S = VR0[K-2:0]; VR0[31:K-1] = 0;

if (S < (1 << (K-2)))
temp[0] = VT0[(1<<(K-2))- 1 -S];

else
temp[0] = VT1[(1<<(K-1))- 1 -S];

if(VSTATUS[OPACK]==0){
VR1 = VR1<<1;
VR1[0:0] = temp[0] ;
VR0[K-2:0] = 2*VR0[K-2:0] + temp[0];

}else{
VR1 = VR1>>1;
VR1[31:31] = temp[0] ;
VR0[K-2:0] = 2*VR0[K-2:0] + temp[0];

}

VT0 = [mem32]

Flags This instruction does not affect any flags in the VSTATUS register.

Pipeline This is a 1/1 cycle instruction. The VTRACE and VMOV32 instruction complete in a
single cycle.

Example ;
; etc ...
;

.align 2
RPTB _tb_loop_ovlp2, #12
VMOV32 VT0, *--XAR3
VMOV32 VT1, *--XAR3
VTRACE VR1,VR0,VT0,VT1

||VMOV32 VT0, *--XAR3
VMOV32 VT1, *--XAR3
VTRACE VR1,VR0,VT0,VT1

_tb_loop_ovlp2
;
; etc ...
;

See also VTRACE mem32, VR0, VT0, VT1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Rounding Mode www.ti.com

746 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

5.6 Rounding Mode
This section details the rounding operation as applied to a right shift. When the rounding mode is enabled
in the VSTATUS register, .5 will be added to the right shifted intermediate value before truncation. If
rounding is disabled the right shifted value is only truncated. Table 5-19 shows the bit representation of
two values, 11.0 and 13.0. The columns marked Bit-1, Bit-2 and Bit-3 hold temporary bits resulting from
the right shift operation.

Table 5-19. Example: Values Before Shift Right

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit-1 Bit-2 Bit -3 Value
Val A 0 0 1 0 1 1 0 0 0 11.000
Val B 0 0 0 0 0 1 0 0 0 13.000

Table 5-19 shows the intermediate values after the right shift has been applied to Val B. The columns
marked Bit-1, Bit-2 and Bit-3 hold temporary bits resulting from the right shift operation.

Table 5-20. Example: Values after Shift Right

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit-1 Bit-2 Bit -3 Value
Val A 0 0 1 0 1 1 0 0 0 11.000

Val B >> 3 0 0 0 0 0 1 1 0 1 1.625

When the rounding mode is enabled, .5 will be added to the intermediate result before truncation. shows
the bit representation of Val A + Val (B >> 3) operation with rounding. Notice .5 is added to the
intermediate shifted right value. After the addition,Table 5-21 the bits in Bit-1, Bit-2 and Bit-3 are removed.
In this case the result of the operation will be 13 which is the truncated value after rounding.

Table 5-21. Example: Addition with Right Shift and Rounding

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit-1 Bit-2 Bit -3 Value
Val A 0 0 1 0 1 1 0 0 0 11.000

Val B >> 3 0 0 0 0 0 1 1 0 1 1.625
.5 0 0 0 0 0 0 1 0 0 0 .500

Val A + Val B >> 3 + .5 0 0 1 1 0 1 0 0 1 13.125

When the rounding mode is disabled, the value is simply truncated. Table 5-22 shows the bit
representation of the operation Val A + (Val B >> 3) without rounding. After the addition, the bits in Bit-1,
Bit-2 and Bit-3 are removed. In this case the result of the operation will be 12 which is the truncated value
without rounding.

Table 5-22. Example: Addition with Rounding After Shift Right

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit-1 Bit-2 Bit -3 Value
Val A 0 0 1 0 1 1 0 0 0 11.000

Val B >> 3 0 0 0 0 0 1 1 0 1 1.625
Val A + Val B >> 3 0 0 1 1 0 0 1 0 1 12.625

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Rounding Mode

747SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)

Table 5-23 shows more examples of the intermediate shifted value along with the result if rounding is
enabled or disabled. In each case, the truncated value is without .5 added and the rounded value is with
.5 added.

Table 5-23. Shift Right Operation With and Without Rounding

Bit2 Bit1 Bit0 Bit -1 Bit -2 Value Result with RND = 0 Result with RND = 1
0 1 0 0 0 2.00 2 2
0 0 1 1 1 1.75 1 2
0 0 1 1 0 1.50 1 2
0 0 1 0 1 1.25 1 1
0 0 0 1 1 0.75 0 1
0 0 0 1 0 0.50 0 1
0 0 0 0 1 0.25 0 0
0 0 0 0 0 0.00 0 0
1 1 1 1 1 -0.25 0 0
1 1 1 1 0 -0.50 0 0
1 1 1 0 1 -0.75 0 -1
1 1 1 0 0 -1.00 -1 -1
1 1 0 1 1 -1.25 -1 -1
1 1 0 1 0 -1.50 -1 -1
1 1 0 0 1 -1.75 -1 -2
1 1 0 0 0 -2.00 -2 -2

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


748 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

Chapter 6
SPRUHS1C–October 2014–Revised November 2019

Fast Integer Division Unit (FINTDIV)

The TMS320C2000™ DSP family consists of fixed-point and floating-point digital signal processors.
TMS320C2000™ Digital Signal Processors combine control peripheral integration and ease of use of a
microcontroller (MCU) with the processing power and C efficiency of TI’s leading DSP technology. This
chapter provides an overview of the fast integer division and instructions supported by the C28x fast
integer division unit (FINTDIV).

Topic ........................................................................................................................... Page

6.1 Overview ......................................................................................................... 749
6.2 Components of the C28x plus FINTDIV (C28x+FINTDIV) ....................................... 750
6.3 CPU Register Set.............................................................................................. 750
6.4 Pipeline ........................................................................................................... 750
6.5 Types of Divisions supported by C28x+FINTDIV .................................................. 750
6.6 C28x+Fast Integer Division – Fast Integer Division Instruction Set ........................ 752

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Overview

749SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

6.1 Overview
The C28x processor plus fast division unit (C28x+FINTDIV) extends the capabilities of the C28x floating
point CPU by adding instructions to support division operations in an optimal manner.

Throughout this document the following notations are used:
• C28x refers to the C28x fixed and floating point CPU.
• C28x plus FINTDIV refer to the C28x CPU with enhancements to support fast integer division

operations.

6.1.1 Compatibility With the C28x Fixed-Point CPU and C28x Floating Point CPU
No changes have been made to the C28x base set of instructions, pipeline, or memory bus architecture.
Therefore, programs written for the C28x CPU are completely compatible with the C28x CPU + FINTDIV
and all of the features of the C28x documented in TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430 - www.ti.com/lit/spru430) apply to the C28x CPU + FINTDIV.

6.1.2 Fast Integer Division Code development
The TI C28 C/C++ Compiler 18.12.2.LTS supports the generation of FINTDIV instructions in one of three
ways: -

• Intrinsics, declared in stdlib.h, which take a numerator and denominator and return a structure
containing both the remainder and quotient. The intrinsics supported are mentioned in the
TMS320C28x Optimizing C/C++ Compiler (www.ti.com/lit/spru514).

• Operators for division/modulus, which will automatically be optimized.
• Standard library functions ldiv and lldiv, both found in stdlib.h.

Only the intrinsics support the alternative Euclidean/Modulo division types. Operators and the standard
library functions will perform division according to the C standard.

Compiler option, --idiv_support, controls support for these division sequences. A value of 'none' implies no
hardware support for the new instructions, and a value of 'idiv0' implies support for the current
specification for the new instructions. The option is only valid when FPU32 or FPU64 is available (--
float_support=fpu32 or fpu64) and when using the C2000 EABI (--abi=eabi).

The --opt_for_speed (-mf) option controls whether the sequences themselves are generated inline in the
assembly, or are calls to pre-generated sequences in the runtime support library. This is to assist in
lowering code size, as these sequences can be anywhere from 8 to 32 instructions long. At the default
level (-mf2) or higher, the sequences will be inlined. At lower levels (-mf0 and -mf1), the sequences will be
calls to the runtime support library. This affects all three forms of support: intrinsics, operators, and the
standard library.

For more details on intrinsics definitions, macros, and additional background information, please see the
TMS320C28x Optimizing C/C++ Compiler User’s Guide (www.ti.com/lit/spru514) and the TMS320C28x
Assembly Language Tools User’s Guide (www.ti.com/lit/spru513).

Examples for using the Fast integer division intrinsics are provided in the library section
(libraries\math\FASTINTDIV) of C2000WARE.

Examples

The following 3 example functions are equivalent, and will perform a signed 32 by signed 32-bit division
and return the quotient:

#include <stdlib.h>

long divide_op(long numerator, long denominator)

{

return numerator / denominator;

}

long divide_intrinsic(long numerator, long denominator)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Components of the C28x plus FINTDIV (C28x+FINTDIV) www.ti.com

750 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

{

return __traditional_div_i32byi32(numerator, denominator).quot;

}

long divide_lib(long numerator, long denominator)

{

return ldiv(numerator, denominator).quot;

}

6.2 Components of the C28x plus FINTDIV (C28x+FINTDIV)
The C28x+FINTDIV contains
• A central processing unit for generating data and program-memory addresses; decoding and executing

instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among
CPU registers, data memory, and program memory.

• A fast Integer division unit (FINTDIV) executing single cycle instructions.

Some features of the C28x+FINTDIV central processing unit are:
• For each of the different division functions, the instructions support operands of different types and size

of operands (e.g: 16-bit signed (i16), 16-bit unsigned (ui16), 32-bit signed (i32), 32-bit unsigned (ui32),
64-bit signed (i64) and 64-bit unsigned (ui64)) and different permutations (e.g: ui32/ui32, i32/ui32,
i64/i32, ui64/ui32, ui64/ui64, i64/i64, etc.) for each of the different division functions.

• Set of instructions which extracts the sign of numerator and denominator based on the operand data
type and size, save the flag corresponding to sign of quotient and remainder, and convert the
numerator and denominator into unsigned numbers.

• Conditional subtract instruction which can execute multiple conditional subtract operations in a single
cycle. This will help perform unsigned division.

• Sign assignment operation to assign sign of quotient and remainder based on the division type
(truncated, modulo or euclidean) and flag saved. The unsigned division results obtained from condition
subtract are modified based on the type of division.

• Each of the operations used for implementing the division is single cycle and interruptible and hence
offer low Interrupt Service Routine (ISR) latency.

6.3 CPU Register Set
The C28x+FINTDIV architecture is the same as the C28x CPU with an extended register and instruction
set to support fast division operations. Devices with the C28x+FINTDIV include the standard C28x register
set plus an additional set of 6 FINTDIV registers - six source and destination division registers.

6.4 Pipeline
The pipeline flow for FINTDIV instructions is identical to that of the C28x CPU described in TMS320C28x
DSP CPU and Instruction Set Reference Guide (www.ti.com/lit/spru430). All the fast division instructions
take 1 cycle and do not require delay to allow the operation to complete. This also simplifies the
development of software as the need to avoid register conflicts is not necessary while developing software
using the FINTDIV.

6.5 Types of Divisions supported by C28x+FINTDIV
In this section, a brief overview of the type of divisions supported by the C28x+FINTDIV is explained.
Division is one of the complex operations supported by the different real time processors. In addition to
traditional division function, other types of division functions are used in real-time control system
applications which are quite unique compared to other embedded processing applications. C28x+FINTDIV
processor supports modulo division (floored division) and euclidean division functions in addition to
traditional division (truncated division) approach. Different division functions are obtained as given below.
The transfer function for the different types of division is shown in Figure 6-1.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Positive Divisor Negative Divisor

Euclidean Division

Modulo Division

Traditional Division

RemainderQuotient

www.ti.com Types of Divisions supported by C28x+FINTDIV

751SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

Figure 6-1. Transfer Function for Different Types of Division

The C28x+FINTDIV provide an open and scalable approach to facilitate different types of division while
accelerating the division operation and making it completely interruptible. For each of the different division
functions, the instructions support operands of different types and size of operands (e.g: 16-bit signed
(i16), 16-bit unsigned (ui16), 32-bit signed (i32), 32-bit unsigned (ui32), 64-bit signed (i64) and 64-bit
unsigned (ui64)) and different permutations (e.g: ui32/ui32, i32/ui32, i64/i32, ui64/ui32, ui64/ui64, i64/i64,
etc.) of the operands for each of the different division functions. The FINTDIV consists of (i) a set of
instructions which extract the sign of numerator and denominator based on the operand data type and
size, save the flag corresponding to sign of quotient and remainder, and convert the numerator and
denominator into unsigned numbers (ii) Conditional subtract instruction which can execute multiple
conditional subtract operations in a single cycle. This will help perform unsigned division. (iii) Sign
assignment operation to assign sign of quotient and remainder based on the division type (truncated,
modulo or euclidean) and flag saved in the first step. The results thus obtained are modified based on the
type of division. Each of the operations used for implementing the division is single cycle and interruptible
and hence offer low Interrupt Service Routine (ISR) latency.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


C28x+Fast Integer Division – Fast Integer Division Instruction Set www.ti.com

752 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

6.6 C28x+Fast Integer Division – Fast Integer Division Instruction Set
This chapter describes the assembly language instructions of the TMS320C28x plus FINTDIV division unit
(C28x+FINTDIV). The instructions listed here are an extension to the standard C28x instruction set. For
information on standard C28x instructions, see the TMS320C28x DSP CPU and Instruction Set Reference
Guide (literature number SPRU430).

6.6.1 Instruction Descriptions
This section gives detailed information on the instruction set. Each instruction may present the following
information:
• Operands
• Opcode
• Description
• Exceptions
• Pipeline
• Examples
• See also

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. On the C28x+FINTDIV instructions, follow the same format as the
C28x. The explanations for the syntax of the operands used in the instruction descriptions for the
TMS320C28x plus floating-point processor are given in Table 6-1. For information on the operands of
standard C28x instructions, see the TMS320C28x DSP CPU and Instruction Set Reference Guide
(SPRU430).

Table 6-1. Operand Nomenclature

Symbol Description
RaH R0H to R7H registers
RbH R0H to R7H registers
RcH R0H to R7H registers
RdH R0H to R7H registers
ReH R0H to R7H registers
RfH R0H to R7H registers

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru430


www.ti.com INSTRUCTION dest1, source1, source2 — Short Description

753SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

INSTRUCTION dest1, source1, source2 Short Description

Operands

dest1 description for the 1st operand for the instruction
source1 description for the 2nd operand for the instruction
source2 description for the 3rd operand for the instruction

Each instruction has a table that gives a list of the operands and a short description.
Instructions always have their destination operand(s) first followed by the source
operand(s).

Opcode This section shows the opcode for the instruction.

Description Detailed description of the instruction execution is described. Any constraints on the
operands imposed by the processor or the assembler are discussed.

Restrictions Any constraints on the operands or use of the instruction imposed by the processor are
discussed.

Pipeline This section describes the instruction in terms of pipeline cycles as described in
Section 6.4.

Example Examples of instruction execution. If applicable, register and memory values are given
before and after instruction execution. All examples assume the device is running with
the OBJMODE set to 1. Normally the boot ROM or the c-code initialization will set this
bit.

See Also Lists related instructions.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


C28x+Fast Integer Division – Fast Integer Division Instruction Set www.ti.com

754 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

6.6.2 Instructions
The instructions are listed alphabetically, preceded by a summary.

Table 6-2. Summary of Instructions
Title ...................................................................................................................................... Page

ABSI32DIV32 R2H, R1H, R3H — ................................................................................................... 755
ABSI32DIV32U R2H, R1H — ........................................................................................................ 756
ABSI64DIV32 R2H, R1H:R0H, R3H — ............................................................................................. 757
ABSI64DIV32U R2H, R1H:R0H — .................................................................................................. 758
ABSI64DIV64 R2H:R4H, R1H:R0H, R3H:R5H — ................................................................................ 759
ABSI64DIV64U R2H:R4H, R1H:R0H — ........................................................................................... 760
SUBC4UI32 R2H, R1H, R3H — ..................................................................................................... 761
SUBC2UI64 R2H:R4H, R1H:R0H, R3H:R5H — .................................................................................. 762
NEGI32DIV32 R1H , R2H — .......................................................................................................... 763
ENEGI32DIV32 R1H , R2H, R3H — ................................................................................................ 764
MNEGI32DIV32 R1H , R2H, R3H — ................................................................................................ 765
NEGI64DIV32 R1H:R0H, R2H — .................................................................................................... 766
ENEGI64DIV32 R1H:R0H , R2H, R3H — .......................................................................................... 767
MNEGI64DIV32 R1H:R0H , R2H, R3H — .......................................................................................... 768
NEGI64DIV64 R1H:R0H, R2H:R4H — ............................................................................................. 769
ENEGI64DIV64 R1H:R0H , R2H:R4H, R3H:R5H — .............................................................................. 770
MNEGI64DIV64 R1H:R0H , R2H:R4H, R3H:R5H — .............................................................................. 771

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ABSI32DIV32 R2H, R1H, R3H —

755SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

ABSI32DIV32 R2H, R1H, R3H

Operands

R3H Denominator
R1H Numerator
R2H Remainder

Opcode
LSW: 1110 0101 0110 1000

Description NI = R1H(31)

TF = (R1H(31)) ^(R3H(31))

if ((R1H = 0x8000_0000) | (R3H = 0x8000_0000)) { LVF = 1}

R2H = 0

if (R1H(31) = 1) {R1H = -R1H}

if (R3H(31) = 1) {R3H = -R3H}

For more details on usage of the instruction refer to the intrinsics definitions in the
TMS320C28x Optimizing C/C++ Compiler User’s Guide (www.ti.com/lit/spru514).

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes No Yes No No No Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ABSI32DIV32U R2H, R1H — www.ti.com

756 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

ABSI32DIV32U R2H, R1H

Operands

R1H Numerator
R2H Remainder

Opcode
LSW: 1110 0101 0110 1001

Description NI = R1H(31)
TF = R1H(31)
if (R1H = 0x8000_0000) { LVF = 1}
R2H = 0
if (R1H(31) = 1) {R1H = -R1H}

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes No Yes No No No Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ABSI64DIV32 R2H, R1H:R0H, R3H —

757SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

ABSI64DIV32 R2H, R1H:R0H, R3H

Operands

R3H Denominator
R1H:R0H Numerator
R2H Remainder

Opcode
LSW: 1110 0101 1010 1000

Description NI = R1H(31)
TF = R1H(31) ^ R3H(31)
if ((R1H:R0H = 0x8000_0000_0000_0000) | (R3H = 0x8000_0000)) { LVF = 1}
R2H = 0
if (R1H(31) = 1) {R1H:R0H = -(R1H:R0H)}
if (R3H(31) = 1) {R3H = -(R3H)}

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes No Yes No No No Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ABSI64DIV32U R2H, R1H:R0H — www.ti.com

758 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

ABSI64DIV32U R2H, R1H:R0H

Operands

R1H:R0H Numerator
R2H Remainder

Opcode
LSW: 1110 0101 1010 1001

Description
NI = R1H(31)
TF = R1H(31)
if (R1H:R0H = 0x8000_0000_0000_0000) { LVF = 1}
R2H = 0
if (R1H(31) = 1) {R1H:R0H = -(R1H:R0H)}

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes No Yes No No No Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ABSI64DIV64 R2H:R4H, R1H:R0H, R3H:R5H —

759SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

ABSI64DIV64 R2H:R4H, R1H:R0H, R3H:R5H

Operands

R3H:R5H Denominator
R1H:R0H Numerator
R2H:R4H Remainder

Opcode
LSW: 1110 0101 1011 1000

Description NI = R1H(31)
TF = R1H(31) ^ R3H(31)
if ((R1H:R0H = 0x8000_0000_0000_0000)| (R3H:R5H = 0x8000_0000_0000_0000)) { LVF =
1}
R2H:R4H = 0
if (R1H(31) = 1) {R1H:R0H = -(R1H:R0H)}
if (R3H(31) = 1) {R3H:R5H = -(R3H:R5H)}

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes No Yes No No No Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ABSI64DIV64U R2H:R4H, R1H:R0H — www.ti.com

760 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

ABSI64DIV64U R2H:R4H, R1H:R0H

Operands

R1H:R0H Numerator
R2H:R4H Denominator

Opcode
LSW: 1110 0101 1011 1001

Description
NI = R1H(31)
TF = R1H(31)
if (R1H:R0H = 0x8000_0000_0000_0000) { LVF = 1}
R2H:R4H = 0
if (R1H(31) = 1) {R1H:R0H = -(R1H:R0H)}

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified Yes No Yes No No No Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SUBC4UI32 R2H, R1H, R3H —

761SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

SUBC4UI32 R2H, R1H, R3H

Operands

R3H Denominator
R1H Numerator/Quotient
R2H Remainder

Opcode
LSW: 1110 0101 0110 0100

Description
ZI =0
If (R3H = 0x0) {LVF = 1}
for(i=1;i<=4;i++) {

temp(32:0) = (R2H << 1) + R1H(31) - R3H
if(temp(32:0) >= 0)

R2H = temp(31:0);
R1H = (R1H << 1) + 1

else
R2H:R1H = (R2H:R1H) << 1

}
If (R2H = 0x0) {ZI = 1}

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes No No No No Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SUBC2UI64 R2H:R4H, R1H:R0H, R3H:R5H — www.ti.com

762 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

SUBC2UI64 R2H:R4H, R1H:R0H, R3H:R5H

Operands

R3H:R5H Denominator
R1H:R0H Numerator/Quotient
R2H:R4H Remainder

Opcode
LSW: 1110 0101 0110 0101

Description
ZI =0
If ((R3H:R5H) = 0x0) {LVF = 1}
for(i=1;i<=2;i++) {

temp(64:0) = ((R2H:R4H) << 1) + R1H(31) - (R3H:R5H)
if(temp(64:0) >= 0)

(R2H:R4H) = temp(63:0);
(R1H:R0H) = ((R1H:R0H) << 1) + 1

else
(R2H:R4H:R1H:R0H)=(R2H:R4H:R1H:R0H)<<1

}
If (R2H:R4H = 0x0) {ZI = 1}

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction modifies the following flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No Yes No No No No Yes

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com NEGI32DIV32 R1H , R2H —

763SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

NEGI32DIV32 R1H , R2H

Operands

R2H Remainder
R1H Quotient

Opcode
LSW: 1110 0101 0110 1010

Description
if(TF = TRUE)

R1H = -R1H
if(NI = TRUE)

(R2H) = -(R2H)

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction does not modify any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ENEGI32DIV32 R1H , R2H, R3H — www.ti.com

764 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

ENEGI32DIV32 R1H , R2H, R3H

Operands

R3H Denominator
R2H Remainder
R1H Quotient

Opcode
LSW: 1110 0101 0110 1011

Description IF (NI = 1 && ZI = 0) {
R1H = R1H + 1
R2H = R3H-R2H

}
if(TF = TRUE)

R1H = -R1H

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction does not modify any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MNEGI32DIV32 R1H , R2H, R3H —

765SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

MNEGI32DIV32 R1H , R2H, R3H

Operands

R3H Denominator
R2H Remainder
R1H Quotient

Opcode
LSW: 1110 0101 0110 1100

Description
if (TF = 1 & ZI = 0) {

R1H = R1H + 1
R2H = R3H - R2H

}
if(TF = TRUE)

R1H = -R1H
if(NI XOR TF = TRUE)

(R2H) = -(R2H)

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction does not modify any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


NEGI64DIV32 R1H:R0H, R2H — www.ti.com

766 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

NEGI64DIV32 R1H:R0H, R2H

Operands

R2H Remainder
R1H:R0H Quotient

Opcode
LSW: 1110 0101 1010 1010

Description if(TF = TRUE)
(R1H:R0H) = -(R1H:R0H)

if(NI = TRUE)
(R2H) = -(R2H)

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction does not modify any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com ENEGI64DIV32 R1H:R0H , R2H, R3H —

767SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

ENEGI64DIV32 R1H:R0H , R2H, R3H

Operands

R3H Denominator
R2H Remainder
R1H:R0H Quotient

Opcode
LSW: 1110 0101 1010 1011

Description if (NI = 1 && ZI = 0) {
R1H:R0H = R1H:R0H + 1
R2H = R3H-R2H

}
if(TF = TRUE)

R1H:R0H = -R1H:R0H

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction does not modify any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


MNEGI64DIV32 R1H:R0H , R2H, R3H — www.ti.com

768 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

MNEGI64DIV32 R1H:R0H , R2H, R3H

Operands

R3H Denominator
R2H Remainder
R1H:R0H Quotient

Opcode
LSW: 1110 0101 1010 1100

Description if (TF = 1 & ZI = 0) {
R1H:R0H = R1H:R0H + 1
R2H = R3H - R2H

}
if(TF = TRUE)

R1H:R0H = -R1H:R0H
if(NI XOR TF = TRUE)

(R2H) = -(R2H)

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction does not modify any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com NEGI64DIV64 R1H:R0H, R2H:R4H —

769SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

NEGI64DIV64 R1H:R0H, R2H:R4H

Operands

R2H:R4H Remainder
R1H:R0H Quotient

Opcode
LSW: 1110 0101 1011 1010

Description if(TF = TRUE)
(R1H:R0H) = -(R1H:R0H)

if(NI = TRUE)
(R2H:R4H) = -(R2H:R4H)

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction does not modify any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ENEGI64DIV64 R1H:R0H , R2H:R4H, R3H:R5H — www.ti.com

770 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

ENEGI64DIV64 R1H:R0H , R2H:R4H, R3H:R5H

Operands

R3H:R5H Denominator
R2H:R4H Remainder
R1H:R0H Quotient

Opcode
LSW: 1110 0101 1011 1011

Description if (NI = 1 && ZI = 0) {
R1H:R0H = R1H:R0H + 1
R2H:R4H = R3H:R5H-R2H:R4H

}
if(TF = TRUE)

R1H:R0H = -R1H:R0H

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction does not modify any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MNEGI64DIV64 R1H:R0H , R2H:R4H, R3H:R5H —

771SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Fast Integer Division Unit (FINTDIV)

MNEGI64DIV64 R1H:R0H , R2H:R4H, R3H:R5H

Operands

R3H:R5H Denominator
R2H:R4H Remainder
R1H:R0H Quotient

Opcode
LSW: 1110 0101 1011 1100

Description if (TF = 1 & ZI = 0) {
R1H:R0H = R1H:R0H + 1
R2H:R4H = R3H:R5H - R2H:R4H

}
if(TF = TRUE)

R1H:R0H = -R1H:R0H
if(NI XOR TF = TRUE)

(R2H:R4H) = -(R2H:R4H)

For more details on usage of the instruction refer to the intrinsics definitions
in the TMS320C28x Optimizing C/C++ Compiler User’s Guide
(www.ti.com/lit/spru514).

Flags This instruction does not modify any flags in the STF register:

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

Pipeline This is a single-cycle instruction.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


772 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

Chapter 7
SPRUHS1C–October 2014–Revised November 2019

Trigonometric Math Unit (TMU)

The Trigonometric Math Unit (TMU) is a fully programmable block that enhances the instruction set of the
C28-FPU to more efficiently execute common trigonometric and arithmetic operations.

This document describes the architecture and instruction set of the C28x+FPU+TMU. For a list of all
devices with the TMU, see the TMS320x28xx, 28xxx DSP Peripheral Reference Guide (SPRU566).

Topic ........................................................................................................................... Page

7.1 Overview ......................................................................................................... 773
7.2 Components of the C28x+FPU Plus TMU............................................................. 773
7.3 Data Format ..................................................................................................... 774
7.4 Pipeline ........................................................................................................... 775
7.5 TMU Instruction Set .......................................................................................... 780

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/SPRU566


www.ti.com Overview

773SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

7.1 Overview
The TMU extends the capabilities of a C28x+FPU enabled processor by adding instructions to speed up
the execution of common trigonometric and arithmetic operations listed in Table 7-1.

Table 7-1. TMU Type 0 Instructions

Instructions C Equivalent Operation
MPY2PIF32 RaH,RbH a = b * 2pi
DIV2PIF32 RaH,RbH a = b / 2pi
DIVF32 RaH,RbH,RcH a = b/c
SQRTF32 RaH,RbH a = sqrt(b)
SINPUF32 RaH,RbH a = sin(b*2pi)
COSPUF32 RaH,RbH a = cos(b*2pi)
ATANPUF32 RaH,RbH a = atan(b)/2pi
QUADF32 RaH,RbH,RcH,RdH Operation to assist in calculating ATANPU2

Table 7-2. TMU Type 1 Additional Instructions

Instructions C Equivalent Operation
IEXP2F32 RaH,RbH RaH = 2-|RbH|

LOG2F32 RaH,RbH RaH = LOG2(RbH)

7.2 Components of the C28x+FPU Plus TMU
The TMU extends the capabilities of the C28x+FPU processors by adding new instructions and, in some
cases, leveraging existing FPU instructions to carry out common arithmetic operations used in control
applications. No changes have been made to existing instructions, pipeline or memory bus architecture.
All TMU instructions use the existing FPU register set (R0H to R7H) to carry out their operations.

7.2.1 Interrupt Context Save and Restore
Since the TMU uses the same register set and flags as the FPU, there are no special considerations with
regards to interrupt context save and restore.

If a TMU operation is executing when an interrupt occurs, the C28 can initiate an interrupt context switch
without affecting the TMU operation. The TMU will continue to process the operation to completion. Even
though most TMU operations are multi-cycle, the TMU operation will have completed by the time register
context save operations for the FPU are commenced. When restoring FPU registers, you must make sure
that all TMU operations are completed before restoring any register used by another TMU operation.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Data Format www.ti.com

774 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

7.3 Data Format
The treatment of the various IEEE floating-point numerical formats for this TMU is the same as the FPU
implementation.

7.3.1 Floating Point Encoding
The encoding of the floating-point formats is given in Table 7-3.

Table 7-3. IEEE 32-Bit Single Precision Floating-Point Format

S32 E32 (7:0) M32 (22:0) Value (V)
0 0 0 Zero (V = 0)
1 0 0 Negative Zero (V = -0)

0 +ve 0 non zero De-normalized (V=(-1)S* 2(-126)* (0.M))
1 -ve
0 +ve 1 to 254 0 to 0x7FFFFF Normal Range (V=(-1)S * 2(E-127) * (1.M))
1 -ve

0 254 0x7FFFFF Positive Max (V = +Max)
1 254 0x7FFFFF Negative Max (V = -Max)
0 max=255 0 Positive Infinity (V = +Infinity)
1 max=255 0 Negative Infinity (V = -Infinity)
x max=255 non zero Not A Number (V = NaN)

7.3.2 Negative Zero:
All TMU operations generate a positive (S==0, E==0, M==0) zero, never a negative zero if the result of the
operation is zero. All TMU operations treat negative zero operations as zero.

7.3.3 De-Normalized Numbers:
A de-normalized operand (E==0, M!=0) input is treated as zero (E==0, M==0) by all TMU operations. TMU
operations never generate a de-normalized value.

7.3.4 Underflow:
Underflow occurs when an operation generates a value that is too small to represent in the given floating-
point format. Under such cases, a zero value is returned. If a TMU operation generates an underflow
condition, then the latched underflow flag (LUF) is set to 1. The LUF flag will remain latched until cleared
by the user executing an instruction that clears the flag.

7.3.5 Overflow:
Overflow occurs when an operation generates a value that is too large to represent in the given floating-
point format. Under such cases, a ± Infinity value is returned. If a TMU operation generates an overflow
condition, then the latched overflow flag (LVF) is set to 1. The LVF flag will remain latched until cleared by
the user executing an instruction that clears the flag.

7.3.6 Rounding:
There are various rounding formats supported by the IEEE standard. Rounding has no meaning for TMU
operations (rounding is inherent in the implementation). Hence rounding mode is ignored by TMU
operations.

7.3.7 Infinity and Not a Number (NaN):
An NaN operand (E==max, M!=0) input is treated as Infinity (E==max, M==0) for all operations. TMU
operations will never generate a NaN value but Infinity instead.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

775SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

7.4 Pipeline
The TMU enhances the instruction set of the C28-FPU and, therefore, operates the C28x pipeline in the
same fashion as the FPU. For a detailed explanation on the working of the pipeline, see the TMS320C28x
Floating Point Unit and Instruction Set Reference Guide (SPRUEO2).

7.4.1 Pipeline and Register Conflicts
In addition to the restrictions mentioned in the TMS320C28x Floating Point Unit and Instruction Set
Reference Guide (SPRUEO2), the TMU places the following restrictions on its instructions:

Example 7‑‑1. SINPUF32 Operation (4p cycles)

SINPUF32 RaH,RbH ; Value in registers RbH read in this cycle.
Instruction1 ; Instructions 1-3 cannot operate on register RaH.
Instruction2 ; Instructions 1-3 can operate on register RbH.
Instruction3 ; Instructions 1-3 can be any TMU/FPU/VCU/CPU operation.
Instruction4 ; Result in RaH usable by Instruction 4.

Example 7‑‑2. COSPUF32 Operation (4p cycles)

COSPUF32 RaH,RbH ; Value in registers RbH read in this cycle.
Instruction1 ; Instructions 1-3 cannot operate on register RaH.
Instruction2 ; Instructions 1-3 can operate on register RbH.
Instruction3 ; Instructions 1-3 can be any TMU/FPU/VCU/CPU operation.
Instruction4 ; Result in RaH usable by Instruction4.

Example 7‑‑3. ATANPUF32 Operation (4p cycles)

ATANPUF32 RaH,RbH ; Value in registers RbH read in this cycle.
Instruction1 ; Instructions 1-3 cannot operate on register RaH.
Instruction2 ; Instructions 1-3 can operate on register RbH.
Instruction3 ; Instructions 1-3 can be any TMU/FPU/VCU/CPU operation.

; Result, LVF flag updated on Instruction3 (4th cycle).
Instruction4 ; Result in RaH usable by Instruction4.

Example 7‑‑4. DIVF32 Operation (5p cycles)

DIVF32 RaH,RbH,RcH ; Value in registers RbH & RcH read in this cycle.
Instruction1 ; Instructions 1-4 cannot operate on register RaH.
Instruction2 ; Instructions 1-4 can operate on register RbH & RcH.
Instruction3 ; Instructions 1-4 can be any TMU/FPU/VCU/CPU operation.
Instruction4 ; Result, LVF and LUF flags updated on Instruction4 (5th cycle).
Instruction5 ; Result in RaH usable by Instruction5.

Example 7‑‑5. SQRTF32 Operation (5p cycles)

SQRTF32 RaH,RbH ; Value in register RbH read in this cycle.
Instruction1 ; Instructions 1-4 cannot operate on register RaH.
Instruction2 ; Instructions 1-4 can operate on register RbH.
Instruction3 ; Instructions 1-4 can be any TMU/FPU/VCU/CPU operation.
Instruction4 ; Result, LVF flag updated on Instruction4 (5th cycle).
Instruction5 ; Result in register RaH usable by Instruction5.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/SPRUEO2
http://www.ti.com/lit/pdf/SPRUEO2


Pipeline www.ti.com

776 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

Example 7‑‑6. QUADF32 Operations (5p cycles)

QUADF32 RaH,RbH,RcH,RdH
; Value in registers RcH & RdH read in this cycle.

Instruction1 ; Instructions 1-4 cannot operate on registers RaH & RbH.
Instruction2 ; Instructions 1-4 can operate on register RbH.
Instruction3 ; Instructions 1-4 can be any TMU/FPU/VCU/CPU operation.
Instruction4 ; Result, LVF and LUF flags updated on Instruction4 (5th cycle).
Instruction5 ; Result in registers RaH & RbH usable by Instruction5.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

777SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

7.4.2 Delay Slot Requirements
The Delay slot requirements for the TMU instructions are presented in Table 7-4.

Table 7-4. Delay Slot Requirements for TMU Instructions

Case Description
1 Any Single Cycle FPU operation (including any memory load/store operation)

SINPUF32/COSPUF32/ATANPUF32/QUADF32/MPY2PIF32/DIV2PIF32/DIVF32/SQRTF32
2 All FPU 2p-cycle operations MPY/ADD/SUB/….

NOP
NOP
SINPUF32/COSPUF32/ATANPUF32/QUADF32/MPY2PIF32/DIV2PIF32/DIVF32/SQRTF32

3 SINPUF32/COSPUF32/ATANPUF32
NOP
NOP
NOP
All TMU or FPU operations

4 QUADF32/DIVF32/SQRTF32
NOP
NOP
NOP
NOP
All TMU or FPU operations

Special Cases Involving MPY2PIF32/DIV2PIF32
5 MPY2PIF32/DIV2PIF32

NOP
SINPUF32/COSPUF32

6 MPY2PIF32/DIV2PIF32
NOP
NOP
ATANPUF32/QUADF32/DIVF32/SQRTF32

7 MPY2PIF32/DIV2PIF32
NOP
NOP
All FPU operations

8 MPY2PIF32/DIV2PIF32
NOP
MOV32 mem,RxH; Special case: Store result of MPY2PIF32/DIV2PIF32 to memory (but does not include MOV32 operation
between CPU and FPU registers).

The “NOPs” can be any other FPU, TMU, VCU or CPU operation that does not conflict with the current
active TMU operation (does not use same destination register). For example,

Example 7‑‑7. Use of Non-Conflicting Instructions in Delay Slots

SINPUF32 R0H,R1H
COSPUF32 R2H,R1H
MOV32 R4H,@VarA
MOV32 R5H,@VarB
ADDF32 R3H,R4H,R0H ; SINPUF32 value (R0H) used here
ADDF32 R7H,R5H,R2H ; COSPUF32 value (R2H) used here

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Pipeline www.ti.com

778 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

The delay FPU slot requirements apply to the operation whereby the destination register value is
subsequently used by the TMU operation. For example, in the following case, a parallel MPY and MOV
operation precedes the TMU operation and the result from MPY operation is used, then two delay slots
are required (Case 2 of Table 7-4):

Example 7‑‑8. Delay Slot Requirement for TMU Instructions That Use Results of Prior FPU Instructions

MPYF32 R3H,R2H,R1H
||MOV32 R4H,@varA

NOP
NOP
SINPUF32 R6H,R3H

If however the result of the parallel MOV operation is used, then no delay slots are required since the
MOV will complete in a single cycle. (Case 1 of Table 7-4):

Example 7‑‑9. FPU Instruction Followed by a Non-Dependent TMU Instruction

MPYF32 R3H,R2H,R1H
||MOV32 R4H,@varA

SINPUF32 R6H,R4H

7.4.3 Effect of Delay Slot Operations on the Flags
The LVF and LUF flags can only be set. If multiple operations (from FPU or TMU) try to set the flags, the
operations on the flags are ORed together. Operations that set the LVF or LUF flags (either FPU or TMU)
are allowed in delay slots. For example, the following sequence of operations is valid:

Example 7‑‑10. Valid Back-to-Back Instructions That may Set the LVF, LUF Flag

MPY2PIF32 R0H,R0H
MPY2PIF32 R1H,R1H

If the SETFLG, SAVE, RESTORE, MOVST0, or loading and storing of the STF register, operations try to
modify the state of the LVF, LUF flags while a TMU or any other FPU operation is trying to set the flags,
the LUV, LVF flags are undefined. This can only occur if the SAVE, SETFLG, RESTORE, MOVST0, or
loading and storing of the STF register, operations are placed in the delay slots of the pipeline operations;
this should be avoided. This also applies to ZF and NF flags, which are not affected by TMU operations.

7.4.4 Multi-Cycle Operations in Delay Slots
A multi-cycle operation like RET, BRANCH, CALL is equivalent to a minimum four NOPs. For example,
the code shown in Example 7-11 returns the correct value because LRETR takes a minimum of four
cycles to execute (equivalent to four NOPs):

Example 7‑‑11. Multi-Cycle Operation in the Delay Slot of a TMU Instruction

DIVF32 R0H,R2H,R1H
LRETR

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Pipeline

779SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

7.4.5 Moves From FPU Registers to C28x Registers
When transferring from floating-point unit registers (result of an FPU or TMU operation) to the C28x CPU
register, additional pipeline alignment is required as shown in Example 7-12.

Example 7‑‑12. Floating-Point to C28x Register Software Pipeline Alignment

; SINPUF32: Per unit sine: 4 pipeline cycle operation
; An alignment cycle is required before copying R0H to ACC

SINPUF32 R0H,R1H
NOP ; Delay Slot 1
NOP ; Delay Slot 2
NOP ; Delay Slot 3
NOP ; Alignment cycle
MOV32 @ACC,R0H

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


TMU Instruction Set www.ti.com

780 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

7.5 TMU Instruction Set
This section describes the assembly language instructions of the TMU.

7.5.1 Instruction Descriptions
The explanations for the syntax of the operands are given in Table 7-5. For information on the operands of
standard C28x instructions, see the TMS320C28x CPU and Instruction Set Reference Guide (SPRU430).

Table 7-5. Operand Nomenclature

Symbol Description
#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value. Lower

16-bits of the mantissa are assumed to be zero.
#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value. Lower 16-bits of

the mantissa are assumed to be zero.
#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value
#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value
#32F Immediate float value represented in floating-point representation
#0.0 Immediate zero
#RC 16-bit immediate value for the repeat count
*(0:16bitAddr) 16-bit immediate address, zero extended
CNDF Condition to test the flags in the STF register
FLAG Selected flags from STF register (OR) 11 bit mask indicating which floating-point status flags to change
label Label representing the end of the repeat block
mem16 Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location
mem32 Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location
RaH R0H to R7H registers
RbH R0H to R7H registers
RcH R0H to R7H registers
RdH R0H to R7H registers
ReH R0H to R7H registers
RfH R0H to R7H registers
RB Repeat Block Register
STF FPU Status Register
VALUE Flag value of 0 or 1 for selected flag (OR) 11 bit mask indicating the flag value; 0 or 1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C
http://www.ti.com/lit/pdf/SPRU430


www.ti.com INSTRUCTION dest1, source1, source2 Short Description —

781SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

INSTRUCTION dest1, source1, source2 Short Description

Operands

dest1 Description for the 1st operand for the instruction
source1 Description for the 2nd operand for the instruction
source2 Description for the 3rd operand for the instruction

Each instruction has a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).

Opcode This section shows the opcode for the instruction.

Description Detailed description of the instruction execution is described. Any constraints on the
operands imposed by the processor or the assembler are discussed.

Restrictions Any constraints on the operands or use of the instruction are discussed.

Pipeline This section describes the instruction in terms of pipeline cycles.

Example If applicable, register and memory values are given before and after instruction
execution. All examples assume the device is running with the OBJMODE set to 1.
Normally the boot ROM or the c-code initialization will set this bit.

See Also Lists related instructions.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


TMU Instruction Set www.ti.com

782 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

7.5.2 Common Restrictions
For all the TMU instructions, the inputs are conditioned as follows (LVF, LUF are not affected):
• Negative zero is treated as positive zero
• Positive or negative denormalized numbers are treated as positive zero
• Positive and negative NaN are treated as positive and negative infinity respectively

7.5.3 TMU Type 0 Instructions
The TMU Type 0 instructions are listed below.

Table 7-6. Summary of Instructions
Title ...................................................................................................................................... Page

MPY2PIF32 RaH, RbH —32-Bit Floating-Point Multiply by Two Pi .............................................................. 783
DIV2PIF32 RaH, RbH —32-Bit Floating-Point Divide by Two Pi ................................................................. 784
DIVF32 RaH, RbH, RcH —32-Bit Floating-Point Division......................................................................... 785
SQRTF32 RaH, RbH —32-Bit Floating-Point Square Root ....................................................................... 787
SINPUF32 RaH, RbH —32-Bit Floating-Point Sine (per unit) .................................................................... 788
COSPUF32 RaH, RbH —32-Bit Floating-Point Cosine (per unit) ................................................................ 790
ATANPUF32 RaH, RbH —32-Bit Floating-Point ArcTangent (per unit)......................................................... 792
QUADF32 RaH, RbH, RcH —Quadrant Determination Used in Conjunction With ATANPUF32().......................... 793

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com MPY2PIF32 RaH, RbH — 32-Bit Floating-Point Multiply by Two Pi

783SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

MPY2PIF32 RaH, RbH 32-Bit Floating-Point Multiply by Two Pi

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 0000
MSW 0000 0000 00bb baaa

Description This operation is similar to the MPYF32 operation except that the second operand is the
constant value 2pi:

RaH = RbH * 2pi

This operation is used in converting Per Unit values to Radians. Per Unit values are
used in control applications to represent normalized radians:

Per Unit Radians
1.0 2pi
0.0 0
1.0 2pi

2pi = 6.28318530718 = 1.570796326795 * 2^2

In IEEE 32-bit Floating point format:
S = 0 << 31= 0x00000000
E = (2 + 127) << 23= 129 << 23= 0x40800000
M = (1.570796326795 * 2^23) & 0x007FFFFF= 0x00490FDB
2pi = S+E+M = 0x40C90FDB

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No Yes

Restrictions If( RaH result is too big for floating-point number, Ea > 255 ){

RaH = ±Infinity

LVF = 1;

}

Pipeline Instruction takes 2 pipeline cycles to execute if followed by either SINPUF32,
COSPUF32 or MOV32 mem, Rx operations and 3 pipeline cycles for all other operations
(FPU or TMU).

Example ;; Convert Per Unit value to Radians:
MOV32 R0H,@PerUnit ; R0H = Per Unit value
MPY2PIF32 R0H,R0H ; R0H = R0H * 2pi
NOP ; pipeline delay
MOV32 @Radians,R0H ; store Radian result

; 4 cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


DIV2PIF32 RaH, RbH — 32-Bit Floating-Point Divide by Two Pi www.ti.com

784 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

DIV2PIF32 RaH, RbH 32-Bit Floating-Point Divide by Two Pi

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 0001
MSW 0000 0000 00bb baaa

Description This operation is similar to the MPYF32 operation except that the second operand is the
constant value 1/2pi:

RaH = RbH * 1/2pi

This operation is used in converting Radians to Per unit values. Per unit values are used
in control representing normalized Radians:

Per Unit Radians
1.0 2pi
0.0 0
-1.0 -2pi

In IEEE 32-bit Floating point format:

1/2pi = 0.1591549430919 = 1.273239544735 * 2^-3

S = 0 << 31= 0x00000000

E = (-3+127) << 23 = 124 << 23 = 0x3E000000

M = (1.273239544735 * 2^23) & 0x007FFFFF = 0x0022F983

1/2pi = S+E+M = 0x3E22F983

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes No

Restrictions If( RaH result is too small for floating-point number, Ea < 0) {

RaH = 0.0

LUF = 1;

}

Pipeline Instruction takes 2 pipeline cycles to execute if followed by either SINPUF32,
COSPUF32 or MOV32 mem, Rx operations and 3 pipeline cycles for all other operations
(FPU or TMU).

Example ;; Convert Per Unit value to Radians:
MOV32 R0H,@Radians ; R0H = Radian value
DIV2PIF32 R0H,R0H ; R0H = R0H * 1/2pi
NOP ; pipeline delay
MOV32 @Per Unit ; store Per Unit result

; 4 cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com DIVF32 RaH, RbH, RcH — 32-Bit Floating-Point Division

785SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

DIVF32 RaH, RbH, RcH 32-Bit Floating-Point Division

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)
RcH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 0100
MSW 0000 000c ccbb baaa

Description RaH = RbH/RcH

The sequence of operations are as follows:
Sa = Sb ^ Sc; // Set sign of result
Ea = (Eb – Ec) + 127; // Calculate Exponent
Ma = Mb / Mc; // 0.5 < Ma < 2.0
if(Ma < 1.0){){ // Re-normalize mantissa range

Ea = Ea – 1;
Ma = Ma * 2.0;

}
if(Ea >= 255){ // Chek if result too big:

Ea = 255; // Return Inf
Ma = 0;
LVF = 1; // Set overflow flag

}
if((Ea == 0) & (Ma != 0)){ // Check if result Denorm value:

Sa = 0;
Ea = 0; // Return zero
Ma = 0;
LUF = 1; // Set underflow flag

}
if(Ea < 0){ // Check if result too small:

Sa = 0;
Ea = 0; // Return zero
Ma = 0;
LUF = 1; // Set underflow flag

}

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


DIVF32 RaH, RbH, RcH — 32-Bit Floating-Point Division www.ti.com

786 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

Restrictions The following boundary conditions apply:

Division Result LVF LUF
0/0 0 1 -

0/Inf 0 - 1
Inf/Normal Inf 1 -

Inf/0 Inf 1 -
Inf/Inf Inf - 1

Normal/0 Inf 1 -
Normal/Inf 0 - 1

Pipeline Instruction takes 5 pipeline cycles to execute.

Example ;; Calculate Z = Y/X
MOV32 R0H,@X ; R0H = X
MOV32 R1H,@Y ; R1H = Y
DIVF32 R2H,R1H,R0H ; R2H = R1H/R0H = Y/X = Z
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
MOV32 @Z,R2H ; Z = Y/X

; 8 cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


Rah RbH=

www.ti.com SQRTF32 RaH, RbH — 32-Bit Floating-Point Square Root

787SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

SQRTF32 RaH, RbH 32-Bit Floating-Point Square Root

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 0111
MSW 0000 0000 00bb baaa

Description

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No Yes

Restrictions If( RbH < 0.0 or -Inf ) { // Check if input is negative:
Sa = 0; // Return zero
Ea = 0;
Ma = 0;
LVF = 1; // Set overflow flag

}
If( RbH == +Inf ) {

Sa = 0; // Return Inf
Ea = 255;
Ma = 0;
LVF = 1; // Set overflow flag

}

Pipeline Instruction takes 5 pipeline cycles to execute.

Example ;; Calculate Y = sqrt(X)
MOV32 R0H,@X ; R0H = X
SQRTF32 R1H,R0H ; R1H = sqrt(X)
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
MOV32 @Y,R1H ; Y = sqrt(X)

; 7 cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


SINPUF32 RaH, RbH — 32-Bit Floating-Point Sine (per unit) www.ti.com

788 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

SINPUF32 RaH, RbH 32-Bit Floating-Point Sine (per unit)

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 1000
MSW 0000 0000 00bb baaa

Description This instruction performs the following equivalent operation:

PerUnit = fraction(RbH)

RaH = sin(PerUnit*2pi)

In control applications radians are usually normalized to the range of -1.0 to 1.0.

Per Unit Radians
1.0 2pi
0.0 0
-1.0 -2pi

The operation takes the fraction of the input value RbH. This equates to the cosine
waveform repeating itself every 2pi radians

RbH Per Unit Radians Sine Value
2.0 0.0 0 0.0
1.75 0.75 3pi/2 -1.0
1.5 0.5 pi 0.0
1.25 0.25 pi/2 1.0
1.0 0.0 0 0.0
0.75 0.75 3pi/2 -1.0
0.5 0.5 pi 0.0
0.25 0.25 pi/2 1.0
0.0 0.0 0 0.0

-0.25 -0.25 -pi/2 -1.0
-0.5 -0.5 -pi 0.0
-0.75 -0.75 -3pi/2 1.0
-1.0 0.0 0 0.0
-1.25 -0.25 -pi/2 -1.0
-1.5 -0.5 -pi 0.0
-1.75 -0.75 -3pi/2 1.0
-2.0 0.0 0 0.0

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com SINPUF32 RaH, RbH — 32-Bit Floating-Point Sine (per unit)

789SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

Restrictions If the input value is too small (<= 2^-33) or too big (>= 2^22), then the output will be
returned as 0.0 (no flags affected).

Pipeline Instruction takes 4 pipeline cycles to execute.

Example ;; Convert Radian value to PerUnit value and
;; calculate Sin value:

MOV32 R0H,@RadianValue ; R0H = Radian value
DIV2PIF32 R1H,R0H

; R1H=R0H/2pi= Per Unit Value
NOP ; pipeline delay
SINPUF32 R2H,R1H ; R2H = SINPU(fraction(R1H))
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
MOV32 @SinValue,R2H ; Sin Value=sin(Radian Value)

; 8 cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


COSPUF32 RaH, RbH — 32-Bit Floating-Point Cosine (per unit) www.ti.com

790 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

COSPUF32 RaH, RbH 32-Bit Floating-Point Cosine (per unit)

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 1001
MSW 0000 0000 00bb baaa

Description This instruction performs the following equivalent operation:

PerUnit = fraction(RbH)

RaH = cos(PerUnit*2pi)

In control applications radians are usually normalized to the range of -1.0 to 1.0.

Per Unit Radians
1.0 2pi
0.0 0
-1.0 -2pi

The operation takes the fraction of the input value RbH. This equates to the cosine
waveform repeating itself every 2pi radians

RbH Per Unit Radians Cosine Value
2.0 0.0 0 1.0
1.75 0.75 3pi/2 0.0
1.5 0.5 pi -1.0
1.25 0.25 pi/2 0.0
1.0 0.0 0 1.0
0.75 0.75 3pi/2 0.0
0.5 0.5 pi -1.0
0.25 0.25 pi/2 0.0
0.0 0.0 0 1.0

-0.25 -0.25 -pi/2 0.0
-0.5 -0.5 -pi -1.0
-0.75 -0.75 -3pi/2 0.0
-1.0 0.0 0 1.0
-1.25 -0.25 -pi/2 0.0
-1.5 -0.5 -pi -1.0
-1.75 -0.75 -3pi/2 0.0
-2.0 0.0 0 1.0

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No No

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com COSPUF32 RaH, RbH — 32-Bit Floating-Point Cosine (per unit)

791SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

Restrictions If the input value is too small (<= 2^-33) or too big (>= 2^22), then the output will be
returned as 1.0 (no flags affected).

Pipeline Instruction takes 4 pipeline cycles to execute.

Example ;; Convert Radian value to PerUnit value and
;; calculate Sin value:

MOV32 R0H,@RadianValue ; R0H = Radian value
DIV2PIF32 R1H,R0H

; R1H=R0H/2pi= Per Unit Value
NOP ; pipeline delay
COSPUF32 R2H,R1H ; R2H = COSPU(fraction(R1H))
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
MOV32 @CosValue,R2H ; Cos Value=cos(Radian Value)

; 8 cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


ATANPUF32 RaH, RbH — 32-Bit Floating-Point ArcTangent (per unit) www.ti.com

792 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

ATANPUF32 RaH, RbH 32-Bit Floating-Point ArcTangent (per unit)

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 1010
MSW 0000 0000 00bb baaa

Description This instruction computes the arc tangent of a given value and returns the result as a
per-unit value:

PerUnit = atan(RbH)/2pi

The operation limits the input ranget of the input value RbH to:

-1.0 < = RbH < = 1.0

Values outside this range return 0.125 as follows:

RbH Per Unit Radians ATANPU Value LVF Flag
>1.0 0.125 pi/4 0.125 1
1.0 0.125 pi/4 0.125
0.0 0.0 0 0.0
-1.0 -0.125 -pi/4 -0.125

<-1.0 -0.125 -pi/4 -0.125 1

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No No Yes

Pipeline Instruction takes 4 pipeline cycles to execute.

Example ;; Calculate ATAN and generate Per Unit value and
;; convert to Radians:

MOV32 R0H,@AtanValue ; R0H = Atan Value
ATANPUF32 R1H,R0H ; R1H = ATANPU(R0H)
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
MPY2PIF32 R2H,R1H ; R2H = R1H * 2pi

; = Radian value
NOP ; pipeline delay
MOV @RadianValue,R2H ; Store result

; 8 cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


If( (|Y| > |X|) & (Y >= 0) )

{ Quadrant = 0.25; Ratio = -X/Y; }

X

Y

If( (|Y| > |X|) & (Y < 0) )

{ Quadrant = -0.25; Ratio = -X/Y }

If( (|Y| <= |X|) & (X >=0) )

{ Ratio = Y/X;

Quadrant = 0.0; }

If( (|Y| <= |X|)

& (X < 0) & (Y >= 0) )

{ Quadrant = 0.5;

Ratio = Y/X }

If( (|Y| <= |X|)

& (X < 0) & (Y < 0) )

{ Quadrant = -0.5;

Ratio = Y/X }

Note: If( (Y==0) & (X ==0) )

{ Ratio = 0.0;

Quadrant = 0.0; }

0.125 (PU) = pi/40.25 (PU) = pi/2
0.375 (PU) = 3*pi/4

-0.375 (PU) = -3*pi/4 -0.125 (PU) = -pi/4

-0.25 (PU) = -pi/2

0.5 (PU) = pi

~0.5 (PU) = ~-pi

ATANPU2(Y,X) = Quadrant + ATANPU(Ratio)

www.ti.com QUADF32 RaH, RbH, RcH — Quadrant Determination Used in Conjunction With ATANPUF32()

793SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

QUADF32 RaH, RbH, RcH Quadrant Determination Used in Conjunction With ATANPUF32()

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point destination register (R0H to R7H)
RcH Floating-point source register (R0H to R7H)
RdH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 1100
MSW 0000 dddc ccbb baaa

Description This operation, in conjunction with atanpu(), is used in calculating atanpu2() for a full
circle:

RdH = X value

RcH = Y value

RbH = Ratio of X & Y

RaH = Quadrant value (0.0, ±0.25, ±0.5)

Figure 7-1 shows how the values RaH and RbH are generated based on the contents of
RbH and RcH.

Figure 7-1. Calculation of RaH (Quadrant) and RbH (Ratio) Based on RcH (Y) and RdH (X) Values

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


QUADF32 RaH, RbH, RcH — Quadrant Determination Used in Conjunction With ATANPUF32() www.ti.com

794 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

The algorithm for this instruction is as follows:
if( (fabs(RcH(Y)) == 0.0) & (fabs(RdH(X)) == 0.0) ) {

RaH(Quadrant) = 0.0;
RbH(Ratio) = 0.0;

}else if( fabs(RcH(Y)) < = fabs(RdH(X)) ) {
RbH(Ratio) = RcH(Y) / RdH(X);
if( RdH(X) >= 0.0 )

RaH(Quadrant) = 0.0;
else {

if( RcH(Y) >= 0.0 )
RaH(Quadrant) = 0.5;

else
RaH(Quadrant) = -0.5;

}
}else {

if( RcH(Y) >= 0.0 )
RaH(Quadrant) = 0.25;

else
RaH(Quadrant) = -0.25;

RbH(Ratio) = - RdH(X) / RcH(Y);
}

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

Restrictions

Division Result LVF LUF
0/0 0 1 -

0/Inf 0 - 1
Inf/Normal Inf 1 -

Inf/0 Inf 1 -
Inf/Inf Inf - 1

Normal/0 Inf 1 -
Normal/Inf 0 - 1

Pipeline Instruction takes 5 pipeline cycles to execute.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com QUADF32 RaH, RbH, RcH — Quadrant Determination Used in Conjunction With ATANPUF32()

795SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

Example ;; Calculate Z = atan2(Y,X), where Z is in
;; radians:

MOV32 R0H,@X ; R0H = X
MOV32 R1H,@Y ; R1H = Y

;; if(Y <= X) R2H= R1H/R0H
;; else R2H= -R0H/R1H
;; R3H= 0.0, +/-0.25, +/-0.5

QUADF32 R3H,R2H,R1H,R0H
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay

;; R4H = ATANPU(R2H)(Per Unit result)
ATANPUF32 R4H,R2H
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay

;; R5H = R3H + ATANPU(R4H) = ATANPU2 value
ADDF32 R5H,R3H,R4H
NOP ; pipeline delay

;; R6H = ATANPU2 * 2pi = atan2 value(radians)
MPY2PIF32 R6H,R5H
NOP ; pipeline delay
MOV32 @Z,R6H ; store result

; 16 cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


TMU Instruction Set www.ti.com

796 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

7.5.4 TMU Type 1 Instructions
TMU Type 1 has all of the Type 0 instructions and adds the IEXP2F32 and LOG2F32 instructions.

Table 7-7. Summary of Instructions
Title ...................................................................................................................................... Page

IEXP2F32 RaH, RbH —32-Bit Floating-Point Inverse Exponent ................................................................. 797
LOG2F32 RaH, RbH —32-Bit Floating-Point Base-2 Logarithm ................................................................. 798

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com IEXP2F32 RaH, RbH — 32-Bit Floating-Point Inverse Exponent

797SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

IEXP2F32 RaH, RbH 32-Bit Floating-Point Inverse Exponent

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 0011
MSW 0000 0000 00bb baaa

Description This instruction computes 2.0f raised to the inverse power of a floating point number.
The equivalent operation is:

RaH = 2-|RbH|

RbH EXP Value (RaH)
-Inf / Nan 0.0 0.0

-2.0 0.25
-1.0 0.5
0.0 1.0

Denorm 1.0
1.0 0.5
2.0 0.25

Inf / Nan 0.0

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes No

Pipeline Instruction takes 4 pipeline cycles to execute.

Example ;; Calculate inverse exponent
IEXP2F32 R2H,R1H ; R2H = 2^-|R1H|
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
MOV32 @ExpValue,R2H ; ExpValue = 2^-|R1H|

; 5 Cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


LOG2F32 RaH, RbH — 32-Bit Floating-Point Base-2 Logarithm www.ti.com

798 SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Trigonometric Math Unit (TMU)

LOG2F32 RaH, RbH 32-Bit Floating-Point Base-2 Logarithm

Operands

RaH Floating-point destination register (R0H to R7H)
RbH Floating-point source register (R0H to R7H)

Opcode

LSW 1110 0010 0111 0010
MSW 0000 0000 00bb baaa

Description This instruction computes the base-2 logarithm of a floating point number. The
equivalent operation is:

RaH = LOG2(RbH)

Domain (RbH) = [-Inf, Inf]

Range (RaH) = [0, 128) U {Inf}

RbH LOG2 Value (RaH)
-Inf / Nan 0.0 -Inf

-2.0 -Inf
-1.0 -Inf
0.0 -Inf

Denorm -Inf
1.0 0.0
2.0 1.0

Inf / Nan Inf

Flags

Flag TF ZI NI ZF NF LUF LVF
Modified No No No No No Yes Yes

Pipeline Instruction takes 4 pipeline cycles to execute.

Example ;; Calculate base-2 logarithm
LOG2F32 R2H,R1H ; R2H = LOG2(R1H)
NOP ; pipeline delay
NOP ; pipeline delay
NOP ; pipeline delay
MOV32 @LogValue,R2H ; LogValue = LOG2(RbH)

; 5 Cycles

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


www.ti.com Revision History

799SPRUHS1C–October 2014–Revised November 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Revision History

Revision History

Changes from May 23, 2018 to November 15, 2018 ........................................................................................................ Page

• Related Documentation: Extensive changes have been made to this document since the last publication. ................. 9

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHS1C


IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Table of Contents
	Preface
	1 Floating Point Unit (FPU)
	1.1 Overview
	1.1.1 Compatibility with the C28x Fixed-Point CPU
	1.1.1.1 Floating-Point Code Development


	1.2 Components of the C28x plus Floating-Point CPU
	1.2.1 Emulation Logic
	1.2.2 Memory Map
	1.2.3 On-Chip Program and Data
	1.2.4 CPU Interrupt Vectors
	1.2.5 Memory Interface
	1.2.5.1 Address and Data Buses
	1.2.5.2 Alignment of 32-Bit Accesses to Even Addresses


	1.3 CPU Register Set
	1.3.1 CPU Registers
	1.3.1.1 Floating-Point Status Register (STF)
	1.3.1.2 Repeat Block Register (RB)


	1.4 Pipeline
	1.4.1 Pipeline Overview
	1.4.2 General Guidelines for Floating-Point Pipeline Alignment
	1.4.3 Moves from FPU Registers to C28x Registers
	1.4.4 Moves from C28x Registers to FPU Registers
	1.4.5 Parallel Instructions
	1.4.6 Invalid Delay Instructions
	1.4.7 Optimizing the Pipeline

	1.5 Floating Point Unit Instruction Set
	1.5.1 Instruction Descriptions
	1.5.2 Instructions


	2  Floating Point Unit (FPU64)
	2.1 Overview
	2.1.1 Compatibility with the C28x Fixed-Point CPU
	2.1.1.1 Floating-Point Code Development


	2.2 Components of the C28x plus Floating-Point CPU (FPU64)
	2.2.1 Emulation Logic
	2.2.2 Memory Map
	2.2.3 On-Chip Program and Data
	2.2.4 CPU Interrupt Vectors
	2.2.5 Memory Interface
	2.2.5.1 Address and Data Buses
	2.2.5.2 Alignment of 32-Bit Accesses to Even Addresses


	2.3 CPU Register Set
	2.3.1 CPU Registers
	2.3.1.1 Floating-Point Status Register (STF)
	2.3.1.2 Repeat Block Register (RB)


	2.4 Pipeline
	2.4.1 Pipeline Overview
	2.4.2 General Guidelines for Floating-Point Pipeline Alignment
	2.4.3 Moves from FPU Registers to C28x Registers
	2.4.4 Moves from C28x Registers to FPU Registers
	2.4.5 Parallel Instructions
	2.4.6 Invalid Delay Instructions
	2.4.7 Optimizing the Pipeline

	2.5 Floating Point Unit (FPU64) Instruction Set
	2.5.1 Instruction Descriptions
	2.5.2 Instructions


	3 Viterbi, Complex Math and CRC Unit (VCU)
	3.1 Overview
	3.2 Components of the C28x plus VCU
	3.3 Emulation Logic
	3.3.1 Memory Map
	3.3.2 CPU Interrupt Vectors
	3.3.3 Memory Interface
	3.3.4 Address and Data Buses
	3.3.5 Alignment of 32-Bit Accesses to Even Addresses

	3.4 Register Set
	3.4.1 VCU Register Set
	3.4.2 VCU Status Register (VSTATUS)
	3.4.3 Repeat Block Register (RB)

	3.5 Pipeline
	3.5.1 Pipeline Overview
	3.5.2 General Guidelines for Floating-Point Pipeline Alignment
	3.5.3 Parallel Instructions
	3.5.4 Invalid Delay Instructions

	3.6 Instruction Set
	3.6.1 Instruction Descriptions
	3.6.2  General Instructions
	3.6.3  Complex Math Instructions
	3.6.4  Cyclic Redundancy Check (CRC) Instructions
	3.6.5  Viterbi Instructions

	3.7 Rounding Mode

	4 Cyclic Redundancy Check (VCRC)
	4.1 Overview
	4.2 VCRC Code Development
	4.3 Components of the C28x Plus VCRC
	4.3.1 Emulation Logic
	4.3.2 Memory Map
	4.3.3 CPU Interrupt Vectors
	4.3.4 Memory Interface
	4.3.5 Address and Data Buses
	4.3.6 Alignment of 32-Bit Accesses to Even Addresses

	4.4 Register Set
	4.4.1 VCRC Register Set

	4.5 Pipeline
	4.5.1 Pipeline Overview
	4.5.2 General Guidelines for VCRC Pipeline Alignment

	4.6 Instruction Set
	4.6.1 Instruction Descriptions
	4.6.2  General Instructions


	5 C28 Viterbi, Complex Math and CRC Unit-II (VCU-II)
	5.1 Overview
	5.2 Components of the C28x Plus VCU
	5.2.1 Emulation Logic
	5.2.2 Memory Map
	5.2.3 CPU Interrupt Vectors
	5.2.4 Memory Interface
	5.2.5 Address and Data Buses
	5.2.6 Alignment of 32-Bit Accesses to Even Addresses

	5.3 Register Set
	5.3.1 VCU Register Set
	5.3.2 VCU Status Register (VSTATUS)
	5.3.3 Repeat Block Register (RB)

	5.4 Pipeline
	5.4.1 Pipeline Overview
	5.4.2 General Guidelines for VCU Pipeline Alignment
	5.4.3 Parallel Instructions
	5.4.4 Invalid Delay Instructions

	5.5 Instruction Set
	5.5.1 Instruction Descriptions
	5.5.2  General Instructions
	5.5.3 Arithmetic Math Instructions
	5.5.4  Complex Math Instructions
	5.5.5  Cyclic Redundancy Check (CRC) Instructions
	5.5.6 Deinterleaver Instructions
	5.5.7 FFT Instructions
	5.5.8 Galois Instructions
	5.5.9  Viterbi Instructions

	5.6 Rounding Mode

	6 Fast Integer Division Unit (FINTDIV)
	6.1 Overview
	6.1.1 Compatibility With the C28x Fixed-Point CPU and C28x Floating Point CPU
	6.1.2 Fast Integer Division Code development

	6.2 Components of the C28x plus FINTDIV (C28x+FINTDIV)
	6.3 CPU Register Set
	6.4 Pipeline
	6.5 Types of Divisions supported by C28x+FINTDIV
	6.6 C28x+Fast Integer Division – Fast Integer Division Instruction Set
	6.6.1 Instruction Descriptions
	6.6.2 Instructions


	7 Trigonometric Math Unit (TMU)
	7.1 Overview
	7.2 Components of the C28x+FPU Plus TMU
	7.2.1 Interrupt Context Save and Restore

	7.3 Data Format
	7.3.1 Floating Point Encoding
	7.3.2 Negative Zero
	7.3.3 De-Normalized Numbers
	7.3.4 Underflow
	7.3.5 Overflow
	7.3.6 Rounding
	7.3.7 Infinity and Not a Number (NaN)

	7.4 Pipeline
	7.4.1 Pipeline and Register Conflicts
	7.4.2 Delay Slot Requirements
	7.4.3 Effect of Delay Slot Operations on the Flags
	7.4.4 Multi-Cycle Operations in Delay Slots
	7.4.5 Moves From FPU Registers to C28x Registers

	7.5 TMU Instruction Set
	7.5.1 Instruction Descriptions
	7.5.2 Common Restrictions
	7.5.3 TMU Type 0 Instructions
	7.5.4 TMU Type 1 Instructions


	Revision History
	Important Notice

