

TMP110 SNIS233A - FEBRUARY 2024 - REVISED JULY 2024

TMP110 Ultra-Small, ±1.0°C Accurate, I²C Digital Temperature Sensor for Cost-**Sensitive Systems**

1 Features

- Ultra-small, leadless X2SON-5 package
 - Package size: 0.8 × 0.8 × 0.4mm
- Wide operating ranges
 - V+ operating range: 1.14V to 5.5V
 - Temperature range: -40°C to 125°C
- Accuracy holds across temperature
 - ±1.0°C (maximum) from -40°C to 125°C
- 12-bit resolution: 0.0625°C (LSB)
- Flexible digital interface
 - I²C and SMBus compatible
 - I3C Mixed Bus co-existence capable
- Pinout and software compatible upgrades
 - ±0.5°C → TMP112 (X2SON package)
- Low supply current
 - 55µA Active current (typical)
 - 0.15µA Shutdown current (typical)
 - 3.2µA Average current (typical) at 1Hz
- Software compatible with Industry-Standard
 - TMP102, TMP112
- Two (2) pinout options available
 - ALERT Pin: TMP110D0, TMP110D1, TMP110D2, TMP110D3
 - Address Pin: TMP110D
- **GUI-Based C-Code Generator**

2 Applications

- **Building automation**
 - Occupancy detection
 - Video doorbell
 - HVAC: Wireless environmental sensor
- Factory automation & control
 - Machine vision camera
 - Industrial PC: Single board computer
 - CPU (PLC controller)
- Cold chain
- Data center & enterprise computing
 - Solid state drive (SSD)
 - Rack Server Motherboard
- Personal electronics
 - PC & notebooks, tablets
 - Digital still & video camera
 - Augmented reality glasses
 - **Smart speakers**

3 Description

The TMP110 is a I²C-compatible digital temperature sensor in an ultra-small (0.64mm²) 5-pin package. The small size and height package optimizes volume constrained systems where DSBGA packages can be considered unsuitable. Unlike DSBGA packages of comparable size, TMP110 provides a 5th pin that can either be used as an address pin or alert pin, providing flexibility for both scalability of number of sensors or monitoring critical thermal events.

The TMP110 offers an accuracy of ±1.0°C across the temperature range with an on-chip 12-bit analog-todigital converter (ADC) that provides a temperature resolution of 0.0625°C.

The TMP110 is designed to operate from a supply range as low as 1.14V, with a low average and shutdown current of 3.2µA (at 1Hz) and 0.15µA, respectively, allowing for an on-demand temperature conversion and maximizing of battery life. The supply can also be raised to as high as 5.5V for a range of industrial applications.

Package Information

PART NUMBER	PACKAGE ¹	PACKAGE SIZE ²		
TMP110	X2SON (5)	0.8mm × 0.8mm		

- For more information, see Section 12.
- (2)The package size (length × width) is a nominal value and includes pins, where applicable.

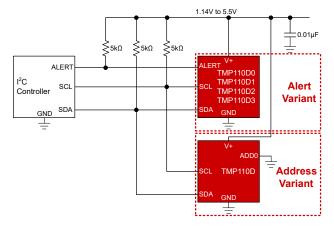


Figure 3-1. Simplified Schematic

Table of Contents

1 Features1
2 Applications
3 Description1
4 Related Products
5 Pin Configuration and Functions3
6 Specifications4
6.1 Absolute Maximum Ratings4
6.2 ESD Ratings
6.3 Recommended Operating Conditions4
6.4 Thermal Information4
6.5 Electrical Characteristics5
6.6 I ² C Interface Timing7
6.7 Timing Diagrams7
6.8 Typical Characteristics8
7 Detailed Description11
7.1 Overview
7.2 Functional Block Diagram11
7.3 Feature Description11
7.4 Device Functional Modes16
7.5 Programming17
8 Register Map22
8.1 Temp_Result Register (address = 00h) [reset =
vvvvh1 23

	8.2 Configuration Register (address = 01h) [reset =	
	60A0h]	. 24
	8.3 TLow_Limit Register (address = 02h) [reset =	
	4B00h]	. 25
	8.4 THigh_Limit Register (address = 03h) [reset =	
	5000h]	26
9	Application and Implementation	. 27
	9.1 Application Information	
	9.2 Equal I ² C Pullup and Supply Application	
	9.3 Layout	. 29
1	0 Device and Documentation Support	.31
	10.1 Documentation Support	31
	10.2 Receiving Notification of Documentation Updates.	.31
	10.3 Support Resources	31
	10.4 Trademarks	.31
	10.5 Electrostatic Discharge Caution	.31
	10.6 Glossary	.31
1	1 Revision History	31
	2 Mechanical, Packaging, and Orderable	
	Information	32

4 Related Products

Pin-to-pin and software compatible options are available.

Table 4-1. Related Temperature Sensors

DEVICE	BEST ACCURACY (MAXIMUM)	SOFTWARE COMPATIBLE		
TMP102	2.0 °C	Yes Address + Alert		DRL (6-pin SOT563) (1.6mm × 1.6mm)
TMP110	1.0 °C	Yes	Separate (Address & Alert)	DPW (5-pin X2SON) (0.8mm × 0.8mm)
TMP112	0.5 °C	Yes	Address + Alert (DRL)	DRL (6-pin SOT563) (1.6mm × 1.6mm)
TIMETIZ	0.5 °C	162	Separate (Address & Alert) (DPW)	DPW (5-pin X2SON) (0.8mm × 0.8mm)

5 Pin Configuration and Functions

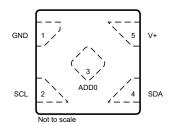


Figure 5-1. DPW Package 5-Pin X2SON Address variant (Top View)

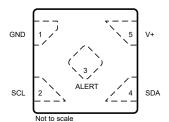


Figure 5-2. DPW Package 5-Pin X2SON Alert variant (Top View)

Table 5-1. Pin Functions

PIN	PIN		TYPE ⁽¹⁾	DESCRIPTION	
NAME	NO.	NO.	ITPE	DESCRIPTION	
GND	1	1	_	Ground Pin-1 has curved edges.	
SCL	2	2	I	Serial clock	
ADD0 (TMP110D)	3	_	I	Address select. Connect to GND, SCL, SDA or V+. Only for Address variant.	
ALERT (TMP110D0, TMP110D1, TMP110D2, TMP110D3)	_	3	0	Overtemperature alert ⁽²⁾ . Open-drain output; requires a pullup resistor. Only for Alert variant. Note: Connecting to GND if Alert pin is not used is preferred.	
SDA	4	4	I/O	Serial data input. Open-drain output; requires a pullup resistor.	
V+	5	5	I	Supply voltage	

- (1) I = Input, O = Output, I/O = Input or Output.
- (2) For more information see Section 7.3.3

6 Specifications

6.1 Absolute Maximum Ratings

Over free-air temperature range unless otherwise noted⁽¹⁾

		MIN	MAX	UNIT
Supply voltage	V+	-0.3	6	V
Input/Output voltage	SCL, SDA, ADD0, ALERT	-0.3	6	V
Output current			±10	mA
Operating temperature,	T _A	-40	125	°C
Junction temperature, T _J			150	°C
Storage temperature, T _{st}	g	-55	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

				VALUE	UNIT
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
"	(ESD)	Liectiostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V+	Supply voltage	1.14	3.3	5.5	V
V _{I/O}	SCL, SDA, ADD0, ALERT	0		5.5	V
I _{OL}	SDA, ALERT	0		3	mA
T _A	Operating ambient temperature	-40		125	°C

6.4 Thermal Information

		TMP110	
THERMAL METRIC ⁽¹⁾		DPW	UNIT
		5-pins	
R _{θJA}	Junction-to-ambient thermal resistance	230	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	194	°C/W
R _{θJB}	Junction-to-board thermal resistance	158.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	20	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	158.3	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	108.4	°C/W
M _T	Thermal Mass	0.46	mJ/°C

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

Product Folder Links: TMP110

6.5 Electrical Characteristics

Over free-air temperature range and V+ = 1.14V to 5.5V (unless otherwise noted); Typical specifications are at $T_A = 25^{\circ}C$ and V+ = 3.3V (unless otherwise noted)

-	= 3.3V (unless otherwise note	,	NDITIONS	MIN	TYP	MAX	UNIT
TEMPET		1231 00		IAIIIA	111	WAX	OINI
IEWPER	RATURE SENSOR		4.407.407.44.07				
T _{ERR}	Accuracy (temperature error)	-40°C to 125°C	1.14V ≤ V+ ≤ 1.4V			± 2.0	°C
			1.4V < V+ ≤ 5.5V			± 1.0	°C
PSR	DC power supply rejection	V+ ≥ 1.4V			0.02		°C/V
T _{RES}	Temperature resolution				12		Bits
	,				62.5		m°C
T _{REPEAT}	Repeatability ⁽¹⁾	V+ = 3.3V 3 sigma distribution			±1		LSB
T_{LTD}	Long-term stability and drift	1000 hours at 125°C ⁽²⁾	T = 63% for stop		±1		LSB
t _{RESP_L}	Response time (Stirred Liquid)	2-layer FR4 PCB 1.5748 mm thickness			1.45		s
T _{HYST}	Temperature cycling and hysteresis ⁽³⁾				0.0625		°C
		V+ ≥ 1.4V			10.25	11.25	
t _{ACT} Active conversion time		V+ < 1.4V			10.5	12	ms
	Timing variation of all device V+ ≥ 1.4V		-10		10		
t _{VAR}	settings	V+ < 1.4V		-15		15	%
DIGITAL	INPUT/OUTPUT						
C _{IN}	Input capacitance				3		pF
	Input logic high	V+ < 1.4V		0.8 × V+	-1		V
V _{IH}		1.4V ≤ V+		0.7 × V+	-		V
		V+ < 1.4V		-0.3		0.2 × V+	V
V_{IL}	Input logic low	1.4V ≤ V+		-0.3		0.3 × V+	V
V _{HYST}	Hysteresis				0.1		V
I _{IN}	Input current					± 0.1	μA
	0	V+ ≥ 1.4V	$I_{OL} = -3mA$		0.13	0.4	V
V_{OL}	Output logic	V+ < 1.4V	I _{OL} = -0.75mA			0.2	V
POWER	SUPPLY					I.	
I _{DD_ACTI} VE	Supply current during active conversion	Active Conversion, serial	bus idle		55	90	μA
		Continous conversion	Serial bus idle		3.2		
I _{DD_AVG}	Average current consumption	mode 1Hz conversion period	SCL = 1MHz		13.5		μA
I _{DD_SB}	Standby current ⁽⁴⁾	Continous conversion mo Serial bus idle	de		2.6	5	μΑ
		T _A = +25°C, Serial bus inactive			0.15	0.35	
I _{DD_SD}	Shutdown ourrest	T _A = -40°C to 125°C				1.5	μΑ
	Shutdown current	Serial bus active, SCL frequency = 400kHz			5.5		
		Serial bus active, SCL frequency = 1MHz			13		
V_{POR}	Power-on reset threshold voltage	Supply rising			1.02	1.06	V
1 511	Brownout detect	Supply falling		0.94	0.97		V
t _{INIT}	Power-on reset time				0.5		ms
t _{RESET}	Reset Time	General Call Reset			0.1		ms

⁽¹⁾ Repeatability is the ability to reproduce a reading when the measured temperature is applied consecutively, under the same conditions.

- (2) Long term stability is determined using accelerated operational life testing at a junction temperature of 150°C.
- (3) Hysteresis is defined as the ability to reproduce a temperature reading as the temperature varies from room → hot →room→cold→room. The temperatures used for this test are -40°C, 25°C, and 125°C.
- (4) Quiescent current between periods

6.6 I²C Interface Timing

minimum and maximum specifications are over -40°C to 125°C and V+ = 1.14V to 5.5V (unless otherwise noted)(1)

		FAST MOD	DE	FAST MOD	E PLUS	UNIT
		MIN	MAX	MIN	MAX	UNII
f _(SCL)	SCL operating frequency	1	400	1	1000	kHz
t _(BUF)	Bus-free time between STOP and START conditions	0.6		0.5		μs
t _(SUSTA)	Repeated START condition setup time	0.6		0.26		μs
t _(HDSTA)	Hold time after repeated START condition. After this period, the first clock is generated.	0.6		0.26		μs
t _(SUSTO)	STOP condition setup time	0.6		0.26		μs
t _(HDDAT)	Data hold time ⁽²⁾	100	900	12	150	ns
t _(SUDAT)	Data setup time	100		50		ns
t _(LOW)	SCL clock low period	1.3		0.5		μs
t _(HIGH)	SCL clock high period	0.6		0.26		μs
t _(VDAT)	Data valid time (data response time) ⁽³⁾		0.9		0.45	μs
t _R	SDA, SCL rise time		300		120	ns
t _F	SDA, SCL fall time		300	20 x (V+ / 5.5V)	120	ns
t _{timeout}	Timeout (SCL = GND or SDA = GND)	30		30		ms
t _{LPF}	Glitch suppression filter	50		50		ns

- (1) The controller and device have the same V+ value. Values are based on statistical analysis of samples tested during initial release.
- (2) The maximum $t_{(HDDAT)}$ can be 0.9 μ s for fast mode, and is less than the maximum $t_{(VDAT)}$ by a transition time.
- (3) $t_{(VDAT)}$ = time for data signal from SCL LOW to SDA output (HIGH to LOW, depending on which is worse).

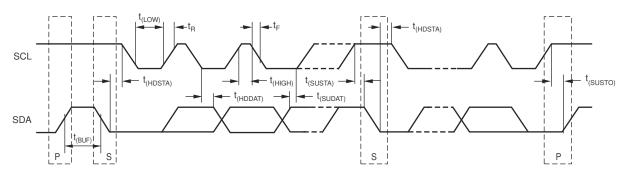
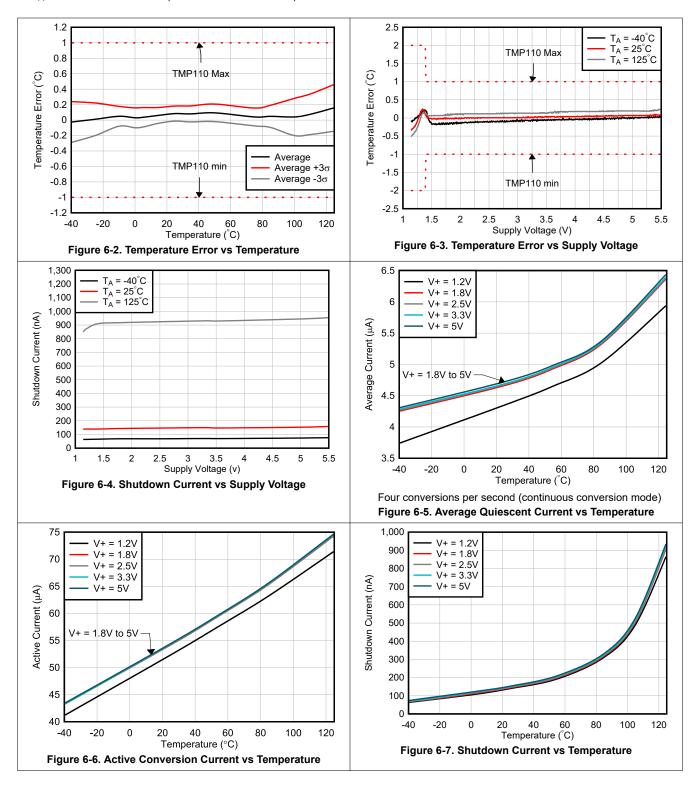
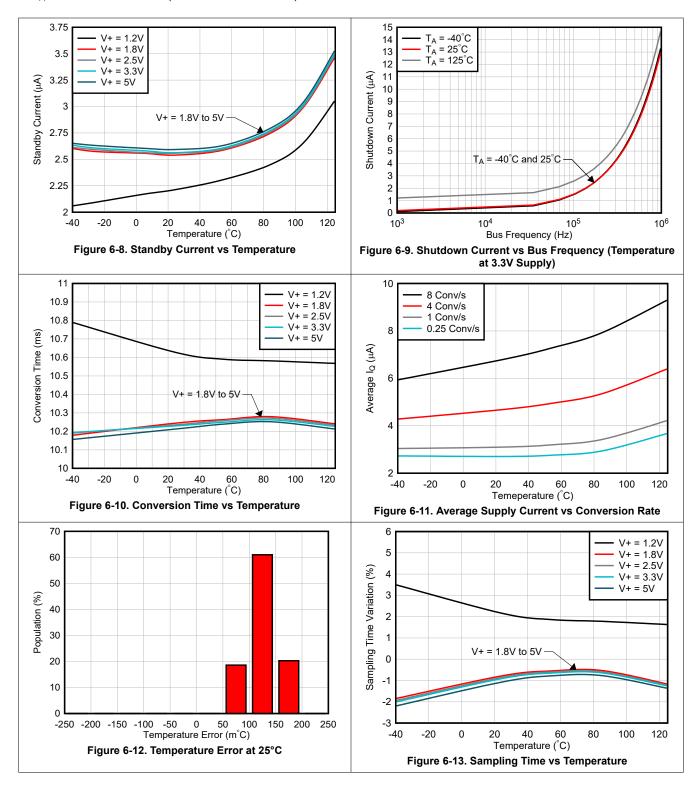
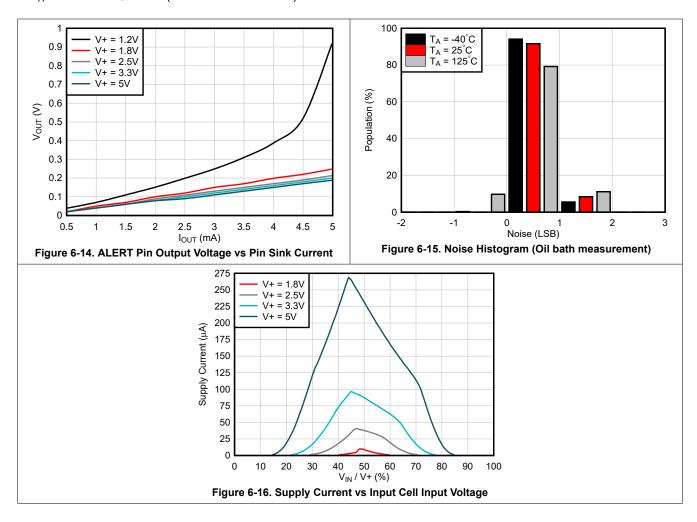



Figure 6-1. Two-Wire Timing Diagram

6.8 Typical Characteristics


at $T_A = 25$ °C and $V_+ = 3.3V$ (unless otherwise noted)

6.8 Typical Characteristics (continued)


at $T_A = 25$ °C and $V_+ = 3.3V$ (unless otherwise noted)

6.8 Typical Characteristics (continued)

at $T_A = 25$ °C and $V_+ = 3.3V$ (unless otherwise noted)

7 Detailed Description

7.1 Overview

The TMP110 is a digital output temperature sensor that comes factory calibrated for accuracy. The device features a two-wire, SMBus and I^2C compatible interface with two modes of operation: continuous conversion mode and one-shot conversion mode, designed for thermal management and thermal protection applications. The TMP110 also includes an alert status register with individual high and low thresholds. Depending on the application requirement the 5^{th} pin is either a device address input pin for multiple devices on the same bus or an open-drain alert output pin for thermal switch application.

7.2 Functional Block Diagram

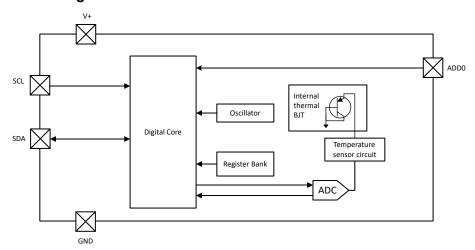


Figure 7-1. Address Variant

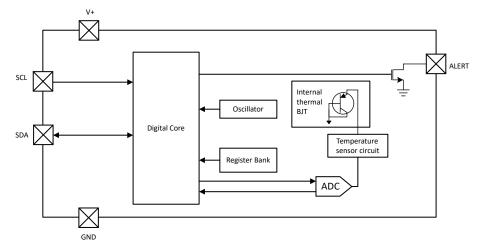


Figure 7-2. Alert Variant

7.3 Feature Description

7.3.1 Digital Temperature Output

The digital output from each temperature measurement is stored in the read-only temperature register. The temperature register of the TMP110 device is configured as a 12-bit, read-only register (configuration register EM bit = 0), or as a 13-bit, read-only register (configuration register EM bit = 1) that stores the output of the most recent conversion. Note that the EM bit defaults to 0 (12-bit format). As this value limits the highest temperature digital code, the device output is as shown in Table 7-1.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

Table 7-1. 12/13-Bit Temperature Data Guidelines

EM Bit	Temperature Bit Length	Q Notation	LSB (°C)	Range (+)
0	12	4	0.0625	127.93475
1	13	4	0.0625	256

Two bytes must be read to obtain data. Byte 1 is the most significant byte (MSB), followed by byte 2, the least significant byte (LSB). The first 12 bits (13 bits in extended mode) are used to indicate temperature. The least significant byte does not have to be read if that information is not needed. The data format for temperature is summarized in Table 7-2 and Table 7-3. One LSB equals 0.0625°C. Negative numbers are represented in binary twos-complement format. Following power-up or reset, the temperature register reads 0°C until the first conversion is complete. Bit D0 of byte 2 indicates normal mode (EM bit = 0) or extended mode (EM bit = 1), and can be used to distinguish between the two temperature register data formats. The unused bits in the temperature register always read 0.

Table 7-2. 12-Bit Temperature Data Format

TEMPERATURE (°C)	DIGITAL OUTPUT (BINARY)	HEX
>127.9375	0111 1111 1111	7FF
127.9375	0111 1111 1111	7FF
100	0110 0100 0000	640
80	0101 0000 0000	500
75	0100 1011 0000	4B0
50	0011 0010 0000	320
25	0001 1001 0000	190
0.25	0000 0000 0100	004
0.0625	0000 0000 0001	001
0	0000 0000 0000	000
-0.0625	1111 1111 1111	FFF
-0.25	1111 1111 1100	FFC
-25	1110 0111 0000	E70
-55	1100 1001 0000	C90

Table 7-2 does not list all temperatures. Use the following rules to obtain the digital data format for a given temperature or the temperature for a given digital data format.

To convert positive temperatures to a digital data format:

- 1. Divide the temperature by the resolution
- 2. Convert the result to binary code with a 12-bit, left-justified format, and MSB = 0 to denote a positive sign.

Example: $(50^{\circ}C) / (0.0625^{\circ}C / LSB) = 800 = 320h = 0011 0010 0000$

To convert a positive digital data format to temperature:

- 1. Convert the 12-bit, left-justified binary temperature result, with the MSB = 0 to denote a positive sign, to a decimal number.
- 2. Multiply the decimal number by the resolution to obtain the positive temperature.

Example: $0011\ 0010\ 0000 = 320h = 800 \times (0.0625^{\circ}C / LSB) = 50^{\circ}C$

To convert negative temperatures to a digital data format:

- 1. Divide the absolute value of the temperature by the resolution, and convert the result to binary code with a 12-bit, left-justified format.
- 2. Generate the twos complement of the result by complementing the binary number and adding one. Denote a negative number with MSB = 1.

Example: $(|-25^{\circ}C|) / (0.0625^{\circ}C / LSB) = 400 = 190h = 0001 1001 0000$

Two's complement format: 1110 0110 1111 + 1 = 1110 0111 0000

To convert a negative digital data format to temperature:

- 1. Generate the twos compliment of the 12-bit, left-justified binary number of the temperature result (with MSB = 1, denoting negative temperature result) by complementing the binary number and adding one. This represents the binary number of the absolute value of the temperature.
- 2. Convert to decimal number and multiply by the resolution to get the absolute temperature, then multiply by -1 for the negative sign.

Example: 1110 0111 0000 has twos compliment of 0001 1001 0000 = 0001 1000 1111 + 1

Convert to temperature: 0001 1001 0000 = 190h = 400; $400 \times (0.0625^{\circ}\text{C} / \text{LSB}) = 25^{\circ}\text{C} = (|-25^{\circ}\text{C}|); (|-25^{\circ}\text{C}|) \times (-1) = -25^{\circ}\text{C}$

Table 7-3. 13-Bit Temperature Data Format

DIGITAL OUTPUT (BINARY)

TEMPERATURE (°C)	DIGITAL OUTPUT (BINARY)	HEX
150	0 1001 0110 0000	0960
128	0 1000 0000 0000	0800
127.9375	0 0111 1111 1111	07FF
100	0 0110 0100 0000	0640
80	0 0101 0000 0000	0500
75	0 0100 1011 0000	04B0
50	0 0011 0010 0000	0320
25	0 0001 1001 0000	0190
0.25	0 0000 0000 0100	0004
0.0625	0 0000 0000 0001	0001
0	0 0000 0000 0000	0000
-0.0625	1 1111 1111 1111	1FFF
-0.25	1 1111 1111 1100	1FFC
-25	1 1110 0111 0000	1E70
-55	1 1100 1001 0000	1C90

7.3.2 Decoding Temperature Data

The TMP110 temperature registers use a 12-bit format. The 12 bits are aligned to the left side, or most significant side, of the 16-bit word. The four unused bits are on the right side, or least significant side. For this reason, a shift is needed to discard the extra bits. 2's Complement is employed to describe negative temperatures. C code can easily convert the 2's Complement data when the data is typecast into the correct signed data type. Q notation describes the number of bits which represent a fractional result. 4 bits of fractional data, known as Q4, offers 0.0625°C resolution.

Table 7-4. 12-Bit Q4 Encoding Parameters

PARAMETER	VALUE			
Bits	12			
Q	4			
Resolution	0.0625			
Range (+)	127.9375			
Range (–)	-128			
25°C	0x0190			

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

Table 7-5. 12-Bit Q4 Bit Values in °C	Table 7	-5. 12	2-Bit	Ω4	Bit \	/alues	in	°C
---------------------------------------	---------	--------	-------	----	-------	--------	----	----

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Sign	64	32	16	8	4	2	1	0.5	0.25	0.125	0.0625	-	-	-	-
-128	64	32	16	8	4	2	1	1/2	1/4	1/8	1/16	-	-	-	-
-2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20	2 ⁻¹	2-2	2-3	2-4	-	-	-	-

```
/* 12-bit format will have 4 bits discarded by right shift
q4 is 0.062500 resolution
  the following bytes represent 24.5C */
  uint8_t byte1 = 0x18;
  uint8_t byte2 = 0x80;
  float f = (((int8_t) byte1 << 8 | byte2) >> 4) * 0.0625f;
  int mC = (((int8_t) byte1 << 8 | byte2) >> 4) * 1000 >> 4;
  int C = (int8_t) byte1;
```

Similarly, in extended mode, the temperature register is extended to a 13-bit format with the same resolution (Q4). This changes the range and effective bits but the resolution remains the same. For this reason, the bit shift also changes. Encoding and C code examples for extended mode are shown below.

Table 7-6. 13-Bit Q4 Encoding Parameters

PARAMETER	VALUE			
Bits	13			
Q	4			
Resolution	0.0625			
Range (+)	255.9375			
Range (–)	-256			
25°C	0xC80			

Table 7-7. 13-Bit Q4 Bit Values in °C

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Sign	128	64	32	16	8	4	2	1	0.5	0.25	0.125	0.0625	-	-	-
-256	128	64	32	16	8	4	2	1	1/2	1/4	1/8	1/16	-	-	-
-2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20	2-1	2-2	2-3	2-4	-	-	-

```
/* 13-bit format will have 3 bits discarded by right shift
q4 is 0.062500 resolution
the following bytes represent 24.5C */
uint8_t byte1 = 0xC;
uint8_t byte2 = 0x40;
float f = (((int8_t) byte1 << 8 | byte2) >> 3) * 0.0625f;
int mC = (((int8_t) byte1 << 8 | byte2) >> 3) * 1000 >> 4;
int C = (((int8_t) byte1 << 8 | byte2) >> 3) >> 4;
```

7.3.3 Temperature Limits and Alert

The TMP110 has alert feature and uses the TLow_limit register for low threshold comparison and THigh_Limit register for high threshold comparison. The alert limit is programmed in the TMP110 in a 12-bit or 13-bit two's complement format based on the Extended_Mode setting in the configuration register, with a resolution of 62.5 m°C. At the end of each temperature conversion, the temperature result is compared with the high limit and low limit registers, and the alert status flag and/or ALERT pin is updated.

The alert status flag in configuration register and/or the ALERT pin are updated based on the Alert_Mode and Polarity bit setting in the configuration register after every temperature conversion.

As shown in Figure 7-3, in comparator mode (Alert_Mode = 0b), the ALERT pin and status flag become active when the temperature equals or exceeds the value in THigh_Limit for Fault number of consecutive conversions.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

The ALERT pin and status flag remain active until the temperature falls below the TLow_Limit for the same number of consecutive conversions.

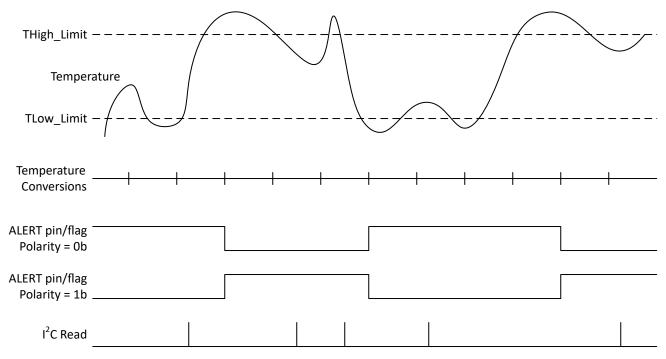


Figure 7-3. Comparator Mode

As shown in Figure 7-4, in alert mode (Alert_Mode = 1b), the ALERT pin becomes active only when the temperature equals or exceeds the THigh_Limit for Fault number of consecutive conversion. The ALERT pin remains active, until a read operation of any register occurs, or the device responds to the SMBus Alert Response. When the ALERT pin is cleared, the pin becomes active only when the temperature is less than the TLow_Limit for Fault number of consecutive conversion and remains active, until a read operation of any register occurs, or the device responds to the SMBus Alert Response. When the ALERT pin is cleared after a TLow_Limit crossing, the above cycle repeats. The ALERT pin and status can also be cleared by issuing the General Call Reset command.

7.4 Device Functional Modes

The TMP110 can be configured to operate in continuous or one-shot mode. This flexibility enables users to balance the requirements of power efficiency and performance.

7.4.1 Continuous-Conversion Mode

When the Shutdown bit is set to 0b in the configuration register, the device operates in continuous conversion mode. Figure 7-5 shows the device in a continuous conversion cycle. In this mode, the device performs conversion at fixed intervals and updates the temperature result register, ALERT pin and flag at the end of every conversion. The typical active conversion time is around 10ms.

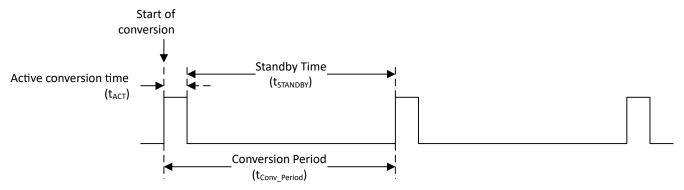


Figure 7-5. Continuous Conversion Cycle Timing Diagram

The Conversion_Rate[1:0] bits in the configuration register controls the rate at which the conversions are performed. The device typically consumes 55µA during conversion and 2.6µA during the low power standby period. By decreasing the rate at which the conversion are performed, the application can benefit from reduced average current consumption in continuous mode.

Use Equation 1 to calculate the average current in continuous mode.

Average Current =
$$((I_{DD \ ACTIVE} \times t_{ACT}) + (I_{DD \ SB} \times t_{STANDBY})) / t_{Conv \ Period}$$
 (1)

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

Where

- t_{ACT} = Active conversion time
- t_{Conv Period} = Conversion Period
- t_{STANDBY} = Standby time between conversions calculated as t_{Conv} _{Period} t_{ACT}

7.4.2 One-Shot Mode

When a 1 is written to the One_Shot bit in the configuration register, the TMP110 immediately starts a one-shot temperature conversion as shown in Figure 7-6. Requesting another conversion when the TMP110 is performing a temperature conversion, the device does not stop the active conversion. After completing the one-shot conversion the TMP110 enters shutdown mode, and the One_Shot bit is set to 1b.

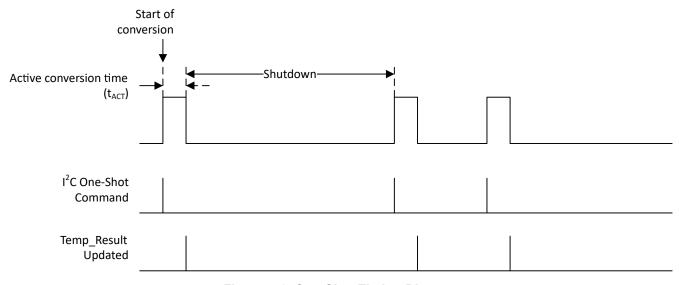


Figure 7-6. One-Shot Timing Diagram

The one-shot conversion is only supported when the Shutdown bit is set to 1b. Due to the short conversion time, the TMP110 device achieves a higher conversion rate. A single conversion typically takes 10ms and a read can take place in less than 20µs. When using the one-shot mode, 50 or more conversions per second are possible.

7.5 Programming

7.5.1 Serial Interface

The TMP110 has a standard bidirectional I²C interface that is controlled by a controller device in order to be configured or read the status of TMP110 device. Each target device on the I²C bus has a specific device address to differentiate between other target devices that are on the same I²C bus. Many target devices require configuration upon start-up to set the behavior of the device. This is typically done when the controller accesses internal register map of the target, which have unique register pointer. A device can have one or multiple registers where data is stored, written, or read. The TMP110 includes 50ns glitch suppression filters, allowing the device to coexist on an I3C mixed bus. The TMP110 supports transmission data rates up to 1MHz.

7.5.2 Bus Overview

The physical I²C interface consists of the serial clock (SCL) and serial data (SDA) lines. The SDA line must be connected to a supply through a pullup resistor. The size of the pullup resistor is determined by the amount of capacitance on the I²C lines, the communication frequency and I²C bus voltage. For further details, see the I²C Pullup Resistor Calculation application note. Data transfer can be initiated only when the bus is idle. A bus is considered idle if both SDA and SCL lines are high after a STOP condition or time out events (see Figure 7-7 and Figure 7-8).

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

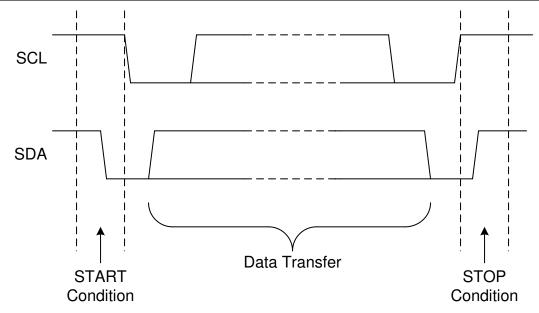


Figure 7-7. Definition of Start and Stop Conditions

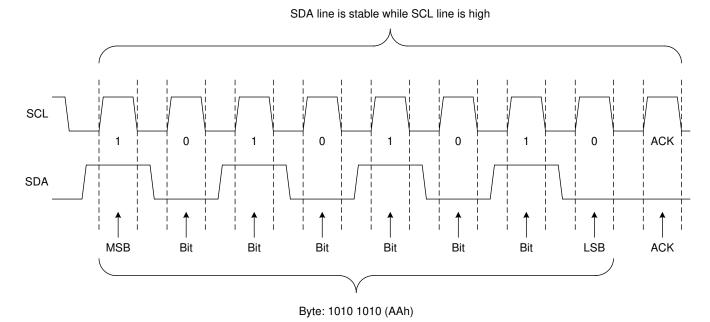


Figure 7-8. Bit Transfer

7.5.3 Device Address

To communicate with the TMP110, the controller must first address target devices through an address byte. The address byte has seven address bits and a read-write (R/W) bit that indicates the intent of executing a read or write operation. The TMP110D features an address pin to allow up to four devices to be addressed on a single bus. Table 7-8 describes the pin logic levels used to properly connect up to eight devices on the same I²C bus. This table also describes four different address options available when ALERT pin is used.

	14010 1 0171441000	411471101111111111111111111111111111111					
DEVICE O	RDERABLE	ADD0 PIN CONNECTION	DEVICE I ² C BUS ADDRESS	DEVICE I ² C BUS ADDRESS (7-bit Hex)			
		GND	1000000	40h			
Address Variant	TMP110D	V+	1000001	41h			
		SDA	1000010	42h			
		SCL	1000011	43h			
	TMP110D0		1001000	48h			
A last Variant	TMP110D1	NI/A	1001001	49h			
Alert Variant	TMP110D2	- N/A	1001010	4Ah			
	TMP110D3	1	1001011	4Bh			

Table 7-8. Address and Alert Variant Device Target Address

7.5.4 Bus Transactions

7.5.4.1 Writes

To write on the I²C bus, the controller sends a START condition on the bus with the address of the target, as well as the last bit (the R/W bit) set to 0b, which signifies a write. The target acknowledges, letting the controller know the target is ready. After this operation, the controller starts sending the register pointer and data to the target, and the controller terminates the transmission with a STOP condition.

Writes to read-only registers or register locations outside of the register map is ignored. The TMP110 still performs and acknowledge when writing outside of the register map. Figure 7-9 shows an example of writing a single word write communication.

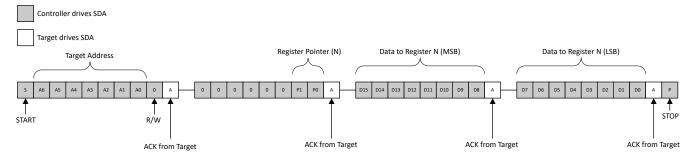


Figure 7-9. Write to Single Register

7.5.4.2 Reads

For a read operation the controller sends a START condition, followed by the target address with the R/W bit set to 0b (signifying a write). The target acknowledges the write request, and the controller sends the register pointer. The controller initiates a restart followed by the target address with the R/W bit set to 1b (signifying a read). The controller continues to send out clock pulses but releases the SDA line so that the target can transmit data. At the end of every byte of data, the controller sends an ACK to the target, letting the target know that the controller is ready for more data. For repeated read operation from the same register (like temperature register), it is not needed to resend the register pointer. The read operation from the same register can be repeated as many time as the controller needs when the pointer is set. Once the controller has received the expected number of bytes, the controller sends a NACK, signaling to the target to halt communications and release the SDA line. The controller follows this up with a STOP condition. Figure 7-10 shows an example of reading a single word from a target register.

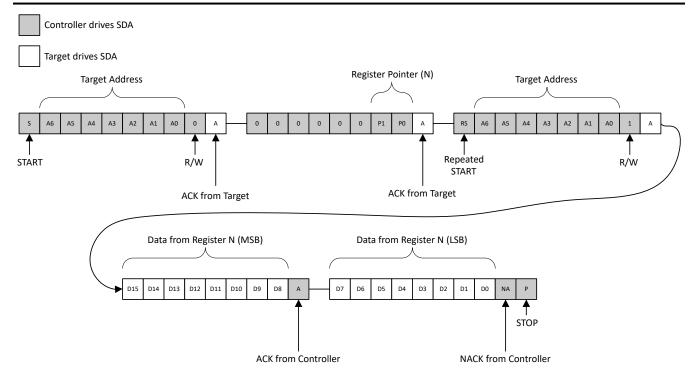


Figure 7-10. Read from Single Register

7.5.4.3 General Call Reset Function

The TMP110 responds to a general-call address (0000 000) if the eighth bit is 0b. The device acknowledges the general-call address and responds to commands in the second byte. If the second byte is 0000b 0110b, the TMP110 internal registers are reset to power-up values as shown in SMBus General Call Reset Timing Diagram. The serial address is unaffected by the general call reset.

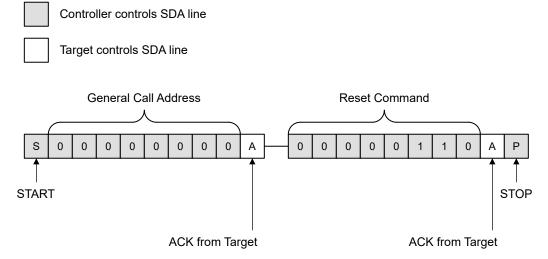


Figure 7-11. SMBus General Call Reset Timing Diagram

7.5.4.4 SMBus Alert Response

The TMP110 device supports the SMBus alert response. When the TMP110 operates in Alert Mode, and the ALERT pin is available, the controller can sense that an alert condition is present. Irrespective of the availability of the ALERT pin, the alert status is set. As shown in Figure 7-12, if the controller sends an SMBus alert command (19h or 00011001b) on the bus, and the target is set, the device acknowledges the SMBus alert command and responds by returning the device addess on the SDA line. The eight bit (LSB) of the device

Product Folder Links: TMP110

address byte indicates if the alert condition was caused by the temperature exceeding THigh_Limit or falling below the TLow Limit. The value of the eight bit follows the Polarity bit setting.

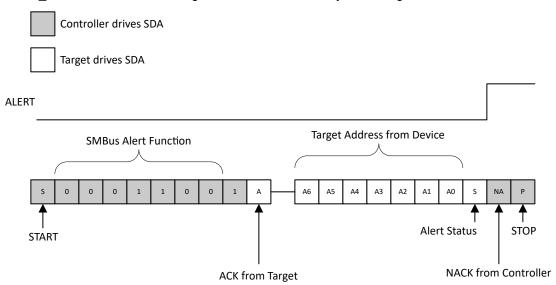


Figure 7-12. SMBus Alert Response

If multiple devices on the bus respond to the SMBus alert command, arbitration during the device address portion of the SMBus alert command determines which devices the ALERT pin is activated. The device with the lowest address wins the arbitration. On winning the arbitration, the TMP110 inactivates the ALERT pin and/or clears the status bit. To prevent the device with lowest I²C address in continuous conversion mode sees the alert line and halt others with higher I²C address to report the alert, the controller has to temporarily disable the Alert mode in device with smallest I²C address until all alerts in the system are cleared.

7.5.4.5 Time-Out Function

The TMP110 resets the serial interface if the SCL line is held low by the controller or the SDA line is held low by the TMP110 for 30ms (typical) between a START and STOP condition. The TMP110 releases the SDA line if the SCL pin is pulled low and waits for a START condition from the controller. To avoid activating the timeout function, maintain a communication speed of at least 1kHz for the SCL operating frequency. If another device on the bus is holding the SDA pin low, the TMP110 does not reset.

7.5.4.6 Coexist on I3C Mixed Bus

A bus with both I3C and I^2C interfaces is referred to as a mixed with clock speeds up to 12.5MHz. The TMP110 is an I^2C device that can be on the same bus that has an I3C device attached as the TMP110 incorporates a spike suppression filter of 50ns on the SDA and SCL pins to avoid any interference to the bus when communicating with I3C devices.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

8 Register Map

Table 8-1. TMP110 Register Map

ADDRESS	TYPE	RESET	ACRONYM	REGISTER NAME	SECTION
00h	R	xxxxh	Temp_Result	Temperature result register	Go
01h	R/W	60A0h	Configuration	Configuration register	Go
02h	R/W	4B00h	TLow_Limit	Temperature low limit register	Go
03h	R/W	5000h	THigh_Limit	Temperature high limit register	Go
04h - FFh	R	xxxxh	Reserved	Reserved	

Table 8-2. TMP110 Register Section/Block Access Type Codes

Access Type	Code	Description
Read Type		
R	R	Read
RC	R	Read
	С	to Clear
R-0	R	Read
	-0	Returns 0s
Write Type		
W	W	Write
W0CP	W	W
	0C	0 to clear
	P	Requires privileged access
Reset or Default Value		
-n		Value after reset or the default value

 $\label{eq:copyright} \mbox{Copyright} \ \mbox{@ 2024 Texas Instruments Incorporated}$ $\mbox{Product Folder Links: $\it{TMP110}$}$

8.1 Temp_Result Register (address = 00h) [reset = xxxxh]

This register stores the latest temperature conversion result in a 12-bit or 13-bit two's complement format with a LSB equal to 0.0625°C depending on the Extended_Mode bit setting in the configuration register. The default format for the register at power up is normal mode.

Return to Register Map.

Table 8-3. Temp_Result Register (Normal Mode)

	indication of the indication (transmitted)										
15 14 13 12 11 10 9 8											
			Temp_Res	ult[11:4]							
R-xxh											
7	7 6 5 4 3 2 1 0										
	Temp_R	esult[3:0]			Reser	ved					
	R-	-xh			R-000	00b					

Table 8-4. Temp_Result Register (Extended Mode)

15 14 13 12 11 10 9 8										
	Temp_Result[12:5]									
R-xxh										
7	7 6 5 4 3 2 1 0									
		Temp_Result[4:0]		Reserved						
		R-xxh				R-001b				

Table 8-5. Temp_Result Register Field Description (Normal Mode)

Bit	Field	Туре	Reset	Description
15:4	Temp_Result[11:0]	R	xxxh	12-bit temperature conversion result Temperature data is represented by a 12-bit, two's complement word with an LSB equal to 0.0625°C when Extended_Mode bit is 0b
3:0	Reserved	R	0000b	Reserved

Table 8-6. Temp_Result Register Field Description (Extended Mode)

Bit	Field	Туре	Reset	Description
15:3	Temp_Result[12:0]	R	xxxxh	13-bit temperature conversion result Temperature data is represented by a 13-bit, two's complement word with an LSB equal to 0.0625°C when Extended_Mode bit is 1b
2:0	Reserved	R	001b	Reserved (The LSB is 1b)

8.2 Configuration Register (address = 01h) [reset = 60A0h]

This register is used to configure the operation of the TMP110 and also provides the alert status when ALERT pin is not available on the pin-out.

Return to Register Map.

Table 8-7. Configuration Register

15	14	13	12	11	10	9	8
One_Shot	Rese	erved	Fault	Fault[1:0]		Alert_Mode	Shutdown
R/W-0b	R-	11b	R/W-	R/W-00b		R/W-0b	R/W-0b
7	6	5	4	3	2	1	0
Conversior	n_Rate[1:0]	Alert	Extended_Mod e		Rese	erved	
R/W	-10b	R-1b	R/W-0b		R-00	000b	

Table 8-8. Configuration Register Field Description

Bit	Field	Туре	Reset	Description
15	One_Shot	R/W	Ob	One-shot conversion trigger applicable in shutdown mode only. In continuous conversion mode the bit reads 0b. In shutdown mode the bit reads 1b. Triggering a one-shot conversion happens only when the TMP110 is in shutdown mode. 0b = Active conversion ongoing 1b = Trigger a one-shot conversion or active conversion complete
14:13	Reserved	R	11b	Reserved
12:11	Fault[1:0]	R/W	00b	The fault bit is used to count the number of consecutive conversions for which the alert condition exists before the ALERT pin is asserted or status bit is set. 00b = 1 fault 01b = 2 faults 10b = 4 faults 11b = 6 faults
10	Polarity	R/W	Ob	The polarity bit allows the host to adjust the polarity of the ALERT pin/flag output. 0b = ALERT pin/flag output is active low 1b = ALERT pin/flag output is active high
9	Alert_Mode	R/W	0b	The alert mode bit indicates the how the temperature limits operate. 0b = Comparator mode 1b = Alert mode
8	Shutdown	R/W	0b	The shutdown bit is used to change the device conversion mode. 0b = Continuous conversion mode 1b = Shutdown mode
7:6	Conversion_Rate[1:0]	R/W	10b	The conversion rate bits configure the TMP110 conversion period. The default is conversion every 250ms. 00b = 4s / 0.25Hz 01b = 1s / 1Hz 10b = 0.25s / 4Hz 11b = 0.125s / 8Hz
5	Alert flag	R	1b	The alert is a read-only bit which provides the information about the alert status in comparator mode and is not affected by Alert_Mode setting. The polarity bit affects the alert flag.
4	Extended_Mode	R/W	0b	The extended mode bit configures the temperature format. 0b = Normal format with 12-bit 1b = Extended format with 13-bit
3:0	Reserved	R	0000b	Reserved

Product Folder Links: TMP110

8.3 TLow_Limit Register (address = 02h) [reset = 4B00h]

This register is used to configure the low temperature alert limit of the TMP110. The limit is formatted in a 12-bit or 13-bit two's complement format with a LSB equal to 62.5 m°C depending on the Extended_Mode bit setting in the configuration register. The default value on start-up is 4B00h or 75 °C in normal mode format.

Note: If the temperature register format is changed, the low limit register value must be updated accordingly.

Return to Register Map.

Table 8-9. TLow Limit Register (Normal Mode)

				(
15	14	13	12	11	10	9	8
			TLow_Lir	nit[11:4]			
			R/W-	4Bh			
7	6	5	4	3	2	1	0
	TLow_L	_imit[3:0]			Rese	ved	
	R/V	V-0h			R-00	00b	

Table 8-10. TLow_Limit Register (Extended Mode)

15	14	10	10	44	10	0	0
15	14	13	12	- 11	10	9	0
			mit[12:5]				
			-4Bh				
7	6	5	4	3	2	1	0
		TLow_Limit[4:0]			Reserved		
		R/W-00h				R-000b	

Table 8-11. TLow Limit Register Field Description (Normal Mode)

Bit	Field	Туре	Reset	Description
15:4	TLow_Limit[11:0]	R/W	4B0h	12-bit temperature low limit setting. Temperature low limit is represented by a 12-bit, two's complement word with an LSB equal to 62.5 m°C when Extended_Mode bit is 0b. The default setting for this is 75°C.
3:0	Reserved	R	0000b	Reserved

Table 8-12. TLow_Limit Register Field Description (Extended Mode)

Bit	Field	Туре	Reset	Description
15:3	TLow_Limit[12:0]	R/W		13-bit temperature low limit setting. Temperature low limit is represented by a 13-bit, two's complement word with an LSB equal to 62.5 m°C when Extended_Mode bit is 1b.
2:0	Reserved	R	000b	Reserved

8.4 THigh_Limit Register (address = 03h) [reset = 5000h]

This register is used to configure the high temperature alert limit of the TMP110. The limit is formatted in a 12-bit or 13-bit two's complement format with a LSB equal to 62.5 m°C depending on the Extended_Mode bit setting in the configuration register. The default value on start-up is 5000h or 80 °C in normal mode format.

Note: If the temperature register format is changed, the high limit register value must be updated accordingly. Return to Register Map.

Table 8-13. THigh_Limit Register (Normal Mode)

			<u> </u>	<u> </u>			
15	14	13	12	11	10	9	8
			THigh_Li	mit[11:4]			
			R/W-	-50h			
7	6	5	4	3	2	1	0
	THigh_L	imit[3:0]			Reser	ved	
	R/W	′-0h			R-000)0b	

Table 8-14. THigh_Limit Register (Extended Mode)

23	22	21	20	19	18	17	16
			imit[12:5]				
			-50h				
7	6	5	4	3	2	1	0
		THigh_Limit[4:0]			Reserved		
		R/W-0h				R-000b	

Table 8-15. THigh Limit Register Field Description (Normal Mode)

	14.515 5 151 1111911_		9.0100	ia zecenparen (iterman mede)
Bit	Field	Туре	Reset	Description
15:4	THigh_Limit[11:0]	R/W	500h	12-bit temperature high limit setting. Temperature high limit is represented by a 12-bit, two's complement word with an LSB equal to 62.5 m°C when Extended_Mode bit is 0b. The default setting for this is 80 °C.
3:0	Reserved	R	0000b	Reserved

Table 8-16. THigh_Limit Register Field Description (Extended Mode)

Bit	Field	Туре	Reset	Description
15:3	THigh_Limit[12:0]	R/W	5000h	13-bit temperature low limit setting. Temperature low limit is represented by a 13-bit, two's complement word with an LSB equal to 62.5 m°C.
2:0	Reserved	R	000b	Reserved

Product Folder Links: TMP110

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The TMP110 can be operated with a two-wire I^2C or SMBus compatible interface and features the ability to operate with a 1.2V bus voltage. The TMP110 features a uniquely small size of 0.8mm × 0.8mm with a 0.4mm z-height for space-constrained applications.

9.2 Equal I²C Pullup and Supply Application

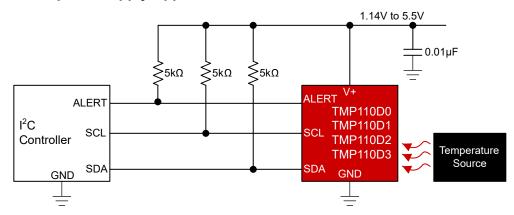


Figure 9-1. Equal I²C Pullup and Supply Voltage Application

9.2.1 Design Requirements

For this design example, use the parameters listed below.

Table 9-1. Design Parameters

PARAMETER	VALUE
Supply (V+)	1.14V to 5.5V
SDA, SCL V _{PULLUP}	V+
SDA SCL R _{PULLUP}	5kΩ

9.2.2 Detailed Design Procedure

The SDA and SCL pin voltage of the TMP110 can be the same as the supply voltage V+. The accuracy of the TMP110 is not affected by the pullup voltage. However, using a minimal SDA and ALERT pins pull-up current is recommended to prevent self-heating and temperature accuracy reduction. In addition, it is recommended to not have any communication on I²C bus during temperature conversion to minimize measurement noise.

9.2.3 Application Curve

Figure 9-2 shows the step response of the TMP110 to a submersion in an oil bath of 75°C from room temperature (25°C). The time-constant, or the time for the output to reach 63% of the input step, is 1.45s. The time-constant result depends on the printed-circuit board (PCB) size that the TMP110 is mounted. For this test, the TMP110 is soldered to a two-layer PCB that measured 0.5 inches × 0.5 inches.

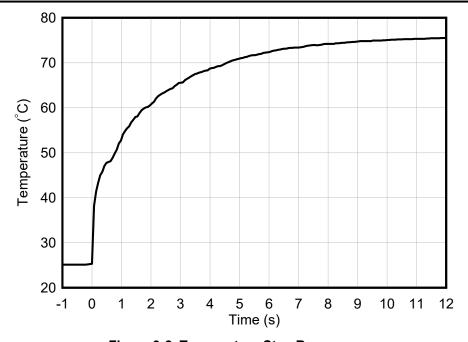


Figure 9-2. Temperature Step Response

9.2.4 Power Supply Recommendations

The TMP110 operates with power supply in the range of 1.14V to 5.5V. The device can measure temperature accurately in the full supply range. A power-supply bypass capacitor is required for proper operation. Place this capacitor as close as possible to the supply and ground pins of the device. A typical value for this supply bypass capacitor is $0.01\mu F$. Applications with noisy or high-impedance power supplies can require additional decoupling capacitors to reject power-supply noise.

9.3 Layout

9.3.1 Layout Guidelines

The TMP110 is a simple device to layout. Place the power supply bypass capacitor as close to the device as possible. Pull up the open-drain output pin SDA through pullup resistor.

9.3.2 Layout Example

There are special considerations that need to be taken for the TMP110 X2SON package. These considerations are due to the center pad being electrically connected to either address or alert (depending on the orderables shown in Table 7-8) and because of the dimensions of the package and the pads. With the address option, the center pad can be directly connected with a trace on the same layer to one of the 4 edge pins for setting the device address as shown in Figure 9-3.

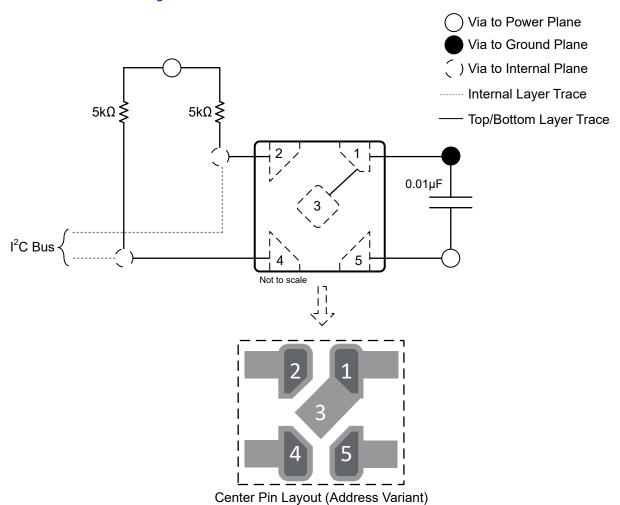


Figure 9-3. ADD0 Pin Layout Example

When using the ALERT pin of the device, a 4 mil trace can be routed between pins 1 and 5 or pins 2 and 4. This signal can be either routed out in between the pads or on a different layer using a via within the center pad as shown in Figure 9-4. Both of these methods have constraints that must be considered as explained below. Ultimately, choosing one of these methods depends on the specifications of the board manufacturing process:

- Option 1 (Routing in between pads): introduces trace clearance and trace width limitations. As the maximum space between pads is 0.26mm (10.2 mil), assuming a trace width of 0.1mm (4 mil) limits the minimum clearance to 0.08mm (3.15 mil).
- Option 2 (Routing on a different layer using a via): has specific benefits to the user application. For instance, minimum trace clearance and trace width are higher but require a via on the center pad with specific dimensions. The via diameter must be less than 0.305mm (13.78 mil) to keep the via smaller than the center pad and a minimum drill diameter of 0.1mm (4 mil) can be assumed to avoid manufacturing issues. With this scenario, a minimum annular ring width specification of 0.125mm (5 mil) is required: Anullar Ring Width (mm) = (0.305-0.1)/2.

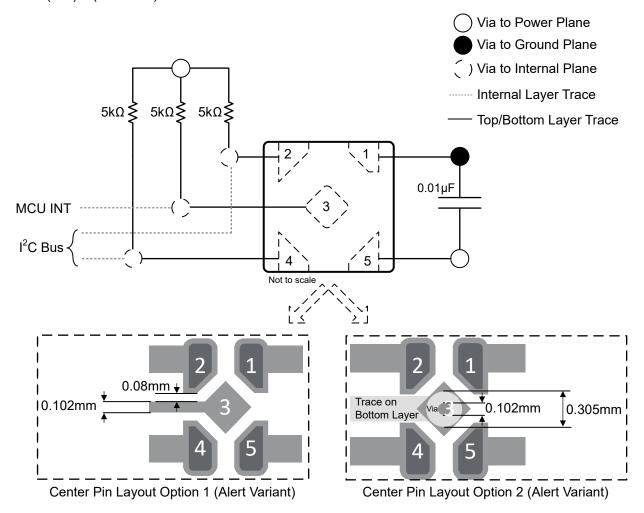


Figure 9-4. ALERT Pin Layout Example

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

10 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

10.1 Documentation Support

10.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, TMP102 Low-Power Digital Temperature Sensor With SMBus and Two-Wire Serial Interface in SOT563, data sheet
- Texas Instruments, TMP112x High-Accuracy, Low-Power, Digital Temperature Sensors With SMBus and TwoWire Serial Interface in SOT563, data sheet
- Texas Instruments, TMP1075 Temperature Sensor With I2C and SMBus Interface in Industry Standard LM75
 Form Factor and Pinout, data sheet
- Texas Instruments, TMP LM 75 Comparison Common FAQs, application note
- Texas Instruments, TMP110 Evaluation Module, EVM user's guide
- Texas Instruments, Small-Size TMP110 Versus TI's Temperature Sensors, product overview

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

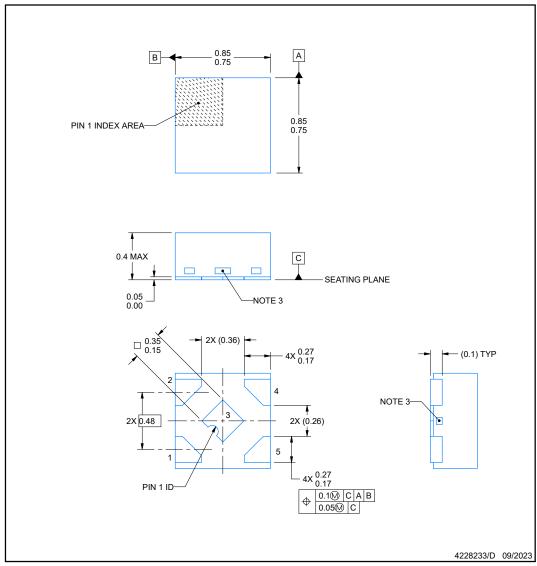
11 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (February 2024) to Revision A (July 2024) Updated the number format for tables, figures, and cross-references throughout the document. Changed the document status From: Advance Information To: Production data. Updated empty graphs in the *Typical Characteristics* section.

Copyright © 2024 Texas Instruments Incorporated

12 Mechanical, Packaging, and Orderable Information


The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

DPW0005B

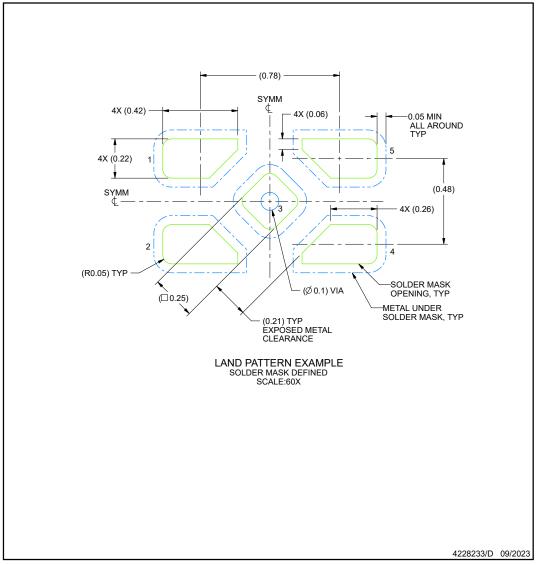
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The size and shape of this feature may vary.



EXAMPLE BOARD LAYOUT

DPW0005B

X2SON - 0.4 mm max height

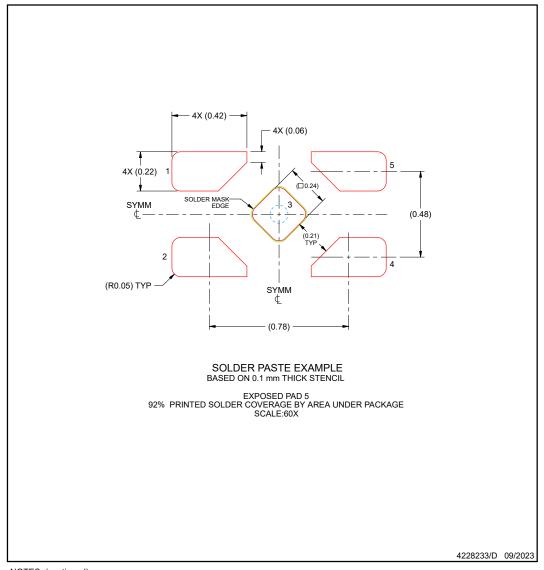
PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated



EXAMPLE STENCIL DESIGN

DPW0005B

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com 16-Aug-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
PTMP110D0IDPWR	ACTIVE	X2SON	DPW	5	3000	TBD	(6) Call TI	Call TI	-40 to 125		Samples
TMP110D0IDPWR	ACTIVE	X2SON	DPW	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	Q	Samples
TMP110D1IDPWR	ACTIVE	X2SON	DPW	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	R	Samples
TMP110D2IDPWR	ACTIVE	X2SON	DPW	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	S	Samples
TMP110D3IDPWR	ACTIVE	X2SON	DPW	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	Т	Samples
TMP110DIDPWR	ACTIVE	X2SON	DPW	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	А	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

www.ti.com 16-Aug-2024

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 25-Sep-2024

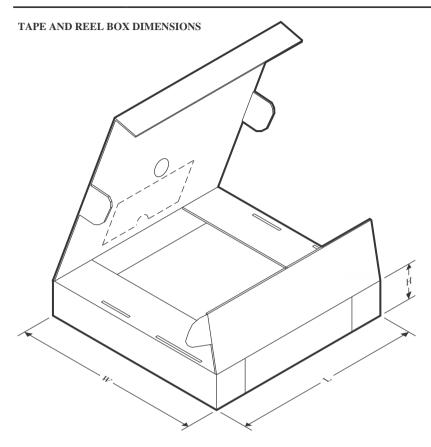
TAPE AND REEL INFORMATION

Texas Instruments

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



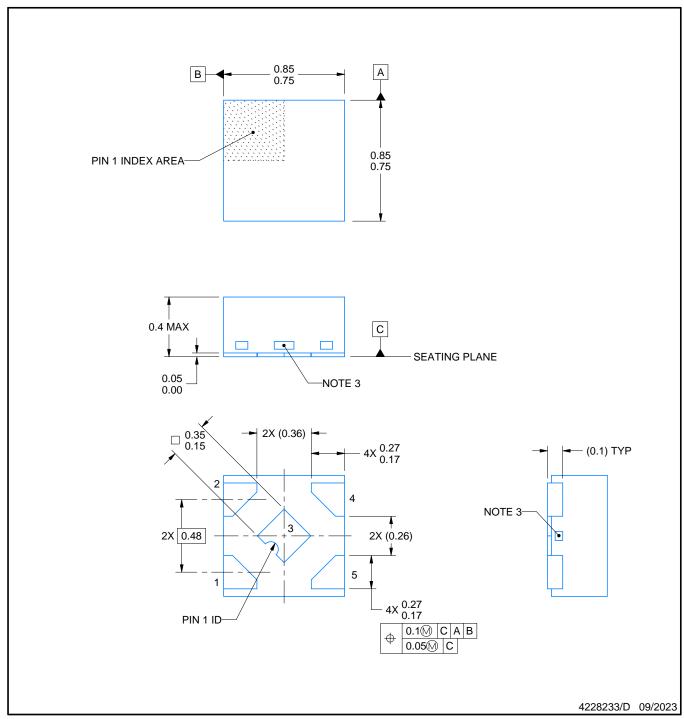
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMP110D0IDPWR	X2SON	DPW	5	3000	180.0	8.4	0.91	0.91	0.5	2.0	8.0	Q2
TMP110D1IDPWR	X2SON	DPW	5	3000	180.0	8.4	0.91	0.91	0.5	2.0	8.0	Q2
TMP110D2IDPWR	X2SON	DPW	5	3000	180.0	8.4	0.91	0.91	0.5	2.0	8.0	Q2
TMP110D3IDPWR	X2SON	DPW	5	3000	180.0	8.4	0.91	0.91	0.5	2.0	8.0	Q2
TMP110DIDPWR	X2SON	DPW	5	3000	180.0	8.4	0.91	0.91	0.5	2.0	8.0	Q2

www.ti.com 25-Sep-2024

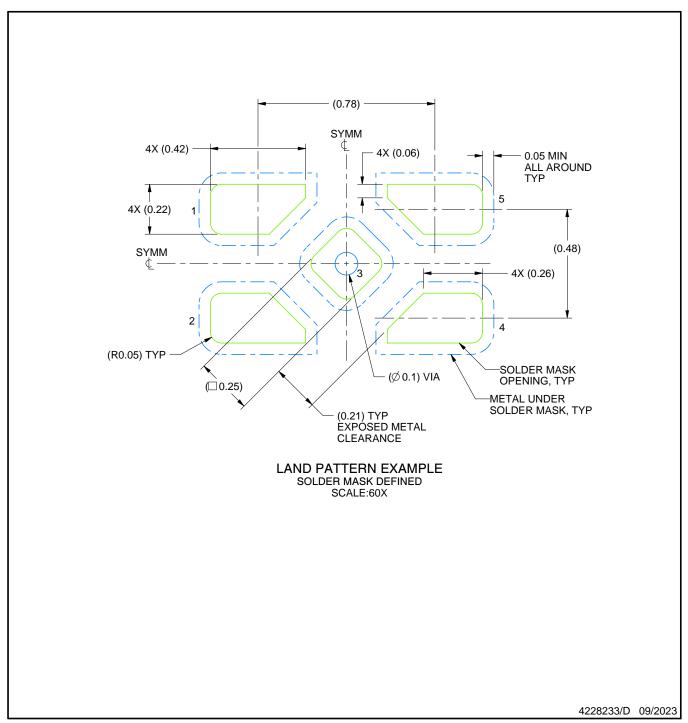
*All dimensions are nominal

7 till dillitoriolorio di o rioriniriai							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMP110D0IDPWR	X2SON	DPW	5	3000	210.0	185.0	35.0
TMP110D1IDPWR	X2SON	DPW	5	3000	210.0	185.0	35.0
TMP110D2IDPWR	X2SON	DPW	5	3000	210.0	185.0	35.0
TMP110D3IDPWR	X2SON	DPW	5	3000	210.0	185.0	35.0
TMP110DIDPWR	X2SON	DPW	5	3000	210.0	185.0	35.0


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4211218-3/D

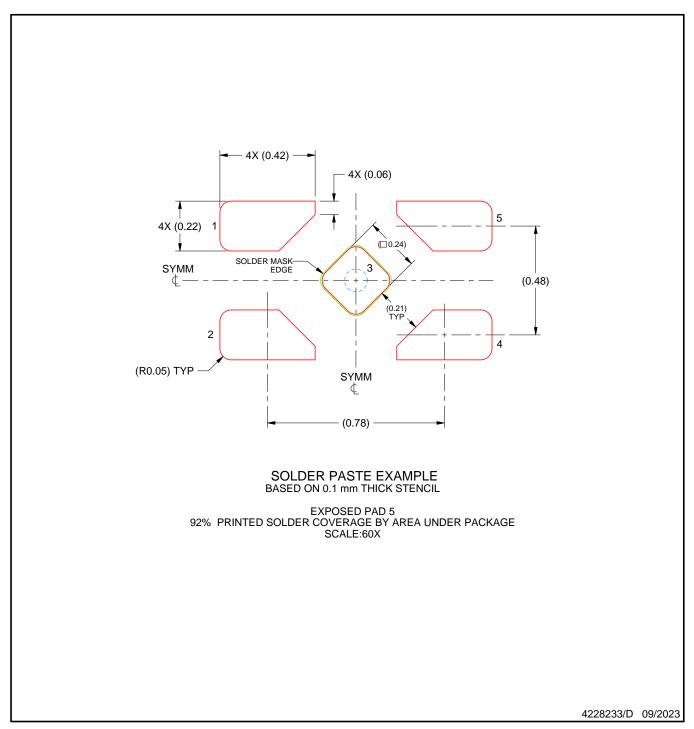
PLASTIC SMALL OUTLINE - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The size and shape of this feature may vary.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated