TL497A

現行

500-mA 峰值升壓、降壓、反相開關電壓穩壓器

現在提供此產品的更新版本

open-in-new 比較替代產品
功能相同,但引腳輸出與所比較的產品不同
LM5157 現行 具雙隨機展頻的 6A/4A、50-V、2.2-MHz 大範圍 VIN 升壓、返馳式、SEPIC 轉換器 Lower quiescent current, wider voltage range

產品詳細資料

Vin (min) (V) 4.5 Vin (max) (V) 12 Operating temperature range (°C) -40 to 85 Topology Boost, Buck, Flyback, Forward, SEPIC Rating Catalog Vout (min) (V) -25 Vout (max) (V) 30 Features Enable, Nonsynchronous rectification Iq (typ) (µA) 11000
Vin (min) (V) 4.5 Vin (max) (V) 12 Operating temperature range (°C) -40 to 85 Topology Boost, Buck, Flyback, Forward, SEPIC Rating Catalog Vout (min) (V) -25 Vout (max) (V) 30 Features Enable, Nonsynchronous rectification Iq (typ) (µA) 11000
PDIP (N) 14 181.42 mm² 19.3 x 9.4 SOIC (D) 14 51.9 mm² 8.65 x 6 SOP (NS) 14 79.56 mm² 10.2 x 7.8 TSSOP (PW) 14 32 mm² 5 x 6.4
  • High Efficiency . . . 60% or Greater
  • Peak Switch Current . . . 500 mA
  • Input Current Limit Protection
  • TTL-Compatible Inhibit
  • Adjustable Output Voltage
  • Input Regulation . . . 0.2% Typ
  • Output Regulation . . . 0.4% Typ
  • Soft Start-Up Capability
  • Can be Used in Buck, Boost, and Inverting Configurations

  • High Efficiency . . . 60% or Greater
  • Peak Switch Current . . . 500 mA
  • Input Current Limit Protection
  • TTL-Compatible Inhibit
  • Adjustable Output Voltage
  • Input Regulation . . . 0.2% Typ
  • Output Regulation . . . 0.4% Typ
  • Soft Start-Up Capability
  • Can be Used in Buck, Boost, and Inverting Configurations

The TL497A incorporates all the active functions required in the construction of switching voltage regulators. It also can be used as the control element to drive external components for high-power-output applications. The TL497A was designed for ease of use in step-up, step-down, or voltage-inversion applications requiring high efficiency.

The TL497A is a fixed-on-time variable-frequency switching-voltage-regulator control circuit. The switch-on time is programmed by a single external capacitor connected between FREQ CONTROL and GND. This capacitor, CT, is charged by an internal constant-current generator to a predetermined threshold. The charging current and the threshold vary proportionally with VCC. Thus, the switch-on time remains constant over the specified range of input voltage (4.5 V to 12 V). Typical on times for various values of CT are as follows:

TIMING CAPACITOR, CT (pF) 200 250 350 400 500 750 1000 1500 2000
ON TIME (µs) 19 22 26 32 44 56 80 120 180

The output voltage is controlled by an external resistor ladder network (R1 and R2 in Figures 1, 2, and 3) that provides a feedback voltage to the comparator input. This feedback voltage is compared to the reference voltage of 1.2 V (relative to SUBSTRATE) by the high-gain comparator. When the output voltage decays below the value required to maintain 1.2 V at the comparator input, the comparator enables the oscillator circuit, which charges and discharges CT as described above. The internal pass transistor is driven on during the charging of CT. The internal transistor can be used directly for switching currents up to 500 mA. Its collector and emitter are uncommitted, and it is current driven to allow operation from the positive supply voltage or ground. An internal Schottky diode matched to the current characteristics of the internal transistor also is available for blocking or commutating purposes. The TL497A also has on-chip current-limit circuitry that senses the peak currents in the switching regulator and protects the inductor against saturation and the pass transistor against overstress. The current limit is adjustable and is programmed by a single sense resistor, RCL, connected between VCC and CUR LIM SENS. The current-limit circuitry is activated when 0.7 V is developed across RCL. External gating is provided by the INHIBIT input. When the INHIBIT input is high, the output is turned off.

Simplicity of design is a primary feature of the TL497A. With only six external components (three resistors, two capacitors, and one inductor), the TL497A operates in numerous voltage-conversion applications (step-up, step-down, invert) with as much as 85% of the source power delivered to the load. The TL497A replaces the TL497 in all applications.

The TL497AC is characterized for operation from 0°C to 70°C. The TL497AI is characterized for operation from -40°C to 85°C.

The TL497A incorporates all the active functions required in the construction of switching voltage regulators. It also can be used as the control element to drive external components for high-power-output applications. The TL497A was designed for ease of use in step-up, step-down, or voltage-inversion applications requiring high efficiency.

The TL497A is a fixed-on-time variable-frequency switching-voltage-regulator control circuit. The switch-on time is programmed by a single external capacitor connected between FREQ CONTROL and GND. This capacitor, CT, is charged by an internal constant-current generator to a predetermined threshold. The charging current and the threshold vary proportionally with VCC. Thus, the switch-on time remains constant over the specified range of input voltage (4.5 V to 12 V). Typical on times for various values of CT are as follows:

TIMING CAPACITOR, CT (pF) 200 250 350 400 500 750 1000 1500 2000
ON TIME (µs) 19 22 26 32 44 56 80 120 180

The output voltage is controlled by an external resistor ladder network (R1 and R2 in Figures 1, 2, and 3) that provides a feedback voltage to the comparator input. This feedback voltage is compared to the reference voltage of 1.2 V (relative to SUBSTRATE) by the high-gain comparator. When the output voltage decays below the value required to maintain 1.2 V at the comparator input, the comparator enables the oscillator circuit, which charges and discharges CT as described above. The internal pass transistor is driven on during the charging of CT. The internal transistor can be used directly for switching currents up to 500 mA. Its collector and emitter are uncommitted, and it is current driven to allow operation from the positive supply voltage or ground. An internal Schottky diode matched to the current characteristics of the internal transistor also is available for blocking or commutating purposes. The TL497A also has on-chip current-limit circuitry that senses the peak currents in the switching regulator and protects the inductor against saturation and the pass transistor against overstress. The current limit is adjustable and is programmed by a single sense resistor, RCL, connected between VCC and CUR LIM SENS. The current-limit circuitry is activated when 0.7 V is developed across RCL. External gating is provided by the INHIBIT input. When the INHIBIT input is high, the output is turned off.

Simplicity of design is a primary feature of the TL497A. With only six external components (three resistors, two capacitors, and one inductor), the TL497A operates in numerous voltage-conversion applications (step-up, step-down, invert) with as much as 85% of the source power delivered to the load. The TL497A replaces the TL497 in all applications.

The TL497AC is characterized for operation from 0°C to 70°C. The TL497AI is characterized for operation from -40°C to 85°C.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 6
類型 標題 日期
* Data sheet TL497A datasheet (Rev. F) 2005年 2月 22日
Application note Understanding Inverting Buck-Boost Power Stages in Switch Mode Power Supplies (Rev. B) 2019年 3月 12日
Selection guide Power Management Guide 2018 (Rev. R) 2018年 6月 25日
Application note Designing Switching Voltage Regulators with TL497A 2003年 8月 11日
Application note Understanding Boost Power Stages In Switchmode Power Supplies 1999年 3月 4日
Application note Understanding Buck Power Stages In Switchmode Power Supplies 1999年 3月 4日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

封裝 針腳 CAD 符號、佔位空間與 3D 模型
PDIP (N) 14 Ultra Librarian
SOIC (D) 14 Ultra Librarian
SOP (NS) 14 Ultra Librarian
TSSOP (PW) 14 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片