TPS6593-Q1

ACTIVE

Automotive 2.8-V to 5.5-V PMIC with 5 bucks and 4 LDOs

Product details

Processor supplier Generic Processor name Generic Regulated outputs (#) 9 Step-down DC/DC converter 5 Step-up DC/DC converter 0 LDO 4 Vin (min) (V) 2.8 Vin (max) (V) 5.5 Vout (min) (V) 0.3 Vout (max) (V) 3.3 Iout (max) (A) 14 TI functional safety category Functional Safety-Compliant Configurability User programmable Features Adaptive/dynamic voltage scaling, Comm control, Dynamic voltage scaling, I2C control, Multiple outputs, Output discharge, Overcurrent protection, Power good, Power sequencing, SPI control, Soft-start adjustable Rating Automotive Operating temperature range (°C) -40 to 125 Step-down DC/DC controller 0 Step-up DC/DC controller 0 Iq (typ) (mA) 0.002 Switching frequency (max) (kHz) 2400 Shutdown current (ISD) (typ) (µA) 2 Switching frequency (typ) (kHz) 2200 Product type Processor and FPGA
Processor supplier Generic Processor name Generic Regulated outputs (#) 9 Step-down DC/DC converter 5 Step-up DC/DC converter 0 LDO 4 Vin (min) (V) 2.8 Vin (max) (V) 5.5 Vout (min) (V) 0.3 Vout (max) (V) 3.3 Iout (max) (A) 14 TI functional safety category Functional Safety-Compliant Configurability User programmable Features Adaptive/dynamic voltage scaling, Comm control, Dynamic voltage scaling, I2C control, Multiple outputs, Output discharge, Overcurrent protection, Power good, Power sequencing, SPI control, Soft-start adjustable Rating Automotive Operating temperature range (°C) -40 to 125 Step-down DC/DC controller 0 Step-up DC/DC controller 0 Iq (typ) (mA) 0.002 Switching frequency (max) (kHz) 2400 Shutdown current (ISD) (typ) (µA) 2 Switching frequency (typ) (kHz) 2200 Product type Processor and FPGA
VQFNP (RWE) 56 64 mm² 8 x 8
  • Qualified for automotive applications
  • AEC-Q100 qualified with the following results:
    • Device operates from 3 V to 5.5 V input supply
    • Device temperature grade 1: –40°C to +125°C ambient operating temperature range
    • Device HBM classification level 2
    • Device CDM classification level C4A
  • Functional Safety-Compliant
    • Developed for functional safety applications
    • Documentation to aid ISO26262 and IEC61508 system design available upon product release
    • Systematic capability up to ASIL-D and SIL-3
    • Hardware integrity up to ASIL-B and SIL-2
    • Input supply voltage monitor
    • Under/overvoltage monitors and over-current monitors on all output supply rails
    • Watchdog with selectable trigger / Q&A mode
    • Two error signal monitors (ESMs) with selectable level / PWM mode
    • Thermal monitoring with high temperature warning and thermal shutdown
    • Bit-integrity (CRC) error detection on internal configuration registers and non-volatile memory (NVM)
  • Low-power consumption
    • 2 µA typical shutdown current
    • 7 µA typical in back up supply only mode
    • 20 µA typical in low power standby mode
  • Five step-down switched-mode power supply (BUCK) regulators:
    • 0.3 V to 3.34 V output voltage range in 5, 10, or 20-mV steps
    • One with 4 A, three with 3.5 A, and one with 2 A output current capability
    • Flexible multi-phase capability for four BUCKs: up to 14 A output current from a single rail
    • Short-circuit and over-current protection
    • Internal soft-start for in-rush current limitation
    • 2.2 MHz / 4.4 MHz switching frequency
    • Ability to synchronize to external clock input
  • Three low-dropout (LDO) linear regulators with configurable bypass mode
    • 0.6 V to 3.3 V output voltage range with 50-mV steps in linear regulation mode
    • 1.7 V to 3.3 V output voltage range in bypass mode
    • 500 mA output current capability with short-circuit and over-current protection
  • One low-dropout (LDO) linear regulator with low-noise performance
    • 1.2 V to 3.3 V output voltage range in 25-mV steps
    • 300 mA output current capability with short-circuit and over-current protection
  • Configurable power sequence control in non-volatile memory (NVM):
    • Configurable power-up and power-down sequences between power states
    • Digital output signals can be included in the power sequences
    • Digital input signals can be used to trigger power sequence transitions
    • Configurable handling of safety-relevant errors
  • 32-kHz crystal oscillator with option to output a buffered 32-kHz clock output
  • Real-time clock (RTC) with alarm and periodic wake-up mechanism
  • One SPI or two I 2C control interfaces , with second I 2C interface dedicated for Q&A watchdog communication
  • Package option:
    • 8-mm × 8-mm 56-pin VQFNP with 0.5-mm pitch
  • Qualified for automotive applications
  • AEC-Q100 qualified with the following results:
    • Device operates from 3 V to 5.5 V input supply
    • Device temperature grade 1: –40°C to +125°C ambient operating temperature range
    • Device HBM classification level 2
    • Device CDM classification level C4A
  • Functional Safety-Compliant
    • Developed for functional safety applications
    • Documentation to aid ISO26262 and IEC61508 system design available upon product release
    • Systematic capability up to ASIL-D and SIL-3
    • Hardware integrity up to ASIL-B and SIL-2
    • Input supply voltage monitor
    • Under/overvoltage monitors and over-current monitors on all output supply rails
    • Watchdog with selectable trigger / Q&A mode
    • Two error signal monitors (ESMs) with selectable level / PWM mode
    • Thermal monitoring with high temperature warning and thermal shutdown
    • Bit-integrity (CRC) error detection on internal configuration registers and non-volatile memory (NVM)
  • Low-power consumption
    • 2 µA typical shutdown current
    • 7 µA typical in back up supply only mode
    • 20 µA typical in low power standby mode
  • Five step-down switched-mode power supply (BUCK) regulators:
    • 0.3 V to 3.34 V output voltage range in 5, 10, or 20-mV steps
    • One with 4 A, three with 3.5 A, and one with 2 A output current capability
    • Flexible multi-phase capability for four BUCKs: up to 14 A output current from a single rail
    • Short-circuit and over-current protection
    • Internal soft-start for in-rush current limitation
    • 2.2 MHz / 4.4 MHz switching frequency
    • Ability to synchronize to external clock input
  • Three low-dropout (LDO) linear regulators with configurable bypass mode
    • 0.6 V to 3.3 V output voltage range with 50-mV steps in linear regulation mode
    • 1.7 V to 3.3 V output voltage range in bypass mode
    • 500 mA output current capability with short-circuit and over-current protection
  • One low-dropout (LDO) linear regulator with low-noise performance
    • 1.2 V to 3.3 V output voltage range in 25-mV steps
    • 300 mA output current capability with short-circuit and over-current protection
  • Configurable power sequence control in non-volatile memory (NVM):
    • Configurable power-up and power-down sequences between power states
    • Digital output signals can be included in the power sequences
    • Digital input signals can be used to trigger power sequence transitions
    • Configurable handling of safety-relevant errors
  • 32-kHz crystal oscillator with option to output a buffered 32-kHz clock output
  • Real-time clock (RTC) with alarm and periodic wake-up mechanism
  • One SPI or two I 2C control interfaces , with second I 2C interface dedicated for Q&A watchdog communication
  • Package option:
    • 8-mm × 8-mm 56-pin VQFNP with 0.5-mm pitch

The TPS6593-Q1 device provides four flexible multi-phase configurable BUCK regulators with 3.5 A output current per phase, and one additional BUCK regulator with 2 A output current.

All of the BUCK regulators can be synchronized to an internal 2.2-MHz or 4.4-MHz or an external 1-MHz, 2-MHz, or 4-MHz clock signal. To improve the EMC performance, an integrated spread-spectrum modulation can be added to the synchronized BUCK switching clock signal. This clock signal can also be made available to external devices through a GPIO output pin. The device provides four LDOs: three with 500-mA capability, which can be configured as load switches; one with 300-mA capability and low-noise performance.

Non-volatile memory (NVM) is used to control the default power sequences and default configurations, such as output voltage and GPIO configurations. The NVM is pre-programmed to allow start-up without external programming. Most static configurations, stored in the register map of the device, can be changed from the default through SPI or I 2C interfaces to configure the device to meet many different system needs. The NVM contains a bit-integrity-error detection feature (CRC) to stop the power-up sequence if an error is detected, preventing the system from starting in an unknown state.

The TPS6593-Q1 includes a 32-kHz crystal oscillator, which generates an accurate 32-kHz clock for the integrated RTC module. A backup-battery management provides power to the crystal oscillator and the real-time clock (RTC) module from a coin cell battery or a super-cap in the event of power loss from the main supply.

The TPS6593-Q1 device includes protection and diagnostic mechanisms such as voltage monitoring on the input supply, voltage monitoring on all BUCK and LDO regulator outputs, register and interface CRC, current-limit, short-circuit protection, thermal pre-warning, and over-temperature shutdown. The device also includes a Q&A or trigger mode watchdog to monitor for MCU software lockup, and two error signal monitor (ESM) inputs with fault injection options to monitor the error signals from the attached SoC or MCU. The TPS6593-Q1 can notify the processor of these events through the interrupt handler, allowing the MCU to take action in response.

The TPS6593-Q1 device provides four flexible multi-phase configurable BUCK regulators with 3.5 A output current per phase, and one additional BUCK regulator with 2 A output current.

All of the BUCK regulators can be synchronized to an internal 2.2-MHz or 4.4-MHz or an external 1-MHz, 2-MHz, or 4-MHz clock signal. To improve the EMC performance, an integrated spread-spectrum modulation can be added to the synchronized BUCK switching clock signal. This clock signal can also be made available to external devices through a GPIO output pin. The device provides four LDOs: three with 500-mA capability, which can be configured as load switches; one with 300-mA capability and low-noise performance.

Non-volatile memory (NVM) is used to control the default power sequences and default configurations, such as output voltage and GPIO configurations. The NVM is pre-programmed to allow start-up without external programming. Most static configurations, stored in the register map of the device, can be changed from the default through SPI or I 2C interfaces to configure the device to meet many different system needs. The NVM contains a bit-integrity-error detection feature (CRC) to stop the power-up sequence if an error is detected, preventing the system from starting in an unknown state.

The TPS6593-Q1 includes a 32-kHz crystal oscillator, which generates an accurate 32-kHz clock for the integrated RTC module. A backup-battery management provides power to the crystal oscillator and the real-time clock (RTC) module from a coin cell battery or a super-cap in the event of power loss from the main supply.

The TPS6593-Q1 device includes protection and diagnostic mechanisms such as voltage monitoring on the input supply, voltage monitoring on all BUCK and LDO regulator outputs, register and interface CRC, current-limit, short-circuit protection, thermal pre-warning, and over-temperature shutdown. The device also includes a Q&A or trigger mode watchdog to monitor for MCU software lockup, and two error signal monitor (ESM) inputs with fault injection options to monitor the error signals from the attached SoC or MCU. The TPS6593-Q1 can notify the processor of these events through the interrupt handler, allowing the MCU to take action in response.

Download View video with transcript Video
Request more information

Functional safety information such as failure modes, effects and diagnostic analysis (FMEDA), safety analysis reports and safety manuals are available. Request now

Similar products you might be interested in

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
TPS6594-Q1 ACTIVE Automotive 2.8-V to 5.5-V PMIC with five buck regulators and four low-dropout regulators Helps achieve ASIL-D functional safety.

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 7
Type Title Date
* Data sheet TPS6593-Q1 Power Management IC (PMIC) with 5 BUCKs and 4 LDOs for Safety-Relevant Automotive Applications datasheet (Rev. B) PDF | HTML 20 Sep 2023
Application brief Power-Supply Design for Horizon Robotics Journey 3 PDF | HTML 08 Aug 2024
Technical article Four power supply challenges in ADAS front camera designs PDF | HTML 05 Jan 2024
Product overview PMIC Solution for AM62A PDF | HTML 31 Aug 2023
User guide TPS65931211-Q1 PMIC User Guide for AM62A PDF | HTML 27 Jul 2023
Certificate TPS6593EVM EU Declaration of Conformity (DoC) (Rev. A) 02 May 2023
User guide Programmable PMICs: TPS6593-Q1 Default Configuration for TPS6593EVM 04 May 2021

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

TPS6594-Q1 PSpice Transient Model (Rev. B)

SLVMDJ8B.ZIP (241 KB) - PSpice Model
Package Pins CAD symbols, footprints & 3D models
VQFNP (RWE) 56 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos