
������� ��	
��
 ���

April 2004 PMP Portable Power

User’s Guide

SLUU187

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

 Notational Conventions

iii

Preface

��������	�
��	�

About This Manual

The bq802xx contains 4k of mask ROM code, consisting of boot-ROM code
and library routines. The boot-ROM code executes at reset and detects wheth-
er the bq802xx is configured to boot into the application program in flash
memory. If not, the boot ROM makes available a set of SMBus-accessible rou-
tines for flash programming and verification, and reading or writing the data
memory space (including hardware registers). The ROM also contains library
routines, which can be called from applications programs running in flash
memory. This document describes the method of accessing library routines,
the library services available, and the boot-ROM routines available at system
reset.

This document describes

� Use of library services

� Boot ROM routines available at system reset

How to Use This Manual

This document contains the following chapters:

� Chapter 1—Interrupt Vectors and Hooks

� Chapter 2—ROM Library Functions

� Chapter 3—boot−ROM Routines

� Appendix A—ROM Entry Points

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold

Contents

iv

version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr −a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ” section name”, address

.asect is the directive. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be
an actual section name, enclosed in double quotes; the second parameter
must be an address.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
do not enter the brackets themselves. Here is an example of an instruction
that has an optional parameter:

LALK 16−bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here is an example of a list:

{ * | *+ | *− }

This provides three choices: *, *+, or *−.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:

 Contents

v

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It gen-
erates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.

vi

 Contents

vii

������	

1 Interrupt Vectors and Hooks 1-1.
1.1 Introduction 1-2.
1.2 Making Calls to the ROM 1-4.
1.3 C Function Parameter Passing 1-4.

2 ROM Library Functions 2-1.
2.1 SMBus Routines 2-2.
2.2 smbMasterRdWord 2-4.
2.3 smbMasterWrWord 2-5.
2.4 smbMasterRdBlock 2-6.
2.5 smbMasterWrBlock 2-7.
2.6 smbSlaveCmd 2-8.
2.7 smbSlaveRcvWord 2-9.
2.8 smbSlaveSndWord 2-10.
2.9 smbSlaveSndBlock 2-11.
2.10 smbSlaveRcvBlock 2-12.
2.11 smbSlaveWord 2-13.
2.12 smbSlaveBlock 2-14.
2.13 smbSlaveSndWordNoWait 2-16.
2.14 smbSlaveSndBlockNoWait 2-17.
2.15 smb_ACK 2-18.
2.16 smb_NACK 2-19.
2.17 smb_SetBFI 2-20.
2.18 smbWaitBusFree 2-21.
2.19 smbCheckPecSlave 2-22.
2.20 Flash Memory Access Routines 2-23.
2.21 Flash Program Memory Routines 2-23.

2.21.1 FlashRdRow 2-24.
2.21.2 FlashEraseRow 2-25.
2.21.3 FlashProgRow 2-26.
2.21.4 FlashChecksum 2-26.

2.22 Flash Data Memory Routines 2-27.
2.22.1 FdataProgRow 2-27.
2.22.2 FdataProgWord 2-28.
2.22.3 FdataEraseRow 2-28.
2.22.4 FdataMassErase 2-29.

2.23 Math Library Routines 2-30.
2.23.1 accumulate 2-30.
2.23.2 exp 2-30.

Contents

viii

2.23.3 log 2-31.
2.24 Math Routines Called by the Compiler 2-32.

2.24.1 mulhi3 2-32.
2.24.2 mulhisi3 2-32.
2.24.3 mulsi3 2-32.
2.24.4 umulhisi3 2-32.
2.24.5 mulsf3 2-33.
2.24.6 addsf3 2-33.
2.24.7 floatqisf2 2-33.
2.24.8 floathisf2 2-33.
2.24.9 floatsisf2 2-33.
2.24.10 fix_truncsfhi2 2-33.
2.24.11 fixuns_truncsfhi2 2-34.
2.24.12 fix_truncsfsi2 2-34.
2.24.13 fixuns_truncsfsi2 2-34.
2.24.14 divmodhi4 2-34.
2.24.15 udivmodhi4 2-34.
2.24.16 divmodsi4 2-34.
2.24.17 divsf3 2-35.

2.25 I2C Functions 2-36.
2.25.1 I2CReadBlock 2-37.
2.25.2 I2CWriteBlock 2-38.
2.25.3 I2CDeviceAvail 2-39.
2.25.4 I2CCompareBlock 2-40.

3 boot−ROM Routines 3-1.
3.1 boot-ROM Routines 3-2.

3.1.1 Smb_FlashWrAddr 3-2.
3.1.2 Smb_FlashRdWord 3-2.
3.1.3 Smb_FlashRdRow 3-2.
3.1.4 Smb_FlashRowCheckSum 3-2.
3.1.5 Smb_FlashProgWord 3-3.
3.1.6 Smb_FlashProgRow 3-3.
3.1.7 Smb_FlashEraseRow 3-3.
3.1.8 Smb_FlashMassErase 3-3.
3.1.9 FlashExecute 3-3.
3.1.10 SetAddr 3-3.
3.1.11 PokeByte 3-3.
3.1.12 PeekByte 3-4.
3.1.13 ReadRAMBlk 3-4.
3.1.14 Version 3-4.
3.1.15 Smb_FdataChecksum 3-4.
3.1.16 Smb_FdataProgWord 3-4.
3.1.17 Smb_FdataProgRow 3-4.
3.1.18 Smb_FdataEraseRow 3-4.
3.1.19 Smb_FdataMassErase 3-5.

A ROM Entry Points A-1.

 Contents

ix

4 Contents .
vii

1-1Interrupt Vectors and Hooks

��������� ������	 ��� ����	

This chapter describes the operation of the interrupt vectors and hooks in the
bq802xx ROM.

Topic Page

1.1 Introduction 1-2.

1.2 Making Calls to the ROM 1-4.

1.3 C Function Parameter Passing 1-4.

Chapter 1

Introduction

1-2

1.1 Introduction

The reset and interrupt vectors of the bq802xx are populated with JUMP
instructions. They are defined in the assembly support file crt0.s and are
arranged in flash program memory as follows:

0x0000: jump main ; flash “reset” vector

0x0001: jump xinHandler ; external interrupt handler

0x0002: jump pinHandler ; peripheral interrupt handler

0x0003: jump cinHandler ; communications interrupt handler

0x0004: jump smbWaitIntr ; “wait” for next smb event

The operation of the three interrupt vectors can be modified by symbols
defined at assembly time. The xin and pin interrupts can be redirected by
defining an assembler symbol, ROM_INT, to use interrupt prologue and
epilogue code (stacking and restoring registers, RETI instruction). To
conserve flash program memory, this code is in ROM. In this case, the vectors
to the user-provided interrupt service routine bodies are at 0x0007 and
0x0008:

0x0007: jump xinHandler ; external interrupt handler body

0x0008: jump cinHandler ; communications interrupt hand

 body

The interrupt service routines bodies can then be written as C functions, which
return with RETS, or in assembler. Besides saving program memory space,
this eliminates the danger of writing a C interrupt handler which saves data on
the stack before the registers can be saved.

The cinHandler and smbWaitIntr vectors can also be redirected using the
assembler symbol SCHED_CIN. This uses the communications interrupt
handler and scheduler provided in ROM. The ROM communications interrupt
handler simply sets the communications process (process 0) to ACTIVE, then
calls the scheduler. All the work is done by the process code. See the
document Gas Gauge Example with AFE for instructions and examples for
configuring the compiler and assembler. The ROM scheduler theory of
operation is described in the document Scheduler Operation.

The ROM also provides routines to perform i2c accesses to an external
device, such as a serial EEPROM. This is a software-driven serial access,
which does not use the SMBus engine in the bq802xx. The user must provide
low-level i/o access to the pins selected for i2c access.

;−−−

; hooks to user−provided i2c routines

;−−−

0x0009: jump i2c_clockhi

0x000a: jump i2c_clocklo

0x000b: jump i2c_wait_clockhi

0x000c: jump i2c_datahi

0x000d: jump i2c_datalo

0x000e: jump i2c_datain

0x000f: jump i2c_wait_quarter_bit

If you are programming in assembly language, you must ensure that the
vectors from i2c_clockhi to i2c_wait_quarter_bit jump to subroutines that

Introduction

1-3Interrupt Vectors and Hooks

ultimately return with a RETS instruction. Also, i2c_wait_clockhi and
i2c_datain returns a value in r2. See the section on i2c library routines for
details.

The vector main_init is the reset vector. Control is transferred here by the boot
ROM when it finds the flash integrity word defined as 0x155454 at address
0x0005.

.ifdef INTEGRITY

.byte 0x00,0x15,0x54,0x54; flash integrity word good

.else

.byte 0x00,0x3f,0xff,0xff; flash integrity word bad

.endif

The integrity word should be undefined (anything except 0x155454) while you
are developing code, so that a power-on reset causes the bq802xx to return
to the boot ROM. From boot ROM you can erase and reprogram the part. If
you do set the integrity word to 0x155454, the part jumps from boot ROM to
flash at reset.

It may be necssary to program the integrity word and boot to flash for testing.
In this case you should provide a function that allows you to return to the boot
ROM by calling the library function flash_execute()—without this function you
must invoke the hardware fail−safe feature to return to boot ROM to reprogram
the part.

To invoke the hardware fail−safe feature you should tie ra1 and rc7 together.
The hardware fail−safe signals the boot-ROM code to ignore the integrity word
and continue to execute from boot ROM.

The security word at address location 0x0006 is used to prevent unauthorized
access and is undefined when it is 0x3fffff. Any other value in that location is
considered defined and disables the hardware fail−safe feature. TI
recommends that the security word be used with caution and only on
production code. During development,. leave the security word undefined.

In addition, the following RAM locations may be used by the ROM code to
exchange information with flash program code:

; RAM locations

smb_ctl = 0x0000

smb_errno = 0x0001

i2c_errno = 0x0002

process_list = 0x0003, 0x0004

process_ptr = 0x0005, 0x0006

num_proc = 0x0007

halt_mode = 0x0008

peek_poke address = 0x0009, 0x000a

The locations of these variables must remain constant in order for the ROM
code to use them, so other variables must not be allocated on top of them, if
the ROM library SMBus or i2c routines are used.

For C programs, the configuration for the vector and RAM allocation, and other
initializations, are controlled by the cstart file crt0.s. See the readme file in the
support files for detailed instructions for configuring the cstart file.

Making Calls to the ROM

1-4

1.2 Making Calls to the ROM

In order to use the ROM library routines, you must make a software call
(CALLS) to the listed entry point for the routine, and pass parameters and
retrieve return values in accordance with the function prototypes listed in this
document. The entry points to the library routines are contained in the library
files included in the development environment. The source code refers to the
library functions by name and the linker provides the physical address.
Inclusion of the appropriate header files in C programs, or declaration of the
function name as a global in assembly programs, provides the compiler or
assembler with the symbolic reference.

In general, the ROM routines are called from C programs. In this case, all that
is necessary is to conform to the C function prototypes. For assembly
language programs, the calls to the ROM library routines must pass
parameters and retrieve function return values exactly as a C program would.
For this, follow the parameter-passing conventions used by the compiler: In
mixed C/assembly programs, it is important to remember to preserve the stack
pointer, i3, and registers i2 and ip, across the assembly subroutine call,
because the C compiler expects them to remain intact.

1.3 C Function Parameter Passing

The C compiler uses the index register i3 as a stack pointer and the registers
r0,r1,r2,r3 to carry out the exchange of parameters. Some examples :

extern char as_byte(char u);
The parameter u is carried in by r3 and the return value by r2

extern char as_byte(char i, char u);
The parameter i is carried out by r3 and u by r2 and the return value
by r2

extern int as_byte (char i, char u);
The parameter i is carried out by r3 and u by r2 and the return value
by r2 and r3 (r2= lsb and r3=msb)

extern int as_getbit(short x, short i);
The parameter x is carried out by r3,r2 (r2= lsb and r3=msb) and i by
r1,r0 (r0= lsb and r1=msb) and the return value by r2 and r3 (r2= lsb
and r3=msb)

extern int as_getbit(long x, short i);
The parameter x is carried out by r3,r2,r1,r0 (r 0=lsb and r3=msb) and
i by the stack (i3,0) and (i3,1) and the return value by r2 and r3.

Stack depths as reported for the individual functions are the depth of stack
used after the routine is entered. Some parameters are passed to the routine
on the stack, and others are passed in registers, but the previous contents of
these registers may need to be saved on the stack. These would all be saved
by the calling function before the call to the library function. In addition, ip is
used for the call, and must be preserved by the calling routine, but may already
have been saved due to a previous call in the calling routine. These variable
stack uses must be added to the reported stack depth to gauge accurately the
effect on the stack of the library call.

2-1ROM Library Functions

��� �������
�������	

This chapter describes the ROM Library Functions of the bq802xx.

Topic Page

2.1 SMBusRoutines 2-2.

2.2 smbMasterRdWord 2-4.

2.3 smbMasterWrWord 2-5.

2.4 smbMasterRdBlock 2-6.

2.5 smbMasterWrBlock 2-7.

2.6 smbSlaveCmd 2-8.

2.7 smbSlaveRcvWord 2-9.

2.8 smbSlaveSndWord 2-10.

2.9 smbSlaveSndBlock 2-11.

2.10 smbSlaveRcvBlock 2-12.

2.11 smbSlaveWord 2-13.

2.12 smbSlaveBlock 2-14.

2.13 smbSlaveSndWordNoWait 2-16.

2.14 smbSlaveSndBlockNo Wait 2-17.

2.15 smb_ACK 2-18.

2.16 smb_NAK 2-19.

2.17 smb_SetBFI 2-20.

2.18 smbWaitBusFree 2-21.

2.19 smbCheckPecSlave 2-22.

2.20 Flash Memory Access Routines 2-23.

2.21 Flash Program Memory Routines 2-23.

2.22 Flash Data Memory Routines 2-27.

2.23 Math Library Routines 2-30.

2.24 Math Routines Called by the Compiler 2-32.

2.25 I2C Functions 2-36.

Chapter 2

SMBus Routines

2-2

2.1 SMBus Routines

The SMBus ROM routines provide easy access to the SMBus engine in the
bq802xx. These routines send or receive multiple bytes over the SMBus.
Because the SMBus hardware handles the clocking of individual bits in or out,
CPU action is normally required only when each byte is to be transferred to or
from the SMBus hardware. In order to avoid needlessly tying up the CPU, the
ROM routines can be made to relinquish the CPU while they are waiting for
the SMBus hardware to finish clocking a byte in or out. If the user sets the
SMB_FLASH bit in the smb_ctl byte in RAM, these routines jump to the user’s
flash code through the smbWaitIntr vector in flash program memory when
waiting for more data. The user’s code may then perform other processing,
usually by yielding to the scheduler, and return to the SMBus ROM code when
the next SMBus event occurs. If the user does not set the SMB_FLASH bit,
the SMBus ROM code uses polling, and thus retains control of the CPU until
the entire SMBus transaction is complete.

The SMBus ROM routines share two RAM locations with the user’s flash
routines, to exchange status and configuration information. They contain bit
flags for control and status as follows:

smb_ctl at address 0x00 contains configuration information for SMB

enum Smb_Ctl {

SMB_FLASH = 0x01, //yield to flash

SMB_PECEN = 0x02, //use PEC in master mode

RESERVED = 0x04 //reserved

RESERVED2 = 0x08 //reserved

I2C_NO_ACK = 0x10 //I2C routines do not require an ACK

SMB_PEC_DET = 0x20 //SMB routines return error if PEC not used

};

smb_errno at address 0x01 contains error code of last SMBus transaction

enum Smb_Err {

SMB_OK,

SMB_Busy,

SMB_Reserved,

SMB_Unsupported,

SMB_AccessDenied,

SMB_Overflow,

SMB_BadSize,

SMB_UnknownError

};

Not all of these error codes are used by the ROM code. smb_errno should be
set to SMB_OK (zero) by the application program before calling the SMBus
ROM routine. The SMbus routine returns 1 if there is no error; otherwise, it re-
turns 0.

SMBus Routines

2-3ROM Library Functions

When SMB_FLASH is set, the ROM code jumps to flash through a vector
every time it must wait for further SMBus activity. It jumps to smbWaitIntr(),
provided by the user, to yield to the scheduler. This allows other useful work
to be done while waiting for the next SMBus event. This is the anticipated
normal mode of operation. See the document Scheduler Operation for further
explanation.

When SMB_PECEN is set, master mode transactions uses a PEC (packet
error checking) byte. In slave mode, the PEC is appended to the transmission
if the master requests it by sending an ACK after the last data byte, and can
be checked if the master sends it. The PEC is generated and checked by the
SMBus hardware.

When SMB_PEC_DET is set, the smbSlave functions indicates an error by
returning zero if a PEC was not used in the slave transaction. In the SMBus
specification, the slave device is required to behave the same independent of
whether a PEC is used or not; so, this bit is for users who wish to operate
without complete conformance to the SMBus specification.

When I2C_NO_ACK is set, the I2C routines returns no error even if data has
not been acknowledged by the slave device.

In slave mode, the SMBus engine acknowledges its own address, set in the
SMBus target register at 0x1006. When the command word arrives from the
bus master, the SMBus engine sets SMSTA_DRDY or SMBSTA_DREG true
and generates an interrupt (if enabled). At this point, it is the responsibility of
the application code to take the appropriate action. See the document Gas
Gauge Example for further details.

In order to avoid ambiguity in the following descriptions, the description of the
SMBus protocol as read and write are always from the perspective of the bus
master, i.e., they are master read and master write. The function names of the
SMBus ROM library routines reflect the direction from the perspective of the
bq802xx in its role as bus master or slave. Thus a master send word
(smbMasterWrWord) is an SMBus write word protocol, but a slave send word
(smbSlaveSndWord) is an SMBus read word protocol. Consequently,
although sending a word with smbMasterWrWord() necessarily implies
receiving it somewhere else with smbSlaveRcvWord(), the transaction’s
protocol is called a write word protocol, because the master is writing.

The bq802xx can act as either the master or the slave in an SMBus transac-
tion. This transaction can fail in one of several ways:

cause of failure smb_errno master slave

loss of arbitration unchanged X

SMBus is busy unchanged X X

SMBus transaction times out unchanged X X

no ACKnowledgement unchanged X X

packet error check fails SMB_UnknownError X X

unexpected SMBSTA_DRDY SMB_AccessDenied X

block size too large SMB_BadSize X

command not found SMB_Unsupported X

smbMasterRdWord

2-4

2.2 smbMasterRdWord

function prototype: int smbMasterRdWord (unsigned char address, un-
signed char command, int *data);

description: This function is used for SMBus Read Word protocol. smbMas-
terRdWord sends a slave address, a command byte and then reads a word
(two bytes, lsb first) from the selected slave when called. It yields to the sched-
uler between bytes.

Input: address: device address of slave

command: command byte for slave

data: pointer to storage for word to be read from slave.

Output: function return: 0 = fail (busy, timeout, no acknowledgement,
packet error check fail)

1 = success

side effects: global variable smb_errno contains code for error:
SMB_UnknownError if a PEC is detected.

Stack depth: 12

example:

unsigned char address, command;

int target;

int *data;

data = (int *) ⌖

address = SLAVEADDRESS;

command = RETURN_WORD;

.

.

status=smbMasterRdWord(address,command,data);

if(!status) {

//do error−handling

}

//now word has been read from slave

smbMasterWrWord

2-5ROM Library Functions

2.3 smbMasterWrWord

function prototype: int smbMasterWrWord (unsigned char address, un-
signed char command, int data);

description: This function is used for SMBus Write Word protocol. smbMas-
terWrWord sends a slave address, a command byte and then a word (two by-
tes, lsb first) to the selected slave when called. It yields to the scheduler be-
tween bytes.

Input: address: device address of slave

command: command byte for slave

data: the word to be sent to slave over SMBus.

Output: function return: 0 = fail (busy, timeout, no acknowledgement)

1 = success

side effects: none

Stack depth: 12

example:

unsigned char address, command;

int data;

address = SLAVEADDRESS;

command = DO_THIS;

data = somevalue;

.

.

status=smbMasterWrWord(address,command,data);

if(!status) {

//do error−handling

}

//now word has been written to slave

smbMasterRdBlock

2-6

2.4 smbMasterRdBlock

function prototype: int smbMasterRdBlock (unsigned char address, un-
signed char command, unsigned char *byte_cnt, unsigned char *block);

description: This function is used for SMBus Read Block protocol. smbMas-
terRdBlock sends a slave address, a command byte, a maximum block length,
and then reads a blocklength, followed by a block of up to *byte_cnt bytes from
the selected slave into a RAM buffer when called. If the slave attempts to return
more than *byte_cnt bytes, it fails with an SMB_BadSize error. Otherwise,
*byte_cnt contains the number of bytes actually read. It yields to the scheduler
between bytes.

Input: address: device address of slave

command: command byte for slave

byte_cnt: pointer to max block length in bytes

block: pointer to storage for block to be read from slave

Output: function return: 0 = fail (busy, timeout, no acknowledgement,
 packet error check fail)

1 = success

*byte_cnt contains number of bytes actually
 read

side effects: global variable smb_errno contains code for error:
 SMB_UnknownErrorif a PEC error is detected.

Stack depth: 13

example:

unsigned char address, command, byte_cnt;

unsigned char *block;

address = SLAVEADDRESS;

command = RETURN_BLOCK;

byte_cnt = LENGTH;

block = (unsigned char *)MY_BUFFER;

.

.

status=smbMasterRdBlock(address,command,
& byte_cnt, block);

if(!status) {

//do error−handling

}

//now data has been read into ram buffer

smbMasterWrBlock

2-7ROM Library Functions

2.5 smbMasterWrBlock

function prototype: int smbMasterWrBlock (unsigned char address, un-
signed char command, unsigned char byte_cnt, unsigned char *block);

description: This function is used for SMBus Write Block protocol. smbMas-
terWrBlock sends a slave address, a command byte, a blocklength, and then
a block of data from a RAM buffer to the selected slave when called. It yields
to the scheduler between bytes.

Input: address: device address of slave

command: command byte for slave

byte_cnt: block length in bytes

block: pointer to the block to be sent to slave

Output: function return: 0 = fail (busy, timeout, no acknowledgement)

1 = success

side effects: none

Stack depth: 13

example:

unsigned char address, command, byte_cnt;

unsigned char *block;

address = SLAVEADDRESS;

command = RETURN_BLOCK;

byte_cnt = LENGTH;

block = (unsigned char *)MY_BUFFER_OF_DATA;

.

.

status=smbMasterWrBlock(address,com-
mand,byte_cnt,block);

if(!status) {

//do error−handling

}

//now data has been sent from ram buffer to slave

smbSlaveCmd

2-8

2.6 smbSlaveCmd

function prototype: int smbSlaveCmd (unsigned char cmd, unsigned char
size, unsigned char (*table)());

description: This function is used to execute a command via a table lookup
in a user-defined jump table in flash program memory. smbSlaveCmd ACKs
the command word, enables the bus free interrupt and executes a command
in the command table when called, after it has determined that the host’s
command word is in the user’s command table. If the command is not found,
the command is NACKed.

Input: cmd: an index to command table for command to be executed

size: command table size

table: pointer to command table

Output: function return: 0 = fail command not in table

other = success, return value determined by

 selected command

side effects: global variable smb_errno contains code for error:
 SMB_Unsupported.

Stack depth: 5 plus stack depth of called function

example:

extern unsigned char (*MY_COMMAND_TABLE[])();

.

.

if (SMB−>sta & SMB_DATA_RDY) {

cmd = SMB−>da;

if (cmd >= FIRST_COMMAND && cmd <=
 LAST_COMMAND){

status=smbSlaveCmd(cmd,TABLE_SIZE,
MY_COMMAND_TABLE);

}

if(!status) {

//do error−handling

}

//now command successfully executed

smbSlaveRcvWord

2-9ROM Library Functions

2.7 smbSlaveRcvWord

function prototype: int smbSlaveRcvWord (int *data);

description: This function is used for SMBus Write Word protocol.
smbSlaveRcvWord receives a word (two bytes, lsb first) from the host (master)
when called, after the user program has determined from the host’s command
word that a slave receive is required. It yields to the scheduler between bytes.

Input: data: a pointer to storage for the word to be received from SMBus.

Output: function return: 0 = fail (timeout, no acknowledgement, packet
error check fail)

1 success

side effects: global variable smb_errno contains code for error:
 SMB_UnknownErrorif a PEC error is detected..

Stack depth: 13

example:

int data;

if (SMB−>sta & SMBSTA__DRDY)

if ((cmd=SMB−>da) == ReadThisWord) {

smb_ACK();

status=smbSlaveRcvWord(&data);

}

if(!status) {

//do error−handling

}

//now word has been read and is stored in data

smbSlaveSndWord

2-10

2.8 smbSlaveSndWord

function prototype: int smbSlaveSndWord (int data);

description: This function is used for SMBus Read Word protocol.
smbSlaveSndWord sends a word to the host (master) when called, after the
user program has determined from the host’s command word that a slave send
is required

Input: data: the word to be sent over SMBus.

Output: function return: 0 = fail (timeout, no acknowledgement)
1 = success

side effects: global variable smb_errno contains code for error:
SMB_AccessDenied if the Master tries to read

data.

Stack depth: 17

example:

unsigned char data;

data = somevalue;

.

.

if (SMB−>sta & SMBSTA_DRDY)

if ((cmd=SMB−>da) == SendThisWord) {

smb_ACK();

status=smbSlaveSndWord(data);

}

if(!status) {

//do error−handling

}

//now byte has been sent

smbSlaveSndBlock

2-11ROM Library Functions

2.9 smbSlaveSndBlock

function prototype: int smbSlaveSndBlock (unsigned char byte_cnt, un-
signed char *block);

description: This function is used for SMBus Read Block protocol.
smbSlaveSndBlock sends a blocklength, followed by a block of bytes, to the
host (master) when called, after the user program has determined from the
host’s command word that a slave block send is required. It yields to the
scheduler between bytes.

Input: byte_cnt: the number of bytes in block

block: a pointer to the block to be sent over SMBus.

Output: function return: 0 = fail (timeout, no acknowledgement)

1 = success

side effects: global variable smb_errno contains code for error:
 SMB_AccessDenied if the Master tries to send
 data.

Stack depth: 18

example:

unsigned char *block;

unsigned char len;

len = BLOCKLEN;

//fill block with data to send

.

.

if (SMB−>sta & SMBSTA_DRDY)

if ((cmd=SMB−>da) == SendThisBlock) {

smb_ACK();

status=smbSlaveSndBlock(byte_cnt, block);

}

if(!status) {

//do error−handling

}

//now block has been sent

smbSlaveRcvBlock

2-12

2.10 smbSlaveRcvBlock

function prototype: int smbSlaveRcvBlock (unsigned char *byte_cnt, un-
signed char *block);

description: This function is used for SMBus Write Block protocol.
smbSlaveRcvBlock receives a blocklength, followed by a block of bytes from
the host (master) when called, after the user program has determined from the
host’s command word that a slave block receive is required. It yields to the
scheduler between bytes.

Input: block: a pointer to storage for the block to be read from SMBus.

*byte_cnt: a pointer to the maximum number of bytes in block

Output: function return: 0 = fail (timeout, no acknowledgement, bad
 size, packet error check fail)

1 = success

*block contains bytes received

side effects: global variable smb_errno contains code for error:
 SMB_BadSize or SMB_UnknownError.
 byte_cnt contains the number of bytes actually
 received

Stack depth: 16

example:

unsigned char *block;

unsigned char len;

len = BLOCKLEN;

//fill block with data

.

.

if (SMB−>sta & SMB_DATA_RDY)

if ((cmd=SMB−>da) == ReadThisBlock) {

smb_ACK();

status=smbSlaveRcvBlock(&len,block);

}

if(!status) {

//do error−handling

}

//now block has been read and is stored at block

smbSlaveWord

2-13ROM Library Functions

2.11 smbSlaveWord

function prototype: int smbSlaveWord(unsigned char *datardy, int *data);

description: This function is used for SMBus Read Word and SMBus Write
Word protocol. It sends or receives a word depending on whether the Master
requests a read or a write. Because the data direction is unknown at the time
of the call, valid data should be set up beforehand. The datardy flag indicates
whether the data was read by the host or overwritten. This would typically be
used to access a variable the master would read but also sometimes update.
It yields to the scheduler between bytes.

Input: datardy: a pointer to a flag indicating read/write direction

data: a pointer to the word to be read or written

Output: function return: 0 = fail (timeout, no acknowledgement, packet
 error check fail)

1 = success

*data contains word sent or received

side effects: global variable smb_errno contains code for error:
SMB_UnknownError if a PEC error is detected.
datardy indicates host read (0) or host write (1)

Stack depth: 18

example:
unsigned char read_write;
unsigned int *data;

data = readwritedata; // point to target data

// Sends or receives word depending on Master

// read_write = 1 if receive

.

.

if (SMB−>sta & SMBSTA_DRDY)

if ((cmd=SMB−>da) == ReadorWriteThisWord) {

smb_ACK();

status=smbSlaveWord(&read_write, data);

}

if(!status) {

//do error−handling

}

//now word has been either read or written as
master requested

if (read_write) { // if data was sent by host

//read_write data has changed, take
 appropriate action

}

smbSlaveBlock

2-14

2.12 smbSlaveBlock

function prototype: int smbSlaveBlock(unsigned char *datardy, unsigned
char *byte_cnt, unsigned char max_cnt, unsigned char *block);

description: This function is used for SMBus Read Block and SMBus Write
Block protocol. It sends or receives a block depending on whether the Master
requests a read or a write. Because the data direction is unknown at the time
of the call, valid data should be set up beforehand. The datardy flag indicates
whether the data was read by the host or overwritten. byte_cnt is set to the
number of bytes to be sent if the master performs a read, max_cnt is the
maximum number of bytes which can be received if the master performs a
write. This function would typically be used to access a block of data the master
would read but also sometimes update. It yields to the scheduler between
bytes.

Input: datardy: a pointer to a flag indicating read/write direction

byte_cnt: a pointer to the number of bytes to be sent

max_cnt: the maximum number of bytes to be received

block: a pointer to the data block to be sent or received

Output: function return: 0 = fail (timeout, no acknowledgement, packet
error check fail)

1 = success

*datardy: indicates direction (0=read, 1=write)

*byte_cnt: contains number of bytes received if host write

*block: contains data sent if host write

side effects: global variable smb_errno contains code for error:
SMB_UnknownError if a PEC error is detected.
datardy indicates host read (0) or host write (1)

Stack depth: 19

example:
unsigned char read_write;
unsigned char byte_cnt;
unsigned char max_cnt;
unsigned char *block;

byte_cnt = max_cnt = DATA_BLOCK_SIZE; //
block = (unsigned char *) &readwritedata;

// point to target data
// Sends or receives block depending on Master
// read_write = 1 if receive

.
.
if (SMB−>sta & SMBSTA_DRDY)

if ((cmd=SMB−>da) == ReadorWriteThisBlock)
{

smb_ACK();
status=smbSlaveBlock(&read_write,

&byte_cnt, max_cnt, block);
}

smbSlaveBlock

2-15ROM Library Functions

if(!status) {
//do error−handling

}
//now block has been either read or written
if (read_write) { // if data was sent by host

//block data has changed, take appropriate
 action

}

smbSlaveSndWordNoWait

2-16

2.13 smbSlaveSndWordNoWait

function prototype: int smbSlaveSndWordNoWait(int data);

description: This function is used for SMBus Read Word protocol. It sends
when an unexpected master read occurs (not immediately preceded by a
command word) so that SMBus action is required immediately, not after
waiting for the next SMBus event. In practice, the slave would know what to
send based on a previous command from the master. It yields to the scheduler
between bytes.

Input: data: the word to be sent

size:

table:

Output: function return: 0 = fail (timeout, no acknowledgement)

1 = success

side effects: None

Stack depth: 13

example:

.

.

if (SMB−>sta & SMBSTA_DREQ) { //master wants
 data right now

status=smbSlaveSndWordNoWait
(standby_data);

}

if(!status) {

//do error−handling

}

//now word has been sent to master

smbSlaveSndBlockNoWait

2-17ROM Library Functions

2.14 smbSlaveSndBlockNoWait

function prototype: int smbSlaveSndBlockNoWait (unsigned char byte_cnt,
unsigned char *block);

description: This function is used for SMBus Read Block protocol.
smbSlaveSndBlockNoWait sends a blocklength followed by a block of bytes.
It sends when an unexpected master read occurs (not immediately preceded
by a command word) so that SMBus action is required immediately, not after
waiting for the next SMBus event. In practice, the slave would know what to
send based on some earlier command from the master. It yields to the
scheduler between bytes.

Input: byte_cmd: the block length

block: a pointer to the block to be sent

table:

Output: function return: 0 = fail (timeout, no acknowledgement)

1 = success

side effects: None

Stack depth: 13

example:

unsigned char *block;

unsigned char byte_cnt;

block = (unsigned char *) MYDATABLOCK;

byte_cnt = MYBLOCKLEN;

.

.

if (SMB−>sta & SMBSTA_DREQ) { //give master the

block now
status=smbSlaveSndBlockNoWait(byte_cnt,

 block);

}

if(!status) {

//do error−handling

}

//now block has been sent as master requested

smb_ACK

2-18

2.15 smb_ACK

function prototype: void smb_ACK(void);

description: This function writes a 1 to the SMBACK register, causing the
SMBus engine to generate an ACK on the SMBus. This acknowledgement
allows the SMBus transaction to continue. Conversely, withholding it (sending
a NACK or allowing a timeout) aborts the SMBus transaction. It is called by
the ROM during mulitbyte transactions, but also by the user when a received
command from the host is determined to be valid, allowing the host to continue.

Input: none

Output: function return: none

side effects: none

Stack depth: 0

example:

unsigned char cmd;

.

.

if (SMB−>sta & SMBSTA_DRDY) {

cmd = SMB−>da;

if (cmd < FIRST_COMMAND && cmd > LAST_COM-
MAND){

smb_NACK(); //command is not valid so
abort

}

else {

smb_ACK(); //command is valid

// take proper action for command

}

.

.

smb_NACK

2-19ROM Library Functions

2.16 smb_NACK

function prototype: void smb_NACK(void);

description: This function writes a 0 to the SMBACK register, causing the
SMBus engine to abort the current transaction, or in the case of bus master
transactions, to signal the slave to send no further data. It is called by the ROM
in case of error or to terminate mulitbyte transactions, but also by the user
when a received command from the host is determined to be invalid, signaling
the host to abort the transaction.

Input: none

Output: function return: none

side effects: none

Stack depth: 0

example:

unsigned char cmd;

.

.

if (SMB−>sta & SMBSTA_DRDY) {

cmd = SMB−>da;

if (cmd < FIRST_COMMAND && cmd >
LAST_COMMAND){

smb_NACK(); //command is not valid so
abort

}

else {

smb_ACK(); //command is valid

// take proper action for command

}

.

.

smb_SetBFI

2-20

2.17 smb_SetBFI

function prototype: void smb_SetBFI(void);

description: This function activates the Bus Free interrupt for the SMBus
engine, allowing the SMBus engine to wake the SMB process when the bus
becomes free. It is used internally by the ROM code and can also be used by
application programs when suspending a process to ensure the process
wakes again when one of the possible outcomes is an idle SMBus.

Input: none

Output: function return: none

side effects: none

Stack depth: 0

example:

.

.

if (SMB−>sta & SMBSTA_DRDY)

if ((cmd=SMB−>da) == ExecuteCommand) {

SMB−>pec = SMBPEC_PEC_CHK;

smbSetBFI(); //wake up if bus becomes free

status=smbCheckPecSlave();

if (status) {

smb_ACK();

do_command();

}

else {

smb_NACK();

smbWaitBusFree();

//do error−handling

}

}

}

smbWaitBusFree

2-21ROM Library Functions

2.18 smbWaitBusFree

function prototype: int smbWaitBusFree(char status);

description: This function waits for the SMBus to become free by suspending
its process while waiting for SMBus interrupts, clearing unwanted SMBus
interrupts by NACKing. It returns when the SMBus is free. The bus free
interrupt must be enabled before calling this function, using the smbSetBFI
function. This function is used internally by ROM code to clear a failed
transaction, and it could also be used by an application program.

Input: Status-error status of current SMBus transaction

Output: function return:
0 − failed (either input status is zero or an interrupt occurred which
was not BUS_FREE)
1 − success (input status is one and first interrupt is BUS_FREE)

side effects: clears SMBCTL_BFI_EN

Stack depth: 5

example:

.

.

if (SMB−>sta & SMBSTA_DRDY)

if ((cmd=SMB−>da) == ExecuteCommand) {

SMB−>pec = SMBPEC_PEC_CHK;

smbSetBFI(); //wake up if bus becomes free

status=smbCheckPecSlave();

if (status) {

smb_ACK();

do_command();

}

else {

smb_NACK();

smbWaitBusFree();

//do error−handling

}

}

}

smbCheckPecSlave

2-22

2.19 smbCheckPecSlave

function prototype: int smbCheckPecSlave(void);

description: This function checks the Packet Error-checking Code sent by
the master. It is used when performing a slave SMBus write command
transaction to verify the correctness of the Packet Error-checking Code sent
by the master. This guards against executing a garbled command.
smbCheckPecSlave returns pec okay if the PEC is correct, or if the master
does not send a PEC, but fails if the PEC is incorrect, or if the master is actually
sending other data, but the command byte has been garbled into a
command-only code.

Input: none

Output: function return: error code (0=fail, 1=PEC okay)

side effects: none

Stack depth: 14

example:

.

.

if (SMB−>sta & SMBSTA_DRDY)

if ((cmd=SMB−>da) == ExecuteCommand) {

SMB−>pec = SMBPEC_PEC_CHK;

smbSetBFI(); //wake up if bus becomes free

status=smbCheckPecSlave();

if (status) {

smb_ACK();

do_command();

}

else {

smb_NACK();

smbWaitBusFree();

//do error−handling

}

}

}

Flash Memory Access Routines

2-23ROM Library Functions

2.20 Flash Memory Access Routines

There are two sections of flash memory in the bq802xx, reflecting the Harvard
architecture of the CPU core. The program flash is a 16k X 22 array starting
at address 0x0000. All instructions are 22 bits long. The 8−bit data memory
space consists of 512 bytes of flash data memory at address 0xB000. The top
8 bytes of data memory are reserved and can only be read. Both of these
memory spaces are mapped to their respective CPU address spaces and thus
can be read directly by the CPU over its program or data memory bus in normal
operation. Writing to flash memory requires access through special hardware
registers. Because this access requires removing the flash from CPU memory
space, no writes to flash program memory can be performed directly from code
running in flash program memory. These writes must instead be performed by
code running in ROM. The ROM library routines provide read, write, and erase
functions for flash program memory and flash data memory. The smallest unit
that can be erased in data flash is a single row, in program flash two rows, and
both can be mass erased. The erased state for both is all ones.

2.21 Flash Program Memory Routines

These routines are used to store integers into the 22-bit flash program memory
locations. They provide additional nonvolatile storage (beyond the 504 bytes
of the flash data memory), which can be used when the flash program memory
is not filled with code. They cannot be used to write code to the flash program
memory, because they only access the low 16 bits of the flash program word.

Interrupts are disabled during the execution of these routines, because any at-
tempt to execute flash program code while the flash program memory is not
mapped to the CPU address space would be disastrous.

Flash Program Memory Routines

2-24

2.21.1 FlashRdRow
function prototype: void FlashRdRow(unsigned int xadr, unsigned char
yadr,unsigned char cnt, int *data);

description: This function reads integers from the low 16 bits of the words
in a row of flash program memory into a RAM buffer. If yadr + cnt exceeds row
size, the read wraps to the beginning of the row.

Input: xadr: the flash row address
yadr: the flash column address
cnt: the number of integers to read from flash
data: a pointer to the RAM buffer area

Output: function return: none

side effects: none

Stack depth: 1

example:

unsigned char *buffer;

unsigned int xadr;

unsigned int yadr;

unsigned char cnt;

buffer = (unsigned char *) MYBUFFER;

cnt = 32; //the whole row

xadr = FLASH_DATA_ROW; //the row set aside for
 data storage

xadr = FLASH_DATA_COLUMN;//the start address in the
 row

.

.

FlashRdRow (xadr,yadr,cnt,buffer);//read flash data
into ram buffer

//done

Flash Program Memory Routines

2-25ROM Library Functions

2.21.2 FlashEraseRow
function prototype: void FlashEraseRow(unsigned int xadr);

description: This function erases two rows of flash program memory. The low
bit of the input parameter xadr is ignored; the even/odd row pair is erased. The
erased state is all ones.

Input: xadr the flash row start address

Output: function return: none

side effects: none

Stack depth: 2

example:

unsigned int xadr;

xadr = FLASH_DATA_ROW; //the row pair to erase

.

.

FlashEraseRow(xadr); //erase the even/odd row pair

//now flash row is ready for new data

//done

Flash Program Memory Routines

2-26

2.21.3 FlashProgRow

function prototype: void FlashProgRow(unsigned int xadr, unsigned char
yadr,unsigned char cnt, int *data);

description: This function stores integers from a ram buffer into the low 16
bits of a row of flash program memory. If yadr + cnt exceeds row size, the write
wraps to the beginning of the row.

Input: xadr: the flash row address
yadr: the flash column address
cnt: the number of integers to write to flash
data: a pointer to the ram buffer area

Output: function return: none

side effects: none

Stack depth: 4

example:
int *buffer;
unsigned int xadr;
unsigned int yadr;
unsigned char cnt;
buffer = (int *) MYBUFFER;
cnt = 32; //the whole row (twice)
xadr = FLASH_DATA_ROW; //the start row for data

 storage
xadr = FLASH_DATA_COLUMN;//the start column (column

 0)
.
.
FlashEraseRow(xadr); //erase the rows first

FlashProgRow (xadr,cnt,buffer); //write ram buffer into
 flash

buffer += 32; //write second half of buffer
FlashProgRow (xadr+1,cnt,buffer); //write ram buffer

 into flash
//done

2.21.4 FlashChecksum
function prototype: long FlashChecksum();

description: This function returns the checksum of the instruction flash.

Input: takes no arguments

Output: function return: long integer value of the checksum.

side effects: none

Stack depth: 9

example:

unsigned long Csum;

Csum=FlashChecksum();

Flash Data Memory Routines

2-27ROM Library Functions

2.22 Flash Data Memory Routines

These routines can be used to erase and write to flash data memory. Note that
the writes can be block writes within a row of memory, but the smallest unit that
can be erased is an entire row of memory. In practice, this means that if the
target area is not known to be erased, the entire row must be preserved in a
buffer, the necessary bytes written to that buffer, then the flash data memory
row erased and rewritten with the buffer contents. If the block to be written
crosses a row boundary, this process must be done twice. The function
FdataWrBlock handles this necessary preservation; so, all that is required
when using it is to set up the block of data to be written.

2.22.1 FdataProgRow
function prototype: void FdataProgRow(unsigned char xadr, unsigned char
yadr, unsigned char cnt, unsigned char *data)

description: This function stores bytes from a buffer into a selected row of
flash data memory, starting at a specified column. If yadr + cnt exceeds row
size, the write wraps to the beginning of the row. Erasure of the row, if neces-
sary, must be done in a separate operation, as well as preservation of contents
of the row not included in the write.

Input: xadr: the flash row address
yadr: the starting column in the row
cnt: the number of bytes to write to flash
data: a pointer to the buffer area

Output: function return: none

side effects: none

Stack depth: 7 �5

example:

unsigned char *buffer;

unsigned char xadr,yadr;

unsigned char cnt;

buffer = (unsigned char *) MYBUFFER; //data to
 write

cnt = 12; //number of bytes to write

xadr = FLASH_DATA_ROW; //the row set aside for
 data storage

yadr = FLASH_DATA_COL; //the starting column for
 the write

.

.

FdataEraseRow(xadr); //erase the row first

FdataProgRow(xadr,yadr,cnt,buffer); //write ram
 buffer to flash

//done

Flash Data Memory Routines

2-28

2.22.2 FdataProgWord

function prototype: void FdataProgWord(unsigned char *addr, unsigned
char data)

description: This function writes one byte to a selected flash data memory
location in the range 0xb000 – 0xb1f7. Writes outside the range are ignored.
Bits can only be written to zero, so the target byte should contain all ones
(erased).

Input: addr: a pointer to the data flash location to be written
data: the byte to be written

Output: function return: none

side effects: none

Stack depth: 3

example:

unsigned char data;

unsigned char *addr;

data = my_data_byte; //setup data byte

addr = FLASH_DATA_LOCATION; //the flash byte used
 for data storage

FdataProgRow(addr,data); //write data to flash

//done

2.22.3 FdataEraseRow

function prototype: void FdataEraseRow(unsigned char xadr)

description: This function erases a selected row of flash data memory. An
xadr greater than 0x1f (last row) wraps to beginning.

Input: xadr: the flash row address

Output: function return: none

side effects: none

Stack depth: 3

example:

unsigned char *buffer;

unsigned char xadr,yadr;

unsigned char cnt;

buffer = (unsigned char *) MYBUFFER;

cnt = 12; //number of bytes to write

xadr = FLASH_DATA_ROW; //the row set aside for
data storage

yadr = FLASH_DATA_COL; //the starting column for
 the write

.

.

FdataEraseRow(xadr); //erase the row first

FdataProgRow(xadr,yadr,cnt,buffer); //write ram
 buffer to flash

//done

Flash Data Memory Routines

2-29ROM Library Functions

2.22.4 FdataMassErase

function prototype: void FdataMassErase(void)

description: This function erases all of flash data memory.

Input: none

Output: function return: none

side effects: none

Stack depth: 39

example:

unsigned char *buffer;

unsigned char xadr,yadr;

unsigned char cnt;

//get ready to put new info into flash data memory

.

.

//but first erase the whole thing:

FdataMassErase();

//done

//continue

Math Library Routines

2-30

2.23 Math Library Routines

Math routines accessible by function call

Calls to these routines are not generated automatically by the C compiler.
They are special-purpose math routines useful in some of the calculations
commonly used in battery management.

2.23.1 accumulate

function prototype: void Accumulate(Accum *accum, double val)

description: Adds a double on the stack to an extended-precision (48 bit) in-
teger pointed to by accum. This extended-precision data type, called Accum,
is used to hold the accumulated charge in battery gas-gauging applications.

typedef struct {

unsigned char[6];

} Accum;

Input: accum: pointer to accumulator
val: value to be added

Output: value is added to Accum

Stack depth: 1

example:
Accum total_charge;
double charge_increment;
charge_increment = get_charge(); //pick up charge

 increment
Accumulate (&total_charge, charge_increment);

//add to total
.
.

//done

2.23.2 exp
function prototype: double exp (double d)

description: Returns a double that is e=2.718 to power defined by input pa-
rameter.

Input: d: double power to raise e to.

Output: result of raising e to said power.

Stack depth: 19

example:
double mVolts, dTemp;
double C1 = 1.24;
mVolts = getAD(TS1);
dTemp = C1* exp(mVolts);

Math Library Routines

2-31ROM Library Functions

2.23.3 log

function prototype: double log (double f)

description: Returns a double that is the natural logarithm of the input param-
eter.

Input: f: value of which to compute the logarithm.

Output: result as a double of computing the natural logarithm
of the input parameter.

Stack depth: 20

example:

double edv;

double temp;

temp = ReadAD();

edv = log(temp);

Math Routines Called by the Compiler

2-32

2.24 Math Routines Called by the Compiler

The C compiler automatically generates calls to these routines to implement
basic arithmetic functions. They can also be called from assembly language
code, using the CALL instruction, as long as the C compiler’s parameter-pass-
ing conventions are observed. Stack handling precautions must be observed:
stack parameter passing uses big-endian ordering on the stack. This means
the msb of a parameter is at the lower memory address. Parameters are
pushed on the stack in the order given. The stack depths reported are the
pushes within the routine, so any pushes required to save registers or pass
parameters must be added.

2.24.1 mulhi3

description: This function multiplies two signed integers.

Input: r3:r2: int a
r1:r0: int b

Output: r1:r0: int (a * b)

Stack depth: 0

2.24.2 mulhisi3

description: This function multiplies two signed integers to a long.

Input: r3:r2: int a
r1:r0: int b

Output: r3:r2:r1:r0: long int (a * b)

Stack depth: 4

2.24.3 mulsi3

description: This function multiplies two longs to a long. The result is trun-
cated to a long.

Input: stack: long int a
stack: long int b

Output: r3:r2:r1:r0: long int (a * b)

Stack depth: 4

2.24.4 umulhisi3

description: This function multiplies two unsigned ints to long.

Input: r3:r2: unsigned int a
r1:r0: unsigned int b

Output: r3:r2:r1:r0: long int (a * b)

Stack depth: 2

Math Routines Called by the Compiler

2-33ROM Library Functions

2.24.5 mulsf3

description: This function multiplies two, 4−byte doubles.

Input: r3:r2:r1:r0: double a
stack: double b

Output: r3:r2:r1:r0: double (a * b)

Stack depth: 5

2.24.6 addsf3

description: This function adds two (floating point), 4−byte doubles.

Input: r3:r2:r1,r0: double a
stack: double b

Output: r3:r2:r1,r0: double (a + b)

Stack depth: 2

2.24.7 floatqisf2

description: This function converts a signed or unsigned char to a 4−byte
double.

Input: 0: char to convert
Z: set if converting from unsigned char

Output: r3:r2:r1:r0: input char converted to double

Stack depth: 0

2.24.8 floathisf2

description: This function converts a signed integer to a 4-byte double.

Input: r2:r1: the signed int to convert

Output: r3:r2:r1,r0: the converted double

Stack depth: 0

2.24.9 floatsisf2

description: This function converts a long to a 4−byte double.

Input: r3:r2:r1,r0: the long int to convert

Output: r3:r2:r1,r0: the converted double

Stack depth: 2

2.24.10 fix_truncsfhi2

description: This function converts a double to a signed integer. It does not
round to the nearest integer; it truncates.

Input: r3:r2:r1:r0: the double to convert

Output: r1:r0: the converted result

Stack depth: 9

Math Routines Called by the Compiler

2-34

2.24.11 fixuns_truncsfhi2
description: This function converts a double to an unsigned integer. It does
not round to the nearest integer; it truncates.

Input: r3:r2:r1:r0: the double to convert

Output: r1:r0: the converted result

Stack depth: 0

2.24.12 fix_truncsfsi2

description: This function converts a double to a signed long integer.

Input: r3:r2:r1:r0: the double to convert

Output: r3:r2:r1:r0: the converted result

Stack depth: 2

2.24.13 fixuns_truncsfsi2

description: This function converts a double to an unsigned long integer. It
does not round to the nearest integer, it truncates.

Input: r3:r2:r1:r0: the double to convert

Output: r3:r2:r1:r0: the converted result

Stack depth: 1

2.24.14 divmodhi4
description: This function divides two signed integers. Returns the quotient
a/b and the remainder.

Input: r1:r0: int a
stack: int b

Output: r1:r0: quotient of (int a) / (int b)
r3:r2: remainder

Stack depth: 3

2.24.15 udivmodhi4
description: This function divides two unsigned integers. Returns the quo-
tient a/b and the remainder.

Input: r1:r0: int a
stack: int b

Output: r1:r0: quotient of (unsigned int a) / (unsigned int b)
r3:r2: remainder

Stack depth: 1

2.24.16 divmodsi4
description: This function divides two signed long integers. Returns the quo-
tient a/b and the remainder.

Input: r3:r2:r1:r0: long int a
stack: long int b

Math Routines Called by the Compiler

2-35ROM Library Functions

Output: r3:r2:r1:r0: quotient of (long int a) / (long int b)
stack: long remainder

Stack depth: 7

2.24.17 divsf3

description: This function divides two doubles. Returns the quotient

Input: r3:r2:r1:r0: double a
stack: double b

Output: r3:r2:r1:r0: quotient of (double a)/(double b)

Stack depth: 4

I2C Functions

2-36

2.25 I2C Functions

These functions implement a software-driven i2c bus on the bq802xx, in
addition to the SMBus engine provided in hardware. This bus resides on pins
determined by the user, who must also provide support functions to
manipulate the chosen pins. The user functions set clock and data pin states,
read the states, generate timing delays, and set timeouts for clock stretches.
Because the I/O access is provided in the user functions, the user determines
whether they are polled or interrupt-driven, and whether they yield to the
scheduler.

The user must provide the following functions to support the higher−level func-
tions in the library ROM:

extern void i2c_clockhi(void); // release the clock pin to high

extern void i2c_clocklo(void); // set the clock pin low

extern unsigned char i2c_wait_clockhi(void); //release clock pin and

//wait for clock hi, up to limit return 0 if clock is not high

extern void i2c_datahi(void); // release data pin to high

extern void i2c_datalo(void); // set data pin low

extern unsigned char i2c_datain(void); //read data pin into bit 0

extern void i2c_wait_quarter_bit(void); // 1/4 of clock period

See the section on interrupt vectors and hooks for further information about
linking these support functions to the ROM i2c code.

In addition, the user’s code must initialize the i2c bus by setting clock and data
lines high and optionally providing power to the i2c device, and optionally
removing power after the transaction. These initialization routines are
provided by the user and called in the user’s code. The ROM library routines
assume the bus has been properly initialized. These are declared (as a
reminder) in i2c.h as:

extern void i2c_power_up(void);

extern void i2c_power_down(void);

Note that the reported stack depths depend on the stack depths of the user-
provided, low-level functions for accessing clock and data pins and providing
timing. These depths vary, depending on the implementation by the user. You
must add the reported stack depth to the stack depth of the listed user-pro-
vided, low-level function that has the greatest stack depth.

All of the i2c library functions return either a zero for failure or a 1 for success.
In addition, the global error variable i2c_errno is set to one of the following
values:

enum i2c_errors {

ERR_NACKED = 1,
ERR_TIMEOUT,
ERR_SHORT, //bus is shortedERR_COMPARE
}

I2C Functions

2-37ROM Library Functions

2.25.1 I2CReadBlock

function prototype: unsigned char I2CReadBlock (unsigned char addr, un-
signed char cmd, unsigned char cnt, unsigned char *data);

description: This function reads a block on a selected i2c peripheral into a
RAM buffer.

Input: addr: the address of the i2c peripheral (bits 7..1)
cmd: the command understood by the peripheral
cnt: the length of the data block to be read
data: a pointer to storage for the block received.

Output: function return: 1 = success
0 = fail

side effects: global variable i2c_errno contains code for error:
 ERR_NACKED, ERR_TIMEOUT, or ERR_SHORT

Stack depth: 12 plus the max stack depth of:
datahi()

datalo()
clockhi()
clocklo()
waitclockhi()
waitquartersecond()
datain()

example:

unsigned char *block;

unsigned char len;

unsigned char status;

len = BLOCKLEN;

//allocate ram buffer block

.

.

status=I2CReadBlock(EE,READ_BLK,byte_cnt, block);

if(!status) {

//do error−handling

}

//now block has been read

I2C Functions

2-38

2.25.2 I2CWriteBlock

function prototype: unsigned char I2CWriteBlock (unsigned char addr,
unsigned char cmd, unsigned char cnt, unsigned char *data);

description: This function writes a block from a buffer to a selected i2c
peripheral.

Input: addr: the address of the i2c peripheral (bits 7..1)
cmd: the command understood by the peripheral
cnt: the length of the data block to be written
data: a pointer to storage for the block sent.

Output: function return: 1 = success
0 = fail

side effects: global variable i2c_errno contains code for error:
 ERR_NACKED, ERR_TIMEOUT, or ERR_SHORT

Stack depth: 14 plus the max stack depth of:

datahi()
datalo()
clockhi()
clocklo()
waitclockhi()
waitquartersecond()
datain()

example:

unsigned char *block;

unsigned char len;

unsigned char status;

len = BLOCKLEN;

//allocate and fill block with data to send

.

.

status=I2CWriteBlock(EE,WRITE_BLK,byte_cnt, block);

if(!status) {

//do error−handling

}

//now block has been sent

I2C Functions

2-39ROM Library Functions

2.25.3 I2CDeviceAvail

function prototype: unsigned char I2CDeviceAval(unsigned char addr,
unsigned int wait);

description: This function attempts to get an address acknowledgement from
a selected device, to determine whether the device is present on the i2c bus.
It continues until the device acknowledges or the specified retry count is
exceeded.

Input: addr: the address of the i2c peripheral (bits 7..1)
wait: number of times to try to address peripheral

Output: function return: 1 = success
0 = fail

side effects: global variable i2c_errno contains code for error:
 ERR_NACKED, ERR_TIMEOUT, or ERR_SHORT

Stack depth: 10 plus the max stack depth of:
datahi()
datalo()
clockhi()
clocklo()
waitclockhi()
waitquartersecond()
datain()

example:

unsigned char *block;

unsigned char len;

unsigned char status;

len = BLOCKLEN;

//allocate and fill block with data to send

.

.

//TEST WHETHER DEVICE IS PRESENT FIRST:

if (I2CDeviceAvail(EE,MY_TIMEOUT){

status=I2CWriteBlock(EE,WRITE_BLK,byte_cnt, block);

if(!status) {

//do error−handling

}

}

//now block has been sent

else

//can’t find device

I2C Functions

2-40

2.25.4 I2CCompareBlock

function prototype: unsigned char I2CCompareBlock(unsigned char addr,
unsigned char cmd, unsigned char cnt, unsigned char *data);

description: This function compares a block of data in memory with a block
of data read from a selected i2c device.

Input: addr: the address of the i2c peripheral (bits 7..1)
cmd: the command understood by the peripheral
cnt: the length of the data block to be compared
data: a pointer to storage for the block to be compared

Output: function return: 1 = success
0 = fail

side effects: global variable i2c_errno contains code for error:
 ERR_NACKED, ERR_TIMEOUT, ERR_SHORT,
 or ERR_COMPARE

Stack depth: 15 plus the max stack depth of:
datahi()
datalo()
clockhi()
clocklo()
waitclockhi()
waitquartersecond()
datain()

example:

unsigned char *block;

unsigned char len;

unsigned char status;

len = BLOCKLEN;

//allocate and fill block with data to send

.

.

status=I2CWriteBlock(EE,WRITE_BLK,byte_cnt, block);

if(!status) {

//do error−handling, block not written

}

//now block has been sent, verify the write:

status=I2CCompareBlock(EE,READ_BLK,byte_cnt, block);

if(!status) {

//do error−handling, block does not compare

}

//now block has been sent, and verified

3-1boot−ROM Routines

�������� �������	

This chapter describes the boot−ROM routines for the bq802xx.

Topic Page

3.1 boot-ROM Routines 3-2.

Chapter 3

boot-ROM Routines

3-2

3.1 boot-ROM Routines

These routines are available immediately after system reset, when control is
not transferred to the program in flash memory (i.e., during development).
They are accessible via the SMBus, by sending commands to the bq802xx at
address 0x16. These routines program, read, and erase flash, as well as read
and write RAM and the registers of hardware peripherals. They are
implemented as a jump table in ROM called when an SMBus command is
detected by the boot-ROM code.

3.1.1 Smb_FlashWrAddr

SMBus protocol: write block[3]

SMBus command: 0x00

description: This function writes a block of three bytes containing the row and
column addresses for a subsequent read from flash program memory. The first
two bytes are row (lsb/msb); the third byte is the column address.

3.1.2 Smb_FlashRdWord

SMBus protocol: read block[3]

SMBus command: 0x01

description: This function reads a complete 22-bit flash memory word from
the address previously set by Smb_FlashWrAddr. The result is read as a 3-
byte block, lsb first. It increments the column address.

3.1.3 Smb_FlashRdRow

SMBus protocol: read block[96]

SMBus command: 0x02

description: This function reads a complete row of 32, 22-bit flash memory
words (96 bytes, greater than allowed by the SMBus spec) from the row ad-
dress previously set by Smb_FlashWrAddr. Each 22-bit word is returned in 3
bytes, lsb first.

3.1.4 Smb_FlashRowCheckSum

SMBus protocol: read block[4]

SMBus command: 0x03

description: This function reads the 4-byte checksum (lsb..msb) of a row of
32, 22-bit flash memory words at the row address previously set by
Smb_FlashWrAddr.

boot-ROM Routines

3-3boot−ROM Routines

3.1.5 Smb_FlashProgWord

SMBus protocol: write block[6]

SMBus command: 0x04

description: This function writes a 22-bit word to the specified row and col-
umn address. The block sent is a 6-byte block, consisting of the row (lsb/msb)
and column addresses, then the 22-bit word to be programmed as a 3-byte
block, lsb first.

3.1.6 Smb_FlashProgRow

SMBus protocol: write block

SMBus command: 0x05[98]

description: This function writes a complete row of 32, 22-bit words to the row
address (lsb/msb) set by the first 2 bytes of the block sent. This is then followed
by 32 words to be written. Each 22-bit word is sent as 3 bytes, lsb first.

3.1.7 Smb_FlashEraseRow

SMBus protocol: write word

SMBus command: 0x06

description: This function erases a complete row of 32, 22-bit words at the
row address contained in the word written (lsb/msb).

3.1.8 Smb_FlashMassErase

SMBus protocol: write word

SMBus command: 0x07

description: This function erases the complete flash program memory. The
word written must be 0x83de.

3.1.9 FlashExecute

SMBus protocol: send command

SMBus command: 0x08

description: This function transfers execution to the flash program memory
by mapping the flash program memory into the CPU address space and then
jumping to the flash reset vector.

3.1.10 SetAddr

SMBus protocol: write word

SMBus command: 0x09

description: This function writes the 16−bit address (lsb/msb) for a subse-
quent read or write to RAM or I/O space.

3.1.11 PokeByte
SMBus protocol: write word

boot-ROM Routines

3-4

SMBus command: 0x0a

description: This function writes a single byte to RAM or I/O space at the
address previously set by SetAddr. The byte written is the lsb of the word sent
over SMBus.

3.1.12 PeekByte
SMBus protocol: read word

SMBus command: 0x0b

description: This function reads a single byte of RAM or I/O space from the
address previously set by SetAddr and returns it as the lsb of the word read
from SMBus.

3.1.13 ReadRAMBlk
SMBus protocol: read block[32]

SMBus command: 0x0c

description: This function reads 32 bytes of RAM or I/O space from the
address previously set by SetAddr.

3.1.14 Version
SMBus protocol: read word

SMBus command: 0x0d

description: This function returns the ROM version number (lsb/msb). Major
revision number is in msb, minor revision number is in lsb.

3.1.15 Smb_FdataChecksum
SMBus protocol: read word

SMBus command: 0x0e

description: This function returns the checksum for the data flash memory
from 0xb000 to 0xb1f7 (it does not include the eight reserved data flash
memory locations) in lsb/msb order.

3.1.16 Smb_FdataProgWord
SMBus protocol: write block[3]

SMBus command: 0x0f

description: This function programs one byte of flash data memory. The
block consists of the memory address (lsb/msb) and the data to be written. It
cannot be used to program the reserved bytes.

3.1.17 Smb_FdataProgRow
SMBus protocol: write block[33]

SMBus command: 0x10

description: This function programs an entire row of 32 bytes of flash data
memory. The block consists of the memory row address and 32 bytes of data
to be written. If the row programmed is the last row, the reserved bytes are not
affected.

3.1.18 Smb_FdataEraseRow

SMBus protocol: write word

boot-ROM Routines

3-5boot−ROM Routines

SMBus command: 0x11

description: This function erases an entire row of 32 bytes of flash data
memory. The word sent contains the memory row address in the lsb. If the row
erased is the last row, the reserved bytes are not affected.

3.1.19 Smb_FdataMassErase

SMBus protocol: write word

SMBus command: 0x12

description: This function erases the entire flash data memory. The word
written must be 0x83de. The reserved bytes are not affected.

3-6

A-1ROM Entry Points

��� ����� �����	

 4004 SMB ROM functions

 4005 smbMasterWrWord

 4006 smbMasterRdWord

 4007 smbMasterRdBlock

 4008 smbMasterWrBlock

 4009 smbSlaveCmd

 400a smbSlaveRcvWord

 400b smbSlaveSndWord

 400c smbSlaveSndBlock

 400d smbSlaveRcvBlock

 400e smbSlaveWord

 400f smbSlaveBlock

 4010 smbSlaveSndWordNoWait

 4011 smbSlaveSndBlockNoWait

 4012 smb_ACK

 4013 smb_NACK

 4014 FlashRdRow

 4015 FlashProgRow

 4016 FlashEraseRow

 4017 SetAddr

 4018 PokeByte

 4019 PeekByte

 401a ReadRAMBlk

 401b mulhi3

 401c mulhisi3

 401d umulhisi3

 401e† mulsi3

 401f mulsf3

 4020 divmodhi4

 4021 udivmodhi4

Appendix A

A-2

 4022 divmodsi4

 4023 divsf3

 4024 addsf3

 4025 floatqisf2

 4026 floathisf2

 4027 fix_truncsfhi2

 4028 fixuns_truncsfhi2

 4029 accumulate

 402a exp

 402b log

 402c fix_truncsfsi2

 402d fixuns_truncsfsi2

 402e floatsisf2

 4031 Reserved

 4032 Reserved

 4033 Reserved

 4034 Reserved

 4035 Reserved

 4036 Reserved

 4037 FdataProgRow

 4038 FdataProgWord

 4039 FdataEraseRow

 403a FdataMassErase

 403b I2CReadBlock

 403c I2CWriteBlock

 403d I2CDeviceAvail

 403e I2CCompareBlock

 403f Reserved

 4040 Reserved

 4041 smbCheckPecSlave

 4042 smbSetBFI

 4043 smbWaitBusFree
† The mulsi3 in v. 1.4 ROM does not work correctly. It cannot be called by its absolute address,

but should instead be called by name. The development tools links the call to the library copy,
which is placed in flash memory.

