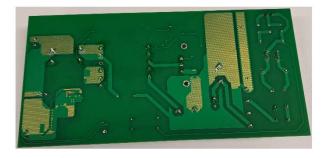
Test Report: PMP41015 40W AC-DC Isolated Power Supply Reference Design for Industrial PLC Application



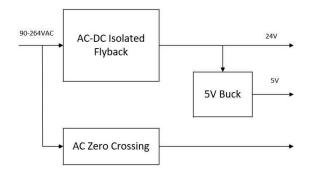
Description

This reference design provides 40W isolated 24V and 5V output with flyback topology. The power supply can be powered from 85VAC to 264VAC input. This design uses the UCC28740 valley-switching, flyback controller. A peak efficiency of 84.99% is reached and the device supports a 2400 μ F capacitive load with a start-up time of less than 611ms. The board is a single-side component placement PCB design which reduces manufacturing costs.

Top View

Bottom View

Features


- Universal AC input range: 85VAC to 264VAC
- 84.99% Efficiency at full load
- Start-up time < 611ms at 2400µF output capacitive full-load condition
- Provides AC zero-crossing signal
- Single-sided mounting PCB design
- Verified EMI performance

Applications

- CPU (PLC Controller)
- Industrial AC-DC
- Refrigerator and freezer

System Block Diagram

1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1-1 shows the voltage and current specification of this reference design.

PARAMETER	SPECIFICATIONS							
Input voltage range	85V to 264Vac							
Output voltage, Current	24V at 1.5A, 5V at 1.1A							
Maximum power	40W							
Switching frequency	70kHz at full load							

1.2 Required Equipment

- DC Source: IT-M3906D-1500-12
- Chroma DC Source: 62024P-600-8
- Electronic load: Chroma, 6314A
- Oscilloscope: Tektronix, DPO 3054
- Infrared Thermal Camera: Fluke, TiS55
- Ture-RMS-Multimeter: Fluke, 287C
- Digital Power Meter: Yokogawa WT310

1.3 Considerations

The reference design shows an example of an isolated AC/DC transformer that converts 85VAC–264VAC to 24VDC and 5VDC with AC zero crossing. This design can be used in CPU (PLC Controller), Industrial AC-DC ,and Refrigerator and freezer designs as well as various other electronic systems. This design provides overcurrent protection (OCP) and short-circuit protection (SCP) to improve the reliability.

1.4 Dimensions

Board size: 173mm × 85mm × 33mm (open frame).

1.5 Test Setup

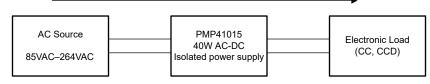


Figure 1-1. Test Setup

2 Testing and Results

2.1 Efficiency Graphs

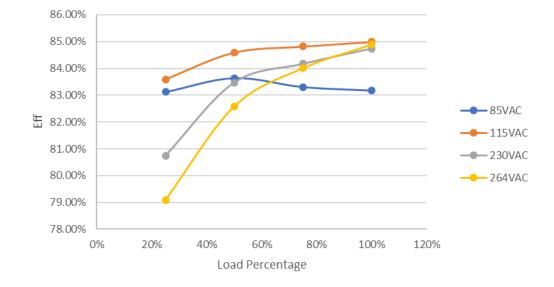
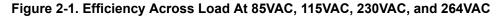



Figure 2-1 shows the efficiency across different load and input voltage.

2.2 Efficiency Data

Table 2-1 through Table 2-4 show the efficiency data at 85VAC, 115VAC, 230VAC, and 264VAC.

	Table 2-1. Efficiency Data at 85VAC											
V _{IN} (V)	I _{IN} (A)	V _{OUT_24V} (V)	I _{OUT_24V} (A)	V _{OUT_5V} (V)	I _{OUT_5V} (A)	P _{IN} (W)	P _{OUT} (W)	P _{LOSS} (W)	Efficiency (%)			
85	0.0626	24.09	0	5.2450	0	0.14	0	0.14	0			
85	0.3085	24.08	0.375	5.2025	0.2662	12.53	10.41	2.12	83.12			
85	0.5616	24.06	0.75	5.1875	0.5362	24.90	20.83	4.07	83.64			
85	0.8291	24.06	1.125	5.1775	0.8025	37.48	31.22	6.26	83.30			
85	1.1013	24.06	1.5	5.1675	1.0687	50.03	41.61	8.42	83.18			

Table 2-2. Efficiency Data at 115VAC

V _{IN} (V)	I _{IN} (A)	V _{OUT_24V} (V)	I _{OUT_24V} (A)	V _{OUT_5V} (V)	I _{OUT_5V} (A)	P _{IN} (W)	P _{OUT} (W)	P _{LOSS} (W)	Efficiency (%)
115	0.0797	24.09	0	5.2450	0	0.21	0	0.21	0
115	0.2554	24.08	0.376	5.2050	0.2662	12.49	10.44	2.05	83.58
115	0.4445	24.06	0.75	5.1875	0.5362	24.62	20.83	3.79	84.59
115	0.6355	24.06	1.126	5.1775	0.8025	36.84	31.25	5.59	84.82
115	0.8361	24.06	1.5	5.1675	1.0687	48.96	41.61	7.35	84.99

	Table 2-3. Efficiency Data at 230VAC											
V _{IN} (V)	I _{IN} (A)	V _{OUT_24V} (V)	I _{OUT_24V} (A)	V _{OUT_5V} (V)	I _{OUT_5V} (A)	P _{IN} (W)	P _{OUT} (W)	P _{LOSS} (W)	Efficiency (%)			
230	0.1190	24.09	0	5.2450	0	0.68	0	0.68	0			
230	0.1909	24.08	0.377	5.2050	0.2662	12.96	10.46	2.50	80.74			
230	0.2935	24.05	0.75	5.1850	0.5362	24.94	20.82	4.12	83.47			
230	0.4022	24.05	1.126	5.1775	0.8025	37.11	31.24	5.87	84.17			
230	0.5074	24.04	1.5	5.1675	1.0687	49.07	41.58	7.49	84.74			

Table 2-4. Efficiency Data at 264VAC

V _{IN} (V)	I _{IN} (A)	V _{OUT_24V} (V)	I _{OUT_24V} (A)	V _{OUT_5V} (V)	I _{OUT_5V} (A)	P _{IN} (W)	P _{OUT} (W)	P _{LOSS} (W)	Efficiency (%)
264	0.1215	24.09	0	5.2450	0	0.88	0	0.88	0
264	0.1826	24.08	0.377	5.2050	0.2662	13.23	10.46	2.77	79.09
264	0.2742	24.05	0.75	5.1875	0.5362	25.21	20.82	4.39	82.58
264	0.3703	24.05	1.126	5.1775	0.8025	37.18	31.24	5.94	84.01
264	0.4636	24.04	1.5	5.1650	1.0687	48.98	41.58	7.40	84.89

2.3 Output Voltage Regulation Graphs

Figure 2-2 and Figure 2-3 show output voltage across different loads and input voltages.

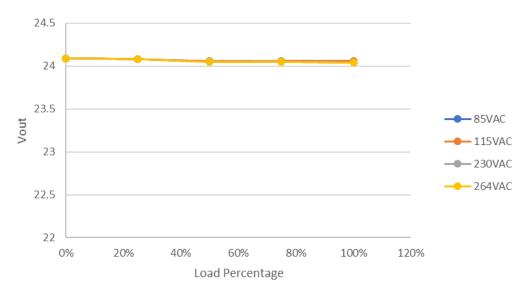


Figure 2-2. Output Voltage 24V Across Load at 85VAC, 115VAC, 230VAC, and 264 VAC

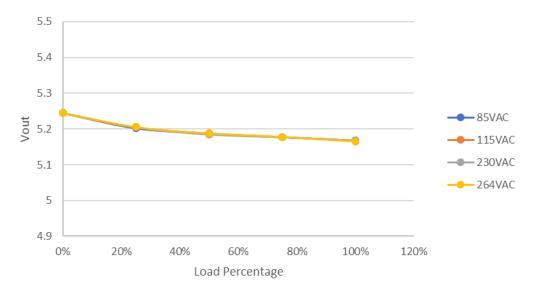


Figure 2-3. Output Voltage 5V Across Load at 85VAC, 115VAC, 230VAC, and 264VAC

2.4 Thermal Images

Table 2-5 shows the temperature data with 25°C ambient after a 30-minute warm up.

	Table 2-5. Temperature Data									
TEMPERATURE (°C)	TEST CONDITI	ON FULL LOAD								
TEMPERATORE (C)	115VAC	230VAC								
Primary switch	90.5	87.8								
Secondary diode	59	60								
Transformer	62.2	60.3								
Bridge	50	49								
UCC28740	36	36								
LMR33620ADDAR	76	75								

Table 2-5. Temperature Data

Figure 2-4 and Figure 2-5 show the thermal images, all images were captured with 25°C ambient, after a 30-minute warm up.

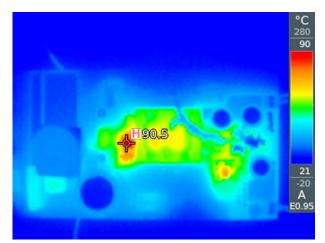


Figure 2-4. Thermal Image at 115VAC, Full Load

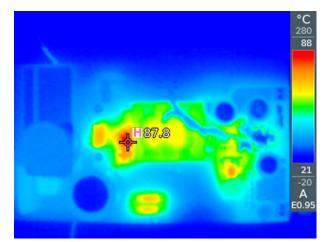
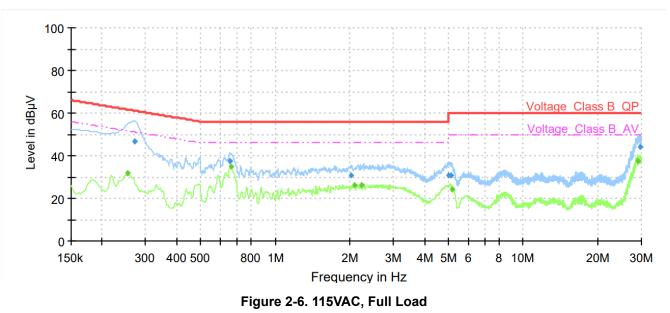



Figure 2-5. Thermal Image at 230VAC, Full Load

2.5 EMI

6

Figure 2-6 and Figure 2-7 show the conducted EMI results.

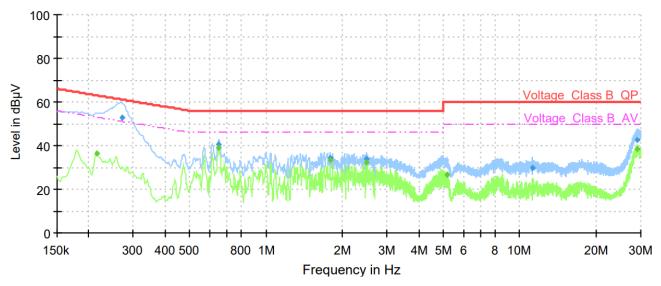


Figure 2-7. 230VAC, Full Load

3 Waveforms

3.1 Switching

Figure 3-1 through Figure 3-4 show the V_{ds} (drain and source) switching waveform at 85VAC and 264VAC, full load.

