C29x CPU

Reference Guide

wip TEXAS INSTRUMENTS

Literature Number: SPRUIY2
NOVEMBER 2024

https://www.ti.com/lit/pdf/SPRUIY2

Table of Contents

i3 TEXAS INSTRUMENTS

REAA This FirSt..... ... oottt ettt e oo ettt e oo 4 a bttt e e oo s h e et e e e e aab et e e e e et b et e e e e eabneeeeeeenaneneeeas 5
F Y oJo U A N T3V =T o U= PP POPP SRR 5
Related Documentation from TeXas INSITUMENES.coiiiiiiiii ettt e et e et e e et e e e enee e e sneeeeaneeeens 5
(€110 1T oY PRSP PPPPRRSRIN 6
10 o] o] a Al 3N=TTo 1U [ot PP OO SRR 6

1 ATCRITECIUIE OVEIVIBW.ottt et e ettt e e ea et e e oa b et e e sttt e emte e e sabe e e e ante e e emneeeaseeeeanbeeesneeeennneeann 7
1.1 INtrodUCHION £0 the CPU ettt ettt ettt e e bt e e a et e e e ae e e e e te e e e nteeeamneeeenbeeeeanteeesmneeeeneeennee 8
B2 I = - R] o = PPN 8
1.3 C29X CPU SYSIEM AICHILECIUME.cii ittt e e e e et e e e e e st et e e e e eeatbaeeeessesssaeeaeeeanssseaaeesassaneaesaanes 9
B Y =T 0 g oYY =T o U SSRPPPIN 1"

2 Central Processing Uit (CPU)........ ..ot et e st e e s bt e e at e e s abe e e e bt e e e nbe e e snneeeanneeeaneeeennnee 12
072 3 QO e U I N 011 Tox 18 [T RSP 13
2.2 CPU REGISTEIS. ... ueiiii ittt et e e e ettt e e e et eeeeeaaateeeeeeasasbeeeeeeaassseeeaeaaasssseeaeeaansbaseaeeaanssseseeeeannssneeeesanssnneaeeaanes 14
2.3 INSITUCHION PACKING. ... ettt ittt ettt et eaeeeeaeeeeaaaaaa s a s e tabebeaeseeeeeeeeaeaaaeaaaeeaesessaaaaannnssnsnsnsnsnnnnnes 20
S - T € PSSR 21

B 01 (=Y VT o1 SRRSO 25
3.1 CPU Interrupts Architecture BIOCK DIiagrami...........c.uuiiiiiiiiiiiie et e sttt e e et e e e e e st e e e e e ssbae e e e e eennneeaeeeannnes 26
3.2 RESET, NMI, RTINT, @NA INT ...ttt ettt sttt e ee et e st e e e eh et e e amte e e ease e e e b e e e e ambe e e eneeeeameeeeanteeeeneeeesnneeean 27
3.3 Conditions BIOCKING INEITUPES.......eeeiiiiiiiiee ettt e ettt e e e ettt e e e e e s aaeaeeeeeaaasbeeeaeeeassnseeaeeessnsseseeesasseneaasaanes 30
3.4 CPU INterrupt CONMIOl REGISTEIS.ueiiiiiiiiiieie ettt e e e et e e e e et eeeeesaatbeeeaesaasasseeaeeasssraeaeeesansseeeaesaanes 31
B TR 1 (=4 B QN =T 1 o PRSP 34
TGS 1ot U] 1 2SO PRR PR

L T < = T T PSP UUURRN
4.1 Introduction
Z A B L= ToTo 10 o] (=Y Il T o= [T Lol o g =TT PR RPN 40
4.3 Dual InStruction PrefetCh BUTEIS.oo ittt st e ettt e e et e e s bt e e e anteeesnneeesnneeeas 41
4.4 Pipeline Advancement @nd SHallS...........oooiiiiiiii it e e e e e e e e e e e e et b—— e e e e e a——reaeaeanraaeaeeannraees 42
4.5 Pipeline Hazards and Protection MEeChaNISIMS...........uuiiiiiiiiiiiiiiicee e e e e e e e e e e e e e e e e e s e st nenreaeeees 42
4.6 Register Updates and Corresponding Pipeling Phases...........ccuviiiiiiiiiiiei ettt 44
4.7 Register Reads and Writes During Normal Operation............coocuiiiiiiiiiiiiiee ettt e e e e e e e e nereee s 44
I D Y S (oY= To [e (o] (=Tex o] T PP OUPPPRPRON 46
e I =TT I o o) =T 1o o HO PP PRSP PPPP TP 47
L A A o) (=T 1o o FO PSP P PP PUPPPPPS 48
o I o o (= Tox (o] T 10 g To TN] €= 5 U] o SO SPUPRPPNE 49

L e [[==T=T T T 1 o o[- PSP UTRRS 50
5.1 AdAresSing MOGAES OVEIVIEW.cciiiiiiiiee e ettt e e ettt e e e ettt e e e e st e e e e e s easbaeeeaeeaassseeeaeeaassbaeeaeeaasssseeaeeessssseeeeesansseneaesaanes 51
5.2 AAAresSiNg MOAE FIEIAS.cooiiiiiii ettt e e e e et et e e et et et eeaaeaaaaaaeeaeaesasaaa s s assnsssatseaneeneeaeaeaaaaaaenns 54
5.3 Alignment and Pipeline CoNSIAEIAtioNS............uiiiiiiiiiiiee et e e e e e e e s et e e e e e seaareeaeeesntseeeeesesseeeaaeaanes 62
5.4 TYPES Of AAArESSING IMOUES.coiiiiiiiiiiie et e et e e e ettt e e e e ettt e e e e e aaee e e e e e s ataeeeeeeaasaeseeaeeasassaeeeeesansaeseaesaanssseeeeesanses 63

6 Safety and Security Unit (SSU)..........cooiiiiiiii ettt et e et e e e eaee e e s bt e e ebee e e ane e e e enbeeeeneeeennneas 72
5.1 SSU OVEIVIEW.eeiiiiiiieeetit et ee ettt e ettt e et e e sttt e ettt eeaateee o b eeeeamte e e aa s e e e e ae e e e ambe e e oasee e e ameeeeaabeeeeneeeeamneeeeasseeeanteeesnneeeennneeenn 73
6.2 LINKS @Nd TaSK ISOIALION.ceiiiiiiiiiie ettt ettt e e ettt e e e et e e e e e s ab e et e e e s e sb e e e e e e nannneeeeeeaan 74
6.3 Sharing Data Outside Task 1SOIation BOUNGAIY...........ccuuuiiiiiiiiiiie ettt e e e e e e e e e e e et e e e e e s e sasaeeaesennnraeeaaeans 76
(SR o) (=Ye3 (=To B OF= | =T o I (] 1F [o SR TUR 77

A =11V F= 1o o T PSP P PP PUPPRPPN 78
7.1 Overview Of EMUIGION FEATUMNES.oiiiiiieiiee ettt ettt e bt e e ettt e s bt e e e an b e e e ante e e anneeeeanbeeesnneeeenneeas 79
72 =Y o 10 Lo B =1 ¢ o11a Vo] oo 1Y 20U TRPRPPPRE 79
AR =T 10T I 5] (=Y o = o= TSRS 79
A = GCToT0 1 iTe o I @] gk o] I/ [oTo =SSR 80

SPRUIY2 — NOVEMBER 2024 C29x CPU 3

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

I3 TEXAS

INSTRUMENTS
Table of Contents www.ti.com
7.5 Breakpoints, Watchpoints, @nd COUNTEIS.o.uuiiiii ettt e et e e e e st e e e e e s nbaeeeeesasseeeeeeeansaeeaaeaaanneeeaaesn 82

B REVISION HISTOIYottt ettt bt oo et et e e b et e o1 h bt e e et et e s st e e e ra bt e e et b e e e steeenaneeas 84

List of Figures
Figure 1-1. C29xX CPU SysStem ArChITECIUIE..........oiiiiiiiiii ettt e st e et e et e nnee e e nnnee s 9
Lo [0 Y 1T g o] Y /=T o T O OO U PP OUPPP PRSPt 11
Figure 2-1. C29X CPU BIOCK DIGGIam.........uiiiiiiiiiieieiie ettt ettt ekt e et sa et e ek e e e e st et e sbe e e e aab e e e e be e e e e e e e naneeas 14
Figure 2-2. Address Reach of the Stack POINTEr............oo e 21
Figure 3-1. C29x CPU Interrupts Architecture BIOCK Diagram..........cc.ooiiiiiiiiiiiiiiie e 26
Figure 3-2. Interrupt Nesting EXample DIiagram..........cooiiiiiiiiii ettt ettt e s e e st e e e e e e 34
Figure 4-1. C29X CPU PIPEIINE SAGES.coiitiiiiiiiie ittt e et e s e e et et e s b et e e aa e e e enn e e s eneeeeanbeeeaas 38
Figure 4-2. Decoupled INStruction FEICh BUTEr ..o 40
Figure 4-3. Pipeline Diagram Depicting D2 Stall Due to Pipeline ProteCtion..............oocueiiiiiiiiiiiiiec e 43
Figure 5-1. ADDR1 Field Replaced with @ Stack AddreSSing TYPE....ccoouuii ittt e 51
Figure 5-2. ADDR1 Field Replaced with a Pointer Addressing With #immediate Offset Type..........ccccvviiiiiieiiii e 51
FIGUIE B-1. SSU OVEIVIEW. ...ttt ettt ettt ekt eea bt e 1 s e e e ek et eeab et e sas et e e s b et e e st e e s be e e e s beeennneeannneeeas 73
Figure 6-2. Concept of Links for Creating Task 1SOIAtION.............ooiiiiiiii e 74
Figure 6-3. Concept of Access Protection to Memories and Peripherals. ..o 75
Figure 6-4. Concept of Sharing Data ACross LINKS et 76
Figure 6-5. Protected Call and RETUMN..........ooi i ittt bt e e e st e e bt e s bt e e et e e nne e e e nnneeeas 77
Figure 7-1. JTAG Header to Interface a Target to the Scan Controller..............oooiiiiiiiiii e 79
List of Tables

Table 2-1. Addressing REGISIEIS (AX/XAX). .. .ueiee ettt e ettt e e e e e e te e e e e ettt eeaaeaasaeeeaeaaaneseeaeeaannbeeeaaeaansneeaaeeaansneaaaaaanens 15
Table 2-2. Fixed-Point REGISTEIS (DX/XDIX)....cceetiuieiiiaeiiiitete e eeie e e e ettt e e e e aaeeeaaeaaaaseeeeaaaaanteeeeaeeaasnseeeaeaaannseeeaaeaanssneaaeeannnnees 15
Table 2-3. Floating-Point REGISIErS (IMX/XIMX)......ce ettt ettt e e e ettt e e e e et e e e e e e e et beeeaaeaansseeaeeaannseeeaaeaasneneaaaanns 16
Table 2-4. Interrupt Status RegiSter (ST S). ... e it ettt e e e ettt e e e e ettt e e e e e anbeeeaaeaansneeeaeeaanneneaaaeaannens 17
Table 2-5. Decode Phase Status RegiSter (DSTS).u ittt e e e e et e e e e e e ntee e e e e e e annteeaaeaaannaeeeaaann 18
Table 2-6. Execute Phase Status Register (ESTS). ... oo ittt e e e e e e e e et e e e e e e e nneeas 19
Table 2-7. Instruction SizeS and ENCOTING.ciii ittt ettt e e e e ettt e e e e s neeeeeaeaaneeeeeaeaaanneeeaaeaaannsneeaaeaanees 20
Table 2-8. Rules of Code EXECULION ACIOSS STACKS.cciiiiiiiii ettt e et e et sne e e ne e e e eb et e nnneeenaneeeas 23
Table 3-1. CPU RegiSters RESEE VAIUES........co ettt ettt e e e e et e e e e e aebe e e e e e e nnseeaeeaaannneeaaeeaannnneeas 27
Table 3-2. Conditions That BIOCK INTEITUPLES..........eee e e e e e e e e e e e e e e e e e s e e s e e e e anssenaeaeeenees 30
Table 3-3. INTS - INterrupt STAtUS VAIUES........eeeeeeeieeeeeeeee e e e e e e e e e e e e e e e e e s e e et a e e e reae e e e e e eeaaaaaaaeens 32
o) ST B A 0) 0 o U S = Lo [)Y/ o1 S PSSR 33
Table 4-1. C29X CPU PiIpeling STAgES.eiiiiiiiiiiiiie ettt ettt e e et ettt e e e e et e e e e e e saeeeeaeeaannseeeaeeanseeeaaeeaannnneaaeaaannnns 39
Table 4-2. Sample Instruction Sequence with Data Hazard...............coooiiiiiiii e 43
Table 4-3. Comprehensive Information of Register REad...........ooo i a e e e e e e 45
Table 4-4. Comprehensive Information of Register WIe.ooi e e 45
Table 4-5. D2 REAA PrOtECHON.cciiiiiiitiee ittt ettt e e et s b e e e e skt e e eate e e sne e e e as bt e e e nneesaneeeeanreeennn 46
Table 4-6. Pipeline Diagram Showing Example of D2 Read Protection...............ooo i 46
Table 4-7. E1 REAA PrOtECHON. ...ttt e ettt e s bt e e s b e e et e e e ann e e e ab e e e nnre e e nanees 47
Table 4-8. Pipeline Diagram Showing Example of E1 Read Protection..............ccoooi i 47
Table 4-9. WAW PrOtECHION.eeiitiie ittt ettt ettt e et r et e e ekt e e et et e e b et e e ea b e e e et et e s ne e e e sebe e e ebre e e nnneeennneeenn 48
Table 4-10. Pipeline Diagram Showing Example of WAW Read Protection..............ccooiiiiii e 48
Table 4-11. Interrupt Pipeling DIAQIam.o oo ittt e e ettt e e e ettt e e e e e s ateeeaeeaaanbeeeaeeaannseeeeeeaannsseeaaeaanneneaaean 49
Table 5-1. Available AddreSSiNg MOAES.........ooi ettt e e e oo e et e e e e e s aeeeeaeeaanbeeeaa e e nseeeaaeeaannseeaaeaaannseeeaeeaansnneas 53
Table 5-2. ADDR Field ENCOGINGS.eiiiiiiiiiiie ettt ettt e e e e sttt e e e e e e s te et e e e e e saeeeaaeaannseeeaeaeannbeeeaaeaansneeeaaeaannseeaanannn 55
Table 5-3. ADDR2 Field ENCOTINGS.eiiiiiiiiiiiee ettt e ettt e e e e s ettt e e e e e nte et e e e e aaaaeeeaaaaansseeeaaeanbseeaaeaannnneeaaeaanneeeaaaannn 57
Table 5-4. ADDRS3 Field ENCOGINGS.eiiiiiiiiiiiee ettt ettt e e e e st e e e e e e e s te et e e e e e saeeeaaaaannsseeeeaeannteeeaaeaannnneeaaeaannseeaaaannn 58
Table 5-5. DIRM Field ENCOINGS. ettt ettt e e e ettt e e e e e a e et e e e e e s aeeeaeaaanneseeaeaeannbeeeaaeaansnneeaaeaansseeaaaannn 59
Table 5-6. #n13IMM Field ENCOQING........ . ettt e e e e ettt e e e e e s nteee e e e s e naeseaaeaannseeeaeesansnneaaeeaannnes 60
Table 5-7. #n8IMM Field ENCOAING.......ce ettt e et e e e oottt e e e e e aeteeea e e e neeeeaae e e naeeeaaeaaannseeeaeeaansseeaaeeaannees 61
Table 5-8. Bit Reversed AAdressing VISUAIZEA.o ittt et e e e e ettt e e e e e ese e e e e e aanneeeeaeeaannneeeas 70
Table 7-1. 14-Pin Header Signal DESCIIPLIONS.e ittt e ettt e e e e ettt e e e e e e aaebeeeaeeanteeeaaeeaannnneeaeaaanneas 80
Table 7-2. Selecting Device Operating Modes By Using TRST, EMUO, and EMU ... 80
4 C29x CPU SPRUIY2 — NOVEMBER 2024

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Preface

Read This First

i3 TEXAS INSTRUMENTS

About This Manual

This manual describes the CPU architecture, interrupt, pipeline, addressing modes, safety and security aspects
of the CPU. This manual also describes emulation features available on these devices. A summary of the
chapters follows.

Architectural Overview

This chapter introduces the CPU that is at the heart of each F29x device. The chapter includes a memory-map
and a high-level description of the memory interface that connects the core with memory and peripheral
devices.

Central Processing Unit

This chapter describes the architecture, registers, and primary functions of the CPU. The chapter includes
detailed descriptions of the flag and control bits in the most important CPU registers, status registers ISTS,
DSTS, and ESTS.

CPU Interrupts Architecture Overview

This chapter describes the interrupts and how the interrupts are handled by the CPU. The chapter also
explains the effects of a reset on the CPU and includes discussion of the automatic context save performed by
the CPU prior to servicing an interrupt.

Pipeline

This chapter describes the phases and operation of the instruction pipeline. The chapter is primarily for readers
interested in increasing the efficiency of the programs by preventing pipeline delays.

Addressing Modes

This chapter explains the modes that the assembly language instructions accept data and access register
and memory locations. The chapter includes a description of how addressing-mode information is encoded in
opcodes.

Safety And Security Unit

This chapter describes safety and security approach adopted by F29x architecture. This chapters explains the
concepts of task isolation, LINK, STACK, and ZONE with examples.

Emulation Features
This chapter describes the F29x emulation features that can be used with only a JTAG port and two additional
emulation pins.

Related Documentation from Texas Instruments

For a complete listing of related documentation and development-support tools for these devices, visit the Texas
Instruments website at www.ti.com.

SPRUIY2 — NOVEMBER 2024 C29x CPU 5
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Read This First www.ti.com

Glossary

Tl Glossary This glossary lists and explains terms, acronyms, and definitions.

Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute Tl specifications and do
not necessarily reflect Tl's views; see TlI's Terms of Use.

Trademarks
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

6 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLYZ022
https://e2e.ti.com
https://www.ti.com/corp/docs/legal/termsofuse.shtml
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Chapter 1
Architecture Overview

i3 TEXAS INSTRUMENTS

C29x is a floating-point CPU in the C2000 family. This chapter provides an overview of the architectural structure
and components of the CPU.

1.1 INtroduction $0 the CPU......... ... ettt et e e e e teeeea e e e aaeeeeae e e anaeeaeaeaansaeeaaeeaannneeaaeaaannneeaaaann 8
I 0 = - R 1T o = PSPPSR 8
1.3 C29X CPU System ArChit@CIUIE...............oiiiiiiii ettt e e e ettt e e e e e snbeeeeeesantaaeeaeseannnaeeaeeannnes 9
3 1 1= 0o T =T PSP 11
SPRUIY2 — NOVEMBER 2024 C29x CPU 7

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Architecture Overview www.ti.com

1.1 Introduction to the CPU

The C29x CPU is a VLIW (Very Long Instruction Word) architecture with a fully protected pipeline. The C29x
CPU supports multiple instruction sizes (16/32/48 bits), a variable instruction packet size which can contain
multiple instructions that execute in parallel. For example, the C29x CPU architecture can execute up to eight
instructions in parallel. This is enabled by multiple functional units inside the CPU that can execute concurrently.
A total of 64 working registers, broken into three different categories (Ax, Dx, and Mx register banks) to support
the parallel operations in the CPU. In addition to the working registers, the CPU contains multiple status registers
(DSTS, ESTS, and ISTS) that maintain different execution and interrupt context related information.

1.2 Data Type

The C29x CPU supports the following data types in memory:

Support 8, 16, 32, 64 Data Types: The CPU supports 8-, 16-, 32-, and 64-bit operations. The CPU can read
and write to memory 8-, 16-, 32-, and 64-bit sized data in a single operation (cycle).

Little-Endian Format: All data and registers use little-endian format.

Data Aligned to Word Size Boundaries: A 16-bit access needs to be aligned to a 16-bit word boundary
(Address Line 0 = 0). A 32-bit access needs to be aligned to a 32-bit word boundary (Address Lines 1,0 = 0,0). A
64-bit access needs to be aligned to a 64-bit word boundary (Address Lines 2,1,0 = 0,0,0).

32-bit and 64-bit Floating Point: The C29x CPU supports 32-bit and 64-bit floating-point operations using the
IEEE format. The values can be moved between fixed-point and floating-point registers without incurring memory
stalls.

C Compiler Data Type Compatibility:

Size C29x CPU Data Type Definitions
char 8 bits
short 16 bits
int 32 bits
long 32 bits
long long 64 bits
float 32 bits
double 64 bits
long double 64 bits
pointer 32 bits

8 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Architecture Overview

1.3 C29x CPU System Architecture

The C29x CPU system architecture consists of the following main functional blocks as shown in Figure 1-1.

C29x CPU Core: Responsible for generating data- and program-memory addresses; decoding and executing
instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among CPU
registers, data memory, and program memory

CPU Stacks: Manages the software, protected call and Realtime interrupt stacks in a secure environment.
CPU Interface buses: Signals for interfacing with memory and peripherals, clocking and controlling the CPU
and the emulation logic

Safety and Security Unit (SSU): Implements safety, memory management (MPU) and security as one
function in hardware.

Peripheral Interrupt Priority Expansion (PIPE): Manages and prioritizes all peripheral interrupt sources.
See the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual for more details on
the PIPE.

C29x CPU Debug Interface: Used for monitoring and controlling various parts and functionality of the MCU
and for testing device operation. Interfaces to Debug Sub-system (DebugSS) and Embedded Real-time
analysis and Diagnostics (ERAD) Units external to the CPU.

Safety & Security
Debug Read Bus o Debug Read Bus
| — e e— L | Unit \ —
Debug Write Bus (ssU) Debug Write Bus
C29x CPU Core
Status Registers
1STS (32) Program Control Regs
DSTS (32) | PC(32)
ESTS (32) RPC(32)
Floating-Point Registers Pr:gram Code Access Program Bus
(M0 - M31) (‘thu::CC) Protection Ranges (128 bits)
wi
(32 x 32-bit)
Memory
" " . Data Read &
leediPolnt Reg)lsters Bus 1 Data Read Bus 1 LT e ripheral
DO - D15] 64 bi 64 bi
(16 x 32-bit) (with ECC) k) (64 bits) Wrappers
Data Read -
Addressing Registers Bus 2 Data Read Bus 2 Data Access Data Read Bus 2
(A0 -A15) (with ECC) (64 bits) Protection Ranges (64 bits)
—TRSTn-) (16 x 32-bit)
—TCK—) DebugSs
v v Data Write prammem p—
Do 0 cPU Bus (64 bits) (64 bits)
— (with ECC)
ERAD Debug
(Breakpoints, |/F
Watchpoints, LINK-STACK
Log, Analysis, CPU Stacks Association
LICII Data Logging, .
I Code Tracing) Secure STACK Pointers
Tightly STACK-ZONE
ouple Association
(external Coupled
to CPU) Multiple Levels Interface
Security ZONE
Passwords
Protected Call Stack
Multiple Levels All
(Save Return Addr, Closely Coupled Peripheral
RPC, DSTS[CLINK]) WARNPSP (32) Interface Interrupts
MAXPSP(32) | | | 0 N 0 ______
SSU Protected
Realtime Interrupt Stack Vector -
lelrrint—] | Peripheral Interrupt Xbar (256)
. ll-inT—] | Priority Expander (PIPE)
"’;{“T'I‘,‘\"’T'Z"-;"(Ael's NMI WARNRTISP
MAXRTISP (Rd-only)
(Save All CPU Registers) RTISP (Rd-only)
SSU Protected | Error Signaling Module (ESM) |
Figure 1-1. C29x CPU System Architecture
SPRUIY2 — NOVEMBER 2024 C29x CPU 9

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Architecture Overview www.ti.com

1.3.1 Emulation Logic

The emulation logic includes the following features. For more details about these features, see Chapter 7 for
more details.

