Implementation of Echo Control
for G165/ DECT on Texas
Instruments TMS320C62xx
processors

Application Report

Last updated 5-May-98

Q’ TEXAS
INSTRUMENTS

Overview

The 4-Wire to 2-Wire Hybrid used in analogue telephone transmission introduces an echo into
the received part, when this echo is less than a few milliseconds it provides the telephone user
with “comfort” that is telephone is indeed working, however as the echo extends beyond a few
milliseconds it becomes very distracting to the user and causes them to slow down their speech.
With the installation of more digital echo-less equipment into the telephone network the distance
between the user and the hybrid is increasing; this leads to a consequential increase to the echo
delay. It is therefore becoming more necessary to both cancel the long delay echo and also to
provide a short delay “comfort” echo so that the users hear the echo they are used to, or in the
case of multiple echo cancellers, there is an echo for echo cancellers nearer the users to cancel.

This application note describes an efficient implementation of multi-channel echo-controllers
using the TMS320C62xx processor core, that can cancel echoes of 4-32mS delay. The software is
based on the leaky normalized LMS (Least Mean Square) filter with either 16 or 32 bit weighting
coefficients.

The software could easily be adapted to handle longer echo’s by changing some of the update
parameters.

All code is c-callable optimized assembler code, and includes subroutines for both the G.165
and DECT styles of echo control.

Contents
1. G.165 and DECT Echo Control

2. A brief Introduction to Telecom Levels in Echo Cancellers
2.1 The Echo Cancellation Algorithm

v

2.1.1 Echo Prediction

7

2.1.2 Predictor Update

8

2.1.3 Echo Suppresser

10

2.1.4 Non Linear Processor

11

2.1.5 Modem Answer Tone Detection

11

2.2 Performance Limitations for Echo Cancellation

2.2.1 Linear Signal Noise

12
12

2.2.2 Codec Companding Distortion

13

2.2.3 Convergence Noise

13

2.2.4 Leakage Noise

13

3. Echo Canceller Performance

14

4. Description

16

4.1 RAM requirements

16

4.2 ROM requirements

16

4.3 MIPs requirements

17

5. Software Routines

18

5.1 C-code and C-callable

18

5.1.1 TestEchoC6x.c

18

5.1.1.1 GlobalEcho

18

5.1.1.2 ChannelEcho

19

5.1.1.3 ChannelModem

19

5.1.1.4 ToneGen

19

5.1.2 ¢ Externals

20

5.1.2.1 Init_Echo()

20

5.1.2.2 Echo_Cancel(short sin, short rin, ChannelEcho *Channel, GlobalEcho *Global) 20
5.1.2.3 Echo_Update(short sin, short rin, ChannelEcho *Channel, GlobalEcho *Global) 20

5.1.2.4 No_Update(ChannelEcho *Channel)

21

5.1.2.5 Echo_Suppress(short sin, short rin, ChannelEcho *Channel, GlobalEcho *Global)21
5.1.2.6 Echo_NLP(short sin, short rin, ChannelEcho *Channel, GlobalEcho *Global) _ 21

5.1.2.7 ModToneReset(ChannelModem *Channel, short Channels)

5.1.2.8 ModTone(short sin, ChannelModem *Channel)

21

22

5.1.2.9 InitTone(short f1_al,short f1_sr2,short f2_al,short f2_sr2,ToneGen *Tone) 22

5.1.2.10 InitDTMF(short Digit, oneGen *Tone)

22

5.1.2.11 ToneGenerate(ToneGen *Tone)

22

5.2 Echo Control assembler code

22

5.2.1 Echocbxxx.asm

22

5.2.2 Echocbxxx.asm16

22

5.2.3 Echocbxxx.asm32

24

5.2.4 ModemTone.asm

24

5.2.5 ToneGenerate.asm

25

6. Acronyms

26

7. References

26

List of Tables

Table 1 Digital COUEC LEVEISoviii e e 7...
Table 2 Normalized Digital COUEC LEVEISccoiiiiieiieeee e 7
Table 3 Echo Canceller [eak ratesouuuuuuiiiiiiiieie e eeeeeees 10.......
Table 4 4mS Echo Tail using 16 bit Filter Weights (%2 Second)...........ccoooiiiiiiiiiiiiiiiiiiieeeeeeeee 14
Table 5 8mS Echo Tail using 16 bit Filter Weights (%2 Second)...........coooviiiiiiiiiiiiiiiiiiiii e 14
Table 6 16mS Echo Tail using 32 bit Filter Weights (%2 Second)...........coooviiiiiiiiiiiiiiiiiieeeeeee 14
Table 7 32mS Echo Tail using 32 bit Filter Weights (%2 Second)...........cooovviiiiiiiiiiiiiiiiiineeeeeee 14
Table 8 64mS Echo Tail using 32 bit Filter Weights (%2 Second)...........cooovviiiiiiiiiiiiiiiiieeeeee 15
Table 9 32mS Echo Tail using 32 bit Filter Weights (1 Second)..........ccoooiiiiiiiiiiiiiiiiiiiiineeee e 15
Table 10 64mS Echo Tail using 32 bit Filter Weights (1 Second)..........ccoovviiiiiiiiiiiiiiiiiineeeeeee, 15
Table 11 How to Calculate memory reqUINEMENTScceuuuuiiuiiiiiiieeee et e e 16
Table 12 Worked Example Memory reqQUIrEMENTSccoveiiiiiiiimiiiiiaeeeee e e e e e e e e eeeeeeeeennnna e 16
Table 13 Program Memory REQUIFEMENTSccooiiiiiiiiiiiiiiiiieee e e e e e e 16
Table 14 CPU CyCle reqUIrEMENTSuuuiiiiii e e 17........
Table 15 CPU CycleS/MIPS reqUINEIMENTS......ccii ittt e e e e e 17
Table 16 16-Bit Cancellation zO word aligned PIipelinecooiiiiiiiiiiii e 23
Table 17 16-Bit Cancellation z0 not word aligned pipeline.............ueeiiiiiiiiiiiin 23
Table 18 16-Bit Update PIPeliNeccoooiiiiiiiieeee e 23.....
Table 19 32-Bit Cancellation pipeline.............oueiiiiiiii e 24.......
Table 20 32-Bit Update PIPelINeccooe i 24......
List of Figures
Figure 1 G.165 Echo Control on both ends of International Link...............coooviiiiiiiiiiiieeeeee, 5
Figure 2 DECT Echo Control Software BIOCK............oooiiiiiiiiiiiiieie e 6
Figure 3 Modem Answer TONE RESPONSE CUINVESccevuuuiuuiiiiiiaaaae e e e e eeeeeeeeeeeaettnnnnaa e e e e eeaaaeeeees 12

1. G.165 and DECT Echo Control

Both of these specifications use basically the same specification for the electrical line echo
canceller, the difference between them is in the handling of the residual signal left after
cancellation and the re-introduction of the comfort noise. In G.165 residual echo is removed by a
Non-Linear Processor (NLP) which basically mutes all signals below a given threshold, in DECT
residual echo is suppressed using an Echo Suppresser that suppresses far end speech by 9-12dB
when the near end user is talking. In G.165 comfort noise is normally introduced in the same
Echo Controller that cancels the data, whereas in DECT it takes a more system view introducing
the comfort noise for its partner Echo Control at the other end of the RF link, the DECT approach
gives shorter echoes for further cancellers but does require a common control strategy for both
ends of the link, whereas G.165 allows both ends to have different strategies. Examples of G.165
and DECT Echo Controls are shown in figures 1 and 2 respectively. In both these diagrams the
echo control blocks are shown bold, other DSP functions are shown in solid boxes, and external
blocks are shown dotted, the A/D/A and hybrid are replaced by digital ISDN style links in some
systems. Side-tone is sometimes also referred to as “comfort noise”.

Whilst the removal of distant echo’s and their replacement by a “nearer” echo’s is good for the
human perception of speech, the distortion introduced can up-set modem’s and their in-built echo
controllers, for this purpose modems and other equipment requiring no external echo control
transmit a disabling tone at the start of a call, this tone is detailed in V.25 and G.164. This
application code also contains routines to detect this tone, though the use of this information to
control the actual routines is left to the end-user as this varies from application to application.

..............

5 E T X0 i) [Nom | Ynbm 5
: AD § l § Y= ™ Subtractor > Linear | A g
"""" o %‘g : Processor| o

L BE oY,

; 3 Fcho :
.............................. Prodictor e
: y

< > Hybrid o L N R A oo

T Predictor e ; ?

E Doy Sidetone :

: IRyt ~ :
,,,,,,,,,,,,,,, Y Y § %\E (-24dB) . A
: . Non- B = A :
. = . = :
. DA g v | Linear [Subtractor |« : gog a0 EAD
' : Processor L3

Figure 1 G.165 Echo Control on both ends of International Link

Alula . Y Ech =0 ADPCM 3
EW—3 Subtractor |7 © > Cod P g
Expand Suppresser er : %
> Echo ée)
Sidetone Predictor : E
(-24dB) Modem Detect| 3
A Z(n) -z
\
A/u-Law §

Expand

A AlrLa : 5

wlaw e 3 <

Compress a g

Figure 2 DECT Echo Control Software Block

2. A brief Introduction to Telecom Levels in Echo Cancellers

Voice data is represented in telecommunications by discrete digital levels these can be linear
or logarithmic coded, most of the worlds communications is implemented using logarithmic
coding complying with either the A-Law prLaw standards specified in G.711, for voice coding
these values must be linearized to produce linear digital code, different algorithms linearize to
different resolutions. The digital equivalents defined in G.711 for A-Layw-baw are shown
below.

Law Min Max
A-Law | -4032 | 4032
pu-Law | -8031 | 8031

Table 1 Digital Codec Levels

In order to provide uniform levels into voice coders like G.726 A-law levels are multiplied by
2 to produce 14 bit 2’s complement or Q13 numbers.

The 0dBm point is defined as the r.m.s. level of a sin wave 3dB below the clipping level,
therefore the mean amplitude for 0dB is half the maximum level

Law Min Max | 0dBm point
A-Law*2 |-8064 | 8064 | 4032
p-Law -8031 | 8031 | 4016
Linear -8192 | 8191| 4095

Table 2 Normalized Digital Codec Levels

2.1 The Echo Cancellation Algorithm

2.1.1 Echo Prediction

The general algorithm of a Transversal FIR predictor is given in 1 below:-

Yp(n) = Zwk(n)*Z(n -Kk)

(1) Transfer Structure of FIR Predictor
where:-

W, (n) is the weighting factor for each FIR (k) parameter at time (n)
Z(n) is the transmitted input signal at time (n)
Yp(n) is the predicted echo on the received signal at time (n)

Y(n)=X(n) - Yp(n)

(2)Calculation of Error Signal from input and predicted signal

where:-
X(n)is the received echo signal at time (n)
Y(n) is the echo cancelled received signal at time (n)

Using this predicted signal the predicted echo is subtracted or cancelled from the return path
as shown in 2 to produce the predicted error or echo cancelled signal. When there is no signal from
the near end this signal will be the error in the echo predictor however when there is a signal from
the near end this signal will represent the near end signal with the echo from the far end cancelled
out. In order to properly update the predictor it is necessary to know which of these is the case, the
algorithm therefore contains a number of conditions which have to be met before the predictor is
allowed to be updated.

1) The signal being sent from the far end must be above a certain threshold. i.e. There must be
speech at the far end for their to be an echo capable of being cancelled.

2) The signal being received from the near end must be significantly less than that being sent
from the far end. i.e. The predictor must not be updated during double talk.

3) Continuous jitter of the predictor variables can cause noise/distortion to the reception of the
near end signal; if the noise of the echo is less than the noise caused by the update of the
predictor it is better not to update the predictor.

The near end, far end and echo cancelled signal levels are continuously monitored using
infinite impulse response filters with a short time constant so that zero-crossovers are not rejected as
not being speech but the filter rapidly detects short silences in the speech the equations for both
these filters are shown in 3 below. These IIR filters use a simple single pole decay that can be
implemented using only shifts without the need for a multiplication.

Signha n)|-Signa n-1
Signa'.evel(n) = Signall_evel(n -1) + E g 'nput()|32 9 lx_evel()D

(3) Equation for Measuring Mean Input Signal Level

By comparing the results of this equation for Z(n) a suitable threshold for speech
transmission can be determined and the predictor only updated when the level exceeds this
threshold. Double talk is detected by comparing the signal on both these filters and when the Z(n)
filter is sufficiently greater than the Y(n) filter then the predictor can safely be updated. Alternatively
the scaling factor for the update can be based on the relative strengths of the 2 signals though this
can give problems when the algorithm is initially reset if the echo signal is to strong.

2.1.2 Predictor Update

In order to update the predictor it is necessary to change ¢lpaNdmeters of the predictor,
the faster these parameters are changed the faster the filter will converge on to the actual echo,
however if these parameters are changed rapidly a significant distortion is introduced to the signal
received from the lines; indeed if too much feedback is then the filter can even go unstable. It is
therefore necessary to reach a compromise between update rate and the distortion introduced to the
signal. From 1 and 2 it is obvious that the error in the predicted signal can be given as in 4 below.

Y() = X()-S WY Z(n-K)

(4) Error Calculation for FIR Predictor

It is beyond the scope of this document but it has been shown that the update for this
predictor can be performed using the LMS algorithm as shown in 5 below. Anyone interested
should read the section on “Implementation of Adaptive Filters” in reference 1.

Wi (n+1)=W,(n)+u*Y(n)*Z(n-Kk)
(5)ldeal Predictor Update Equation

Given that the delay to the echo that is being cancelled is not a rapidly changing variable it is
not necessary in this application to maximize the convergence rate of the echo canceller the u
constant can be made relatively small giving an echo canceller that produces a low level of
distortion. As the update rate of this filter is proportional to both the input signal level and the echo
signal level, the filter tends to converge much faster for higher signal levels, this can be counteracted
by normalizing the update rate to the level of these input signals, in fact the echo is proportional to
the input signal so the normalization can be to the input signdl. Z{aje has to be taken not to
place to much emphasis on individual samples as near zero crossings the error can be comparatively
large compared to the signal level, and the signal from the X(n) input is delayed by the echo. To
avoid these problems the predictor update uses the mean input signal level for the Z(n) variable
rather than the instantaneous signal level. The normalization constant is given in 6 which when
substituted in 4 gives 7. 7 Also shows the actual constant used to set the convergence stability
compromise.

Normalisation =2'NT(2"~L0C(Zewei)
(6)Normalisation Equation

DZINT(Z*—LOGz(ZLeve(n)))*Y n)* Z(n - K\
Wk(n+1):Wk(n)+B 512 () ()

(7)Normalized Ideal Predictor Update Equation

In order to stabilize this filter under tones and prevent overflows a leak of 1/m is introduced
into the update, the value of this leak is dependent on the level of cancellation achieved. The signal
level before and after cancellation is measured using equation 3 above and the function shown in
equation 8 below to determine their approximate amplitudes.

INT(_ LOGZ(Slgnalvel))
(8) Logarithmic Measure of Signal Level

The difference between these 2 logs gives the cancellation in 6dB steps, this is translated to a
leak rate according to the values shown in the table below:-

Measured Cancellatio] Leak (16 bit weights) Leak (32 bit weights)
>36Db

>24dB 1/32768

30..36dB 1/65536

24..30dB 1/32768

18..24dB 1/16384 1/16384

12..18dB 1/8192 1/8192

6..12dB 1/4096 1/4096

0..6dB 1/2048 1/2048

-6..0dB 1/1024 1/1024

Table 3 Echo Canceller leak rates

This equation then becomes:-

_ . (n)* (m-]) EQINT(Z*—LOGQ(Z Leve(M)) * Y(n)* Z(n - k))D
Wk(n”)_éw m Q“LB 512 H
(9)Leaky Normalized Error * Data Predictor Update Equation

In terms of the actual inputs the overall equation for the update of the predictor coefficients
is therefore:-

31 [l

INT(2°-LOG(Z Level) ¢ @((n) - ZWI(n)*Z(n - I)ﬁ‘ Z(n-k)d

_ W) (m=9 7. O .
Wi(n+1)= - O 512 =
0 [l

5 U

(10)Full Predictor Parameter Update Equation

Overall this predictor will converge onto the echo in abouu@sdearly cancelling the echo
down to the floor level of the system. In order to further reduce the echo the use of either an echo
suppresser (DECT) or non-linear processor (G.165) is required,

2.1.3 Echo Suppresser

The Echo Suppresser can be programmed to give various echo suppressions from 0dB to
24dB, whatever it is programmed to give the echo suppression is soft switched in and out with an
attack time of 5mS and a decay time of 25mS. If full suppression is reached there is a hangover time
of 70mS after the end of speech before the echo suppresser is switched out.

In the echo suppresser, speech is detected using a simple 4th order FIR on the absolute
values of the speech being sent to the line. The equation for this filter is shown in 11 below.

10

If zZ:O|Z(n— k)| > Supp_Thresh
Andy " |Z(n- K)| > Supp_Thresh
Then Suppressqy,,,.(n) = Attack_ Constant
Else Suppressqy,,,,(n) = Decay_ Constant

(11) Echo Suppresser FIR Speech Detector

The Suppressangels used to drive an asymmetric 2nd order IIR filter to generate the actual
Suppress factor. This IIR is subject to a hangover time of 70mS, which is initiated once echo
suppression has reached the maximum value, there is no hangover if echo suppression does not get
fully turned on. The equation for the IIR is shown in 12 below. The time constant for this filter is
altered between the attack and the decay by varying the constant k1.

Suppress(n) Suppressqy,,,.{n) + k1*Suppress(n-1) + k2* Surpress(n - 2)

(12) Echo Suppresser IIR Suppression Filter

After filtering Suppress will have a range from 0 < Suppress < Supp_Thresh where
Supp_Thresh is the fractional part of the signal to be suppressed. This value is then subtracted from
1 and the result multiplied bygks to give the suppressed output. The equation for this suppression
function is shown in 13 below.

Ysue (M) =Y(N)*[1- Suppress(n)]
(13) Application of Echo Suppression to Signal

2.1.4 Non Linear Processor

Alternatively to echo suppression the echo cancelled signal can be further reduced by a non-
linear processor, in this case the output is simply muted when the cancelled signal falls below a
given threshold.

if Z4.e(n) <Threshold

then Y-(n=0
else Y,e(0= YN

(14) Non Linear Processor

2.1.5 Modem Answer Tone Detection

In addition to cancellation it is necessary to detect the 2100Hz Modem answer tone in
applications where modem data might be used instead of voice, this is more common in G.165
type echo controllers than DECT echo controllers, though where DECT s used in Radio Local
Loop applications this is also needed for DECT. Answer tone detection is performed using two
basic 2% order IIR (Infinite Impulse Response) filters used to measure the tone energy and the out
of band energy respectively, phase reversals of the tone are detected as short negative blips in the
IR energy of the detected tone, (a phase reversal will give zero energy out of an IIR as the
predicted signal is an exact opposite of the real signal, causing cancellation). The Basic IIR
equation is:-

11

Yo X "Ry + X B+ X Byl oa+ yi 3
(15) Infinite Impulse Response Filter
The performance graphs of the band-pass and band-stop filters are:-

Attenuation (dB)

Figure 3 Modem Answer Tone Response Curves

The output level of these filters is measured using arder IIR filter of the absolute signal,
the equations for both these filters are shown in 16 below. These IIR filters use a simple single pole
decay that can be implemented using only shifts without the need for a multiplication.

Signa -Signal 1
SignaLevel(n) = SignaILevel(n -1) + E '9 L‘PUt (n)|l6|g Level (n)E

(16) Equation for Measuring Mean Tone Signal Level

By comparing the signal level in the pass filter with a threshold and the two filters the tone

can be detected, further detection is then based on the tone being present for sufficient samples to be
a valid tone.

2.2 Performance Limitations for Echo Cancellation

The performance of the Echo Canceller is limited by one of four factors:-

2.2.1 Linear Signal Noise

This noise comes from the ability to represent the output signal within the echo canceller, this
is a resolution limit and as such is % the Isb * the 0dB level or 20*log(4095*2) = 78.2dBm.
Achieving this with linear data gives a good indication to the integrity of a simulated echo
canceller though for real systems one of the remaining 3 factors will usually dominate.

12

2.2.2 Codec Companding Distortion

This noise is specified for an ideal codec at 33dB in G.711, for a real codec G.712 specifies
31dB. This will limit a cancellers ability to cancel to 31-33dB depending on the quality of the
codec used. This is fundamental to all telephone systems.

2.2.3 Convergence Noise

This noise is the noise introduced into the output signal by the changes to the weighting
parameters, this in turn can be limited by either the accuracy of the error signal or the accuracy of
the weighting signal, in practice with 16 bit weighting factors this will be limited by the minimum
error needed to change the weights by one, and will be this error * Length of the predictor * affect
on the predictor. With 32 bit weights the minimum error will be that of the input signal
resolution, and so both the error and the affect are reduced, giving a significant performance
improvement

Generally if the echo tail is more than 8mS then this noise will exceed the Codec Companding
distortion. This is the limiting factor in choosing to use single or double precision weighting
factors.

2.2.4 Leakage Noise

Certain tones will cause an echo canceller to go unstable, this is counteracted by adding in a
leakage factor to the canceller, this leakage factor also reduces the effective length of the canceller
by reducing the convergence noise of near zero values, although it adds noise to the larger values
overall this distortion is given by the Length * Leakage for an 8mS canceller the Length is 64
samples and the minimum leakage that can easily be obtained is 1/32768, the leakage degradation
is therefore 54dB, when canceling artificial hybrids where most of the delay values are zero this
will dominate instead of convergence noise.

13

3. Echo Canceller Performance

The echo canceller algorithm has been simulated using the TMS320C62xx simulator using
tests similar to those described in G.165 for a variety of echo delays, signal levels and echo types.
These experimental results are summarized in the tables. In all case’s convergence is specified as

that obtained after 4000 samples or 500mS of data below and has a standard dewiatknBof

-6dB Echo -12dB Echo -18dB Echo -24dB Echo
LineOut | Cancellatio] Resultanf Cancellatibn Resultant Cancellation Resiltant Cancdllation Refsultant
-0.8dBm | -49.0dB -56.5dBm -45.7dB -59.2dBm -44.6dB -64.1dBm -43.8dB -69.3HBm
-6.8dBm | -49.1dB -62.6dBm -46.1dB -65.6dBm -44.9dB -70.4dBm -42.0dB -73.6HBm
-12.9dBm| -48.9dB -68.4dBm -46.1dB -71.6dBm -43.4dB -74.9dBm -38.2dB -75.80Bm
-18.9dBm| -48.2dB -73.8dBm -44.7dB -76.3dBm -39.0dB -76.5dBm -32.0dB -75.6pBm
-24.9dBm| -46.3dB -77.9dBm -40.9dB -78.5dBm -34.1dB -77.7dBm -27.3dB -76.80Bm
-30.9dBm| -42.4dB -79.9dBm -34.3dB -77.8dBm -27.0dB -76.6dBm -21.9dB -77.50Bm
Table 4 4mS Echo Tail using 16 bit Filter Weights (%2 Second)
-6dB Echo -12dB Echo -18dB Echo -24dB Echo
LineOut | Cancellatio] Resultanf Cancellatibn Resultant Cancellation Resiltant Cancdllation Relsultant
-0.8dBm | -48.6dB -56.1dBm -45.9dB -59.4dBm -44.1dB -63.6dBm -42.4dB -68.0HBm
-6.8dBm | -48.7dB -62.2dBm -45.7dB -65.2dBm -44.0dB -69.5dBm -42.5dB -74.0HBm
-12.9dBm| -47.9dB -67.4dBm -46.5dB -72.0dBm -43.3dB -74.9dBm -37.9dB -75.50Bm
-18.9dBm| -48.6dB -74.2dBm -44.6dB -76.2dBm -39.0dB -76.6dBm -32.0dB -75.6pBm
-24.9dBm| -46.9dB -78.5dBm -40.5dB -78.1dBm -33.8dB -77.4dBm -26.7dB -76.3pBm
-30.9dBm| -42.1dB -79.7dBm -34.4dB -78.0dBm -27.5dB -77.1dBm -21.7dB -77.3pBm
Table 5 8mS Echo Tail using 16 bit Filter Weights (%2 Second)
-6dB Echo -12dB Echo -18dB Echo -24dB Echo
LineOut | Cancellatio] Resultanf Cancellatibn Resultant Cancellation Resiltant Cancdllation Refsultant
-0.8dBm |-69.1dB -76.6dBm -64.5dB -78.0dBm -60.1dB -79.7dBm -49.9dB -75.5HBm
-6.8dBm | -64.7dB -78.2dBm -61.9dB -81.4dBm -51.1dB -76.7dBm -47.0dB -78.5HBm
-12.9dBm| -59.3dB -78.9dBm -50.4dB -76.0dBm -47.0dB -78.5dBm -40.7dB -78.3pBm
-18.9dBm| -51.1dB -76.7dBm -47.4dB -79.0dBm -39.8dB -77.4dBm -33.9dB -77.50Bm
-24.9dBm| -48.3dB -79.9dBm -41.1dB -78.7dBm -33.3dB -76.9dBm -26.9dB -76.50Bm
-30.9dBm| -41.4dB -78.9dBm -32.8dB -76.4dBm -28.6dB -78.2dBm -25.5dB -81.10Bm
Table 6 16mS Echo Tail using 32 bit Filter Weights (%2 Second)
-6dB Echo -12dB Echo -18dB Echo -24dB Echo
LineOut | Cancellatio] Resultanf Cancellatibn Resultant Cancellation Resiltant Cancdllation Refsultant
-0.8dBm | -46.8dB -54.3dBm -46.7dB -60.2dBm -46.2dB -65.8dBm -44.5dB -70.0HBm
-6.8dBm | -46.8dB -60.3dBm -46.8dB -66.4dBm -44.2dB -69.8dBm -41.2dB -72.8HBm
-12.9dBm| -45.5dB -65.0dBm -44.1dB -69.7dBm -41.4dB -72.9dBm -38.1dB -75.70Bm
-18.9dBm| -42.8dB -68.4dBm -40.7dB -72.3dBm -37.1dB -74.7dBm -29.8dB -73.3pBm
-24.9dBm| -40.9dB -72.5dBm -36.7dB -74.3dBm -31.7dB -75.2dBm -25.8dB -75.3pBm
-30.9dBm| -26.9dB -64.5dBm -27.1dB -70.7dBm -24.0dB -73.6dBm -20.6dB -76.20Bm

Table 7 32mS Echo Tail using 32 bit Filter Weights (%2 Second)

14

-6dB Echo -12dB Echo -18dB Echo -24dB Echo
LineOut |Cancellatio] Resultant Cancellatibn Resultant Cancellation Resyltant Cancellation Resultant
-0.8dBm | -18.4dB -25.9dBm -18.4dB -31.9dBm -18.4dB -37.9dBm -18.4dB -43.90Bm
-6.8dBm | -18.4dB -31.9dBm -18.4dB -37.9dBm -18.4dB -43.9dBm -18.4dB -49.9HBm
-12.9dBm| -18.3dB -37.8dBm -18.2dB -43.7dBm -18.2dB -49.8dBm -18.0dB -55.6dBm
-18.9dBm| -18.3dB -43.8dBm -18.2dB -49.8dBm -18.2dB -55.8dBm -17.8dB -61.4dBm

Table 8 64mS Echo Tail using 32 bit Filter Weights (%2 Second)

For long echo cancellations, echo cancellers can become unstable if their update rate and hence
convergence is to quick the 32 bit cancellers will converge to a residual of -76..-78dB. For
comparison the cancellation of the 32 and 64mS cancellers is shown below after 8000 samples or
1 second.

-6dB Echo -12dB Echo -18dB Echo -24dB Echo
LineOut |Cancellatio] Resultant Cancellatibn Resultant Cancellation Resyltant Cancellation Resultant
0.4dBm |-70.5dB -76.1dBm -66.6dB -78.3dBm -61.3dB -78.9dBm -52.4dB -76.1dBm
-5.6dBm | -66.9dB -78.5dBm -60.6dB -78.3dBm -54.5dB -78.2dBm -47.8dB -77.50Bm
-11.7dBm| -58.4dB -76.1dBm -52.3dB -76.0dBm -48.5dB -78.2dBm -42.5dB -78.20Bm
-17.7dBm| -54.5dB -78.2dBm -51.5dB -81.2dBm -40.9dB -76.7dBm -39.0dB -80.80Bm
-23.7dBm| -50.6dB -80.3dBm -40.2dB -75.9dBm -37.4dB -79.2dBm -29.9dB -77.80Bm
-29.7dBm| -41.5dB -77.2dBm -38.4dB -80.2dBm -28.8dB -76.6dBm -24.2dB -78.1dBm

Table 9 32mS Echo Tail using 32 bit Filter Weights (1 Second)

-6dB Echo -12dB Echo -18dB Echo -24dB Echo
LineOut |Cancellatio] Resultant Cancellatibn Resultant Cancellation Reslltant Cancellation Resultant
0.4dBm |-33.0dB -38.6dBm -33.0dB -44.7dBm -33.0dB -50.7dBm -33.1dB -56.8HBm
-5.6dBm | -33.0dB -44.7dBm -33.0dB -50.7dBm -33.1dB -56.8dBm -32.5dB -62.3Bm
-11.7dBm| -32.3dB -50.0dBm -32.4dB -56.1dBm -32.3dB -62.0dBm -31.2dB -67.00Bm
-17.7dBm| -32.0dB -55.7dBm -32.0dB -61.8dBm -31.9dB -67.6dBm -30.6dB -72.40Bm

Table 10 64mS Echo Tail using 32 bit Filter Weights (1 Second)

15

4. Description

The Texas Instruments Echo Control code for the TMS320C62xx is designed to meet either

the G.165 or DECT echo control standards. The code is designed for implementing multi-channel
echo-controllers.

4.1 RAM requirements

The memory requirements for the Echo Control Software depend on the number of channels,
the echo tail length and the accuracy of the weighting filters, the table below shows how to
calculate memory requirements, note that the circular buffer must be an integral power of 2, this
is due to the way circular buffers are implemented on the c62xx.

Use Bytes (16bit weights) Bytes (32 bit weightF)
Global Variables 8 8

Channel Variables n 40n 40n

Circular Buffers 2 2n*2° 2n*2°

Weighting Filter w 2n*w+4 An*w+4

Modem Answer Tone Detec 28n 28n

Table 11 How to Calculate memory requirements

Below are some worked examples for common echo canceller configurations without modem
answer tone detection.

Canceller Parameters Memory

Time | Channel§ Weights] n z w Bytes Equation Bytes Tdtal
4ms | 1 16 1 | 5 | 30 | 8+40*1+2%22*1*30+4 176

8mS | 1 16 1 | 6 | 62 | 8+40*1+2%22*1*62+4 304

16mS| 1 32 1 I 126| 8+40*1+2%24*1*126+4 816

32mS| 1 32 1 8 254 8+40*1+2%24*1*254+4 1584

4mS | 32 16 32| 5| 30 8+40%32+2*22*32*30+4 5632

8mS | 32 16 32| 6 62 8+40%32+2%22*32*62+4 9728

16mS| 32 32 32| 7 126] 8+40*32+2%P4*32*126+4 | 25864

32mS| 32 32 32| 8 254] 8+40*32+2%p4*32*254+4 | 50440

Table 12 Worked Example Memory requirements

4.2 ROM requirements

The program size for 16 bit and 32 bit weights is different however the program size does not
vary with the number of channels implemented.

Use Bytes (16bit weights) Bytes (32 bit weightp)
Echo Control Program 2568 2152

Modem Answer Detect Program 464 464

Example C 2960 2960

Total 5992 5576

Table 13 Program Memory Requirements

16

4.3 MIPs requirements

The MIPS required for echo control depend on the length of the tail being cancelled and on
whether the canceller is being updated or not, typically a canceller only needs to be updated
during the initial stages of a call, once converged the canceller can be frozen and the update stage
avoided, this can be used to increase the number of channels being cancelled. The 16 bit echo
canceller incorporates a filter inversion process to eliminate rounding errors in the update process
this means that even when not being updated this filter inversion process needs to be
implemented, an alternative update routine “No_Update” that requires less cycles needs to be
called instead. With the 32 bit canceller the rounding error is at a much lower level and can be
safely ignored

This code was developed using a pre-release version 1.1 of the simulator, from which the
following benchmarks were obtained.

Subroutine Formula
Echo Cancel 16 bit weights 30+n/2
Echo Cancel 32 bit weights 34+n
Echo Update 16 bit weights 28+n

Echo No Update 16 bit weights 15+n/2
Echo Update 16 bit weights 28+n
Echo Update 32 bit weights 20+3*n/2
Echo Suppress 35/38
Echo Non Linear Process 14
Modem Answer Tone Detect 26

Table 14 CPU cycle requirements

Below are some worked examples for common echo canceller configurations without modem
answer tone detection.

Use Channels| During Update After Update

Formula | Cycle§ MHz| Formula| Cycle§ MH2Z
16 Bit Weights 4mS 1 96+3*n/2l 144 1.2 83+n 115 .9
16 Bit Weights 8mS 1 96+3*n/2 192 1.5 83+n 147 1.2
32 Bit Weights 16mS| 1 92+5*n/4 412 3.3 72+n 200 1.9
32 Bit Weights 32mS| 1 92+5*n/2 732 5.9 72+n 328 2.6
32 Bit Weights 64mS| 1 92+5*n/2 1372 11.0 72+n 584 4.4
16 Bit Weights 4mS | 32 364+3*nf 4608 | 37 83+n 3680 29

2
16 Bit Weights 8mS 32 364+3*n[6144 | 49 83+n 4704 38

2
32 Bit Weights 16mS| 32 92+5*n/2 13184 105 72+n 640(51
32 Bit Weights 32mS| 32 92+5*n/2 23424 187 72+n 10449 84
32 Bit Weights 64mS| 32 92+5*n/4 43904 351 72+n 1868 15

Table 15 CPU cycles/MIPs requirements

17

5. Software Routines

Whilst all of the G.165 and DECT echo control code is written in C62xx assembler, they are
all written within the guidelines for C6x C callable routines, and can be used with Texas
Instruments C compiler. For use with other compilers or assembler code, it may be necessary to
check which registers are “parent” protected and which are “child” protected. Texas Instruments
C compiler uses parent protection for registers a0..9 and b0..9 with child protection for al0..15
and b10..15. This means that registers a0..9 and b0..9 are not protected within the assembler
routines. In parent protection registers are saved by the calling routine before the subroutine call,
in child protection registers are saved by the child routine after the subroutine call.

5.1 C-code and C-callable

All of the main G.165 and DECT echo control subroutines are C callable, where necessary
these routines disable interrupts to protect multiple assignment code, the maximum time for
which interrupts are disabled depends on the echo delay and version chosen. Below the test vector
example program and the C functions are explained.

5.1.1 TestEchoC6x.c

This file provides an example of how to call the various echo control assembler routines from
a C environment, this program is the one that was used to generate the echo control test results.
All benchmark figures above were obtained by compiling this program with the “-k -as -g -02 -
pe” options with timing measured over the subroutine call. Lines of the form: label =*(short
*)address” are defined address’s in the simulator where test vector or input control can be found.
Note the use of local variables gives significant improvement in the MIPs achieved, as they allow
the assembler to optimize them into. The four typedef's provide c-context to the data structures
used within in the assembly modules. The #define of ToneChannels, specifies how many
channels of Modem answer tone detection channels that are implemented. Due to the
indeterminate size of the Echo Control channels (different echo tail lengths), these cannot be
assigned by C (without significantly increasing the size of the code) and need to be assigned in
the assembler modules instead.

5.1.1.1 GlobalEcho

This defines variables that affect the operation of all channels

Back_Samp_Rate is the rate at which the DECT echo suppresser updates its estimate of the
background noise. Default every 180 samples. Not used with non-linear
processor.

EC_EchoGain defines the maximum echo that can be cancelled as a fraction n/256.
Default=128 (-6dB)

ES_Marg for the echo suppresser defines the amount the signal must be over the
background to be treated as voice rather than noise as a fraction n/16384.
Default 24576 (3.52dB); for the non-linear processor this is the absolute signal
level for muting, and should be changed to 500 (mute at Isb only left).

EC_DeadTime defines how many digital delays are left uncancelled before the canceller, used
to reduce MIPs requirements where there are known digital echo-less delays
between the canceller and the start of the echo. Deafaul=0.

18

5.1.1.2 ChannelEcho

This defines variables that are local to each channel of the Echo Controller.
ES_BackCount counter for updating background noise.
ES_BackThres current estimate of background noise * ES_marg.
ES_FIRold1/2 current signal level for Echo Suppresser filter.

ES k1/2 internal IR variable for current Echo Suppression.
ES attack rate at which suppresser switches on.

ES_decay rate at which suppresser switches off.

ES threshold level to which echo suppresser suppresses
ES_Back current estimate of background noise

ES Hangover Time after end of speech that suppresser continues to suppress in samples.
Spare unused (data alignment)

Avg_Line_Out Time average of Z signal reference input (*512).

Avg_Echo_In Time average of X signal, input to canceller (*512).

Avg_Echo_Out Time average of Y signal, output from canceller (*512).

LineOut Circular buffer pointer for reference signal.
W[] Unbounded array of data weights for predictor (requires -pe option in c
compiler)

5.1.1.3 ChannelModem

This defines variables that are local to each channel of the Modem Answer Tone Detection.
These variables are order optimized for zero data page faults.

pass_wl Band-pass filter delayed products, one sample delay.

stop_wl Band-stop filter delayed products, one sample delay.

pass_ w2 Band-pass filter delayed products, two sample delay.

stop_w2 Band-stop filter delayed products, two sample delay.

pass_energy Energy in band-pass filter.

stop_energy Energy in band-stop filter.

time_out Time a valid tone has been received for (zero no tone, max. 16383).
end_tone Flag to indicate a possible phase reversal.

5.1.1.4 ToneGen

This defines variables that are local to each channel of the Tone Generation Routine (Used for
test purposes only, not part of main echo control code). These variables are order optimized for
zero data page faults.

fl al Frequency 1, resonator constant for frequency generation initialized to
32768*cos(360*Frequency/8000).

19

fl_sr2 Frequency 1, output sample delayed 2 samples, initialized to
r*sin(360*Frequency/8000), where r is output peak amplitude.

f2_al Frequency 2, resonator constant for frequency generation initialized to
32768*cos(360*Frequency/8000).

f2_sr2 Frequency 2, output sample delayed 2 samples, initialized to
r*sin(360*Frequency/8000), where r is output peak amplitude.

fl_srl Frequency 1, output sample delayed 1 samples, initialized to O.

f2_srl Frequency 2, output sample delayed 1 samples, initialized to 0.

5.1.2 c¢ Externals

These are definitions of the external of the c-callable assembler functions. With the exception
of Init_Echo() all of these functions have the same structure, requiring the same basic parameters.

1. The Input signal with the echo

2.The Reference Signal

3.A pointer to the channel specific variables
4.A pointer to the global variables

They all return the improved Echo signal.

The parameter format is (short Sin, short Rin, ChannelEcho *channel, GlobalEcho *global).
short *out1,short *out2).

5.1.2.1 Init_Echog

This requires no parameters but returns the number of channels that the assembly code was
assembled for, see later for more details. It resets all the channels defined at assembler time in the
echo control routine. It is defined in echo_c6xxx.asm.

5.1.2.2 Echo_Cancelshort sin, short rin, ChannelEcho *Channel, GlobalEcho *Global)

This sub-routine performs the time critical part of the echo cancellation process. It is defined in
echo_c6xxx.asm. Interrupts are disabled during this routine.

Sin Signal to Cancel.

Rin Reference signal for canceller.
*Channel Pointer to local channel data.

*Global Pointer to global channel data.

Returns Cancelled signal.

5.1.2.3 Echo_Update(short sin, short rin, ChannelEcho *Channel, GlobalEcho *Global)

This sub-routine performs the non-time critical part of the echo cancellation process. It still
needs to be called once per channel per loop but can be called later in the loop as its output does
not affect the overall output. This may reduce the group delay. It is defined in echo_c6xxx.asm.
Interrupts are disabled during this routine.

20

Sin Cancelled Signal.

Rin Reference signal for canceller.
*Channel Pointer to local channel data.
*Global Pointer to global channel data.
Returns Cancelled signal.

5124 NO_U pdatE(ChanneIEcho *Channel)

This sub-routine replaces Echo_Update for the 16 bit code only when Update is not required
for the 32 bit code no action is required, this is due to negation of the filter to remove DC offsets,
which are insignificant in the 32 bit code. It is defined in echo_c6xxx.asml6. Interrupts are
disabled during this routine.

*Channel Pointer to local channel data.

5.1.25 EChO_SUppreSS(short sin, short rin, ChannelEcho *Channel, GlobalEcho *Global)

This sub-routine performs the echo suppression process for DECT. It is defined in
echo_c6xxx.asm. Interrupts are disabled during this routine. It returns the suppressed value.

Sin Cancelled Signal.

Rin Reference signal for canceller.
*Channel Pointer to local channel data.
*Global Pointer to global channel data.
Returns Cancelled and suppressed signal.

5.1.2.6 EChO_N LP(short sin, short rin, ChannelEcho *Channel, GlobalEcho *Global)

This sub-routine performs the echo non-linear process for G165. It is defined in
echo_c6xxx.asm. Interrupts are enabled during this routine. It returns the non-linear processed
value.

Sin Cancelled Signal.

Rin Reference signal for canceller.

*Channel Pointer to local channel data.

*Global Pointer to global channel data.

Returns Cancelled and non-linear processed signal.

51.2.7 MOdToneReset(ChannelModem *Channel, short Channels)

This sub-routine resets one or more modem answer tone detection channels, the address of the
channel or first address of an array of channels is passed along with the number of channels, if
multiple channels are to be reset they must be memory contiguous. It does not return a value. It is
defined in ModemTone.asm. Interrupts are enabled during this routine.

*Channel Pointer to local channel data.
Channels No of channels to reset.

21

5.1.2.8 MOdTone(short sin, ChannelModem *Channel)

This sub-routine performs the modem answer tone detection. It is defined in ModemTone.asm.
Interrupts are enabled during this routine. It returns the status of the tone.

Sin Signal to detect modem tone on.

*Channel Pointer to local channel data.

Returns O No Tone Present.
2 Tone present without Phase reversals (or no phase reversals yet).
3 Tone present with Phase reversals.

51.2.9 |nitTOne(sh0rt f1_al,short f1_sr2,short f2_al,short f2_sr2, ToneGen *Tone)

This sub-routine is not part of the echo control code but is used to generate test data tones for
the modem answer tone detection. It initialize the data structure.

5.1.2.10 InitDTM F(short Digit, oneGen *Tone)

This sub-routine is not part of the echo control code but will program the tone generator to
generate DTMF tones.

5.1.2.11 ToneGenerate(toneGen *Tone)

This sub-routine is not part of the echo control code but is used to generate test data for the
modem answer tone detection. It generates a sample from the data structure.

5.2 Echo Control assembler code

All of the Echo Control core subroutines are written in highly optimized assembly code to give
very efficient performance in terms of MIPs, several of the subroutines contain multiple
assignment code and disable interrupts, these routines also enable interrupts at the end. Some
routines also change the AMR register to make a5 circular, again this is returned to the C default
value of 0 before returning. Which functions are in which file is described below:-

5.2.1 Echocbxxx.asm

This module reserves the data RAM for all the channels defined by the “.equ” near the top of
the file by the variable “channels”, and the length of the echo tail by the “.equ” for the variable
“order”. “order” has been tested with values of 5..9 giving 4-64mS echo canceller tails. Values
above 9 have not been tested and may not meet the convergence time requirements of G.165.

It defines the C-callable sub-routines Init_ Echo, Echo_Cancel, Echo_Update, Echo_Supress
and Echo_NLP; and the C- reference-able variables _ChannelTable and EchoGlobal which can be
used by C to alter the behaviour of the algorithm. and G726_reset, which resets all or one of these
channels.

5.2.2 Echocbxxx.asml16

This module must be included via a .copy or .include directive, from a master assembler
program in which the variables “order”, “zorder”, “worder’ and “AMRVal’, have been

22

predefined. It contains the code that defines the data structures, reset code and echo cancellation
subroutines that perform the 16 bit weighting factor versions of the echo canceller. The pipelines
for the cancellation and update are shown in the 3 tables below. All of the main loops are coded
to have zero memory stalls.

1 2 3(1) 4(2) | 5(1) | 6(2) | 7(1) 8(2) 9(1) 10(2)
LDW MPYLH ADD
70,71 Z0,WO0 sumo0,?2
LDW MPYHL ADD
WO,W1 Z1 W1 sum1l,3
LDW MPYLH ADD
W2, W3 Z2 \N2 sumo0,?2
LDW MPYHL ADD
72,73 Z3, W3 suml,3
B Loop Dec
Table 16 16-Bit Cancellation z0O word aligned pipeline
1 2 3(1) 42) | 511) | 6(2) | 7(2) 8(2) 9(1) 10(2) 11(1)
LDW LDW MPY ADD
z-1,Z0 Z3z4 Z0,WO0 sumO0,2
LDW MPYH ADD
WO0O,W1 Z1 W1 suml1,3
LDW MV MPY ADD
W2, W3 W2,W3 | Z2,W2 sum0,2
LDW MPYH ADD
71,72 Z3,W3 suml,3
B Loop Dec
Loop
Table 17 16-Bit Cancellation zO not word aligned pipeline
(note LDW z-1,z0 and LDW z3,z4 are really the same instruction)
1 2 3(1)[42)[5(1)[|6(2) 70 [82)|9(1) 102) [11@)]12(2) 13(1) [142)[15(0)
LDH MPY| [SUB |SHR OR MV STW
*5++,9 LH 7,8,7 17,8,0 a0,b0,blb1,a3 a3,*ab++
9,2,7
LDW MPY
*n6++,b4 SuU
b4,2,8
MPY SUB |CLR
HSLU
LDH MPY
LH
B Loop Dec
Loop

Table 18 16-Bit Update Pipeline

23

(A6 saves in old B6 and is 28 ram locations behind to avoid memory stalls)

5.2.3 Echocbxxx.asm32

This module must be included via a .copy or .include directive, from a master assembler
program in which the variables “order”, “zorder”, “worder’ and “AMRVal’, have been
predefined. It contains the code that defines the data structures, reset code and echo cancellation
subroutines that perform the 32 bit weighting factor versions of the echo canceller. The pipelines
for the cancellation and update are shown in the 2 tables below. All of the main loops are coded
to have zero memory stalls.

1 2 3(1) 4(2) |5(1) |6(2) |7(1) 8(2) 9(1) 10(2) 11(1)
LDH MPYSU SHR ADD
*b5,all all,b9,a8 a8,16,a3a3,a7,a7
LDW MPYLH ADD
*b10,b9 all,b9,b8 b8,b7,b7
LDH MPYSU SHR ADD
*a5,b11 bl1,a9,a8 a8,16,a3a3,a7,a7
LDW MPYLH ADD
*al0,a9 b11,a9,b8 b8,b7,b7

Table 19 32-Bit Cancellation pipeline

1 2 3 |4(1) [5(2) |6(3) 7(1) 8(2) 19(3) 10(1) [11(2) [12(3)
SHR
7,2,8
LDW SUB ADD STW
*6,7 7,8,8 8,9,9 9,*6
MPYHL ADD
3,A1,0 10,7,9
LDH MPYUS SHR
*5,3 3,A1,3 3,16,7
LDH MPYUS SHR
MPYHL ADD
LDW SUB ADD STW
SHR
Dec Loop
B Loop

5.2.4 ModemTone.asm

Table 20 32-Bit Update Pipeline

This module defines the C-callable sub-routines ModToneReset and ModTone. The data
memory for these routines needs to be reserved by the C-code, as it is only referenced indirectly.
There are no user defined .equ’s in these routines.

24

5.2.5 ToneGenerate.asm

This module defines the C-callable sub-routines InitTone, InitDTMF and ToneGenerate; these
routines are used to generate test data only and are not part of the echo control code though they
could have other uses. The data memory for these routines needs to be reserved by the C-code, as
it is only referenced indirectly. There are no user defined .equ’s in these routines.

25

6. Acronyms

DECT Digital Enhanced Cordless Telecommunications

IR Infinite Impulse Response

ISDN Integrated Services Digital Network
LMS Least Mean Squared

NLP Non-Linear Processor

7. References
ITU Recommendation G.164

General Characteristics of International Telephone Connections and International Telephone
Circuits. Echo Suppressers

ITU Recommendation G.165

General Characteristics of International Telephone Connections and International Telephone
Circuits. Echo Cancellers

ITU Recommendation G.711

Pulse code modulation (PCM) of voice frequencies

ITU Recommendation G.712

Transmission performance characteristics of pulse code modulation
ITU Recommendation V.25

Data Communication over the Telephone Network. Automatic Answering Equipment and/or
Parallel Automatic Calling Equipment on the General Switched Telephone Network Including
Procedures for Disabling of Echo Control Devices for both Manually and Automatically
Established Calls.

ETSI 300 175-*
Digital Enhanced Cordless Telecommunications. (DECT)
TMS320C62xx CPU and Instruction Set

TMS320C62xx Programmers Guide

26