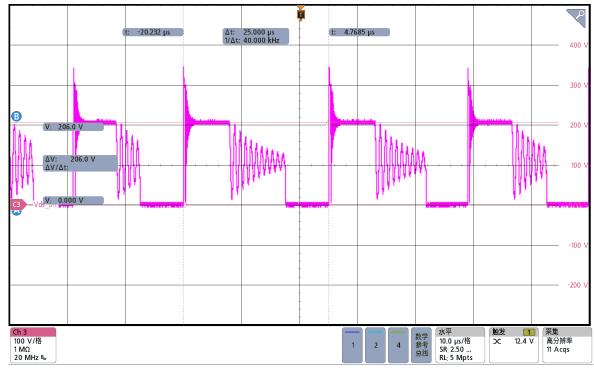


Figure 3-1. V_{ds_pri} Waveform, 85VAC, Full Load

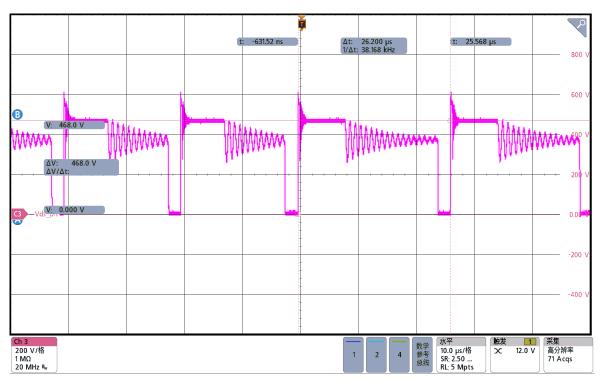


Figure 3-2. V_{ds_pri} Waveform, 264VAC, Full Load

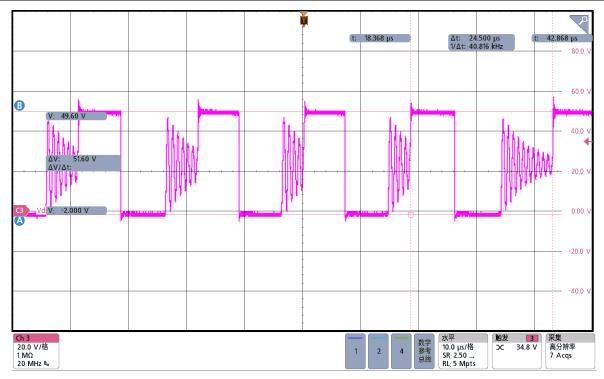


Figure 3-3. V_{ds_sec} Waveform, 85VAC, Full Load

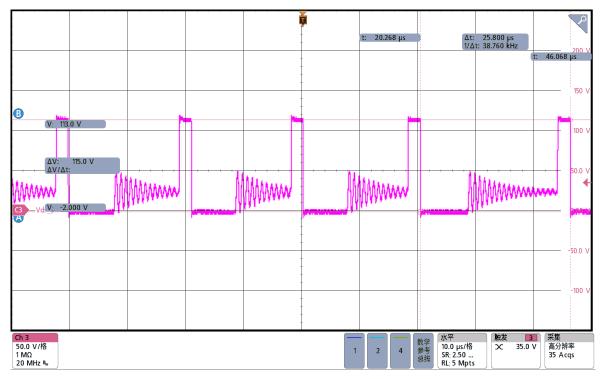


Figure 3-4. Vds_sec Waveform, 264VAC, Full Load

3.2 Output Voltage Ripple

Figure 3-5 through Figure 3-12 show output voltage Ripple waveform at different input voltage and load.

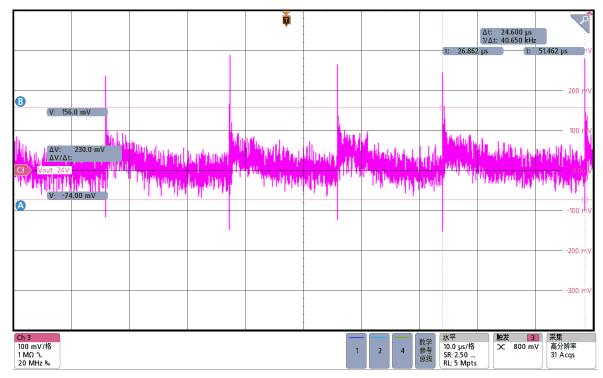


Figure 3-5. Output Voltage Ripple Waveform, 24VDC, 115VAC, Full Load

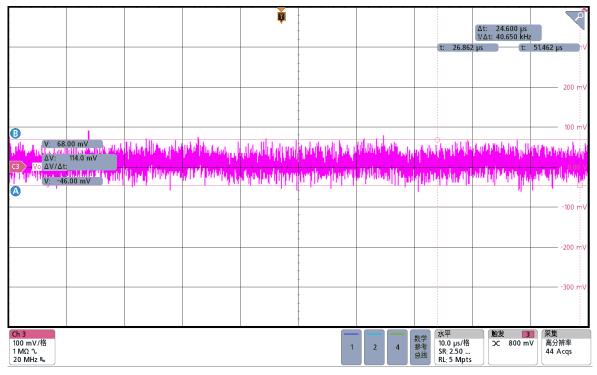


Figure 3-6. Output Voltage Ripple Waveform, 24VDC, 115VAC, Open Load

t: -473.9 μs				Δt: 1.00 1/Δt: 1.00	0 ms 0 kHz				t: 526.1 μs
					-				202 m\
					-				102 m
α ΔV: C3 - Vo ΔV/Δt:	106.0 mV	ngalap ^k loteftag	çanıta quebe bash	n ^{li} rariqih ^{is} h		in a line of the second	alaran an a	ntaget getter	
		i (physiciae) alaa	obdigitila y Adaba di	ind and weather	in putter to a spite out	and the second second	l the state of the		
									198 m
									298 m ¹
Ch 3 100 mV/格 1 MΩ ጊ 20 MHz ጫ					1	2 4	数学 参考 总线 RL: 5 Mpts	● 触发 3 × 802 m ¹	

Figure 3-7. Output Voltage Ripple Waveform, 5VDC, 115VAC, Full Load

t: -472.9 μs				Δt: 999. 1/Δt: 1.00	0 μs 1 kHz			t	: 526.1 µs
				-					
				-					202 mV
Β V: 66. ΔV:	110.0 mV	en al a la completante la completante la completa de la completa de la completa de la completa de la completa	aliterate april 1	mp trybun rybu	and the state	an (a la state de la state	and a faile	un and a star and a	
G3 -V₀ ΔV/Δt; -V₀ ΔV/Δt; -44 -V₀ ΔV/Δt; -44	11	uste <mark>nnih staten</mark> ut	╷ ╻ ╻ ╻ ╻ ╻	الكر <mark>ينة العر</mark> ارين.	<mark>ikaalaanna araa a</mark> aya	internet and a stranger of the second of the	the second s	العطف وإيالك ويرمانا رواحتي	<mark>, , k (; h,) Micht (201</mark> 2
									198 mV
									298 mV
<mark>Ch 3</mark> 100 mV/格 1 MΩ ጊ 20 MHz ጫ		1			1	2 4	数学 参考 总线 RL: 5 Mpts	触发 3 文 802 mV	

Figure 3-8. Output Voltage Ripple Waveform, 5VDC, 115VAC, Open Load

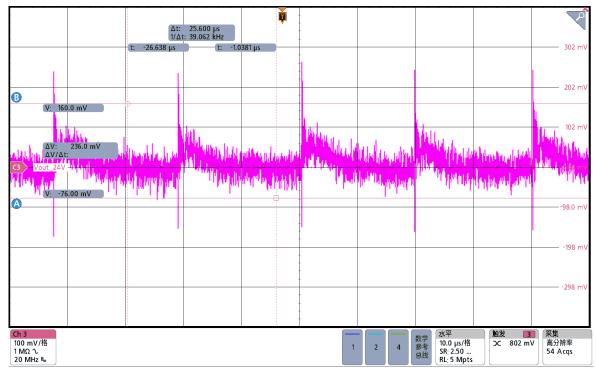


Figure 3-9. Output Voltage Ripple Waveform, 24VDC, 230VAC, Full Load

		Δt: 1/Δ+	25.600 μs : 39.062 kHz	Ì		-				 Image: A start of the start of
		t: -26.638 µs	t: -1.0	381 µs						302 mV
										202 14
						-				202 mV
B										102 mV
	00 mV 110.0 mV			rays.M.	A	n Manda ya da		Handel International Construction	er la Telapore d	he strend as diff
		ى المراسية. الأطلاق ا	deline with the f	in the state	11%	and the weight	and path, will	t of the state of	na politica politica dal la	ell, all strates are
.						-				-98.0 mV
					-	-				
						•				198 mV
					-					
<mark>Ch 3</mark> 100 mV/格 1 MΩ ጊ 20 MHz ጫ						1	2 4	数学 参考 总线 RL: 5 Mpt	.	

Figure 3-10. Output Voltage Ripple Waveform, 24VDC, 230VAC, Open Load

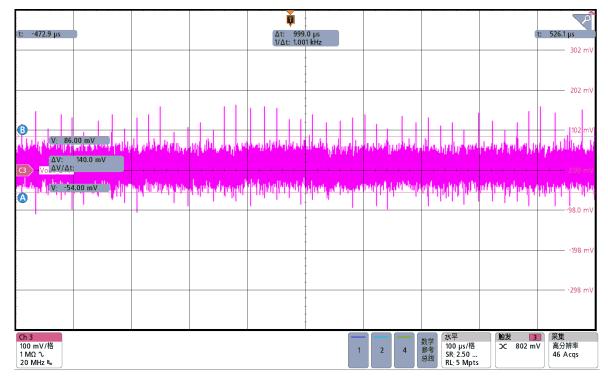
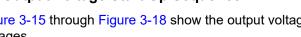


Figure 3-11. Output Voltage Ripple Waveform, 5VDC, 230VAC, Full Load

t: -472.9 µs				Δt: 999 1/Δt: 1.00	.0 μs 1 kHz			t	526.1 µs
				-	- - -				
					-				202 mV
ΔV:	00 mV 128.0 mV	le the terms	uddargda. II daullu	land a state of the second	upanay uppyula	In equerate with	in Martin Ro	ulmbro da an	102 mV
C3 → V⊙ ΔV/Δt:		<mark>, U.L.a., publick, på L</mark> yd	تورد الراريانة مأملا رينه	والارتباطين والسمير	A table of the All of t	, <mark></mark>	det, is dis late, parised	a ya she aha a shi ka shi shi s	addallada a ta ta py sa
					-				
					-				198 mV
					-				298 mV
<mark>Ch 3</mark> 100 mV/格 1 MΩ ጊ 20 MHz ጫ				1	1	2 4	数学 参考 总线 RL: 5 Mpts	触发 3 文 802 mV	

Figure 3-12. Output Voltage Ripple Waveform, 5VDC, 230VAC, Full Load


t: 1033 s V: 23.75 V

1 4 数学 次平 始変 3 笑意 参考 200 ms//倍 7.60 V 高分所率 Rtt 5 Mots

3.4 Output Voltage Start-Up Sequence

Δt: 610.5 t: 588.8 ms

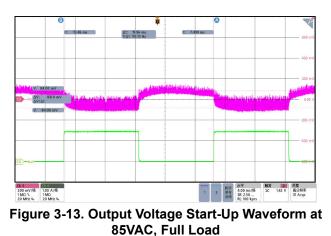
Figure 3-15 through Figure 3-18 show the output voltage start-up waveform with different loads and input voltages.

85VAC, Full Load

Δt: 546.5 ms

t: 486.8 ms

Figure 3-17. Output Voltage Start-Up Waveform at


264VAC, Full Load

触波 3 ↓ 7.60 V 高分辨率 1.4 core

4 数字 200 ms/格 总线 SR: 2.50 ...

3.3 Load Transients

Figure 3-13 and Figure 3-14 show load transient waveforms between 0% and 100% at 115VAC and 230VAC.

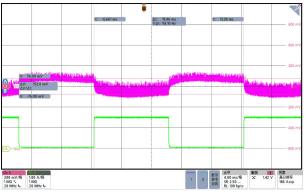
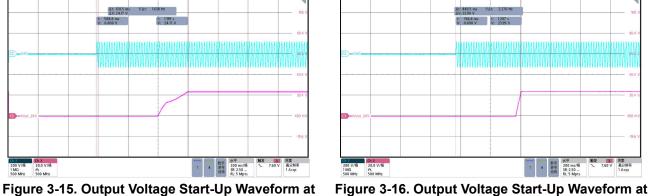
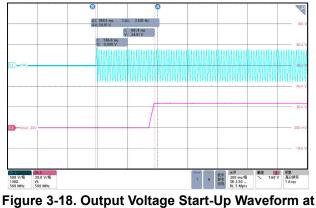




Figure 3-14. Output Voltage V_{OUT} and Output Current IOUT Waveform at Load Transient, 230VAC

85VAC, Open Load

264VAC, Open Load

3.5 Overcurrent Protection (OCP)

Figure 3-19 and Figure 3-20 show the overcurrent protection waveform at 115VAC and 230VAC.

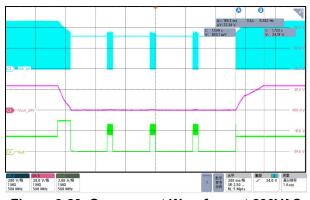



Figure 3-19. Overcurrent Waveform at 115VAC

Figure 3-20. Overcurrent Waveform at 230VAC

3.6 Short-Circuit Protection (SCP)

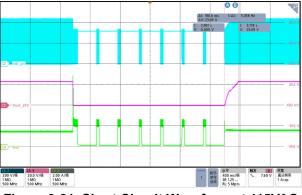


Figure 3-21. Short Circuit Waveform at 115VAC

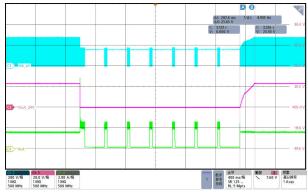


Figure 3-22. Short Circuit Waveform at 230VAC

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated