SN65LVDS33-EP
- Controlled Baseline — One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of Up to -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree(1)
- 400-Mbps Signaling Rate(2) and 200-Mxfr/s Data Transfer Rate
- Operates With a Single 3.3-V Supply
- -4-V to 5-V Common-Mode Input Voltage Range
- Differential Input Thresholds < ±50 mV With 50 mV of Hysteresis Over Entire Common-Mode Input Voltage Range
- Integrated 110- Line Termination Resistors On LVDT Products
- Complies With TIA/EIA-644 (LVDS)
- Active Failsafe Assures a High-Level Output With No Input
- Bus-Pin ESD Protection Exceeds 15-kV HBM
- Input Remains High-Impedance On Power Down
- TTL Inputs Are 5-V Tolerant
- Pin-Compatible With the AM26LS32, SN65LVDS32B, µA9637, SN65LVDS9637B
(1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
(2) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).
This family of four LVDS data line receivers offers the widest common-mode input voltage range in the industry. These receivers provide an input voltage range specification compatible with a 5-V PECL signal as well as an overall increased ground-noise tolerance. They are in industry standard footprints with integrated termination as an option.
Precise control of the differential input voltage thresholds allows for inclusion of 50 mV of input voltage hysteresis to improve noise rejection on slowly changing input signals. The input thresholds are still no more than +50 mV over the full input common-mode voltage range.
The high-speed switching of LVDS signals usually necessitates the use of a line impedance matching resistor at the receiving-end of the cable or transmission media. The SN65LVDT series of receivers eliminates this external resistor by integrating it with the receiver. The nonterminated SN65LVDS series is also available for multidrop or other termination circuits.
The receivers can withstand ±15-kV human-body model (HBM) and ±600-V machine model (MM) electrostatic discharges to the receiver input pins with respect to ground without damage. This provides reliability in cabled and other connections where potentially damaging noise is always a threat.
The receivers also include a (patent pending) failsafe circuit that provides a high-level output within 600 ns after loss of the input signal. The most common causes of signal loss are disconnected cables, shorted lines, or powered-down transmitters. The failsafe circuit prevents noise from being received as valid data under these fault conditions. This feature may also be used for Wired-Or bus signaling. See The Active Failsafe Feature of the SN65LVDS32B application note.
The intended application and signaling technique of these devices is point-to-point baseband data transmission over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.
The SN65LVDS33-EP is characterized for operation from -55°C to 125°C.
技術文件
類型 | 標題 | 日期 | ||
---|---|---|---|---|
* | Data sheet | SN65LVDS33-EP High-Speed Differential Receivers datasheet (Rev. B) | 2007年 4月 19日 | |
* | VID | SN65LVDS33-EP VID V6205614 | 2016年 6月 21日 | |
* | Radiation & reliability report | SN65LVDS33MDREP Reliability Report | 2013年 9月 6日 | |
Application brief | LVDS to Improve EMC in Motor Drives | 2018年 9月 27日 | ||
Application brief | How Far, How Fast Can You Operate LVDS Drivers and Receivers? | 2018年 8月 3日 | ||
Application brief | How to Terminate LVDS Connections with DC and AC Coupling | 2018年 5月 16日 |
設計與開發
如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。
SN65LVDS31-33EVM — 適用 SN65LVDS31 和 SN65LVDS33 的評估模組
TI offers a series of low-voltage differential signaling (LVDS) evaluation modules (EVMs) designed for analysis of the electrical characteristics of LVDS drivers and receivers. Four unique EVMs are available to evaluate the different classes of LVDS devices offered by TI.
As seen in the Combination (...)
PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具
TINA-TI — 基於 SPICE 的類比模擬程式
封裝 | 針腳 | CAD 符號、佔位空間與 3D 模型 |
---|---|---|
SOIC (D) | 16 | Ultra Librarian |
訂購與品質
- RoHS
- REACH
- 產品標記
- 鉛塗層/球物料
- MSL 等級/回焊峰值
- MTBF/FIT 估算值
- 材料內容
- 認證摘要
- 進行中持續性的可靠性監測
- 晶圓廠位置
- 組裝地點
建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。