1. Code Execution control
* Ability to download code
» Support for breakpoints/watchpoint
* Run, Halt, single-stepping
2. System Visibility
* Access to System memory
* Access to Peripheral memory
* Real-time access to memory/peripherals without halting the CPU
3. Cross Triggering
* Mapping events from one CPU subsystem to another
» Event actions are handled in the respective CPU sub system
4. Security
» Access paths for security challenge response from the debugger to HSM module/SSU based on the
device security architecture

5. Profiling

* C29x CPU code profiling is done using ERAD
6. Trace

+ (C29x CPU trace is done using ERAD PC Discontinuity trace
7. Reset

» Capability for CPU and System reset using the debugger

1.3.2 CPU Interface Buses
The C29x CPU core access code, data and peripheral resources through the following buses:

Program Bus: Program bus is used to fetch instructions from memory subsystem. Data bus width of program
bus is 128 bits. This bus can fetch 128-bits in a single cycle. The C29x CPU supports instruction packets from
16-bits up to 128-bits. Each instruction fetch is ECC protected .

Data Read Bus 1: Data read bus 1 is used to read the data from memory subsystem or peripherals. Data bus
width of data read bus is 64 bits. This bus can read 8-, 16-, 32-, and 64-bit data in a single cycle. There are
two data read buses on C29x CPU. Data from memories can be simultaneously accessed using these buses if
address falls into different physical memory banks (Refer to the device-specific data sheet to identify physical
memory banks). In case of simultaneous accesses to the same bank, accesses can be arbitrated or serviced
in any order. Refer to the device-specific data manual for details regarding physical banks. Data Read Bus 1 is
ECC protected.

Data Read Bus 2: Data read bus 2 is used to read the data from memory subsystem or peripherals. Data bus
width of data read bus 2 is 64 bits. This bus can read 8-, 16-, 32-, and 64-bit data in a single cycle. Data Read
Bus 2 is ECC protected.

Data Write Bus: Data write bus is used to write data to memory subsystem or peripherals. Data bus width of
data write bus is 64 bits. This can write 8-, 16-, 32-, 64-bit data in a single cycle.

Note
ECC Feature: C29x CPU supports ECC granularity of 16/32/64 bits and has the capability for single
bit error correction. Double bit error detection causes CPU to enter FAULT state. When correcting for
single bit error, CPU stalls the PIPE for 1 cycle.

Debug Data Read Bus: C29x CPU has dedicated debug data read bus similar to data read bus. Data bus width
of debug data read bus is 64 bits. This bus can read 8-, 16-, 32-, and 64-bit data in a single cycle. SSU allows or
blocks the debug accesses based on security settings.

10 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Architecture Overview

Debug Data Write Bus: C29x CPU has dedicated debug data write bus similar to data write bus. Data bus width
of debug data write bus is 64 bits. This bus can write 8-, 16-, 32-, and 64-bit data in a single cycle. SSU allows or
blocks the debug accesses based on security settings.

Interrupt Bus: C29x CPU interrupt bus handles Reset, NMI, RTINT, INT interrupt signals and interrupt vector.

ERAD Interface bus: Breakpoint and watchpoints are implemented to external to C29x CPU using ERAD
(Real-Time Analysis and Diagnostics) module. This bus is used to interface ERAD with C29x CPU.

SSU Interface bus: Security implementation is tightly coupled to C29x CPU using SSU interface bus.
Error Interface bus: Program read errors, data read errors and data write errors are interfaced to Error
Aggregator/ESM using error interface bus.

1.4 Memory Map

The C29x CPU has a dedicated stack pointer (SP = A15) that can access the full 32-bit address range of the
CPU.

The C29x CPU supports separate program, data read, and data write buses. The memory is unified with one
4GB image. On the C29x CPU, every peripheral instance is mapped within a 4KB address range.

C29 Memory Allocation Example

—RESETw» ROM
(32MB)
FLASH
(32MB) On-Chip
Resources
RAM (128 MB)
(32MB)
PERIPHERALS Block
(32MB) Protection
EMIFO
(128MB)
PC
AOto Al4
Stack = A15
(range 4GB)
EMIF1
(3.75GB)
\

Figure 1-2. Memory Map

Block Protection: This feature protects the order of Read and Write operations to peripheral registers and
avoids pipeline effects.

SPRUIY2 — NOVEMBER 2024 C29x CPU 1
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Chapter 2
Central Processing Unit (CPU)

i3 TEXAS INSTRUMENTS

The central processing unit (CPU) is responsible for controlling the flow of a program and the processing of
instructions. CPU performs arithmetic, Boolean-logic, multiply, and shift operations. When performing signed
math, the CPU uses two's complement notation. This chapter describes the architecture, registers, and primary
functions of the CPU.

2.1 C29X CPU ArCRIEECIUIE. ... ettt ettt e e e e ettt e e e e e aeeeeae e e e nbeeeaaeaansseeeaeeaannsaeeaeeaannsnneaaeaannns 13
2.2 CPU REQISTEIS..........oeeiiiiiieiieie ettt ettt oot 4 bttt e s bt e e ettt e 4 b e et e s bt e e 2 s et e 4 be et e a b et e 2 an e e e e bn e e e ante e e nanne e e nnnee s 14
2.3 INSTIUCHION PACKING.......ccoi ittt ettt e e e ettt e e e e e aaateeeeeeaantaeeaeeeeasbaeeeeeaansseeeeeeaasnsaeeeeeaannsaeeaaeannsns 20
P] = Lo LTSS P PP 21

12 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

I,

TEXAS
INSTRUMENTS

www.ti.com Central Processing Unit (CPU)

2.1 C29x CPU Architecture

The C29x CPU is a VLIW (Very Long Instruction Word) architecture with a fully protected pipeline. The CPU
supports multiple instruction sizes (16/32/48 bits). The CPU also supports variable instruction packet size, with
each packet able to contain up to eight instructions that execute in parallel. For example, the CPU architecture
can execute up to eight 16-bit instructions in parallel. This is enabled by multiple functional units inside the
CPU that can execute concurrently. A total of 64 working registers, divided into three different categories (Ax,
Dx, and Mx register banks) support the parallel operations in the CPU. In addition to the working registers, the
CPU contains multiple status registers (DSTS, ESTS, and ISTS) that maintain execution-related and interrupt
context-related information.

2.1.1 Features

Following is the list of C29x CPU major features:

Ease of use:

Byte addressable CPU.

Linear and unified memory map with 4GB address range.

Fully Protected Pipeline: 9 stage pipeline that prevents writes and reads from same location from

occurring out of order.

— Deterministic execution and maximum performance without cached memories.

Improved parallelism:

— Execute from 1 to 8 instructions in parallel.

— Execute fixed-point, floating-point, and addressing operations in parallel.

— Multiple parallel functional units.

— Specialized operations to minimize discontinuities and accelerate decision making code (for example,
if-then-else statements and switch statements).

— Specialized operations targeting real-time control (for example, trigonometric operations and multiphase
vector translation operations).

Improved bus throughput:

— Capable of fetching up to 128-bit instruction packet every cycle.

— Capable of performing 8/16/32/64-bit dual reads and single writes per cycle.

— Improved addressing modes reduce overhead in accessing memory and peripheral resources.

— Improved pipeline allows for additional 0-wait memory to be accessible to CPU for maximum performance.

Code efficiency:

— Supports variable length instruction set (16-bit, 32-bit, and 48-bit instructions).

— Rich instruction set optimizes the most common operations in smallest instructions.

ASIL-D safety capability with code isolation in hardware:

— Lock step core capable of independent execution in split-lock mode (acting as a separate core) or lock
step execution (for redundancy).

— Integrated ECC logic

— Integrated memory management (MPU) and protection mechanisms in hardware to maximize MIPS.

— Separate code threads are fully isolated and protected (including software stacks).

Multi-zone security in hardware:

— Run time content protection and IP protection of code.

— Individual passwords for each zone to control access.

Enhanced debug and trace capabilities:

— Specialized data logging and code flow trace instructions.

— Trace data capable of being logged in on-chip RAM or exported through serial communication peripherals.

SPRUIY2 — NOVEMBER 2024 C29x CPU 13
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Central Processing Unit (CPU) www.ti.com

2.1.2 Block Diagram
Figure 2-1 shows a block diagram of the C29x CPU.

System Memory & Peripherals

Safety & Security Unit (SSU)

ECC Bits

DR,
DI
L

128-bit Pre-Fetch Buffer 64-bit Line Buffer 64-bit Line Buffer Write Buffer (1 level)
4 levels;
¢) Data Read Address Gen Unit 1 Data Read Address Gen Unit 2 Data Write Address Gen Unit 1
Code Pre-Fetch Unit + SECDEC (8/16/32/64-bits) + SECDEC (8/16/32/64-bits) + SECDEC (8/16/32/64-bits) + ECC Support
[Program Counter - PC (32 bits) |
| Return Program Counter - RPC (32 bits) | Co
Fixed Point Registers Processor
. . Interface
Status Registers DO - D15 (16, 32 bit registers))
- - (or)
[Interrupt Status Register — ISTS (32 bits) |] XDO — XD14 (8, 64 bit registers) B
[Decode Status Register — DSTS (32 bits) | 6! Move Register Move
[Execute Status Register — ESTS (32 bits) | Ax<->Dx Dxe->Mx
xecute Status Register its] XAx<->XDx XDx<->XMx

Fixed Point Functional Units

Logical Unit 1/2
Multiplier Unit
Add / Sub Unit 1/2
Comparator Unit 1/2/3/4

Addressing Registers [Floating Point Registers
A0-A15 (15'(32) bit registers) MO — M31 (32, 32 bit registers)
XAO - XA14 (8, 64 bit registers) Reiister “l\:ove XMO — XM30 (]_(:’r)“ bit registers)
XAi<->XI\’/‘Ix
Addressing Functional Units Floating Point Functional Units
Logical Unit
Multiplier Unit
Add / Sub Unit
Figure 2-1. C29x CPU Block Diagram
2.2 CPU Registers
The C29x CPU core consists of following CPU registers:
* Addressing Register (Ax / XAx)
— Stack Pointer (A15 = SP) register
» Fixed-Point Registers (Dx / XDx)
* Floating-Point Registers (Mx / XMx)
* Program Counter (PC)
* Return Program Counter (RPC)
» Status Registers
— Interrupt Status Register (ISTS)
— Decode Status Register (DSTS)
— Execute Status Register (ESTS)
14 C29xCPU SPRUIY2 - NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Central Processing Unit (CPU)

2.2.1 Addressing Registers (Ax/XAx)
Table 2-1. Addressing Registers (Ax/XAx)

Registers Size Description

A0 XAO0 32 bits

A1 32 bits

A2 XA2 32 bits Addressing Registers (16*Ax, 8*XAx):

A3 32 bits * The Ax registers are primarily used for addressing operations. All addressing

Ad XA4 32 bits modes operate on the Ax registers.

A5 32 bits * There are 16, 32-bit addressing registers (A0-A15) or 8, 64-bit addressing register
- pairs (XA0-XA14).

Ab XAb 32 bits * The Ax registers can also be used to perform MPY, ADD, COMP, SHIFT and

A7 32 bits AND/OR/XOR operations. The registers are used to generate 32-bit addresses for

A8 XA8 32 bits the C29x CPU memory space (4GB).

A9 32 bits » The registers can be used as individual 32-bit registers or for 64-bit register pairs

A10 XA10 32 bits as 64-bit load/store operations to and from memory or 64-bit register-to-register

A1 32 bits moves (8 pairs, XA0, XA2, to XA14).
- » Register A15 is dedicated as the Stack Pointer (A15 = SP) register.

A12 XA12 32 bits

A13 32 bits Value after Reset : 0x0000 0000

A14 XA14 32 bits

A15 (SP) 32 bits

2.2.2 Fixed-Point Registers (Dx/XDx)
Table 2-2. Fixed-Point Registers (Dx/XDx)

Registers Size Description
DO XDO 32 bits
D1 32 bits
D2 XD2 32 bits
D3 32 bits
D4 XD4 32 bits Fixed-Point Registers (16*Dx, 8*XDx):
D5 32 bits + The Dx registers are primarily used for performing fixed-point data operations.
D6 XD6 32 bits » There are 16, 32-bit fixed-point registers (D0-D15) or 8, 64-bit fixed-point registers
D7 32 bits pairs (XD0-XD14).
D8 XD8 32 bits * The registers can be used as individual 32-bit registers (Dx) or for 64-bit register
D9 32 bits pairs (XDx) as 64-bit operations, 64-bit load/store operations to and from memory
or 64-bit register-to-register moves (8 pairs, XD0, XD2, to X14).
D10 XD10 32 bits
D1 32 bits Value after Reset : 0x0000 0000
D12 XD12 32 bits
D13 32 bits
D14 XD14 32 bits
D15 32 bits
SPRUIY2 — NOVEMBER 2024 C29x CPU 15

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Central Processing Unit (CPU)

13 TEXAS
INSTRUMENTS

www.ti.com

2.2.3 Floating Point Register (Mx/XMx)
Table 2-3. Floating-Point Registers (Mx/XMx)

Registers Size Description
MO XMO0 32 bits
M1 32 bits
M2 XM2 32 bits
M3 32 bits
M4 XM4 32 bits
M5 32 bits
M6 XM6 32 bits
M7 32 bits
M8 XM8 32 bits
M9 32 bits
M10 XM10 32 bits
M11 32 bits
M12 XM12 32bits | Floating-Point Registers (32*Mx, 16*XMx):
M13 32 bits * The Mx registers are primarily used for performing floating-point data operations.
M14 XM14 32 bits » There are 32, 32-bit addressing registers (M0-M15) or 16, 64-bit addressing
M15 32 bits register pairs (XM0-XM14).
M16 XM16 32 bits * The registers can be used as individual 32-bit registers (Mx) or for 64-bit register
M17 32 bits pairs (XMx) as 64-bit operations, 64-bit load/store operations to and from memory
or 64-bit register-to-register moves (32 pairs, XM0, XM2, to XM30).
M18 XM18 32 bits
M19 32 bits Value after Reset : 0x0000 0000
M20 XM20 32 bits
M21 32 bits
M22 XM22 32 bits
M23 32 bits
M24 XM24 32 bits
M25 32 bits
M26 XM26 32 bits
M27 32 bits
M28 XM28 32 bits
M29 32 bits
M30 XM30 32 bits
M31 32 bits
16 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Central Processing Unit (CPU)

2.2.4 Program Counter (PC)

When the pipeline is full, the 32-bit PC always points to the instruction that is currently being processed. The PC
increments from low to high memory and always points to the next executable instruction packet.

2.2.5 Return Program Counter (RPC)

This register holds the return address when performing a CALL or servicing a low-priority interrupt (INT). The
previous RPC value is saved on the stack. On a RET (return from a function) or RETLINT (return from a
low-priority interrupt) operation, the return address is fetched from the RPC register and then RPC is restored
with the value that was saved on the stack as part CALL or INT operation.

2.2.6 Status Registers

The C29x CPU core supports three status registers: ISTS (Section 2.2.6.1), DSTS (Section 2.2.6.2), and ESTS
(Section 2.2.6.3) that contain flag and control bits. The ESTS and DSTS status registers are stored into and
loaded from data memory, enabling the status of the CPU to be saved and restored for subroutines.

2.2.6.1 Interrupt Status Register (ISTS)
Table 2-4. Interrupt Status Register (ISTS)

Bit Bitfield Reset Value Description
0 INTF Oh This flag gets set when PIPE generates INT interrupt
1 RTINTF Oh This flag gets set when PIPE generates RTINT interrupt
2 NMIF Oh This flag gets set when PIPE generates NMI interrupt
3-7 RESERVED Oh RESERVED
8-15 ATOMIC COUNTER Oh ATOMIC Counter: When the ATOMIC #N operation is executed, the counter

is loaded with the specified count value #N. The counter then starts
decrementing on every instruction packet execution. Interrupts are blocked
until the counter reaches zero. The maximum #N value supported is 64

packets.

16-19 CURRSP Oh Current Stack Pointer: The C29x CPU system supports multiple software
STACKSs. This field reflects the current active STACK.

20-23 INTSP Oh Interrupt Stack Pointer: The INT interrupt can only be executed from

one selected STACK which is reflected by the INTSP field. This value is
programmed in the interrupt controller (PIPE). Reset value is determined the
value driven by PIPE.

24-26 RESERVED Oh RESERVED

27-30 CURRLINK Oh Current LINK: The C29x CPU security and safety system supports a concept
of LINKSs (described in Chapter 6). This field reflects the current active LINK
value in the D2 phase.

31 RESERVED Oh RESERVED

SPRUIY2 — NOVEMBER 2024 C29x CPU
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

17

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS
Central Processing Unit (CPU) www.ti.com
2.2.6.2 Decode Phase Status Register (DSTS)
Table 2-5. Decode Phase Status Register (DSTS)
Bit Bitfield Reset Value Description
0 AZ Oh Ax Register Operation Flags: These flags are set on fixed-point operations
involving the Ax registers. Tested conditions:
1 AN Oh
A.EQ : Equal To Zero
2 AC oh A.NEQ : Not Equal To Zero
3 Azv Oh A.GT : Greater Than Zero

A.GEQ : Greater Than Or Equal To Zero

A.LT : Lesser than Zero

A.LEQ : Lesser than (or) Equal to Zero

A.HI : Higher

A.HIS : Higher (or) Same

A.LO : Lower

A.LOS : Lower Or Same

A.EQANDNZ: Equal AND Not Zero(useful for character string searches)
A.NEQORZ : Not Equal OR Zero (useful for character string searches)

4-5 RESERVED Oh RESERVED
6 DBGM Oh Debug Mask Bit , Enables or disables debug requests.
7-10 CLINK™ Oh Used for indicating the origin of a protected CALL operation.
11 RESERVED Oh RESERVED
12 TAO Oh Ax Register Test Flags: These test flags can store multiple conditions by
13 TA1 oh testing the Ax operation Flags. These test flags can then be used to combine
multiple combinations of tested conditions. This enables the reduction of
14 TA2 Oh multiple conditional branch operations. Tested conditions:
15 TA3 oh TAx.Z TAx Equal To Zero

TAx.NZ TAx Not Equal To Zero

TA.MAP(#x16ta) Test TAx FLAGS Using 4:1 LUT Combination
16 INTE Oh Interrupt (INT) Enable Bit

17-18 INTS®@ Oh Interrupt Status: These bits indicate the current active interrupt

ISTS = 0 : Main code active

ISTS = 1: INT active

ISTS =2 : RTINT active

ISTS = 3 : NMI active

19-26 ISR PRIORITY(®2 FFh The ISR PRIORITY level is between 0 (highest priority) to 255 (lowest priority).
27-30 RLINK () Oh Used for indicating the origin of a protected RET operation.
31 RESERVED Oh RESERVED

(1) CLINK and RLINK are only updated by the hardware. Load, Move and Mask operations does not change the state of these fields.
(2) INTS and ISR PRIORITY are only updated by the hardware and RETLINT instruction. Any other Load, Move and Mask operations
does not change the state of these fields.

18 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS

www.ti.com

Central Processing Unit (CPU)

2.2.6.3 Execute Phase Status Register (ESTS)
Table 2-6. Execute Phase Status Register (ESTS)

Bit Bitfield Reset Value Description
0 D.Z Oh Dx Register Operation Flags: These flags are set on fixed-point operations
1 DN oh involving the Dx registers. Tested conditions:
D.EQ Equal To Zero
2 D.C oh D.NEQ Not Equal To Zero
3 D.zv Oh D.GT Greater Than Zero
4 D.ov() 2) Oh D.GEQ Greater Than Or Equal To Zero
5 D.OVNEG(" () 3) oh D.LT Less Than Zero
D.LEQ Less Than Or Equal To Zero
D.HI Higher
D.HIS Higher Or Same
D.LO Lower
D.LOS Lower Or Same
D.EQANDNZ Equal AND Not Zero (useful for character string searches)
D.NEQORZ Not Equal OR Zero (useful for character string searches)
D.OV Integer Overflow
D.OVNEG Integer Overflow Negative
6-7 RESERVED Oh
8 M.ZF Oh
9 M.NF
10 M.LUF() @) Oh
1 M.LVF(1) ()
12 TDMO Oh
13 TDMA1
14 TDM2 Oh
15 TDM3
16 RNDF32 Oh
17 RNDF64
18 IDIV.Z Oh
19 IDIV.N
20 IDIV.TF Oh
21 FDIV.TF
22 FDIV.N Oh
23 TMU.TF
24-31 RESERVED Oh RESERVED

(1) On the C29x CPU, all flags (except D.OV, D.OVNEG, M.LUF, and M.LVF) are only affected by compare (CMP), test bit (TBIT), or test

flag (TFLG) type operations. Load/Store, MPY, ADD, SUB, SHIFT, AND, OR, and XOR type operations do not affect the flags.
(2) D.OV, D.OVNEG, M.LUF, and M.LVF are sticky flags, that is, once set, the flags remain set until cleared by software.

(3) D.OV and D.OVNEG get set as a pair. D.OVNEG is updated on first occurrence of D.OV, that is, if sequence of instructions updating

D.OV more than once, D.OVNEG captures overflow status on first D.OV occurrence.

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

C29x CPU

Copyright © 2024 Texas Instruments Incorporated

19

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Central Processing Unit (CPU) www.ti.com

2.3 Instruction Packing

The C29x CPU has a variable size instruction set. The supported instruction sizes are 16-bit, 32-bit, and 48-bit.
The VLIW architecture of the CPU allows multiple instructions to be issued in a single cycle. The number of
instructions that are executed in parallel is decided at build time and all the parallel instructions are packed

into a single instruction packet. This section explains the formation and structure of the instruction packets.
The maximum allowed instruction packet size is 128-bits. Hence, any combination of 16-bit, 32-bit, and 48-bit
instructions can form an instruction packet as long as the maximum packet size is not exceeded.

The following is a non-exhaustive list of examples of valid instruction combinations within an instruction packet:

¢ 8*16-bit instructions.

e 4 *32-bit instructions.

e 2*32-bit, 1 *48-bit, 1 * 16-bit instructions.
e 3*32-bit, 2 * 16-bit instructions.

Table 2-7 shows the structure of the three possible instruction sizes.

Table 2-7. Instruction Sizes and Encoding

Instruction Size Word 0 (low address) Word 1 (next address) Word 2 (next address)
15 14 13 12:0 31:16 47:32
16 I_Link 1 opcode
32 |_Link 0 1 opcode 16-bit parameters
48 I_Link 0 0 opcode Low 16 bits of 32-bit parameters | High 16 bits of 32-bit parameters

2.3.1 Standalone Instructions and Restrictions

Following are the restrictions:

» Discontinuity instructions cannot be included in delay slots. No hardware check. But, assembler shall flag this
error.

« |DLE instruction cannot be executed in delay slots.

» IDLE instruction cannot be placed in packets covered by XC

* IDLE instruction packet cannot be parallelized.

* PRESERVE instructions can only be executed in parallel to Protected call or Protected branch or Protected
return. No hardware check. But, assembler shall flag this error.

* EMUSTOPO cannot be included in delay slots.

» XC packets consisting of more than one instruction packet are not allowed in delay slots.

» ECCSELFTEST cannot be parallelized and executed as standalone only.

* MOV Ax,RPC and LD.32 RPC, @MEM is not allowed in delay slot of CALL instruction. RPC load with Return
address in delay slot 3 is not protected.

* XC/XCP instructions cannot be executed in parallel to ISRn.PROT/ENTRYn.PROT/EXITn.PROT

2.3.2 Instruction Timeout

Instruction decode many not be able to form a legal packet due to packing errors or uncorrectable error or
incorrect #delay setting. In such cases, timeout logic is used by CPU enters FAULT state. Timeout counter resets
whenever new instruction enters pipeline (or) when HALT is entered. Timeout counter is incremented when no
instruction is in D2. If the timeout counter ever exceeds the specified timeout value then CPU is taken to FAULT
state.

20 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Central Processing Unit (CPU)

2.4 Stacks
The C29x CPU contains following stacks:

1. Software Stack
2. Protected Call Stack
3. Real Time Interrupt Stack

2.4.1 Software Stack

Register A15 in the available addressing registers is dedicated as the stack pointer register (SP = A15). The A15
register can access the full 32-bit address range (4GB) of the CPU (see Figure 2-2).

Data Memory

Range accessible 0x0000 0000 -
by way of SP OxFFFF FFFF

Y

Figure 2-2. Address Reach of the Stack Pointer

The operation of the stack is as follows:

* The stack grows from low memory address to high memory address.

* The stack pointer always points to the next empty location in the stack.
* Atreset, the stack pointer is initialized to 0x0000 0000.

» The C29x stack pointer always aligned to a 64-bit word boundary.

Note
The C29x stack pointer (SP = A15) must always be aligned to a 64-bit word boundary. Any misaligned
stack causes CPU to enter FAULT state.

If passing parameters on the software stack is required, the assembly code structure looks as follows:

; Allocate Parameter Space On Stack:
ADD.U16 Al5, Al5, #PARAMETER_SPACE

;....pass parameters on stack..

;....pass parameters in registers..
CALL.PROT @func

; 32-bit RPC automacally pushed on stack

; Al5 = Al5 + 8 (stack pointer incremented by 8 bytes = 64-bits)
; There is a 32-bit hole in the stack that can be used to save

; De-allocate Parameter Space From Stack
SUB.U16 Al5, Al5, #PARAMETER_SPACE

SPRUIY2 — NOVEMBER 2024 C29x CPU 21
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Central Processing Unit (CPU) www.ti.com

If allocating local variables on the software stack is required, the code structure looks as follows:

func:
; Allocate Local variable Space On Stack:
ADD.U16 Al5, Al5, #PARAMETER_SPACE
; ... save on stack any registers used that need to be preserved across call..
; ... function code....
; ... restore from stack any registers used that need to be preserved across call..
; De-allocate Local variable Space From Stack
SUB.U16 Al5, Al5, #PARAMETER_SPACE

RET.PROT
; 32-bit RPC automacally popped from stack
; AL5 = Al5 - 8 (stack pointer decremented by 8 bytes = 64 bits)

On normal function call: Return program counter (RPC, holds previous return address) register contents are
pushed on software stack pointed by stack pointer (SP = A15). Then RPC register is initialized with new return
address.

On normal function return: Return address is read from RPC register. Then RPC register is restored with value
on software stack.

For more details regarding the RPC, see Section 2.2

22 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Central Processing Unit (CPU)

2.4.2 Protected Call Stack

The Protected Call Stack is a dedicated hardware stack used to make protected function call and return. This
stack is directly controlled by CPU and is inaccessible to user code. The basic protection concept of the C29x
CPU is based on LINKs, STACKSs, and ZONEs. The protected function call and return is the method used to
make a function call by the current executing code to another function residing in a different STACK. The C29x
security architecture allows definition of legal callable function labels using the instructions ENTRY1.PROT and
ENTRY2.PROT. This makes sure that code from another STACK can only make function calls or branches to
labels with the instruction packet “ENTRY1.PROT || ENTRY2.PROT” present. This prevents malicious code from
randomly entering into code regions without permission. Nesting of protected calls is allowed up to the number of
levels supported by the protected call stack. Table 2-8 shows the rules of code execution across stack.

Protected call Stack Pointer (PSP) register: The PSP register keeps track of the utilization of protected call
stack and shows the current value of protected call stack pointer. This register is automatically incremented and
decremented by HW on a protected call (CALL.PROT) and protected return (RET. PROT) respectively.

Warning level for Protected call Stack Pointer (WARNPSP) register: This WARNPSP is a user configurable
register which allows early warning of protected stack overflow detection. When PSP register >= WARNPSP
register, error signal is generated to ESM.

Maximum Protected call Stack Pointer (MAXPSP) register: The MAXPSP register is not user configurable
register. When PSP register = MAXPSP register, CPU enters fault state as protected call stack is full.

Table 2-8. Rules of Code Execution Across STACKs
Program Flow Operation Comments and CPU Action
Linear code execution within the same LINK

Branches, calls and returns within the same LINK

Branches, calls and returns across different LINKs, but within the
same STACK

Protected function return (RET.PROT) where the return address is
on a different STACK compared to the current STACK

Protected function calls (CALL.PROT @label/Ax) where source and
destination are on same STACK

Allowed without any restriction

Protected function return (RET.PROT) where the return address is
on a same STACK

Linear code execution crossing LINK, but within the same STACK

Branches where source and destination are on different STACKs

Function calls (CALL{D} @label/Ax) where source and destination
are on different STACKs Not allowed, CPU enters FAULT state.

Execution of a function return instruction (RET{D} /RET{D} <addr1>)
where the return address is on a different STACK compared to the

current STACK
Realtime Interrupt (RTINT) and NMI This is handled in the hardware and does not need any consideration
in the user code. The Interrupt service routine can reside in the same
or a different LINK/STACK/ZONE.
Interrupts (INT) ISR must be on the same stack. If not, CPU enters FAULT state.
SPRUIY2 — NOVEMBER 2024 C29x CPU 23

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Central Processing Unit (CPU) www.ti.com

2.4.3 Real Time Interrupt / NMI Stack

The Realtime Interrupt Stack (RTINT) is a dedicated hardware stack used by the Realtime Interrupt (RTINT)
and the Non Maskable Interrupt (NMI). For details on the differences between the various interrupt types, see
Chapter 3. When either of these interrupts are triggered, all C29x CPU working registers (Ax, Dx, Mx, RPC,
DSTS, and ESTS) and return address are saved on the RTINT stack within 8 cycles and restored in 8 cycles
when the RETLRTINT instruction is executed. Nesting of RTINT is allowed up to the number of levels supported
by the Realtime Interrupt Stack minus 1 level, with the NMI interrupt always having one reserved level.

Real Time Interrupt stack pointer (RTISP) register: The RTISP register keeps track of the utilization of stack
and shows the current value of Real Time Interrupt stack pointer. This register is automatically incremented by
hardware when Real Time Interrupt or NMI interrupt is triggered and decremented when RETI.RTINT instruction
is executed.

Warning level for Real Time Interrupt stack pointer (WARNISP) register: This WARNISP is a user
configurable register which allows early warning of real time interrupt stack overflow detection, when RTISP
register is greater than or equal to WARNISP register value.

Maximum Real Time Interrupt Stack Pointer (MAXISP) register: The MAXISP register is not user
configurable register. When ISP register equals to MAXISP register, CPU enters fault state as real time interrupt
stack is full.

For more details on registers related to the Real Time Interrupt stack, see Section 3.4.3.

Note
Real Time Interrupt Stack Pointer (ISP) register, Warning level for Real Time Interrupt Stack Pointer
(WARNISP) register, and Maximum Real Time Interrupt Stack Pointer (MAXISP) register are registers
in PIPE (Peripheral Interrupt Priority and Expansion).

24 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Chapter 3
Interrupts

i3 TEXAS INSTRUMENTS

What are Interrupts?

Interrupts are hardware- or software-driven signals that cause the CPU to suspend current program sequence
and execute a subroutine. Typically, interrupts are generated by peripherals or hardware devices that need to
give data to or take data from the C29x CPU (for example ADC, DAC, EPWM, and other processors). Interrupts
can also signal that a particular event has taken place (for example, a timer has finished counting).

C29x CPU Interrupts

On the C29x CPU, there are four types of interrupt lines in the system. These are listed here from highest priority
to lowest priority:

+ RESET

* NMI (non-maskable interrupts)

* RTINT (real-time interrupts, maskable)

* INT (low-priority interrupts, maskable, disableable)

These four interrupt lines handle all interrupts and exceptions on the device. All C29x devices come with a PIPE
(Peripheral Interrupt Priority and Expansion) module that provides additional prioritization and arbitration of the
RTINT and INT lines. Details regarding the PIPE module are provided in the F29H85x and F29P58x Real-Time
Microcontrollers Technical Reference Manual.

3.1 CPU Interrupts Architecture BIOCK Diagram.................coooiiiiiiiiiiiiiiiiiie ettt 26
3.2 RESET, NMI, RTINT, @nd INT..... .ottt sttt si e et e eab e e s beeeas e e sbeeembeeaaee e nbeeeaeeenbeeeateeaneesnbeeneennneas 27
3.3 Conditions BIOCKING INTEITUPLES.............ooiiiiiii et e st e sb e e e bt e e nnbeeesanes 30
3.4 CPU Interrupt CONtrol REGISTEIS.oiiiiiiiiiiiie ettt et e e e s ha e e e e bt e e sae e e e smneeeanteeesaneeaesnneeean 31
3.5 INtEITUPE NESTING. ... ettt e ettt e e e e et et e e e e e e a b et e e e e e nbaeeeee e e annbseeeeeaannbeeeeeeaannnneas 34
BT o 41 SRR 85)
SPRUIY2 - NOVEMBER 2024 C29xCPU 25

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS
Interrupts www.ti.com
3.1 CPU Interrupts Architecture Block Diagram
Figure 3-1 shows a block diagram of the C29x CPU interrupt architecture.
C29 CPU
K INTSP
—RESETn P
ISTS.NMIF
e I
Private
Interrupt
ISTS.RTINTF CPU Stack
Peripheral I'-::LT:;:I FRTINT. Registers RAM
Interrupts Priority and L 16/32/64 Levels
& Expansion Pipeline
Other Interrupt N'I) dul Controller
Sources odule ISTS.INTF and
] INT, Interrupt
PIPE TN — —P i
() IGN_INTE DSTS.INTE Proces.smg
Logic
Vector addresses for RESETn, NMI, RTINT, INT ISP
MAXRTISP
N
,_/I 'S NMI and WARNRTISP
N Fault Conditions
N Interrupt Stack Management
Error Registers
Signaling /\
Module \’ Fault conditions
(ESM)
Figure 3-1. C29x CPU Interrupts Architecture Block Diagram
26 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Interrupts

3.2 RESET, NMI, RTINT, and INT
This section explains the four interrupt lines available in the C29x CPU architecture.
3.2.1 RESET (CPU reset)

The CPU Reset is the highest priority interrupt line, and occurs when the RESETNn line receives an active low
signal. This causes the CPU to undergo a hardware reset internally. This cannot be aborted or nested-in.

All current and pending operations in the pipeline are aborted, and the pipeline is flushed during reset.
All CPU registers are reset to the reset value (all 0) as indicated in Table 3-1.
Table 3-1. CPU Registers Reset Values

Registers Reset Value
A0 through A15 0x0000 0000
DO through D15 0x0000 0000
MO through M31 0x0000 0000

DSTS 0x07F8 0000
ESTS 0x0000 0000
RPC 0x0000 0000
ISTS 0x0000 0000

Required Instructions

NMI and RTINT interrupts can potentially have the respective interrupt service routines residing in a different
LINK/STACK. Therefore NMI and RTINT interrupt service routines (ISRs) require that the first instruction packet
of every vector address contain the (ISR1.PROT || ISR2.PROT) instructions. The CPU pipeline control hardware
checks for these required instructions and generates a FAULT, if these instructions are not the first instruction
packet of the ISR. These required instructions are inserted automatically by the compiler, but must be configured
to do so for the appropriate vectors within a separate security settings file. See Section 3.6 for more details.

ISR1.PROT also initializes the stack pointer (A15) to the appropriate STACK by performing the following
operation: A15 = SECSPn (where n is the current STACK indicated by ISTS.CURRSP).

For more details on the security implications of the LINK/STACK/ZONE and memory space for CPU interrupts,
see Section 3.6.

3.2.2 NMI (Non-Maskable Interrupt)

The NMI (non-maskable interrupt) is the second-highest priority interrupt line, and receives system exception
interrupts.

This NMI input line is used for any device-level critical condition and various faults either inside or outside the
CPU that needs immediate attention.

Blocking and Masking

NMIs cannot be masked or blocked in the CPU. There is no global enable/disable bit for the NMI line in the
CPU. Because of this, any interrupts which are received on the NMI line are directly passed to the CPU for
prioritization. Priority is then decided amongst the interrupt types (NMI, RTINT, and INT lines). NMI always has
highest priority and asserts within any RTINT or INT currently executing. ATOMIC instructions in RTINT or INT
ISRs cannot block or prevent NMI from asserting. ATOMIC instructions have no effect on NMI.

SPRUIY2 — NOVEMBER 2024 C29x CPU 27
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Interrupts www.ti.com

Signal Propagation

The NMIn input latches inside the CPU, and is handled with higher priority than all other interrupt types (except
Reset events).

Stack

This interrupt line uses the protected Real Time Interrupt Stack for context save and restore. This SSU-protected
(Safety and Security Unit) stack has protection features to prevent stack overflow during nesting, when nesting is
requested by the PIPE module. The WARNRTISP and MAXRTISP CPU registers serve this purpose in the C29x
CPU system.

This protection limits nesting of RTINT up to the number of levels supported by the RTINT Stack minus one level
(which is always reserved for NMI interrupt).

For security, the SSU protection of the RTINT Stack are designed so that the contents of the stack are not
visible. Registers are also zeroed to prevent visibility into what was happening before the interrupt was serviced.

See Section 2.4 for details on stack overflow protection using the WARNRTISP and MAXRTISP registers.

Required Instructions

NMI and RTINT interrupts can potentially have the respective interrupt service routines residing in a different
LINK/STACK. Therefore NMI and RTINT interrupt service routines (ISRs) require that the first instruction packet
of every vector address contain the (ISR1.PROT || ISR2.PROT) instructions. The CPU pipeline control hardware
checks for these required instructions and generates a FAULT, if these instructions are not the first instruction
packet of the ISR. These required instructions are inserted automatically by the compiler, but must be configured
to do so for the appropriate vectors within a separate security settings file. See Section 3.6 for more details.

ISR1.PROT also initializes the stack pointer (A15) to the appropriate STACK by performing the following
operation: A15 = SECSPn (where n is the current STACK indicated by ISTS.CURRSP).

For more details on the security implications of the LINK/STACK/ZONE and memory space for CPU interrupts,
see Section 3.6.

3.2.3 RTINT (Real Time Interrupt)

The RTINT (real time interrupt) is the third-highest priority interrupt line, and receives signals driven by an
interrupt expansion and aggregation unit (the PIPE module for most C29x CPU systems).

Blocking and Masking

RTINT sources are able to be masked, but the actual RTINT line connected to the CPU can never be blocked/
disabled by user code. There is no global enable/disable bit for the RTINT line in the CPU. Because of this, any
interrupts that are received on the RTINT line are directly passed to the CPU for prioritization. Priority is then
decided among any interrupts on the NMI or INT lines. The RTINT signal line can only be stopped from nesting
within INTs by using the ATOMIC instruction within the INT ISR, and only for a finite number of instruction
packets. However, interrupts ISRs can be prioritized/blocked before the interrupts reach the RTINT line using the
external PIPE module.

Signal Propagation

The PIPE module provides external interrupt aggregation and arbitration for the RTINT and INT lines. This
allows for many signals to be categorized as "real-time interrupts" ("RTINT") or "low-priority interrupts" ("INT"),
and then prioritized before passing to the CPUs RTINT or INT interrupt line.

The PIPE effectively multiplexes the single RTINT CPU interrupt line to be able to receive from multiple incoming
RTINT interrupts in the appropriate order.

28 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Interrupts

The module allows for enabling and disabling of RTINT signals before the signals reach the RTINT line of

the CPU. The module also allows nesting capability amongst other interrupts categorized as RTINT. See the
F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual for details on the PIPE module
features.

Stack

This interrupt line uses the protected Real Time Interrupt Stack for context save and restore. This SSU-protected
(Safety and Security Unit) stack has protection features to prevent stack overflow during nesting, when nesting is
requested by the PIPE module. The WARNRTISP and MAXRTISP CPU registers serve this purpose in the C29x
CPU system.

This protection limits nesting of RTINT up to the number of levels supported by the RTINT Stack minus one level
(which is always reserved for NMI interrupt).

For security, the SSU protection of the RTINT Stack are designed so that the contents of the stack are not
visible. Registers are also zeroed to prevent visibility into what was happening before the interrupt was serviced.

See Section 2.4 for details on stack overflow protection using the WARNRTISP and MAXRTISP registers.

Required Instructions

NMI and RTINT interrupts can potentially have the respective interrupt service routines residing in a different
LINK/STACK. Therefore NMI and RTINT interrupt service routines (ISRs) require that the first instruction packet
of every vector address contain the (ISR1.PROT || ISR2.PROT) instructions. The CPU pipeline control hardware
checks for these required instructions and generates a FAULT, if these instructions are not the first instruction
packet of the ISR. These required instructions are inserted automatically by the compiler, but must be configured
to do so for the appropriate vectors within a separate security settings file. See Section 3.6 for more details.

ISR1.PROT also initializes the stack pointer (A15) to the appropriate STACK by performing the following
operation: A15 = SECSPn (where n is the current STACK indicated by ISTS.CURRSP).

For more details on the security implications of the LINK/STACK/ZONE and memory space for CPU interrupts,
see Section 3.6.

3.2.4 INT (Low-Priority Interrupt)

The INT (low-priority interrupt) is the lowest-priority interrupt line, and receives signals driven by an interrupt
expansion and aggregation unit (the PIPE module for most C29x CPU systems). This interrupt line is typically
used for lower priority operations and task schedulers.

Blocking and Masking

INT sources are able to be masked, and the INT line can also be blocked/disabled by user code using the
DSTS.INTE enable bit. If DSTS.INTE is enabled, then any interrupts received on the INT line are directly passed
to the CPU for prioritization. Priority is then decided among the interrupts on the NMI or RTINT lines. To prevent
an RTINT interrupt from nesting within a INT interrupt, the ATOMIC instruction can be used for a finite number of
instruction packets.

On entering a INT ISR, further INTs are automatically disabled using the DSTS.INTE bit. To allow nesting, enable
interrupts using the ENINT instruction. There also exists a DISINT instruction for disabling the INT line again.

The C29x CPU also provides a special INT called as Supervisor Interrupt. Supervisor Interrupt is essentially an
INT which can override the DSTS.INTE setting. For example, Supervisor Interrupt can be a certain task monitor
interrupt which requires the interrupt to not get blocked by erroneous setting of the DSTS.INTE.

SPRUIY2 — NOVEMBER 2024 C29x CPU 29
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Interrupts www.ti.com

Signal Propagation

The PIPE module provides external interrupt aggregation and arbitration for the RTINT and INT lines. This
allows for many signals to be categorized as "real-time interrupts" ("RTINT") or "low-priority interrupts" ("INT"),
and then prioritized before passing to the CPU's RTINT or INT interrupt line.

The PIPE effectively multiplexes the single INT CPU interrupt line to be able to receive from multiple incoming
INT interrupts in the appropriate order.

The module allows for enabling and disabling of INT signals before the signals reach the INT line of the CPU.
The module also allows nesting capability amongst other interrupts categorized as INT or RTINT. See the
F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual for details on the PIPE module
features.

Stack

Unlike the NMI or RTINT interrupt lines, the INT line uses the standard software stack for context save and
restore. Only one of the multiple available CPU stacks can be used for INT. This is configured by the INTSP
register in the external PIPE module. If an INT vector points to the wrong LINK which is associated with a
different STACK (security-assigned stack), then an NMI fault is generated.

If the current stack pointer is not pointing to the INTSP, then any pending INT remains pending until the stack
pointer points to the selected INTSP stack.

3.3 Conditions Blocking Interrupts

There are certain CPU pipeline conditions that cause an uninteruptible boundary for the CPU. These conditions
prevent entry of interrupts until the conditions are over, effectively blocking interrupts during the hold time. Table
3-2 explains these situations:

Table 3-2. Conditions That Block Interrupts

INT RTINT NMI

Condition|Description Blocked | Blocked | Blocked

Conditional instructions in packet not all completed

Discontinuity instruction delay slot not completed

Multicycle instructions like branch, call, return not completed

For CALL.PROT instruction: first instruction at the call destination not executed

For RET.PROT instruction: first instruction of the return address not executed

The first instruction of the previous asserted interrupt has entered the D2 stage Yes

CPU "pipeline ready" not asserted

CPU pipeline stalled due to memory RD/WR access

CPU pipeline stalled due to no instruction in the instruction buffer

Instruction packet stalled in D2 phase of pipeline due to pipeline hazard, but the packet is not
ready to move to R1 phase of pipeline.

LP Interrupt is disabled in DSTS.INTE Yes NO
ATOMIC instruction counter not completed Yes NO
30 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Interrupts

3.3.1 ATOMIC Counter

The C29x CPU supports an instruction “ATOMIC.REG #u8” that loads an internal counter (ISTS.ATOMIC
COUNTER) with an 8-bit value. This counter decrements once for each instruction packet executed. As long as
this atomic counter is not zero, an interrupt (RTINT or INT) cannot enter the CPU pipeline. Hence, this instruction
allows the user code to block interrupts for up to 256 instruction packets.

Restrictions on the use of ATOMIC instruction:

» The ATOMIC instruction cannot be in the delay slot of any discontinuity instruction or executed in parallel to a
branch instruction.

» The ATOMIC instruction cannot be in parallel to any discontinuity instruction.

» Executing ATOMIC instructions back to back cannot be used to block interrupts beyond the maximum count.

» Executing an ATOMIC instruction when the ATOMIC count is not zero resets the ATOMIC counter.

* Protected calls and returns reset the ATOMIC counter.

* The ATOMIC instruction or counter CANNOT block NMI. Anytime the ISTS.NMIF flag is set (indicating that a
NMI event has been registered), the NMI is taken and the ATOMIC counter is reset.

3.4 CPU Interrupt Control Registers
This section covers the three types of CPU registers that control interrupt-related functionality.

3.4.1 Interrupt Status Register (ISTS)

The Interrupt Status Register (ISTS) contains status information of various interrupt flags, stack pointers, current
link, and various counters.

. CURRLINK - INTSP CURRSP

31 30‘29‘28‘27 26‘25‘24 23\22\21\20 19 18 17 16
ATOMIC {counter} A N R R NMIF RTINTF INTF

15‘14‘13‘12‘11‘10‘9‘8 76| 5| 4] 3 2 1 0

Current LINK (CURRLINK): All resources including memory, peripherals, stacks are associated with LINK ID.
Links divide the boundaries of context in which the CPU is operating. Hence the code source address of the
instruction packet in the D2 pipeline stage is resolved to the corresponding code's LINK. This information is
critical to validate, update and access permissions in the interrupt vector table. The information is also critical
to configuration settings associated with each interrupt. Therefore, the CURRLINK register provides the current
LINK.

Stack pointers (CURRSP, INTSP): The C29x CPU, with embedded virtualization, has multiple stacks. The user
can assign a particular stack for INT, but RTINT and NMI use the RTINT Stack. The current stack pointer, which
points to the current STACK in use by the CPU, is represented by the CURRSP field. The STACK that is chosen
to be used by low-priority interrupts (INTs) is represented by the INTSP field. INTs do not enter the pipeline until

the INTSP matches the CURRSP.

ATOMIC counter (ATOMIC): The CPU allows up-to 256 instruction packets executed at one stretch without
being interrupted by RTINT or INT. The number of remaining instruction packets of ATOMIC execution is
reflected in the ATOMIC counter. Interrupts are not picked up for processing by the CPU, if the ATOMIC counter
is ticking. NMI is not affected by the ATOMIC counter, and operation is stopped and the counter is reset if an NMI
is received. See Section 3.3.1 for more details on the ATOMIC counter.

Interrupt flags (INTF, RTINTF, NMIF): Independent interrupt flags are registered including INTF, RTINTF, and
NMIF. These flags are set whenever a corresponding interrupt is asserted to the CPU and cleared upon exiting
the corresponding ISR. If there are multiple nested interrupts that are taken by CPU, then all corresponding flags
are set and those are cleared only upon servicing all interrupts in the respective category.

SPRUIY2 — NOVEMBER 2024 C29x CPU 31
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Interrupts www.ti.com

3.4.2 Decode Phase Status Register (DSTS)

The Decode Phase Status Register (DSTS) contains information regarding the interrupt and link status of the
CPU. The following table highlights fields related to interrupt operation. This information is used by software for
building predictable priority and security behavior.

. RLINK ISR_PRIORITY INTS INTE
31 30‘29‘28‘27 26‘25‘24‘23‘22‘21‘20‘19 18 17 16

TA3 | TA2 | TA1 | TAO . CLINK DBGM| - - |Azv] Ac | AN | AZ
15 14 13 12 11 10‘9‘8‘7 6 5 4 3 2 1 0

Return Link (RLINK): This represents the LINK of the origin from where the protected return was executed.

ISR Priority (ISR_PRIORITY): If CPU is servicing an interrupt and INTS is either INT or RTINT, then the priority
level of the interrupt is reflected in this field. This is an 8 bit register field.

Interrupt status (INTS): This field tracks the status of CPU execution, specifying whether the execution is in the
main loop, in an NMI ISR, in an RTINT ISR, or in an INT ISR. This field is also used by the external PIPE module
to track the present phase of CPU to decide when the next ready RTINT or INT interrupt can be forwarded to
CPU. See Table 3-3 for details on the status values of the INTS field.

Table 3-3. INTS - Interrupt Status Values

INTS[1] INTS[O0] CPU State Comment
0 0 Main code Not in any task, interrupt or exception
0 1 INT Handler In a normal interrupt service routine
1 0 RTINT Handler In a real-time interrupt service routine
1 1 NMI Handler In a NMI handler routine

INT Enable (INTE): The INT enable bit reflects whether an INT interrupt can be accepted by the CPU or not.
This bit needs to be 1 to allow the next higher priority INT to be accepted in the CPU (which allows nesting of
INTs). Upon accepting INT, this bit gets automatically set to 0 and so ISR code needs to explicitly set this back to
1 to enable INT interrupt nesting.

Caller Link (CLINK): The CLINK field represents the LINK of the origin which made a call to execute the
function. This includes execution calls from ISRs.

To enhance security, the CLINK field can be checked within a given ISR (or function) to determine if the CLINK
field matches a predefined Link. The ISR (or function) can then exit automatically, if the Link does not match.

32 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Interrupts

3.4.3 Interrupt-Related Stack Registers

The C29x CPU has three types of stacks, with related pointers for each. These are outlined in Table 3-4 as a
high-level overview. The section that follows provides details on the pointers of the interrupt-related High-Priority
Interrupt Stack.

Table 3-4. C29x CPU Stack Types

Stack Type Related Pointers
Normal Software Stack SECSPx, where x =0to 15
Protected Call Stack PSP, WARNPSP, MAXPSP
RTINT Stack ISP, WARNRTISP, MAXRTISP

RTISP (RTINT Stack Pointer): This points to the stack that is used by NMI and RTINT interrupt lines. This stack
is SSU-protected. See the Stack subsection of Section 3.2.3 for more details on the RTINT Stack.

WARNRTISP level: This level is pre-programmed by secure software code. If the ISP from CPU meets this level
then the external PIPE module stops sending RTINTs to the CPU. This is to slow down stack progression or
excessive nesting that can lead to a stack overflow. WARNRTISP level can be updated by the user meeting the
required software security checks. Modification of WARNRTISP level is typically done after reset.

MAXRTISP level: This is a fixed-level equal to the total of number of nestings allowed by the High Priority
Interrupt Stack minus one. This is to allow one reserved interrupt stack space for an NMI to trigger, to prevent
stack overflow. The PIPE raises a fault when this level is reached, which in turn generates an NMI to resolve this
critical condition.

SPRUIY2 — NOVEMBER 2024 C29x CPU 33
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Interrupts www.ti.com

3.5 Interrupt Nesting

Nesting is supported at the hardware level in the C29x CPU. At the CPU interrupt level, nesting is possible
amongst the three non-reset interrupt lines (NMIn, RTINTn, INTn). Interrupt lines can nest inside the ISR of
lower priority interrupt lines. So an NMI can nest within RTINT or INT. RTINT can nest within INT. INT cannot
nest in other interrupt lines. However, additional nesting within interrupt types RTINT and INT is possible using
the PIPE module.

A detailed look at the nesting available on the C29x CPU is explained below (along with the expanded abilities
afforded by the PIPE module).

NMI: No interrupt (including other NMlIs) can nest within an NMI that is currently running. Anytime the ISTS.NMIF
flag is set (indicating that a NMI event has been registered), the NMI is taken and the ATOMIC counter is reset.

RTINT: NMls always nest within RTINT. This nesting cannot be stopped with the ATOMIC instruction. Using the
PIPE module, higher priority RTINTs can nest within lower priority RTINTs. The ATOMIC instruction can delay
entry of a nested RTINT until the ATOMIC counter expires.

INT: NMls always nest within INT. This nesting cannot be stopped with the ATOMIC instruction. RTINTs always
nest within INT, but the ATOMIC instruction can delay entry of a nested RTINT until the ATOMIC counter expires.
Using the PIPE module, higher priority INTs can nest within lower priority INTs. The ATOMIC instruction can
delay entry of a nested INT (or RTINT) until the ATOMIC counter expires.

3.5.1 Interrupt Nesting Example Diagram

Main Program

INT ISR NMI ISR
P b
7 /7
INT Occurs .7 RTINT ISR 4
\ P /
RTINT Occurs o ,/
N - ,
NMI Occurs\A ,
13
\
\ K\
\ SO L
\ N N\
\ N \
\ \
\ \
\ N\
\ NMI handler may not return™

to caller depending on cause \

Main >< INT ISR ><RTINTISR>< NMI ISR ><RTINTISR>< INT ISR >< Main
Program Program

CPU Execution Timelin

A\ 4

Figure 3-2. Interrupt Nesting Example Diagram

34 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Interrupts

3.6 Security

The C29x CPU security features extend into the interrupts domain to make sure of software security. This
section covers security features related to the CPU interrupts architecture. See Chapter 6 for further details on
the C29x CPU security architecture and SSU (Safety and Security Unit) features.

3.6.1 Overview

Central to the security architecture of C29x CPU is the concept of LINKS, STACKS, and ZONES. For a detailed
overview of how each of these work, see Chapter 6. The following sections provide details on how the CPU
interrupts utilize each of these security features.

3.6.2 LINK

A LINK is a unique collection of ownerships and access permissions tagged together by ID which is used for
resource allocation and sharing. Link ID binds CPU resources like stack, memory regions, peripheral instance
accesses, interrupt source and vectors, DMA channels and permissions, and more. This prevents resources
from being accessed from a hacker (or erroneous code) running from another Link. Of particular interest to this
chapter is the access provided by a LINK to particular interrupt sources and vectors.

The following provides the types of links utilized for interrupt operation.

1. Owner link: every interrupt line and associated interrupt vector has an owner link.
» This link has related resources of the source events like peripheral, GPIO or error mechanism.
* Owner link has access to memory, DMA or other resources needed to service the specific event.
» Owner link has access to control and status register to read flag, enable/disable an interrupt line, clear
the flag or force the flag high. As well has permissions to read and clear the overflow flag.
* The Current Link ID provided by the CPU is compared against owner link for Interrupt operational
registers.

2. Boot link: boot link handles device boot and initialization including that of interrupts.
« User Boot Link: User boot links do not have special privileges to access PIPE or interrupt registers.

3. Secure root Link: This is the root of trust for security code of the device and shall have access to PIPE
configuration registers and vector table. Configuration registers hold information like the owner link, caller
link, priority, vector address of the interrupt line.

4. Caller Link: Caller links are used to share common code libraries across multiple links.
+ The owner link of an interrupt line (like RTINTn) can call a common code function (from another link) in an
ISR. In such a case, it is checked whether the caller link is the owner link.
» Configuration registers like priority can only be updated by the “secure root link”. In this case, the owner
link can be the caller link of a “Secure Root Link” function.

SPRUIY2 — NOVEMBER 2024 C29x CPU 35
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Interrupts www.ti.com

3.6.3 STACK

The C29x CPU uses multiple STACKs to make sure integrity and separation between different processes. Every
LINK shall have an associated STACK mapped at device initialization. Multiple LINKs can share a STACK but
multiple STACKs do not share a LINK. The following lists the stacks related to PIPE and interrupts, and the
corresponding safety features:

» INT Stack: The user can choose and allocate a single stack for all INTs. This stack is one of the normal
software stacks available on the device. The INT asserted to CPU remains in the pending state until the CPU
returns to this stack. Normally this is expected to be the stack of main process.

* RTINT Stack: This is dedicated stack is used for context save and restore of RTINT and NMI. This stack is
not accessible or visible to any user code for security, and incorporates ECC (error correction code) along
with registers. Registers are zeroed to prevent visibility into what was happening before the interrupt was
serviced. Features available on the High Priority Interrupt Stack include:

— WARNRTISP level: : This level is pre-programmed by secure software code. If the ISP from CPU meets
this level then the external PIPE module stops sending RTINTs to the CPU. This is to slow down stack
progression or excessive nesting that can lead to a stack overflow. WARNRTISP level can be updated
by the user meeting the required software security checks. Modification of WARNRTISP level is typically
done after reset.

— MAXRTISP level: : This is a fixed-level equal to the total of number of nestings allowed by the High Priority
Interrupt Stack minus one. This is to allow one reserved interrupt stack space for an NMI to trigger, to
prevent stack overflow. The PIPE raises a fault when this level is reached, which in turn generates an NMI
to resolve this critical condition.

3.6.4 ZONE

Multiple STACKSs and corresponding LINKs can be combined to make a ZONE. The items that make up this
ZONE can be reflected through the configuration of LINKs and STACKSs. Zone association is used for debug
permissions.

36 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Chapter 4
Pipeline

i3 TEXAS INSTRUMENTS

This chapter explains the operation of the C29x CPU instruction pipeline. The pipeline contains hardware that
prevents reads and writes at the same register or data-memory location from happening out of order. However,
you can increase the efficiency of your programs if you take into account the operation of the pipeline.

e I [o T T 1 o) o PRSP 38
4.2 Decoupled PIpeling PRases..............cooiiiiiiiiiiiei et e et e e ae e e et e e st e e sas e e et et e snte e e saneeeanneenans 40
4.3 Dual Instruction PrefetCh BUFFEIS..............c.ooiiii it e ettt e e e e e e e e e e anna e e e e e e snraeaeeeann 41
4.4 Pipeline Advancement and STallS................c.oooiiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e — e e e e e anraaaaeeaan 42
4.5 Pipeline Hazards and Protection MeChaniSmS.................ooooiiiiiii it e e e e e e e e e e e e e e e e e e e s e nnnnnnennneees 42
4.6 Register Updates and Corresponding Pipeline Phases.................cooii e 44
4.7 Register Reads and Writes During Normal Operation...................coccoiiiiiiiiiiii e 44
2 Y 3 oY T o =Y o1 o o TSP 46
T e I =T o [o (o (=T e i o) o PP PPN 47
L LN o o L= o7 o] TR PP PPPR PP 48
4.11 Protection DUring INterruPt......... ... e ettt ettt e e e e ettt e e e e e e baee e e e e e nsteeaeeaannneeeeeaannns 49
SPRUIY2 — NOVEMBER 2024 C29x CPU 37

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Pipeline

13 TEXAS
INSTRUMENTS

www.ti.com

4.1 Introduction

When executing a program, the C29x CPU performs these basic operations:

» Fetches instructions from program memory

¢ Decodes instructions

* Reads data values from memory or from CPU registers

« Executes instructions

» Writes results to memory or to CPU registers

The C29x CPU has 9 pipeline stages. Each of these stages can have one or more pipeline stages to achieve
high frequency operation and each of these pipeline stages perform a specific function to execute a program. At
any time, there can be up to nine instructions being carried out, each in a different phase of completion. Figure
4-1 shows the different stages of C29x CPU pipeline and how each stage is decoupled from other.

Table 4-1 provides description for each of the nine phases of the C29x CPU pipeline.

Fetch 1(F1)

v

Fetch 2(F2)

v

Decode 1(D1)

Instruction Fetch and
Predecode phases of
the pipeline

]

--Decoupled

v

Decode 2(D2)

|

--Decoupled

v

Read 1(R1)

[

--Decoupled

v

Read 2(R2)

v

Read 3(R3)

v

Execute 1 (E1)

—

v

Execute 2 (E2)

Write (W)

v

E3..E5

v

Execute 6 (E6)

Instruction Decode
and operational
phases of the
pipeline

Figure 4-1. C29x CPU Pipeline Stages

38 C29x CPU

Copyright © 2024 Texas Instruments Incorporated

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS

www.ti.com

Pipeline

Table 4-1. C29x CPU Pipeline Stages

Pipeline Stage

C29x CPU Operation

Fetch 1 (F1)

Instruction fetch address is placed on program address bus. CPU does look ahead
fetches to improve the overall throughput.

Fetch 2 (F2)

Instruction returned from memory is latched into CPU. Instructions fetched from memory
are stored in 4-level deep instruction buffer. Fetch unit has two 4 * 128-bit instruction
buffers. One is meant for normal execution and other is meant for delayed branches.

Decode 1 (D1)

Following key operations are handled in this phase

Fetched instructions words are checked for errors and corrected if error checking is
enabled.

Decode instruction boundaries and packets

Perform Instruction mapping

Security errors are checked

Perform Safe interconnect checks on Program Bus

Decode 2 (D2)

This is a very critical phase of the pipeline. Any instruction packet that enters this phase
of the pipeline always completes all operations unless the CPU undergoes a reset in
between. The following key operations happen in this phase of the pipeline.

Arbitration between instruction execution, Debug commands, pending interrupts and
exceptions.

All discontinuities and Control flow decisions.

Address generation for Reads and writes.

Compute operations involving the Ax registers.

Detection of Secure call/return and Interrupt entry violations.

Detecting the Pipeline hazards and managing the pipeline until hazards are resolved

Place read request on Read 1 and Read 2 buses

Read 1 (R1) L . .

Stall the CPU pipeline if memory or peripheral is not ready
Read 2 (R2) Read data is returned to CPU.
Read 3 (R3) Perform ECC check on read data

Perform Safe interconnect checks on Read Buses

Execute 1 (E1)

Load Ax, Dx, Mx registers from memory

Operations on Dx and Mx Registers

CPI load operations

Generate Write data for store operation

ESTS, Dx, and Mx register updates resulting from 1 cycle operations

Execute 2 (E2)
Write (W)

Place write request Write buses
Stall the CPU pipeline on if memory or peripheral is not ready
ESTS, Dx, and Mx register updates resulting from 2 cycle operations

Execute 3 (E3)

ESTS, Dx, and Mx register updates resulting from 3 cycle operations
Perform Safe interconnect check on Write bus

Execute 4 (E4)

ESTS, Dx, and Mx register updates resulting from 4 cycle operations

Execute 5 (E5)

ESTS, Dx, and Mx register updates resulting from 5 cycle operations

Execute 6 (E6)

ESTS, Dx, and Mx register updates resulting from 6 cycle operations

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

C29x CPU 39

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

4.2 Decoupled Pipeline Phases

The C29x CPU pipeline architecture is divided into four sets of pipeline stages, which operate independently of
each other. This decoupling of pipeline stages allows for one set of pipeline stages to progress while the other
sets are stalled. The decoupling of the pipeline stages is shown in Figure 4-2

Program Bus

Instruction Fetch Pipeline phases

| |
| |
| Fetch Buffer <_J> Program Bus Control | F1
M t Unit
! anagement Ui 4x128 Inst. Buffer 0 | F2
| 4x128 Inst. Buffer 1 |
| ZX ECC Correction |
| 4 ; | D1
| |
| Instruction Decode & map |
—_—— ———] E. . E.— - = = _. 4
Rttt .':'."_".';{}_".':'.':'."'_{}_"."_":':'.':'.':':'_" """""" Instruction_valid -
| |
. Control flow & Instruction AX, :
! Interrupts & Debug Pkt D2 functional Units | DSTS I D2
| & Protection Pipeline RPC |
R, | L . a
-- -d2_ready-
Py y [I =
: Delayed m
| Delayed memread Read Bus a8
| protection handling dﬁ:i‘—ﬁ::y Control(1,2) R1
seemmeescccccccccccccccccccccaaann Fo-d-=-scsccccccccccccccccccccccccccccccccccncncnnnn I‘- ------------- =+rl_ready=
|
| | R2
i ECC ! .
i N Correction | |
Read FIFO 4x64 |
: A (12) i ;1
X Delayed Write B
| EXE Functional Units Mx dw_ready Crclyt:trol:s w E2/W
ESTS handling |
I : E3..6
I |
"':'.':'.':'.";'T':'.':'.':'.'"_"."_".':'."_"T':'.':'.':'.";'T"_".':'.':'.":T'_‘; """""""" exe_ready =
Figure 4-2. Decoupled Instruction Fetch Buffer
40 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

Four decoupled pipelines are:
* F1,F2,D1:

— The fetch1 through decode1 (F1-D1) hardware acts independently of the decode 2 through execute 6 (D2
- E6) hardware. This allows the CPU to continue fetching instructions when the D2, R1, R2-E6 phases are
stalled.

— When the read and write buses (or) pipeline protection ready condition is not ready, the instruction fetches
can still occur and populate the instruction buffer. The instruction pipeline of the CPU can advance, even
if the program bus is not ready, as long as the current content in the instruction buffer is sufficient to form
instruction packets.

— The VLIW (Very Long Instruction Word) Architecture of a CPU allows for variable instruction width and
variable number of instructions within a packet, with a max of 8 instructions per packet. To optimize
performance, instruction fetch bus always fetches 128-bits and stores them in two sets of 128-bit buffers
in the instruction fetch buffer. The instructions are then sent to the D2 phase of the pipeline based on
the packet sizes. There are two sets of 128-bit buffers in the instruction fetch buffer which can store the
fetched instructions and dispatch them to the D2 phase of the pipeline based on the instruction packet
sizes. This is depicted in Figure 4-2. The condition that advances F1, F2, D1 stage pipeline is called
instruction_valid

« D2:

— Instructions in the fetch 1, fetch 2, and decode 1 phases are discarded if an interrupt or other program flow
discontinuity occurs. An instruction that reaches decode 2 phase always runs to completion before any
program-flow discontinuity is taken.

— Instruction in D2 is forwarded to next pipeline stage even when next instruction packet is not available.
This is done to ease the timing due to ECC errors. The condition that advances this D2 stage pipeline is
called d2_ready.

« R1:

— The instruction from D2 can progress to the R1 stage of the pipeline when a prior read access is still in
progress. In this case, the read access from the current instruction is stored in a buffer and reinitiated
on the read bus when the ongoing access is completed. This helps to reduce timing issues associated
with data read bus ready, write bus ready, and memory read protection caused by pending writes in the
pipeline. The condition that advances this R1 stage pipeline is called r1_ready.

* R2....E6:

— These pipeline stages advance together. The condition that advances this stage pipeline is called

exe_ready.

4.3 Dual Instruction Prefetch Buffers

Dual Instruction Prefetch buffers improves pipeline efficiency to handle slower program memory (like FLASH),
variable instruction packet widths, handling delayed discontinuity. At any given moment, only one of the two

4 * 128 prefetch buffers is providing instructions to the D2 stage of the pipeline. However, when a delayed
discontinuity occurs, prefetch can begin from the discontinuity destination while the delay slot instructions are
still executing. The two sets of prefetch buffers enable better performance under these conditions, allowing for
a prefetch to begin for a discontinuous destination to be stored to the inactive buffer while execution is still in
progress in the delay slots.

SPRUIY2 — NOVEMBER 2024 C29x CPU 41
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

4.4 Pipeline Advancement and Stalls
This section describes the causes for pipeline stalls:

» Instruction Fetch Pipeline Stall: The Instruction Fetching pipeline stages (F1, F2, and D1) are stalled only
when CPU addressed memory is unable to provide the data in time and needs more cycles.
» Decode and Execution pipeline stages stall: The following conditions causes all these pipeline phases
(D2, R1, R2, R3, E1 to E6, and W) to stall:
— Data read not ready: When either of the Data Read Bus 1 or Data Read Bus 2 are not ready with data.
— Instruction not available in the instruction buffer: When the current instruction packet in the D2 phase
of the pipeline is complete and the d2_ready is high to accept the next instruction packet, but there is
no instruction available in the instruction buffer. Instruction not available condition occurs due to following
conditions:
» Instruction buffer is empty
» Instruction buffer is not sufficiently filled to form instruction packet
» Instruction word in the buffer has an ECC error or security errors
— Memory Read Protection not ready: Current read access has dependency on pending write operation.

4.5 Pipeline Hazards and Protection Mechanisms

The C29x CPU instructions operate by utilizing and updating registers in different stages of the pipeline, while
memory reads and writes occur in separate stages of the pipeline. One of the effects of having operations for
an instruction in different phases of the pipeline is that pipeline conflicts (also known as pipeline hazards) are
possible. There are three main types of hazards in any pipelined architecture.

1. Control Hazard: A control hazard occurs due to discontinuities in the execution sequence. The D2 controller
and Instruction buffer control mechanism are responsible for automatically handling such hazards, there
is a possibility discarding some instruction packets. To minimize cycle overhead, the user assembly code
can choose to have discontinuity instructions (except CALL.PROT, RET.PROT and LB.PROT) execute
instructions in the delay slots of a discontinuity. This decision is part of the opcode of the discontinuity
instruction.

2. Structural Hazard: The C29x CPU does not present any structural hazards for instruction execution.
However, there is a structural hazard that can occur in the context-save and restore sequence when
handling Realtime Interrupts or Non-Maskable Interrupts (NMIs). This hazard occurs due to the timing of the
pipeline operations during the interrupt context save and restore process. For the RETI.RTINT instruction to
restore the CPU register contents, RETI.RTINT instruction must be preceded by a minimum of 6 instruction
packets. If the RETI.RTINT instruction is executed less than 6 instruction packets after the interrupt service
routine is entered, hardware pipeline protection gets activated.

3. Data Hazard: Aimost all the hazards in the C29x CPU pipeline fall into the category of data hazards. These
hazards can arise from different scenarios, such as a write operation to a memory location before a read
operation from the same memory location, or a write operation to a register before a read operation from the
same register. The C29x CPU pipeline controller has hardware to detect these data hazards and generate
pipeline protection stall cycles to make sure that the instruction execution sequence is not affected.

4. WAW Hazard: A Write-after-Write (WAW) hazard occurs when a resource (like a register) can be updated in
multiple phases of the pipeline.

» Instructions that update Ax registers during the D2 phase of the pipeline can cause WAW hazards due to
the fact that Ax registers can now be loaded from memory or Mx registers moved in the E1 phase of the
pipeline. This allows for a sequence of instructions to update the same Ax register out of order or in the
same cycle.

* Inthe E1 phase, operations that update the Dx and Mx registers are composed of both single cycle and
multicycle instructions. This means that some instructions can update the Dx/Mx register after the E1
phase is complete, while others take several cycles (E2 - E6G) to update the Dx/Mx register. As a result,

a sequence of instructions can cause a WAW hazard by updating the same Dx/Mx register either out of
order or in the same cycle.

Lets look into the data hazard example shown in Table 4-2 and Figure 4-3.

42 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Table 4-2. Sample Instruction Sequence with Data Hazard

Instruction Packet Label for Reference Comments

MV D8, #0x1231156 IPKT-1

MV M6, #0x4022F983 IPKT-2

MV D2, #0x2 IPKT-3

FTOS16 D7, M6 IPKT-4

LD.32 A4, *A0 IPKT-5 A4 register is loaded at the end of E1 phase of the instruction.

CMP D7, D8 IPKT-6
ADD.U16 A4, A4, #0x20 IPKT-7 ADD of A4 register happens in the D2 phase of the pipeline.
This instruction uses A4 register that was loaded in IPKT-5.

MV D4, #0x5 IPKT-8

In the absence of hardware pipeline protection, when the above instruction packet sequence is executed, the
load of the A4 register by IPKT-5 occur in the W phase of the pipeline, while the add operation of IPKT-7 (D2
phase of the pipeline) takes place earlier in the same cycle and thus use the old value of the A4 register.

The C29x CPU has hardware pipeline protection mechanisms that makes sure any resource used as a source
operand in an instruction is only utilized after any pending updates by any previous instructions are finished.

If the source operand is a memory location, then any pending writes to the same address (or address block

for certain regions that are block protected) by previous instructions are issued before the read. The hardware
pipeline protection mechanism detects that IPKT-7 is using the A4 register before A4 is updated by IPKT-5, and
inserts stall cycles so that IPKT-7 is held in the D2 phase until the A4 register update is completed. This is shown

in Figure 4-3.

—D2—>‘ IPKT-1 ‘ IPKT-2 ‘ IPKT-3 ‘ IPKT-4 ‘ IPKT-5 ‘

IPKT-6

IPKT-8

-Rl—»‘ IPKT-1 ‘ IPKT-2 ‘ IPKT-3 ‘ IPKT-4 ‘ IPKT-5 ‘ IPKT-6 ‘ o ‘ rRoT ‘ PROT -
-R2 b‘ IPKT-1 | IPKT-2 | IPKT-3 | IPKT4 | IPKTS | tpkT6 | Hoon | FRoT | FROT
R3 >‘ IPKT-1 ‘ IPKT-2 ‘ IPKT-3 ‘ IPKT-4 ‘ IPKT-5 ‘ IPKT-6 ‘ on ‘ roy ‘
-E1 >{ IPKT-1 ‘ IPKT-2 ‘ IPKT-3 ‘ IPKT-4 ‘ IPKT-5 ‘ IPKT-6 ‘ PROT ‘
REg AS{ Current Value ‘ 0x10 -
INFO :

© IPKT-1, IPKT-2, ... IPKT-8 are successive instruction packets that are entering the pipeline. Boxes with ‘PROT NOP’ are the pipeline protection
stall “no-operation packet” inserted by the hardware into the pipeline to realize pipeline protection.

© Pipeline protection stalls occur in cycles 3 cycles. In these cycles. All pipeline phases from R1 and below advance, while D2 phase stalls. An
empty no-operation packet indicated by ‘P’ is inserted into the R1 phase of the pipeline. This no-operation packet will advance through the
pipeline like any other instruction packet.

Figure 4-3. Pipeline Diagram Depicting D2 Stall Due to Pipeline Protection

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

C29x CPU 43

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

4.6 Register Updates and Corresponding Pipeline Phases

The C29x CPU has general purpose register banks consisting of the Ax, Dx, and Mx registers. These registers
are used as operands for CPU operations and store the results of those operations. The ESTS and DSTS
status registers store the status of an operation, such as overflow and conditional flags, and the Return Program
Counter (RPC) is associated with the flow of the program currently being executed. Reading and writing to the
CPU registers can occur in one or more pipeline phases, depending on the instruction definition.

DSTS registers have many fields, protection is implemented for every field independently as:

« AZ AZV,A.C, AN are treated as one field as these fields are updated together on compare operation
« TAO

« TA1

« TA2

« TA3

* INTS, INTPRIORITY, DBGM, INTE

* CLINK and RLINK are only updated by hardware; hence, no protection.

ESTS registers have many fields, protection is implemented for every field independently as:
- D.Z.D.2V,D.C., D.N are treated as one field as these fields are updated together on compare operation
« D.OV, D.OVNEG

« TDMO

« TDM1

« TDM2

« TDM3

« M.NF, M.ZF

* M.LUF, M.LVF

« TMU.TF

* IDIV.N, IDIV.Z and IDIV.TF are written and read in E1; hence, no protection

* FDIV.N, and FDIV.TF are written and read in E1; hence, no protection

4.7 Register Reads and Writes During Normal Operation

Following is the comprehensive information on registers sources being read (Table 4-3) or written (Table 4-4) in
various pipeline cycles.

Note
The following tables do not apply when an RTINT/NMI interrupt is received.

44 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS
www.ti.com Pipeline
Table 4-3. Comprehensive Information of Register Read

Register Sources Pipeline Phase

p2 | R | RR | RS | E1 | E2 | E3 | E4 | E5 E6

Pipeline phase in register resource is read
Ax Yes
Dx Yes Yes
Mx Yes
RPC Yes
DSTS.{A.Z,A.ZV,A.C, AN} Yes
DSTS.TAO Yes
DSTS.TA1 Yes
DSTS.TA2 Yes
DSTS.TA3 Yes
DSTS.{INTS, INTPRIORITY, Yes
DBGM, INTE}
ESTS.{D.Z,D.ZV, D.C, D.N} Yes Yes
ESTS.TDMO Yes Yes
ESTS.TDM1 Yes Yes
ESTS.TDM2 Yes Yes
ESTS.TDM3 Yes Yes
ESTS.{NF, ZF} Yes Yes
ESTS.{LUF, LVF} Yes Yes
ESTS.TMU.TF Yes
Table 4-4. Comprehensive Information of Register Write

Register Sources Pipeline Phase

p2 | R | RR | RS | E1 | E2 | E3 | E4 | E5 E6

Pipeline phase in register resource is written
AXx Yes Yes
Dx Yes Yes Yes
Mx Yes Yes Yes Yes Yes Yes
RPC Yes Yes
DSTS.{A.Z,A.ZV, A.C, AN} Yes Yes
DSTS.TAO Yes Yes
DSTS.TA1 Yes Yes
DSTS.TA2 Yes Yes
DSTS.TA3 Yes Yes
DSTS.{INTS, INTPRIORITY, Yes Yes
DBGM, INTE}
ESTS.{D.Z,D.ZV, D.C, D.N} Yes
ESTS.TDMO Yes Yes
ESTS.TDM1 Yes Yes
ESTS.TDM2 Yes Yes
ESTS.TDM3 Yes Yes
ESTS.{NF, ZF} Yes Yes
ESTS.{LUF, LVF} Yes Yes Yes Yes Yes
ESTS.TMU.TF Yes Yes
SPRUIY2 — NOVEMBER 2024 C29x CPU 45

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

4.8 D2 Read Protection

Dx registers are read in D2 phase of pipeline and written in E1, E2, and E3. Dx register read in D2 and any
pending instruction that writes to Dx in pipeline from R1 to E3 causes a pipeline protection stall. This is shown in
Table 4-5.

Table 4-5. D2 Read Protection

Register Sources Pipeline Phase
p2 | RM | R | RS | E1 | E2 | E3 | E4 | E5 | E6
Pipeline phase in register resource is read
Dx Yes | | | | Yes | | | | |

Pipeline phase in register resource is written
Dx ‘ ‘ ‘ ‘ Yes ‘ Yes ‘ Yes ‘ ‘ ‘

Dx Write Scheduled in E1 and Read in D2 Phase of Pipeline is an example of Dx write scheduled in E1 and is
read in D2 phase of pipeline.

Dx Write Scheduled in E1 and Read in D2 Phase of Pipeline

LD.32 DO, *A3 ; Load DO from address A3
BCMPZ @ISZERO, D.EQ, DO ; Branch if DO is 0x0

ISZERO

Table 4-6 is the pipeline diagram for the sequence in Dx Write Scheduled in E1 and Read in D2 Phase of
Pipeline, BCMPZ is held in D2 for 4 extra cycles.

Table 4-6. Pipeline Diagram Showing Example of D2 Read Protection

Cycle Pipeline Phase Do
Register
D2 R1 R2 R3 E1 E2 E3 E4 E5 E6

1 LD.32

2 LD.32

3 PROT LD.32

4 PROT PROT LD.32

5 PROT PROT PROT LD.32

6 BCMPZ | PROT PROT PROT PROT LD.32 DO=[*A3]

7 Next Inst | BCMPZ | PROT PROT PROT

46 C29x CPU SPRUIY2 — NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

4.9 E1 Read Protection

When Dx registers are written in E1 and any pending instruction scheduled to write Dx in E2 or E3 causes a
pipeline protection stall. This is shown in Table 4-7.

Table 4-7. E1 Read Protection

Register Sources Pipeline Phase
p2 | RM | R | RS | E1 | E2 | E3 | E4 | E5 | E6
Pipeline phase in register resource is read
Dx Yes | | | | Yes | | | | |

Pipeline phase in register resource is written
Dx ‘ ‘ ‘ ‘ Yes ‘ Yes ‘ Yes ‘ ‘ ‘

Dx Write Scheduled in E3 and Dx Read in E1 Phase of Pipeline is an example of Dx write scheduled in E3 and
Dx is read in E1 phase of pipeline.

Dx Write Scheduled in E3 and Dx Read in E1 Phase of Pipeline

CRC D3, D2, DO, D1 ; CRC, 3 cycle instructon, Write in E3
ST.32 *A3, D3 ; Store D3, Read in E1

Table 4-8 is the pipeline diagram for the sequence in Dx Write Scheduled in E3 and Dx Read in E1 Phase of
Pipeline. ST.32 is held in D2 for 2 cycle such that ST.32 enters E1 phase of pipeline when D3 is updated with
CRC. This makes sure of order execution.

Table 4-8. Pipeline Diagram Showing Example of E1 Read Protection

Cycle Pipeline Phase Do
Register
D2 R1 R2 R3 E1 E2 E3 E4 E5 E6

1 CRC

2 CRC

3 PROT CRC

4 ST.32 PROT PROT CRC

5 Instr 1 ST.32 PROT PROT CRC

6 Instr 2 Instr 1 ST.32 PROT PROT CRC D3=CRC

7 Instr 3 Instr 2 Instr 1 ST.32 PROT PROT CRC

8 Instr 4 Instr 3 Instr 2 Instr 1 ST.32 PROT PROT CRC

9 Instr 5 Instr 4 Instr 3 Instr 2 Instr 1 ST.32 PROT PROT

SPRUIY2 — NOVEMBER 2024 C29x CPU 47
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Pipeline www.ti.com

4.10 WAW Protection

If a Dx register write is scheduled in E1 while Dx write scheduled in E2 or E3 is pending, this causes a pipeline
protection stall. This is shown in Table 4-9.

Table 4-9. WAW Protection

Register Sources Pipeline Phase
p2 | RM | R | RS | E1 | E2 | E3 | E4 | E5 | E6
Pipeline phase in register resource is read
Dx Yes | | | | Yes | | | | |

Pipeline phase in register resource is written
Dx ‘ ‘ ‘ ‘ Yes ‘ Yes ‘ Yes ‘ ‘ ‘

Dx Write Scheduled in E1 While a Write Scheduled in E3 is Pending is an example of a Dx write scheduled in E1
while a write scheduled in E3 is pending. This a hypothetical example.

Dx Write Scheduled in E1 While a Write Scheduled in E3 is Pending

CRC D3, D2, DO, D1 ; CRC, 3 cycle instructon, Write in E3
LD.3 D3, *A3 ; Load D3 in E1

Table 4-10 is the pipeline diagram for the sequence in Dx Write Scheduled in E1 While a Write Scheduled in E3
is Pending. LD.32 is held in D2 for 2 cycle such that LD.32 enters E1 phase of pipeline when D3 is updated with
CRC.

Table 4-10. Pipeline Diagram Showing Example of WAW Read Protection

Cycle Pipeline Phase Do
Register
D2 R1 R2 R3 E1 E2 E3 E4 E5 E6

1 CRC

2 CRC

3 PROT CRC

4 LD.32 PROT PROT CRC

5 Instr 1 LD.32 PROT PROT CRC

6 Instr 2 Instr 1 LD.32 PROT PROT CRC

7 Instr 3 Instr 2 Instr 1 LD.32 PROT PROT CRC

8 Instr 4 Instr 3 Instr 2 Instr 1 LD.32 PROT PROT CRC D3=CRC

48 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Pipeline

4.11 Protection During Interrupt

Table 4-11 is the pipeline diagram for Interrupt context save and restore. ML is last instruction of current
execution that was interrupted, ML-U is the latest time when a register update can happen because of an

ML instruction, context save must take the latest value. Once the registers are sampled for context save,

the registers are cleared for security reasons, CLR indicates the cycle in which the registers are cleared.
Context save (CS) takes 8 cycles, CS1 to CS8. ISR instructions are 1 to 16. Context save overlaps with these
instructions; hence, RETI.RTINT can not be executed for 6 cycles as the Realtime stack can not be read until
the context save is complete. 16-U is the last instruction of the ISR that can update registers. CR1 to CR8 are
context restore cycles, MN is the first instruction after an ISR exit, this instruction must read register values that
are restored from the Realtime stack. Register updates due to 16 must be complete before registers are restored.
MN-RD is the earliest time a register can be read. Any overlap of these mentioned operations triggers a pipeline
protection and the current operation is stalled until the conflict is resolved.

Table 4-11. Interrupt Pipeline Diagram

Cycle Pipeline Phase RTINT Ax0-7
Stack RETADDR
D2 R1 R2 R3 E1 E2 E3 E4 E5 E6 E7 ES8
LU |
CLR
CS1-WR
CS2-WR
csa-wr| |HRW
CS4-WR
CS5-WR
CS6-WR
CS7-WR
CS8-WR
CR1-RD
CR2-RD
CR3-RD
CR4-RD CR1
CR5-RD
24 CR6 15 14 13 12 CR6-RD
25 CR7 15 14 13 CR7-RD
26 CR8 15 14 CR8-RD
27 MN 15 MN-RD
28 MN
29 MN
30 MN
31 MN
32 MN
SPRUIY2 — NOVEMBER 2024 C29x CPU 49

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Chapter 5
Addressing Modes

i3 TEXAS INSTRUMENTS

This chapter describes the addressing modes of the C29x CPU and provides examples.

5.1 Addressing Modes Overview

.. 51
5.2 AddresSing Mode FIelds..............oooiiiiiiiiiiiii et e et sttt e s h e e et bt e e ae e e e s bt e e e nn e e e anneeesnne s 54
5.3 Alignment and Pipeline CoNSIAEIatioNS................ooiiiiiiiiiiiiiiee e e e e e e e e e e e et e e e e e snsaeeeeeaansaees 62
5.4 Types of AddreSSing IMOAES...........cooouiiiiiiiiiiii ettt e et e et e ettt e e ettt e e aeee e anbe e e easeeeeanneeeanbeeeenneeeannes 63

50 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

5.1 Addressing Modes Overview
The C29x CPU supports several addressing modes to provide faster execution and smaller code size.
5.1.1 Documentation and Implementation

Throughout the documentation, instructions that utilize addressing modes are written in a manner similar to the
following: "LD.32 Dx,ADDR1".

In actual assembly code implementation, the field "ADDR1" is replaced with an actual addressing mode with
the parameters substituted. For example: "*(Ax+#8)".

These addressing modes are categorized into different types. For example, *(Ax+#8) is of the type "Pointer
Addressing With #lmmediate Offset".

The following figures show a visual explanation of how the fields, addressing modes, and types work together
in the documentation and implementation. Both images use the same field (ADDR1), but have different
addressing modes and addressing mode types:

In Figure 5-1, ADDR1 is replaced with the specific addressing mode *(A15++#u8imm), which is one of several
addressing modes available in the Stack Addressing type of addressing mode.

Field replaced with an Addressing Mode
I I

Field Addressing Mode
LD.32 Dx,ADDR1 —» LD.32 Dx,*(A15++#u8imm) ——p LD.32 Dx,

I
Addressing Mode parameters substituted for

Figure 5-1. ADDR1 Field Replaced with a Stack Addressing Type

In Figure 5-2, ADDR1 is replaced with the specific addressing mode *(Ax+#u10imm), which is one of several
addressing modes available in the Pointer Addressing With #immediate Offset type of addressing mode.

Field replaced with an Addressing Mode
I I

Field Addressing Mode
LD.32 Dx,ADDR1 — LD.32 Dx,*(Ax+#u10imm) ——p LD.32 Dx,

I
Addressing Mode parameters substituted for

Figure 5-2. ADDR1 Field Replaced with a Pointer Addressing With #lmmediate Offset Type

SPRUIY2 — NOVEMBER 2024 C29x CPU 51
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

5.1.2 List of Addressing Mode Types

The following lists the types of addressing modes available natively in the device. For more details on each of
these addressing modes, see Section 5.4.

1. Direct Addressing: direct read or write access to any location in the 32-bit memory space with the
immediate address provided in the instruction.

2. Pointer Addressing with #immediate Offset: indirect read or write access to any location in the 32-bit
memory space with the pointer address from one of the addressing registers, A0 to A14, and an optional
immediate offset provided in the instruction.

3. Pointer Addressing with Pointer Offset: indirect read or write access to any location in the 32-bit memory
space with the pointer address (base address register) from one of the addressing registers, A0 to A14, and
an offset provided by an additional pointer (index register) in the instruction.

4. Pointer Addressing with #immediate Increment/Decrement: indirect read or write access to any location
in the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14. An
immediate pre or post increment or decrement of the register is applied.

5. Pointer Addressing with Pointer Increment/Decrement: indirect read or write access to any location in
the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14, and a
pre or post increment or decrement of the register is applied using the value located in an additional pointer
register.

6. Stack Addressing: indirect read or write access to any location in the stack space with the address
provided in addressing register A15, which is the dedicated Stack Pointer (SP).

The types of addressing modes can be implemented using different combinations of offsets and shifts. Al
available addressing modes are provided as rows in Section 5.1.3.

Note
Addressing register A15 is the dedicated Stack Pointer (SP). Any references to the "Stack Pointer" or
"SP" in this document are referring to addressing register A15.

5.1.2.1 Additional Types of Addressing

There two are additional types of addressing that can be implemented using instructions dedicated for the

task. These instructions are used to take an address, and modify/compare the address while accessing the
address. This allows for operations that normally require multiple instructions to occur in a single instruction.
This eliminates the need for a dedicated addressing mode for such functionality. There is no performance impact
when comparing native addressing-mode support to these instructions.

1. Circular Addressing: Circular pointers typically used for implementing finite impulse response (FIR), least
mean squares (LMS), or convolution filters.

2. Bit-Reversed Addressing: Reverse addressing typically used to re-order data for Fast Fourier Transform
(FFT) and similar algorithms.

52 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

5.1.3 Addressing Modes Summarized
Table 5-1 summarizes all supported addressing modes and the various forms.
Table 5-1. Available Addressing Modes

Opcode |Mnemonic Shorthand Address Generation

Field

Direct Addressing

DIRM *(0:#u32imm) @u32imm addr = #u32imm

Pointer Addressing with #immediate Offset: (Ax = A0 to A14°, Az = A4 to A7)

DIRM *(Ax+#u28imm) *Ax[#u28imm] addr = Ax + #u28imm (#u28imm = 0 to 256MB range)
ADDR1 [*(Ax+#u10imm) *Ax[#u10imm] addr = Ax + #u10imm (#u10imm = 0 to 1KB range)

ADDR1 | *(Ax+#u10imm<<2) *Ax[#u10imm] addr = Ax + #u10imm<<2 (#u10imm << 2 = 0 to 4KB range, 4B steps)
ADDR3 |*(Ax+#u8imm<<2) *Ax[#u8imm] addr = Ax + #u8imm<<2 (#u8imm << 2 = 0 to 1KB range, 4B steps)
ADDR2 |*Az *Az addr = Az

Pointer Addressing with Pointer Offset: (Ax = A0 to A14 2 Aj = A0 to A14, Ak = A0 to A3, Az = A4 to A7)

ADDR1 | *(Ax+Ak<<#u2imm) *Ax[AK] addr = Ax + Ak << #u2imm (#u2imm =0, 1, 2, 3)

ADDR1 [*(Aj=(Ax+Ak<<#u2imm)) |*Aj=Ax[AK] addr = Ax + Ak << #u2imm, Aj = addr (#u2imm =0, 1, 2, 3)
ADDR2 |*(Az+AO<<#scale) *Az[AQ] addr = Az + A0 << (0/1/2/3)

ADDR2 |*(Azt+A1<<iscale) *Az[A1] addr = Az + A1 << (0/1/2/3)

Pointer Addressing with #ilmmediate Increment/Decrement: (Ax = A0 to A14°, Az = A4 to A7)

ADDR1 [*(Ax++#u8imm) *Ax++[#u8imm] addr = Ax, Ax = Ax + #u8imm (#u8imm = 0 to 255 range)
ADDR1 | *(Ax--#n8imm) *Ax--[#n8imm] addr = Ax, Ax = Ax - #n8imm (#n8imm = 1 to 256 range)
ADDR1 |*(Ax-=#n8imm) *Ax-=[#n8imm] Ax = Ax - #n8imm, addr = Ax (#n8imm = 1 to 256 range)
ADDR2 | *(Az++i#size) *Az++ addr = Az, Az = Az + (1/2/418) (#size = 1,2,4,8)

ADDR2 |*(Az--#size) *Az-- addr = Az, Az = Az — (1/2/4/8) (#size = 1,2,4,8)

ADDR2 |*(Az-=#size) *--Az Az = Az — (1/2/4/8), addr = Az (#size = 1,2,4,8)

Pointer Addressing with Pointer Increment/Decrement: (Ax = A0 to A14°, Ak = A0 to A3, Az = A4 to A7)

ADDR1 [*(Ax+#u7imm)++Ak *Ax[#u7imm]++Ak |addr = Ax + #u7imm, Ax = Ax + Ak (#u7imm = 0 to 128)
ADDR2 |*(Az++A0) *Az++A0 addr = Az, Az = Az + A0

ADDR2 |*(Az++A1) *Az++A1 addr = Az, Az= Az + A1

Stack Addressing: (A15 = SP)

ADDR1 | *(A15-#n13imm) *A15-[#n13imm] addr = A15 - #n13imm (#n13imm = 1 to 8192)

ADDR1 |*(A15++#u8imm) *A15++[#u8imm] addr = A15, A15 = A15 + #u8imm (#u8imm = 0 to 255)
ADDR1 |*(A15-=#n8imm) *A15-=[#n8imm] A15 = A15 - #n8imm, addr = A15 (#n8imm = 1 to 256)

(1) The ADDR2 opcode field modes do not specify the increment step size ("#size") or scale amount ("#scale"). This is automatically
performed by the CPU hardware based on the word size being accessed by the instruction. See Section 5.2 for more details.

(2) The Ax[0-14] addressing field can support the A15 register, however this is the stack pointer (SP) register and for some of the
addressing modes, the operation is not valid for the SP and hence the addressing mode can not be used

SPRUIY2 — NOVEMBER 2024 C29x CPU 53
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

5.2 Addressing Mode Fields

This section explains how the various addressing modes are represented in each instruction.

Explanation of Terminology
For instructions that use addressing modes, this document uses four different "fields":

+ ADDR1
+ ADDR2
+ ADDR3
« DIRM

These four fields are placeholders for actual addressing modes. The four fields are separated based on the
number of bits required to encode them in the instruction (for example ADDR1 uses 16 bits and ADDR2 uses 5
bits).

In actual assembly code, the user or compiler must substitute fields for the desired addressing mode. For
example, in the documentation, the "field" name ADDR1 is used. But in assembly code, ADDR1 can be replaced
with a real addressing mode.

"LD.32 Ax,ADDR1" (field)
becomes
"LD.32 A8,*(A4+#0x4)" (addressing mode).

This is only one possible way to convert the 16 bits available in the ADDR1 field into an actual addressing mode
("Pointer Addressing With #lmmediate Offset" type of addressing mode).

The following subsections explain each of the four fields, the available addressing modes, and the encodings of
these addressing modes. There is also a section explaining some additional fields used with addressing modes.

54 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS

www.ti.com Addressing Modes
5.2.1 ADDR1 Field

This is a 16-bit field for indirect encoding of addresses that can be used in all "Pointer Addressing" and "Stack Addressing" modes.

Table 5-2 shows the various ways the 16 bits can be used to encode the address.

Table 5-2. ADDR1 Field Encodings
ADDR1 Field: (Ax = A0 to A14, Aj = A0 to A14, Ak = A0 to A3)

Mnemonic * Shorthand Address Generation 47 | 46 | 45 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31
Mnemonic Shorthand Address Generation 31|30 |29 |28 |27 |26 | 25 |24 |23 | 22| 21|20 |19 | 18 | 17 | 16
*(Ax+#u10imm) *Ax[#u10imm)] addr = Ax + #u10imm (#u10imm = 0 to 1KB range) 0 0 #u10imm Ax[0-14] "
*(Ax+#u10imm<<2) *Ax[#u10imm] addr = Ax + #u10imm<<2 (#u10imm << 2 = 0 to 4KB range, 4B steps) 0 1 #u10imm Ax[0-14] "
*(Ax+#u7imm)++Ak *Ax[#u7imm]++Ak | addr = Ax + #u7imm, Ax = Ax + Ak (#u7imm = 0 to 128) 110100 #u7imm AK[0-3] Ax[0-14] "
*(A15-#n13imm) *A15-[#n13imm] addr = A15 - #n13imm (#n13imm = 1 to 8192) 1 0 1 #n13imm
*(Ax++#u8imm) *Ax++[#u8imm] addr = Ax, Ax = Ax + #u8imm (#u8imm = 0 to 255 range) 1 1 0 0 #u8imm Ax[0-14] !
*(Ax--#n8imm) *Ax--[#n8imm] addr = Ax, Ax = Ax - #n8imm (#n8imm = 1 to 256 range) 1 1 0 1 #n8imm Ax[0-14] !
*(Ax-=#n8imm) *Ax-=[#n8imm] Ax = Ax - #n8imm, addr = Ax (#n8imm = 1 to 256 range) 1 1 1 0 #n8imm Ax[0-14] !
*(Ax+Ak<<#u2imm) *AX[AK] addr = Ax + Ak << #u2imm (#u2imm =0, 1, 2, 3) 1111 | #uz2imm | 1 \ 1 \ 1 \ 1| Ak[0-3] AX[0-14]
*(Aj=(Ax+Ak<<#u2imm)) *Aj=AX[AK] addr = Ax + Ak << #u2imm, Aj = addr (#u2imm =0, 1, 2, 3) 101 [1] 1| #u2imm Aj[0-14] AK[0-3] Ax[0-14] "

(1)

hence the addressing mode can not be used.

@)

instruction opcode.

The following are the instructions that can use the ADDR1 field:

ADD.32, ADD.S16, ADD.S8, AND.16, AND.8, AND.U16, AND.U8, ANDOR.BO, ANDOR.WO, LD.32, LD.64, LD.BO, LD.B1, LD.B2, LD.B3, LD.S16, LD.S8,
LD.U16, LD.U8, LD.WO, LD.W1, MV.16, MV.32, MV.64, MV.8, MV.U16, MV.U8, OR.16, OR.8, RET{D}, S16TOF, ST.16, ST.32, ST.64, ST.8, ST.BO, ST.B1,
ST.B2, ST.B3, ST.WO0, ST.W1, SUB.32, SUB.S16, SUB.S8, SUBR.32, SUBR.S16, SUBR.S8, U16TOF, XOR.16, XOR.8

Data Move operations have two ADDR1 fields, all other operations only have one ADDR1 field. Except for Data Move operations, the ADDR1 field is located in bits [31:16] of the

The Ax[0-14] addressing field can support the A15 register, however this is the stack pointer (SP) register and for some of the addressing modes, the operation is not valid for the SP and

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

C29x CPU

55

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

Examples:

; Load the 32-bit value in ADDR1 into Mx, using a base address + offset
; (#u7imm) and then post increment by Ak (Ak is number of bytes to increment)
; NOTE: make sure 32-bit alignment of base address (Ax) and offset

LD.32 Mx,ADDR1 ; field
LD.32 Mx,* (AX+#u7imm)++Ak ; addressing mode
LD.32 M1, *(A14+#100)++A2 ; actual assembly code

; OR #x16 with the address pointed to by ADDR1, and store the result
; into the location pointed to by ADDR1. Then post decrement the Ax register

; by the #n8imm value
NOTE: make sure 16-bit a1ignmgnt of base address (Ax) and offset

OR.16 ADDR1,#x16 ; field
OR.16 *Ax--[#n8imm],#x16 ; addressing mode
OR.16 *A3--[#70],#50110 ; actual assembly code

56 C29x CPU SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS

www.ti.com

Addressing Modes

5.2.2 ADDR2 Field

This is a 5-bit field for indirect encoding of addresses that can be used in all "Pointer Addressing" modes.

Table 5-3 shows the various ways the 5 bits can be used to encode the address.

Table 5-3. ADDR2 Field Encodings

ADDR?2 Field: (Az = A4 to A7)
Mnemonic Shorthand Address Generation 4 3 2 1 0
*(Az++A0) *Az++A0 addr = Az, Az = Az + A0 0 0 0 Az[4-7]
*(Az++A1) *Az++A1 addr = Az, Az = Az + A1 0 0 1 AZ[4-7]
*(Az+A0<<#scale) *Az[A0] addr = Az + A0 << (0/1/2/3) () 0 1 0 AZ[4-7]
*(Az+A1<<#scale) *Az[A1] addr = Az + A1 << (0/1/2/3) () 0 1 1 AZ[4-7]
*Az *Az addr = Az 1 0 0 Az[4-7]
*(Az++size) *Az++ addr = Az, Az = Az + (1/2/4/8) (#size = 1,2,4,8) (D 1 0 1 Az[4-7]
*(Az—-#size) *Az-- addr = Az, Az = Az — (1/2/4/8) (#size = 1,2,4,8) () 1 1 0 Az[4-7]
*(Az-=ttsize) Az Az = Az — (1/2/4/8), addr = Az (#size = 1,2,4,8) (1) 1 1 1 Az[4-7]

Note
The ADDR2 opcode field modes do not specify the increment step size ("#size") or scale amount
("#scale"). This is automatically performed by the CPU hardware based on the word size being
accessed by the instruction.
» Byte access increments/decrements by #size=1, or scales by #scale=0 (multiply by 1)
» 16-bit access increments/decrements by #size=2, or scales by #scale=1 (multiply by 2)
» 32-bit access increments/decrements by #size=4, or scales by #scale=2 (multiply by 4)
* 64-bit access increments/decrements by #size=8, or scales by #scale=3 (multiply by 8)
The following are the instructions that can use the ADDR2 field:
AND.32, ANDOR, LD.32, LD.64, MV.16, MV.32, MV.64, MV.8, OR.32, ST.16, ST.32, ST.64, ST.8, XOR.32
Examples:
; Register XMx is Toaded with the 64-bit word at the memory Tocation
; addressed using the ADDR2 addressing mode. This address is fetched from Az.
LD.64 XMx,ADDR2 ; field
LD.64 XMx,*Az ; addressing mode
LD.64 XM4,*A4 ; actual assembly code
; The 8-bit immediate value specified is stored at the memory location
; addressed using the ADDR2 addressing mode. The address 1is fetched from Az,
; which is then post-decremented by the amount in #size. The #size is
; automatically chosen by the CPU to be 1 since the word size accessed by
; this dinstruction 1is 8-bit.
ST.8 ADDR2,#0x0B ; field
ST.8 *(Az--#size),#0x0B ; addressing mode
ST.8 *(Az--#1) ,#0x0B ; actual assembly
SPRUIY2 — NOVEMBER 2024 C29xCPU 57

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Addressing Modes

13 TEXAS
INSTRUMENTS

www.ti.com

5.2.3 ADDR3 Field
This is a 12-bit field for indirect encoding of addresses used only for "Pointer Addressing with #lmmediate

Offset."

Table 5-4 shows the various ways the 12 bits can be used to encode the address.

Table 5-4. ADDR3 Field Encodings

ADDRS Field: (Ax = A0 to A14)

Mnemonic

Shorthand

Address Generation

1[10]9]8

7]6[5[a]3]2][1]0

*(Ax+#u8imm<<2)

*Ax[#u8imm)]

addr = Ax + #u8imm<<2 (#u8imm << 2 = 0 to 1KB range, 4B steps)

Ax[0-14]

#u8imm

(1) The Ax[0-14] addressing field can support the A15 register, however this is the stack pointer (SP) register and for some of the
addressing modes, the operation is not valid for the SP and hence the addressing mode can not be used.

The following are the instructions that can use the ADDRS3 field:

MV.32

Example:

The 32-bit content at the memory location addressed using the ADDR3
addressing mode, ADDR3_x, is copied to the memory location addressed using
the ADDR3 addressing mode, ADDR3_y. Both ADDR3 fields use the same
addressing mode "*(Ax+#u8imm<<2)", which calculates the address using a
base pointer added with an 8-bit immediate (#u8imm) that is multiplied by 4
(#u8imm<<2). NOTE: The base address must be 32-bit aligned.

MV.32 ADDR3_y,ADDR3_X : field
MV.32 *(Ax+#u8imm<<2),* (Ax+#u8imm<<2) ; addressing mode
MV.32 *(AO+#4<<2),* (A1+#8<<2) ; actual assembly

58 C29x CPU

Copyright © 2024 Texas Instruments Incorporated

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

5.2.4 DIRM Field

DIRM Field

This is a 33-bit encoding used for direct and indirect encoding of addresses used only for "Direct Addressing" and “Pointer Addressing With #lmmediate
Offset.”

Table 5-5 shows the various ways the 12 bits can be used to encode the address.
Table 5-5. DIRM Field Encodings

DIRM Field: (Ax = A0 to A14)
Mnemonic Address Generation 0 31:20 \ 19:16 \ 47:32
*(0:#u32imm) @u32imm addr = #u32imm 0 #u32imm
*(Ax+#u28imm) *Ax[#u28imm] addr = Ax + #u28imm (#u28imm = 0 to 256MB range) 1 #u28imm (lower 12-bits) ‘ Ax[0-14] ! ‘ #u28imm (upper 16-bits)

(1) The Ax[0-14] addressing field can support the A15 register, however this is the stack pointer (SP) register and for some of the addressing modes, the operation is not valid for the SP and
hence the addressing mode can not be used.
The following are the instructions that can use the DIRM field:

LD.32, LD.64, LD.BO, LD.B1, LD.B2, LD.B3, LD.S16, LD.S8, LD.U16, LD.U8, LD.WO0, LD.W1, S16TOF, ST.32, ST.64, ST.B0, ST.B1, ST.B2, ST.B3,
ST.W0, ST.W1, U16TOF

Examples:

; Bits [7:0] of register Ax are Toaded with the 8-bit value at the memory
Tocation addressed using the DIRM addressing mode. DIRM is supplied with a
32-bit unsigned immediate value found in parklSine:

; park1sine = 0x00008000

LD.BO Ax,DIRM ; field
LD.BO Ax,@u32imm ; addressing mode
LD.BO A8,@parklsine ; actual assembly

; The upper 16-bit content of register Ax is stored at the memory Tocation
; addressed using the DIRM addressing mode. The DIRM field is replaced with
; the "*(Ax+#u28imm)" addressing mode, where the address is found using

; base pointer Ax and the #u28imm immediate value.

ST.wl DIRM,AX ; field
ST.wl *(Ax+#u28imm),Al10 ; addressing mode
ST.wl *(A3+#0x4),A10 ; actual assembly

SPRUIY2 — NOVEMBER 2024 C29x CPU 59

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

5.2.5 Additional Fields

In addition to the addressing mode fields, there are #immediate fields that are used within the actual addressing
modes, such as "#u10imm" in the "*(Ax+#u10imm)" addressing mode. Most of these #immediate fields (also
called constants) are self explanatory (for example, #u10imm is an unsigned 10-bit immediate).

However, there are two negative #immediate fields that are explained in further detail using a table for clarity:
#n13imm Field

The #n13imm field is a 13-bit negative offset #immediate used in the "*(A15-#n13imm)" addressing mode. This
addressing mode is one of the available ADDR1 fields (requires 16 bits for encoding) and is of type "Stack
Addressing".

A negative 13-bit value is provided using this #immediate, and bits 13 to 31 are padded with 1s to create the
32-bit negative offset constant.

Note
Bits 13 to 31 are padded with 1s to create a 32-bit negative offset constant that is then added to the
addressing register.

Table 5-6. #n13imm Field Encoding

12 | 11 10 9 8 7 6 5 4 3 2 1 0 Encoded Value Sign-extended Value
1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1
1 1 1 1 1 1 1 1 1 1 1 1 0 2 -2
1 0 0 0 0 0 0 0 0 0 0 0 1 4095 -4095
1 0 0 0 0 0 0 0 0 0 0 0 0 4096 -4096
0 1 1 1 1 1 1 1 1 1 1 1 1 4097 -4097
1 8191 -8191
0 8192 -8192
60 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

#n8imm Field

The #n8imm field is a 8-bit negative offset #immediate used in the following addressing modes:

* *(Ax--#n8imm), which is addressing mode type "Pointer Addressing With #lmmediate Increment/Decrement”
* *(Ax-=#n8imm), which is addressing mode type "Pointer Addressing With #Immediate Increment/Decrement”
* *(A15-=#n8imm), which is addressing mode type "Stack Addressing"

These addressing modes are all part of the available ADDR1 fields (all require 16 bits for encoding).

A negative 8-bit value is provided using this #immediate, and bits 8 to 31 are padded with 1s to create the 32-bit
negative offset constant.

Note
Bits 8 to 31 are padded with 1s to create a 32-bit negative offset constant that is then added to
addressing register.

Table 5-7. #n8imm Field Encoding

7 6 5 4 3 2 1 0 Encoded Value Sign-extended Value
1 1 1 1 1 1 -1
1 1 1 1 1 1 1 0 2 -2
1 0 0 0 0 0 0 1 127 -127
1 0 0 0 0 0 0 0 128 -128
0 1 1 1 1 1 1 1 129 -129
1 255 -255
0 256 -256
SPRUIY2 — NOVEMBER 2024 C29x CPU 61

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

i3 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

5.3 Alignment and Pipeline Considerations

This section covers the requirements for addressing alignment and pipeline considerations for addressing
modes.

5.3.1 Alignment

All data accesses are aligned to the nearest word size. This is enforced by the memory or peripheral being
accessed.

This means that the following are required for all data accesses:

* The base pointer address must be aligned to the data word width.

» Any offsets or increment/decrement sizes must be a multiple of the data size.

» The final address (base pointer with any offsets or increment/decrements applied) must be aligned to the
data word width.

CAUTION
The compiler automatically takes care of appropriate offset indexing and scaling based on the word
size. However, if the base pointer was loaded from a memory location, the compiler assumes that
the contents are properly aligned. If the contents are not aligned, then a CPU addressing fault is
generated if the generated address for that particular word size is not aligned.

An example regarding the base address: The base pointer address must be aligned to the data word width. So
if a 64-bit (8-byte) data instruction like "LD.64" is used, the base address must be aligned to the 64-bit word
boundary. Therefore, the last three digits of the address in binary must be 0, since that means the value is
divisible by 8. "LD.32 D2,*(0:#0xF8)" can therefore be valid (because in binary, this is 0b1111 1000), but "LD.32
D2,*(0:#0xF9)" can not be valid (because in binary, this is 0b1111 1001).

An example regarding the offsets: Any offset value used (which is in bytes) must be a multiple of the instruction's
data size. So if a 32-bit (4-byte) data instruction like "LD.32" is used, the offset must be a multiple of 4. "LD.32
D2,*(A2 + #4)" can therefore be valid, but "LD.32 D2,*(A2 + #5)" can not be valid. Alignment of the base pointer
is also required for these instructions.

Some additional examples of correct and incorrect alignment are provided here:

MV. 32 A2, #ArrayX ; Assume that the array is aligned

; to a 64-bit word boundary for this example.
; CORRECT Examples:
; Pointer Addressing with #Immediate offset Examples

LD.BO DO, *(A2+#9) ; Byte offset can be any value

LD.ul6 D1, *(A2+#10) ; 16-bit offset can only be a multiple of 2 bytes
LD.32 D2,*(A2+#4) ; 32-bit offset can only be a multiple of 4 bytes
LD.64 XD4,* (A2+#16) ; 64-bit offset can only be a multiple of 8 bytes
; Scaled values (left shift or multiplied values)

LD.Ul6 D1,*(A2+#1<<1) ; 16-bit offset can only be a multiple of 2 bytes
LD.Ul6 Dl,*(A2+#3<<l) ; 16-bit offset can only be a multiple of 2 bytes
LD.64 XD4,*(A2+#2<<3) ; 64-bit offset can only be a multiple of 8 bytes
; Pointer Address1ng with #Immediate Increment/Decrement Examples

LD.BO DO, * (A2++#9) ; Byte offset can be any value

LD.ul6 D1, *(A2++#10) ; 16-bit offset can only be a multiple of 2 bytes
LD.32 D2,*(A2++#4) ; 32-bit offset can only be a multiple of 4 bytes
LD.64 XD4,*(A2++#24) ; 64-bit offset can only be a multiple of 8 bytes
; INCORRECT Examples:

LD.Ul6 D1, * (A2++#5) ; INCORRECT: offset can only be a multiple of 2
LD.Ul6 D1, *(A2+#3<<0) ; INCORRECT: offset can only be a multiple of 2
LD.64 XD4,* (A2+#10) ; INCORRECT: offset can only be a multiple of 8

; If Arrayx is not aligned to a 32-bit boundary and LD.32 is called,
; then a CPU addressing fault 1is generated.

62 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

Note
The ADDR2 opcode field modes do not specify the increment step size ("#size") or scale amount
("#scale"). This is automatically performed by the CPU hardware based on the word size being
accessed by the instruction.
» Byte access increments/decrements by #size=1, or scales by #scale=0 (multiply by 1)
» 16-bit access increments/decrements by #size=2, or scales by #scale=1 (multiply by 2)
» 32-bit access increments/decrements by #size=4, or scales by #scale=2 (multiply by 4)
* 64-bit access increments/decrements by #size=8, or scales by #scale=3 (multiply by 8)

5.3.2 Pipeline Considerations
While the C29x CPU implements a fully protected pipeline, there are some considerations required:

» Up to two loads and one store can occur in parallel within an instruction packet. This can include modifying
the Ax addressing registers. One Ax register can be read multiple times in parallel, but the register cannot be
written to more than once in parallel in a single packet.

* The assembly language tools flag if any assembly code has more than one instruction modifying the same
destination register within the same instruction packet.

An example of valid code is provided with two loads and one store in a single packet:

LD.32 DO, *A2+A0 ; Use A0 as an index from A2
| ILD.32 D1, *A2+Al ; Use Al as an index from A2
| |ST.32 *(A2-=#4) ,D3 ; Pre-Decrement A2

| | ADD AO0,AQ, #6 ; Add #6 to AO register

| |sus Al,Al,#10 ; Sub #10 from Al register
; each Ax register is only modified once here.

5.4 Types of Addressing Modes
This section provides details on each of the types of addressing modes available in the C29x CPU.
5.4.1 Direct Addressing

The Direct Addressing type allows direct read or write access to any location in the 32-bit memory space with the
immediate address provided in the instruction.

The typical use case is for accessing fixed address locations (such as peripheral registers) or variables that are
at fixed memory locations (at build time).

Drawbacks of the type include that this addressing mode is only available on 48-bit instructions and so code that
extensively uses this type of addressing mode uses more space.

Benefits of the type include that this addressing mode does not require any addressing pointer. If the values
being accessed are few and randomly dispersed in the user program, this type of addressing mode can be more
efficient than trying to initialize a pointer and use pointer addressing.

Examples

LD.Ul16 DO,@ADC2.ResultReg5 ; Load register DO with the location of
; ADC2 peripheral result register 5

SPRUIY2 — NOVEMBER 2024 C29x CPU 63
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

5.4.2 Pointer Addressing

5.4.2.1 Pointer Addressing with #immediate Offset

The Pointer Addressing with #lmmediate Offset type allows indirect read or write access to any location in the
32-bit memory space with the pointer address from one of the addressing registers, A0 to A14, and an optional
immediate offset provided in the instruction.

The immediate offset is added to the base register using a full 32-bit unsigned ADD operation. If the value
overflows, the value wraps around.

The typical use case is for indexing into a given data array, or a peripheral, in any random order multiple times.
Each addressing mode within this type is tailored to a specific use:

*(Ax+#u28imm) For implementing position independent code, or when accessing very large data arrays.
*(Ax+#u10imm) For accessing data arrays of 1KB or less.
*(Ax+#u10imm<<2) For accessing peripheral registers (peripherals have register ranges of 4KB, or multiples of 4KB,

and are aligned on 32-bit word boundary).

*(Ax+#u8imm<<2) For moving multiple data entries between two 32-bit data arrays of less than 1KB. Used only in one
data move instruction, which enables this functionality to in a compact 32-bit instruction.

Note
All data accesses must be aligned to the nearest word size. See Section 5.3.1 for more details and
cautions regarding alignment.

5.4.2.2 Pointer Addressing with Pointer Offset

The Pointer Addressing with Pointer Offset type allows indirect read or write access to any location in the 32-bit
memory space with the pointer address (base address register) from one of the addressing registers, A0 to A14,
and an offset provided by an additional pointer (index register) in the instruction.

This structure allows for easy data array access using a variable index. An example of this can be demonstrated
with a 32-bit integer array. If the eighth int in the array is needed, the element can be accessed as follows:

; Because the array is of type int, each element is 4 bytes (32 bits) long.
; So the index must be multiplied by 4 (which is the same as <<2)

; Starting parameters:

; int arr[7] = 12

A2 = arr (base address)

A0 = i (index) = 7 (the eigth int in the array)
LD.32 DO, *(A2+A0<<2) ; DO = arr + (7<<2 byte offset)
; Result:

; DO = 12

» 8-bit accesses do not need the index "i" to be multiplied (no shift needed). 16-bit accesses require "i" to be
multiplied by 2 (<<1) for 2-byte alignment.

» 32-bit accesses require "i" to be multiplied by 4 (<<2) for 4-byte alignment.

* 64-bit accesses require "i" to be multiplied by 8 (<<3) for 8-byte alignment.

The offset provided from the register and shift is added to the base register using a full 32-bit unsigned ADD
operation. If the value overflows, the value wraps around.

This allows for negative index values to wrap around:

; Starting parameters:
; A2 arr = 8 = 0x0000 0008 (base address at 8th byte in memory space)
i -1 = OXFFFF FFFF (index at -1)

; A0 1
*(A2+A0) = 8 + (-1) = 7th byte in memory space

64 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

Note
All data accesses must be aligned to the nearest word size. See Section 5.3.1 for more details and
cautions regarding alignment.

5.4.2.3 Pointer Addressing with #immediate Increment/Decrement

The Pointer Addressing with #ilmmediate Increment/Decrement type allows indirect read or write access to any
location in the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14. An
immediate pre or post increment or decrement of the register is applied.

The increment offset size provided from the #immediate value and is added to the base register using a full
32-bit unsigned ADD operation. If the value overflows, the value wraps around.

The decrement offset size provided from the #lmmediate value and is added to the base register using a full
32-bit unsigned SUB operation. If the value underflows, the value wraps around.

Note
All data accesses must be aligned to the nearest word size. See Section 5.3.1 for more details and
cautions regarding alignment.

Note
The ADDR2 opcode field modes do not specify the increment step size ("#size") or scale amount
("#scale"). This is automatically performed by the CPU hardware based on the word size being
accessed by the instruction.
» Byte access increments/decrements by #size=1, or scales by #scale=0 (multiply by 1)
» 16-bit access increments/decrements by #size=2, or scales by #scale=1 (multiply by 2)
» 32-bit access increments/decrements by #size=4, or scales by #scale=2 (multiply by 4)
* 64-bit access increments/decrements by #size=8, or scales by #scale=3 (multiply by 8)

5.4.2.4 Pointer Addressing with Pointer Increment/Decrement

The Pointer Addressing with #lmmediate Increment/Decrement type allows indirect read or write access to any
location in the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14,
and a pre or post increment or decrement of the register is applied using the value located in an additional
pointer register.

One of the addressing modes in this type, "*(Ax+#u7imm)++Ak", allows for a pointer increment/decrement along
with an offset. This is useful in code where values are accessed close to a variable index. An example of this can
be seen in the C and resultant assembly code:

C code:

For (i=0; i<N; i++)

ArrayY[i]
ArrayY[i+1]

ArrayX[i] + ArrayX[i+1];
Arrayx[i] - ArrayX[i+1];

SPRUIY2 — NOVEMBER 2024 C29x CPU 65
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

Resultant assembly code:

; Initialize ArrayX and ArrayY Pointers and i:

MV AO, #4 ; AO = 1 = 4 = increment step size
MV A2, #ArrayXx ; A2 = ArrayX base address

MV A3, #ArrayY ; A3 = ArrayY base address

; This code is repeated N times:

LD.32 DO, * (A2 + #0) ; DO = ArrayXx[i]

| |LD.32 D1,*(A2 + #1*4)++A0 ; D1 = Arrayx[i+1], A2 = A2 + AO
ADD D2,D1,D0 ; D2 = Arrayx[i] + ArrayX[i+1];

| |suB D3,D1,D0 ; D3 = ArrayX[i] - Arrayx[i+1];
ST.32 *(A3 + #0),D2 ; ArrayY[i] = D2

ST.32 *(A3 + #1*4)++A0 ; ArrayY[i+l] = D3, A3 = A3 + AQ

The increment offset size provided from the #lmmediate value and is added to the base register using a full
32-bit unsigned ADD operation. If the value overflows, the value wraps around.

This wrap around can be used to implement a decrementing index. For example:

; Starting parameters:

; A2 = arr = 8 = 0x0000 0008 (base address at 8th byte in memory space)
; i = -1 = OXFFFF FFFF (index at -1)

*(A2+A0) = 8 + (-1) = 7th byte in memory space

Note
All data accesses must be aligned to the nearest word size. See Section 5.3.1 for more details and
cautions regarding alignment.

5.4.3 Stack Addressing

The Stack Addressing type allows read or write access to any location in the stack space with the address
provided in addressing register A15, which is the dedicated Stack Pointer (SP).

Following is a list of key information regarding the stack pointer that helps in understanding these addressing
modes:

* Addressing register A15 is the dedicated stack pointer.

* The stack grows from low address to high address.

» The stack pointer always points to the next empty location at the top of the stack.

» The stack pointer must always be aligned to a 64-bit word boundary. Interrupts, Call, and Return operations
generate a fault, if the stack pointer is not aligned.

» If a stack pointer is not aligned to the word size being accessed, this also generates a fault.

When allocating stack space and accessing values on the stack, the recommended procedure is as follows:

» Allocate stack space in increments of 8-bytes (64-bits)

* Access the stack contents using the *(A15-#n13imm) addressing mode (all accesses must be aligned to the
word size being accessed)

* When done, de-allocate stack space (in decrements of 8-bytes)

For example: The program needs to allocate space for:

e 1% 64-bit value

3 * 32-bit values

1 * 16-bit value

3 * 8-bit values (bytes)

66 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

The total number of bytes to allocate, taking into account the alignment can be 32 (which is the nearest 64-bit
address above the required 25 bytes):

64-bit +8 8 bytes total requires 8 bytes allocated

32-bit +4 12 bytes total requires 16 bytes allocated
32-bit +4 16 bytes total

32-bit +4 20 bytes total requires 24 bytes allocated
16-bit +2 22 bytes total

8-bit +1 23 bytes total

8-bit +1 24 bytes total

8-bit +1 25 bytes total requires 32 bytes allocated
Total Used = 25 bytes

Allocated = 32 bytes (closest multiple of 8-bytes [64-bits])

5.4.3.1 Allocating and De-allocating Stack Space
Stack space can be allocated and de-allocated as shown in the following examples:

Allocate 32-bytes (must be a multiple of 8-bytes):

‘ADD.UlG AL5,A15,#32 3 SP = SP + 32 ‘

De-allocate 32-bytes (must be a multiple of 8-bytes):

‘SUB.U16 Al5,A15,#32 ; SP = SP - 32 ‘

The compiler automatically allocates and de-allocates stack space and forces alignment to the 64-bit word
boundary.

It is also possible to use the *(A15++#u8imm) addressing mode to push something on the stack and also
allocate additional stack space if required and if the stack size is less than 256 bytes. For example:

ST.64 *(A15++#32) ,XD0 ; Push 64-bit XDO value on stack, then allocate
; 32 bytes on stack (SP = SP + 32)

Similarly you can de-allocate and pop something from the stack using the *(A15 -= #n8imm) addressing mode.
For example:

LD.64 XDO,*(Al5-=#32) ; De-allocate 32-bytes from stack (SP = SP - 32),
; and pop 64-bit value from stack into XDO

If required to access a value on the stack that is a distance greater than 8192 bytes, an addressing pointer
needs to be used to access the value. For example: to access a 32-bit value that is 8216 bytes away from top of
stack:

SUB.U16 AO0,A15,#8216 ; A0 = SP - #8216
LD.32 DO, *A0 ; DO = contents of stack at SP-8216

Typically, for large stacks, the compiler allocates one of the Ax addressing mode registers as a frame pointer and
can use the available pointer addressing modes to index into the stack.

The above approach can also be used to initialize pointers within the stack for situations where local variables
located on stack need to be accessed frequently or if required to use pointer increment/decrement operations on
the data.

SPRUIY2 — NOVEMBER 2024 C29x CPU 67
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

Note that regardless of the addressing mode used, any stack memory access must be aligned to the accessed
word size and any non-aligned access generates a fault. The compiler takes care of alignment of any data on
the stack space.

Note

1. If a pointer is used to access the stack contents, assume that the value is appropriately aligned to
the right word access size. If the value gets corrupted, it can cause an access fault.

2. The CALL operations automatically push the RPC (return PC) value on the stack and increment
the stack pointer by 8, hence always keeping stack alignment. The 32-bit RPC is stored in the
lower 32-bits of the 64-bit word. Similarly, a RET operation pops the RPC value from the stack
and decrements the SP by 8 maintaining stack alignment. If the stack pointer is not aligned when
exexcuting the CALL or RET operation, a fault is generated.

5.4.4 Circular Addressing Instruction

The C29x CPU does not support a native addressing mode for circular addressing like on the C28x CPU.
However, the functional parallelism present in the C29x CPU architecture makes sure that there is no
performance impact for the lack of native circular addressing mode.

Circular addressing is performed by instructions that modify the addressing registers in a circular fashion. These
are 16-bit instructions that require 1 cycle to execute. The instructions supported are:

INC.CIRC Ay,Ax:

Increment Ay until the limit (Ax) is reached, then reset the value to 0.

if (Ay >= Ax) Ay =0
else Ay = Ay + 1
; where Ay = A0 to A3
; and AX = A0 to Al4

DEC.CIRC Ay,Ax:

Decrement Ay until the limit (0) is reached, then reset the value to Ax.

if (Ay <= 0) Ay = AX
else Ay = Ay - 1
; where Ay = A0 to A3
; and AXx = A0 to Al4

This type of addressing mode is typically used for implementing finite impulse response (FIR), least mean
squares (LMS), or convolution filters.

A typical FIR filter algorithm in C:

sum = 0;
circ_index = save_circ_index;
for(i=0; i < N_taps; i++)

sum += Data[circ_index] * Coef[i];
circ_index++;
if(circ_index >= N_taps)
circ_index = 0;
}

save_circ_index = circ_index;

68 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS
www.ti.com Addressing Modes
The main kernel for the filter can be coded as follows (example for a 7-tap FIR):
LD.32 AOQ,@save_circ_index ; A0 = circ_index
MV A6, #N-1 ; A6 = filter taps, N =7
MV A4, #Data ; A4 -> Data Array
MV A5, #Coef ; A5 -> Coef Array
LD.32 MO, * (A4+A0) ; Read Data From Current Index
| |LD.32 M1, *A5++ ; Read Coef, Increment Coef Pointer
| | INC.CIRC A0, A6 ; if(A0 >= A6) A0 = 0 else A0 = AO +
SMPYF M4 ,M0, M1
| |LD.32 MO, * (A4+A0) ; Read Data From Current Index
| |LD.32 M1, *AS5++ ; Read Coef, Increment Coef Pointer
| | INC.CIRC A0, A6 ; if(A0 >= A6) A0 = 0 else AO = AO +
SMPYF M5,M0,M1
| |LD.32 MO, * (A4+A0) ; Read Data From Current Index
| |LD.32 M1, *A5++ ; Read Coef, Increment Coef Pointer
| | INC.CIRC A0, A6 ; if(AO0 >= A6) A0 = 0 else A0 = AO +
SMPYF M6,M0, M1
| |LD.32 MO, * (A4+A0) ; Read Data From Current Index
| ILD.32 M1, *A5++ ; Read Coef, Increment Coef Pointer
| | INC.CIRC A0, A6 ; if(A0 >= A6) A0 = 0 else A0 = AO +
SMPYF M7 ,MO, M1
| ILD.32 MO, * (A4+A0) ; Read Data From Current Index
| |LD.32 M1, *AS5++ ; Read Coef, Increment Coef Pointer
| | INC.CIRC A0, A6 ; if(A0 >= A6) A0 = 0 else AO = AQ +
SMPYF M4 ,M0,M1
| | SADDF M6 ,M6 ,M4
| |LD.32 MO, * (A4+A0) ; Read Data From Current Index
| |LD.32 M1, *A5++ ; Read Coef, Increment Coef Pointer
| | INC.CIRC A0, A6 ; if(A0 >= A6) A0 = 0 else A0 = AO +
SMPYF M5 ,M0, M1
| | SADDF M7 ,M7 ,M5
| |LD.32 MO, * (A4+A0) ; Read Data From Current Index
| |LD.32 M1, *A5++ ; Read Coef, Increment Coef Pointer
| | INC.CIRC A0, A6 ; if(AO0 >= A6) A0 = 0 else A0 = AO +
SMPYF M4 ,MO0, M1
| | SADDF M6 ,M6 , M4
ADDF M7 ,M7 ,M5
ADDF M6, M6 ,M4
ST.32 @save_circ_index,A0 ; Save current circ index position
ADDF M7 ,M7 ,M6 ; final sum = M7
SPRUIY2 - NOVEMBER 2024 C29x CPU 69

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

5.4.5 Bit Reversed Addressing Instruction

The C29x CPU does not support a native bit reversed addressing mode like on the C28x CPU. However, the
functional parallelism present in the C29x CPU architecture makes sure that there is no performance impact for
the lack of native bit reversed addressing mode.

Bit reversed addressing is performed by an instruction that modifies the addressing registers in a bit reversed
fashion and is typically used for re-ordering data for Fast-Fourier Transform (FFT) type algorithms.

Table 5-8. Bit Reversed Addressing Visualized

Address Value Bit Reversed Address Bit Reversed Value
0000 0 0000 0
0001 1 1000 8
0010 2 0100 4
0011 3 1100 12
0100 4 0010 2
0101 5 1010 10
0110 6 0110 6
0111 7 1110 14
1000 8 0001 1
1001 9 1001
1010 10 0101

The supported instruction for bit reversed addressing is:
ADD.BITREV Az,Ay,Ax

Perform the ADD operation, but add the bits from left to right (unlike a standard ADD that is from right to left). An
example is:

; Ax = 0011 1001

; Ay = 0000 1000

; Az = 0011 0101 (after a bit reversed add):

ADD Az,Ay,AX ; Normal Add: Az = 0100 0001
ADD.BITREV Az,Ay,AX ; Bit Reversed Add: Az = 0011 0101

The following example shows how this operation is used to reverse an array of Data in bit reversed order:

BitReversedIndex = 0;

BitReversedIncrement =N

for(i=0; i < N; i++)

{
BitReversedDataArray[BitReversedIndex] = NormalDataArray[i];
BitReversedIndex = BitReversedAdd(BitReversedIndex+BitReversedIncrement);

Typically, when bit reversing data, the data array is a multiple of 2 in size (N = 16, 32, 64, 128, and so on).

The BitReversedIincrement then needs to be set to half the array size (N/2) to increment by 1 in bit reversed
order.

70 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

The assembly code for the previous operation is:

MV A0, #0 ; A0 = BitReversedIndex = 0
MV A8,#N/2 ; A8 = Increment Step = N/2
MV A4, #NormalDataArray ; A4 = Stating Address of

; NormalDataArray
MV AS5,#BitReversedDataArray ; A5 = Stating Address of

; BitReversedDataArray

; Repeat N times:

LD.32 DO, *Ad++ ; Read From NormalDataArray
ST.32 *(A5+A0),D0 ; Write To BitReversedDataArray
| | ADD.BITREV AO0,A0,A8 ; Increment BitReversedIndex
LD.32 DO, *Ad++ ; Read From NormalDataArray
ST.32 *(A5+A0),D0 ; Write To BitReversedDataArray
| | ADD.BITREV AO0,A0,A8 ; Increment BitReversedIndex
LD.32 DO, *Ad++ ; Read From NormalDataArray
ST.32 *(A5+A0) ,D0 ; Write To BitReversedDataArray
| |ADD.BITREV AO0,A0,A8 ; Increment BitReversedIndex
SPRUIY2 - NOVEMBER 2024 C29x CPU 71

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Chapter 6
Safety and Security Unit (SSU)

i3 TEXAS INSTRUMENTS

The Safety and Security Unit (SSU) implements safety, memory management (MPU) and security as one
function. This chapter provides a brief overview of the SSU module. Details regarding the SSU are provided in
the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual.

6.1 SSU OVEOIVIBW.ooviieiiei et e et e e e e e e e e ettt eee e s aaeeeaeee et e sasanan e eaeaeseeessansann e eeeaeeeeesssbannnnnneeseeesessssnnnnnnnnns 73
6.2 LINKS @Nd TASK ISOIAION........ ..ot e et e e e e e e e e et e eeeeaeaeeeeeeeeeesesaan e eeeeeeeeesessanannaeeeeaeeees 74
6.3 Sharing Data Outside Task Isolation BOUNAIY.................ooooiiiiiiiiiiiiiiie e e e e e e e e e e e nsneeeeeeeans 76
6.4 Protected Call aNd RELUIN..............oeiiiiiiiieieieeee ettt e et e eeeaeeeeeeeeeeeeeaesaa e assssssssssnsnnsneneeeeasaeaeasaneeeeanannn 77

72 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com

Safety and Security Unit (SSU)

6.1 SSU Overview

The SSU acts as a filter or firewall between the CPU, memory and peripherals and enforces the user protection
policy as the CPU attempts to access peripherals and memory on the chip. All device resources such as Flash,
ROM, RAM, and peripherals need to be assigned to Access Protection (AP) ranges. Any code running on the
C29x CPU is associated with a LINK through an APx region. This LINK is then associated with a STACK, which
is in turn associated with a specific ZONE.

CALL.PROT/RET.PROT C

CALL.PROT/RET.PROT

CALL/RET

B ——

CALL/RET <: LINK4

LINK

LINK5
Start Addr
CODE dq EXE AP
End Addr
Start Addrjj CCLINKE
R?
dq 0 [y
DATA W?
(variables, tables, R?
constants) g W.?
& . AP
SW STACKs
&
PERIPHERALS R?
1 w?
End Addr CCLINK

STACK ZONE

SECSPO

SECSP1 Rules For LINKs, STACKs, ZONEs:
e Multiple LINKs Can Point To The Same STACK
o LINKs Cannot Point To More Than One STACK

e Multiple STACKs Can Point To The Same ZONE
® STACKs Cannot Point To More Than One ZONE

SECSP2

e Must Use CALL.PROT/RET.PROT When Crossing STACKs
© Must Use CALL.PROT/RET.PROT When Crossing ZONEs

SECSP4
SECSP5

If Access Protection (APx) is configured for EXE (code execution), then it ties the selected address range to a
LINK

Address ranges CANNOT overlap (see NOTE)

Read & Write Permission Can Be Assigned On A Per LINK Basis
Multiple LINKs can be associated for the same address range, each with their own Read & Write Permission

Address ranges CANNOT overlap (see NOTE)

The CLINK feature, if enabled, allows the selected region to be accessed only by CALLS from the selected LINKs

and it is typically used for passing parameteres to common code functions that can be shared across multiple
tasks (LINKs)

Figure 6-1. SSU Overview

Note

» Standard CALL/RET operations can be used to jump between LINKS, as long as the operations do
not jump between STACKs.

* CALL.PROT/RET.PROT can be used even without crossing STACKSs, which can be beneficial
when initially segmenting code before allocating each function to different STACKSs.

* Rules which apply for CALL.PROT applies for LB.PROT

* For a system containing multiple C29x CPUs, each CPU has LINKs, STACKs, and AP regions,
while ZONEs are shared across the device.

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

C29x CPU

Copyright © 2024 Texas Instruments Incorporated

73

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Safety and Security Unit (SSU) www.ti.com

6.2 Links and Task Isolation

The Safety and Security approach is based on the concept of task isolation. For this section, the example of
two distinct tasks (a control task and a communication task) is used. Tasks are unable to view or corrupt the
unique program memory, data memory, software stack, and peripheral access of other tasks. From a debugging
perspective, each secure zone (ZONE1, ZONE2) has a security password which can only be accessed by
enabling the zone for debug with a matching password. Each task has an associated secure Stack Pointer
(SECSP2, SECSP3) that is copied into the CPU stack pointer SP = A15 when entering the respective task.
When exiting the task, the current contents of the CPU stack pointer is copied into the respective Stack Pointer
(SECSP2, SECSP3).

The C29x CPU utilizes the concept of a LINK to tie execution code to a specific task. For example, LINK2 is
associated with SECSP2 and ZONE1. Similarly, LINK3 is associated with SECSP3 and ZONE2 as shown in

Figure 6-2.
Prog Code ROM
= LINK2
Software Stack Peripherals
Prog Code FLASH mi
SECSP2 Passed Paramters ADC Regs
Control am LINK2 Return Address

Task

Local variables mi
PWM Regs

Stack Empty

Prog Code RAM

=)

Instruction

Prog Code ROM
= LINK3

Software Stack Peripherals
Prog Code FLASH Passed Paramters m
SECSP3 UART Regs
C_c;;nsr:s — e Return Address
Local variables m’i
Prog Code RAM A15 Stack Ermo SPI Regs
I ack Empty

Instruction

Figure 6-2. Concept of Links for Creating Task Isolation

74 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS
www.ti.com Safety and Security Unit (SSU)
Prog Code Start Addr SW Stack Start Addr Peripherals
ROM ' INK2 R
I End Adar End Adar Passed Start Addr
Parameters il | ADC Regsd
Return Addr o ' INK2
Prog Code Start Addr Start Addr Local
Control FLASH (== INK2[ZQ R variables
Task . End Addr End Addr E
mpty
TN [start Adar Start Addr End Addr
RAM
- L INK2[ZG w
Instruction
End Addr End Addr
Prog Code . Start Addr Start Addr SW Stack Start Addr Peripherals
ROM == LINK3 R
Passed
End Addr End Addr P —— AP15
Return Addr - _INK3
Prog Code Start Addr Start Addr — A
Comms FLASH ‘== LINK3[ZG AP10 R variables
Task End Addr End Addr
Empty
Start Addr Start Addr End Addr
RAM
== LINK3[E AP11 w
Instruction
End Addr End Addr

Figure 6-3. Concept of Access Protection to Memories and Peripherals

Note
The minimum address granularity for all Access Protection (AP) regions is 4KB.

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

C29x CPU 75

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Safety and Security Unit (SSU) www.ti.com

6.3 Sharing Data Outside Task Isolation Boundary

When Control Task (LINK2) needs to share data with Communication Task (LINK3), a shared RAM (with AP18)
needs to be used with LINK2 having WRITE attribute and LINK3 having READ attribute. In the same way, when
Communication Task (LINK3) wants to share data with Control Task (LINK2), another shared RAM (with AP19)
needs to be used with LINK3 having WRITE attribute and LINK2 having READ attribute. Similarly, ADC2 Result
registers (with AP20) are assigned to LINK2 and LINK3 with READ attribute. This allows both communication
and control task to read ADC2 result registers.

Secure Prog Code Start Ad:r SW Stack Start Addr Peripherals
Zone 1 (Z1) ROM = 9 AP 0
Passed ADC1 Start Addr|
. End Addr End Addr parameters AP6 Result < T AP
Prog Code Start Addr Start Addr Ret:;rlal}ddr == 1INK2 [T Regs End Addr
FLASH = LINK2 3TH q il AP4 variables Start Add
Control End Addr End Addr art Sadr
Task Empty PWM Regs< W
n r
Prog Code Start Addr Start Addr End Addr
RAM
- 1INK2 [3F q [AP
Instruction
End Addr End Addr
Start Addr Start Addr ¢ Start Adar]
ADC2 R
Result AP20
Regs 9 R
End Addr
End Addr
Secure Prog Code Start Addr Start Addr swstack JJEEEIXIL [N
Zone 2 (Z2) ROM . =LINK3 [< [} AP \ — tart Add
asse! tart r
End Addr End Addr Parameters AP15 UART Regs¢ Tl APic
Prog Code Start Addr Start Addr Rett:;r‘l:;?ddr == 1INK3 [T End Addr
FLASH = LINK3[EIE AP10 q i AP variables start Addr
Comms End Addr End Addr
Task Empty SPI Regs ¢ "B AP
as n r
Prog Code I Start Addr End Addr
RAM
== 1INK3 [FF AP11 [AP14
Instruction
End Addr
Figure 6-4. Concept of Sharing Data Across LINKS
76 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS

www.ti.com

Safety and Security Unit (SSU)

6.4 Protected Call and Return

The CALL.PROT operation is permitted to cross STACKs. When arriving at the destination address of the
CALL.PROT, the ENTRY1.PROT and ENTRY2.PROT instructions must be the first instructions executed. If
these instructions are not present, the CPU enters the FAULT state. Upon returning from the CALL.PROT
operation, the very first instruction at the return address must be the EXIT.PROT instruction. If the EXIT.PROT
instruction is not present, the CPU enters the FAULT state. These ENTRY and EXIT instructions control the
entry and exit points of the code when security boundaries are crossed and enable user code to check any
passed parameters or data before being used.

Secure Prog Code Start Addr SW Stack Start Addr
Zone 1(21) FLASH)
On ENTRY1.PROT SECSP2 AP6
ControlFunc: e 1 INK2 [T SECSP2 copied to A15 == 1INK2 [T
ENTRY1.PROT
| [ENTRY2.PROT On RET.PROT
Control A15 copied to SECSP2 £
mpt
Taskuser code.... i
RET.PROT
Secure ’ SW Stack Start Addr
Zone 2 (22) Prog Code
FLASH)
On CALL.PROT SECSP3 AP15
A15 copied to SECSP3 - 1INK3 [T
CALL.PROT @ControlFunc -1 INK3 3
b On EXIT.PROT
Comms LU Secsp3 copied to ALS
Task End Addr
End Addr

Figure 6-5. Protected Call and Return

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

C29x CPU

7

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Chapter 7
Emulation

i3 TEXAS INSTRUMENTS

The debug controller in the CPU contains hardware extensions for advanced emulation features that can
assist you in the development of your application system (software and hardware). This chapter describes the
emulation features that are available on all F29x devices using only the JTAG port (with Tl extensions).

7.1 Overview of EMUlation FEAtUIES......... ... i ettt e e e et e e e e e e et e e e e e e nneeeaaeeannsneeaaaan 79
7.2 DEDUQG TEIMINOIOQY.... .. ciiiiiii ittt ettt ettt e bt e e bt e e ehs et e e e ket e e sttt e 4as e e e e a b et e e sttt e sane e e e bbe e e anbeeesanneeenneeen 79
0 1Y o T Lo] (=Y = Lo = PSSP 79
7.4 EXECULiON CONLIOI IMOGE. ...ttt e ettt e e e et e e e e e e santeeea e e e aaseeeeeeenbaaeeaeeaasnsaeeaeaaannsenaeeeannns 80
7.5 Breakpoints, Watchpoints, and COUNLErS..................ooooiiiiiii ittt e e e e et e e e e e et e e e e e eesaeeeaaaeanns 82

78 C29x CPU SPRUIY2 — NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

I,

TEXAS
INSTRUMENTS

www.ti.com Emulation

7.1 Overview of Emulation Features

The CPU’s hardware extensions for advanced emulation features provide simple, inexpensive, and speed
independent access to the CPU for sophisticated debugging and economical system development, without
requiring the costly cabling and access to processor pins required by traditional emulator systems.

This access is provided without intruding on system resources. The on-chip development interface provides:

Minimally intrusive access to internal and external memory
Minimally intrusive access to CPU and peripheral registers
Control of the execution of code:

Break on a software breakpoint instruction (instruction replacement)

Break on a specified program or data access without requiring instruction replacement
Break on external attention request from debug host or additional hardware

Break after the execution of a single instruction (single-stepping)

Control over the execution of code from device power up

Nonintrusive determination of device status:

Detection of a system reset, emulation/test-logic reset, or power-down occurrence
Detection of the absence of a system clock or memory-ready signal
Determination of whether global interrupts are enabled

Determination of why debug accesses can be blocked

A cycle counter for performance benchmarking.

7.2 Debug Terminology

The following definitions aid in understanding the information in this chapter:

Debug-halt state.: The state in which the device does not execute code.

Debug event: An action, such as the decoding of a software breakpoint instruction, the occurrence of a
breakpoint/watchpoint, external system trigger, or a request from a host processor that can result in special
debug behavior, such as halting the device.

Break event: A debug event that causes the device to enter the debug-halt state.

7.3 Debug Interface

The target-level Tl debug interface uses the five standard IEEE 1149.1 (JTAG) signals (TRST, TCK, TMS, TDI,
and TDO) and the two TI extensions (EMUO and EMU1). Figure 7-1 shows the 14-pin JTAG header that is
used to interface the target to a scan controller, and Table 7-1 defines the pins. As listed in Table 7-1, the
header requires more than the five JTAG signals and the Tl extensions. The header also requires a test clock
return signal (TCK_RET), the target supply (VCC), and ground (GND). TCK_RET is a test clock out of the scan
controller and into the target system. The target system uses TCK_RET, if the target system does not supply a
test clock (in which case TCK can not be used). In many target systems, TCK_RET is connected to TCK and
used as the test clock.

Interface a Target

T™S | 1 2 | TRST
oIy 3 4 | GND m??;rp?n"zggili?\gf'o.1oo in. (X,Y)
PD(Veo) | 5 R No pin (key) Pin width: 0.025- in. square post
TDO | 7 8 | GND
TCK_RET | 9 10 | GND
TCK | 11 12 | GND
EMUO | 13 14 | EMU1

Figure 7-1. JTAG Header to Interface a Target to the Scan Controller

SPRUIY2 — NOVEMBER 2024 C29x CPU 79
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS

INSTRUMENTS
Emulation www.ti.com
Table 7-1. 14-Pin Header Signal Descriptions
Signal Description Eg’::tlz(tg r ;taartge?})
EMUO Emulation pin 0 | 1/0
EMU1 Emulation pin 1 | 1/0
GND Ground
PD (Veo) Presence det_ect. Indicat_es that the emulation cable is connected and that the target is powered up. | o
PD must be tied to V¢ in the target system.
TCK Test clock. TCK is a clock source from the emulation cable pod. This signal can be used to drive the o |
system test clock.
TCK_RET |Test clock return. Test clock input to the emulator. Can be a buffered or unbuffered version of TCK. | (6]
TDI Test data input (0] |
TDO Test data output | (0]
T™MS Test mode select) |
TRST @ |Test reset 0 I

M
@

| = input; O = output
Do not use pull-up resistors on TRST: an internal pull-down resistor is on the device. In a low-noise environment, TRST can be left

floating. In a high-noise environment, an additional pull-down resistor can be needed. (The size of this resistor can be based on
electrical current considerations.)

The state of the TRST, EMUO, and EMU1 signals at device power up determines the operating mode of the
device. The operating mode takes effect as soon as the device has sufficient power to operate. If the TRST
signal rises, the EMUOQ and EMU1 signals are sampled on the rising edge and the operating mode is latched.
Some of these modes are reserved for test purposes, but those that can be of use in a target system are
detailed in Table 7-2. A target system is not required to support any mode other than normal mode.

Table 7-2. Selecting Device Operating Modes By Using TRST, EMUO, and EMU1

TRST EMU1 EMUO |Device Operating Mode NS
Active?
Low Low Low Peripheral mode. Disables the CPU and memory portions of the C29x CPU. No
Another processor treats the C29x CPU as a peripheral.
Low Low High Reserved for testing No
Low High Low Wait-in-reset mode. Prolongs the device’s reset until released by external means. Yes
This allows a C29x CPU to power up in reset, provided external hardware holds
EMUO low only while power-up reset is active.
Low High High Normal mode with emulation disabled. This is the setting that must be used on No
target systems when a scan controller (such as the XDS510) is not attached. TRST
is pulled down and EMU1 and EMUOQ pulled up within the C29x CPU; this is the
default mode.
High Low or High | Low or High | Normal mode with emulation enabled. This is the setting to use on target Yes
systems when a scan controller is attached (the scan controller controls TRST).
TRST must not be high during device power-up.

7.4 Execution Control Mode

The C29x CPU supports stop mode debug execution control mode. Stop mode provides complete control of
program execution, allowing for the disabling of all interrupts. In this execution mode program execution is
suspended at break events, such as occurrence of software breakpoint instructions or specified program-space
or data-space accesses.

Stop mode causes break events, such as breakpoints and watchpoints, to suspend program execution at
the next interrupt boundary (which is usually identical to the next instruction boundary). When execution is
suspended, all interrupts (including NMI and RS) are ignored until the CPU receives a directive to run code

again.

SPRUIY2 — NOVEMBER 2024
Submit Document Feedback

80 C29x CPU

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

www.ti.com Emulation

In stop mode, the CPU can operate in the following execution states:

Debug-halt state: In the stop mode debug-halt state, the CPU is halted. This state is entered when the CPU
is running with debug enabled and encounters a break event such as a breakpoint or watchpoint, hardware
trigger or user initiated halt request.

— User Halt: User issues a Debug-halt request from the debugger.

— Hardware Breakpoint : ERAD can be setup to generate hardware breakpoints on a specified Program
Address. This causes the CPU to go to a halted condition, if the instruction packet at the designated
address is about to enter the Decode?2 phase of the CPU pipeline.

— Software breakpoint : This is setup by the debugger by putting the EMUSTOPO instruction at a desired
program address. This causes the CPU to go to a halted condition, if the EMUSTOPQO is about to enter the
Decode2 phase of the CPU pipeline.

— Watchpoint : ERAD can be configured to generate a watchpoint when the CPU makes a designated
data memory access or some other system condition or a combination of these. Once this defined event
occurs, ERAD generates a Watchpoint request to the Debug controller that can cause the CPU to halt.

— External Triggers: Triggers at the device level coming from various sources outside the CPU can be
configured to make a HALT request to the CPU and can also cause the CPU to HALT. This is typically
used when halting of one CPU requires triggering the halt of another CPU when multiple CPUs are being
controlled by the Debugger.

In the debug-halt state, since the CPU is halted, the CPU cannot service any interrupts, including NMI and
RS (reset). When multiple instances of the same interrupt occur without the first instance being serviced
when the CPU is in halted debug state, the later instances are lost.

Single-Step state: This state is entered when the user indicates to the debugger to execute a single
instruction packet. The CPU executes the single instruction packet pointed to by the PC and then returns

to the debug-halt state (the CPU executes from one interrupt boundary to the next). The CPU is only in the
single-instruction state until that single instruction is done. If an interrupt occurs in this state, the command
used to enter this state determines whether that interrupt can be serviced. If DINT is set, the CPU can service
the interrupt;.if DINT is not set, the CPU can not service interrupts even if the interrupt is NMI or RS.

Run state: This state is entered from a halted condition when user issues a run command from the debugger
interface while stop debug mode is enabled. The CPU executes instructions until a debugger command or a
debug event returns the CPU to the debug-halt state. The CPU can service all interrupts in this state. When
an interrupt occurs simultaneously with a debug event, the debug event has priority; however, if interrupt
processing began before the debug event occurred, the debug event cannot be processed until the interrupt
service routine begins.

Free-run: This state is entered from a halted condition when user issues a run command from the debugger
interface after disabling stop mode debug mode. The CPU resumes execution and ignores further debug
events like breakpoints, watchpoints and triggers and continues execution as if the debugger is no longer
connected.

Synchronous Run: This is merely an extension of the basic run state. Based on the configuration, the debug
controller can be configured to receive a run request such that the CPU starts the actual run only on a certain
global synchronization signal going active. This method is used when starting execution simultaneously on
multiple CPUs being controlled by the debugger.

SPRUIY2 — NOVEMBER 2024 C29x CPU 81
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

13 TEXAS
INSTRUMENTS

Emulation www.ti.com

7.5 Breakpoints, Watchpoints, and Counters

7.5.1 Software Breakpoint

The CPU supports the ESTOP instruction that can be used to trigger a halt when executed by the CPU while the
debugger is connected. When the debugger is not connected, this instruction is executed as a NOP.

7.5.2 Hardware Debugging Resources

Each C29x CPU-based system has an ERAD (Embedded Real-time analysis and Diagnostics) module that aids
with debug and system analysis capabilities. These capabilities can be used either with the debugger connected
or as part of real-time application too. The two main components are the Enhanced bus comparator block (EBC)
and the System event counter block (SEC), with an optional PC trace module. The number of instances of the
EBC and SEC are device dependent.

7.5.2.1 Hardware Breakpoint

The ERAD Enhanced bus comparator (EBC) module is a scalable module that consists of many identical bus
comparator units. These units can generate hardware breakpoints. A hardware breakpoint, acts just like a
software breakpoint instruction (in this case, the ESTOPO instruction) but does not require a modification to the
application software. Hardware breakpoints allow masking of address bits. Additionally hardware breakpoints
allow masking of address bits allowing a breakpoint to be triggered over an address range with just one

EBC resource. A hardware breakpoint triggers a debug event and this halts the CPU before the instruction is
executed. A bus comparator watches the program address bus, comparing the contents against a reference
address and a bit mask value.

7.5.2.2 Hardware Watchpoint

The ERAD Enhanced bus comparator (EBC) module bus comparator units that generate hardware watch points
to the CPU by monitoring either the data read address bus or data write address bus.

A hardware watchpoint triggers a debug event when either an address or an address and data match a compare
value. The address portion is compared against a reference address and bit mask, and the data portion is
compared against a reference data value and a bit mask.

When comparing two addresses, you can set two watchpoints. When comparing an address and a data value,
you can set only one watchpoint. When performing a read watchpoint, the address is available a few cycles
earlier than the data; the watchpoint logic accounts for this.

The point where execution stops depends on whether the watchpoint was a read or write watchpoint, and
whether the watchpoint was an address or an address/data read watchpoint. In the following example, a read
address watchpoint occurs when the address X is accessed, and the CPU stops with the instruction counter (IC)
pointing three instructions after that point.

For a read watchpoint that requires both an address and data match, the CPU stops with the IC pointing six
instructions after that point.

In the following example, a write address watchpoint occurs when the address Y is accessed, and the CPU
stops with the IC pointing six instructions after that point.

82 C29x CPU SPRUIY2 - NOVEMBER 2024
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

i3 TEXAS
INSTRUMENTS

www.ti.com Emulation

7.5.2.3 Benchmark Counters

The System event counter module consists of many identical counter units. The number of units available is
device specific. These units can be used for various types of system scenarios like:

1. Using counter as a simple system timer

2. Counting of system events (like interrupts, critical system events etc.)

3. Generating interrupts/events based on counter threshold

4. Profiling code segments

5. Measuring number of wait states in code segments

6. Counting duration between system events

7. Counting duration between specified memory reads and writes

8. Counting duration between specified memory reads/writes and system events

9. Measuring minimum and maximum time taken between a pair of events measured over multiple iterations
10. Chaining counters to either link events or to create a larger counter.

This module is accessible both by the debugger and the application software. The access to application software
enables the use of the debug and profiling abilities even in the absence of the debugger. This is essential in
many real-time systems since it is not always possible to connect a debugger and perform intrusive debug.
Under such situations, the user code sets up and controls these modules and is still able to debug and profile the
system without disturbing the end application.

7.5.3 PC Trace

This ERAD module has an optional Program Counter trace block which helps keep track of PC discontinuity/
jumps, which can in turn help track the complete sequence of software that got executed at any given point

of time. The module only tracks the discontinuity in the instruction fetches/execution (non-sequential), the
sequential code execution can be easily reconstructed using software. Once a trace is completed/stopped, the
trace data can be read out using the debugger to reconstruct the code execution sequence. There are multiple
trace modes to control when to enable tracing and when to disable tracing based on events generated by ERAD
EBC events or some critical system level events.

Trace data is stored in a ram space which can be read at any time with additional status information on trace
validity that can be used for reconstructing the code execution sequence. For every discontinuity, two PC values
are stored, that is, the source of discontinuity and the destination.

SPRUIY2 — NOVEMBER 2024 C29x CPU 83
Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

Revision History

i3 TEXAS INSTRUMENTS

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE REVISION NOTES
November 2024 * Initial Release
84 C29x CPU SPRUIY2 - NOVEMBER 2024

Submit Document Feedback
Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2&partnum=F29x

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Read This First
	About This Manual
	Related Documentation from Texas Instruments
	Glossary
	Support Resources
	Trademarks

	1 Architecture Overview
	1.1 Introduction to the CPU
	1.2 Data Type
	1.3 C29x CPU System Architecture
	1.3.1 Emulation Logic
	1.3.2 CPU Interface Buses

	1.4 Memory Map

	2 Central Processing Unit (CPU)
	2.1 C29x CPU Architecture
	2.1.1 Features
	2.1.2 Block Diagram

	2.2 CPU Registers
	2.2.1 Addressing Registers (Ax/XAx)
	2.2.2 Fixed-Point Registers (Dx/XDx)
	2.2.3 Floating Point Register (Mx/XMx)
	2.2.4 Program Counter (PC)
	2.2.5 Return Program Counter (RPC)
	2.2.6 Status Registers
	2.2.6.1 Interrupt Status Register (ISTS)
	2.2.6.2 Decode Phase Status Register (DSTS)
	2.2.6.3 Execute Phase Status Register (ESTS)

	2.3 Instruction Packing
	2.3.1 Standalone Instructions and Restrictions
	2.3.2 Instruction Timeout

	2.4 Stacks
	2.4.1 Software Stack
	2.4.2 Protected Call Stack
	2.4.3 Real Time Interrupt / NMI Stack

	3 Interrupts
	3.1 CPU Interrupts Architecture Block Diagram
	3.2 RESET, NMI, RTINT, and INT
	3.2.1 RESET (CPU reset)
	3.2.2 NMI (Non-Maskable Interrupt)
	3.2.3 RTINT (Real Time Interrupt)
	3.2.4 INT (Low-Priority Interrupt)

	3.3 Conditions Blocking Interrupts
	3.3.1 ATOMIC Counter

	3.4 CPU Interrupt Control Registers
	3.4.1 Interrupt Status Register (ISTS)
	3.4.2 Decode Phase Status Register (DSTS)
	3.4.3 Interrupt-Related Stack Registers

	3.5 Interrupt Nesting
	3.5.1 Interrupt Nesting Example Diagram

	3.6 Security
	3.6.1 Overview
	3.6.2 LINK
	3.6.3 STACK
	3.6.4 ZONE

	4 Pipeline
	4.1 Introduction
	4.2 Decoupled Pipeline Phases
	4.3 Dual Instruction Prefetch Buffers
	4.4 Pipeline Advancement and Stalls
	4.5 Pipeline Hazards and Protection Mechanisms
	4.6 Register Updates and Corresponding Pipeline Phases
	4.7 Register Reads and Writes During Normal Operation
	4.8 D2 Read Protection
	4.9 E1 Read Protection
	4.10 WAW Protection
	4.11 Protection During Interrupt

	5 Addressing Modes
	5.1 Addressing Modes Overview
	5.1.1 Documentation and Implementation
	5.1.2 List of Addressing Mode Types
	5.1.2.1 Additional Types of Addressing

	5.1.3 Addressing Modes Summarized

	5.2 Addressing Mode Fields
	5.2.1 ADDR1 Field
	5.2.2 ADDR2 Field
	5.2.3 ADDR3 Field
	5.2.4 DIRM Field
	5.2.5 Additional Fields

	5.3 Alignment and Pipeline Considerations
	5.3.1 Alignment
	5.3.2 Pipeline Considerations

	5.4 Types of Addressing Modes
	5.4.1 Direct Addressing
	5.4.2 Pointer Addressing
	5.4.2.1 Pointer Addressing with #Immediate Offset
	5.4.2.2 Pointer Addressing with Pointer Offset
	5.4.2.3 Pointer Addressing with #Immediate Increment/Decrement
	5.4.2.4 Pointer Addressing with Pointer Increment/Decrement

	5.4.3 Stack Addressing
	5.4.3.1 Allocating and De-allocating Stack Space

	5.4.4 Circular Addressing Instruction
	5.4.5 Bit Reversed Addressing Instruction

	6 Safety and Security Unit (SSU)
	6.1 SSU Overview
	6.2 Links and Task Isolation
	6.3 Sharing Data Outside Task Isolation Boundary
	6.4 Protected Call and Return

	7 Emulation
	7.1 Overview of Emulation Features
	7.2 Debug Terminology
	7.3 Debug Interface
	7.4 Execution Control Mode
	7.5 Breakpoints, Watchpoints, and Counters
	7.5.1 Software Breakpoint
	7.5.2 Hardware Debugging Resources
	7.5.2.1 Hardware Breakpoint
	7.5.2.2 Hardware Watchpoint
	7.5.2.3 Benchmark Counters

	7.5.3 PC Trace

	8 Revision History

