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A minimum-variance, frequency-domain beamformer has been developed to provide speech separation for hearing-aid 
applications.  The beamformer has the ability to cancel interfering sound sources from different spatial directions at 
different frequencies while preserving the desired source.  A real-time system has been implemented on the Texas 
Instruments C62x evaluation module.  Hardware and fixed-point issues (including quantization and scaling) will be 
discussed.  A simple one-talker experiment is shown to demonstrate the effectiveness of the algorithm at attenuating 
unwanted sound sources.  This research was funded by the Beckman Institute at the University of Illinois at Urbana-
Champaign.

INTRODUCTION 
A real-time implementation of a frequency-selective 
array processing system has been developed to provide 
direction-based noise cancellation.  Many people with 
hearing loss have difficulties separating desired speech 
(for example, the person talking from across the table in 
a noisy cafeteria) from interfering speech. Array 
processing algorithms that remove noise from all but a 
single, desired direction would give back to the user the 
ability to listen selectively.  
 
Once an algorithm has demonstrated the ability to 
effectively attenuate simulated interference sources, a 
real-time implementation is crucial for evaluation.  Not 
only is the processing time for simulated data greatly 
reduced, but interactive performance evaluations can be 
made using data from real environments.  Qualitative 
measures such as speed of adaptation and fidelity of 
output can be investigated.  With a real-time 
implementation, the algorithm designer can assume the 
role of the end user. 
 
Implementing an algorithm on a fixed-point DSP board 
requires judiciously scaling the algorithm so that the 
precision of the processing is not compromised.  
Understanding both the algorithm and the capabilities 
of the DSP processor are essential for retaining the 
most precision possible while developing an efficient 

implementation.   System implementation is discussed 
from signal processing and hardware requirement 
standpoints.  Quantization and scaling issues are also 
examined.  The performance of the system is illustrated 
with tests utilizing real data. 

1. SYSTEM OVERVIEW 
Our beamforming system is designed to allow a user to 
listen to sounds from a single direction [1]-[2].  The 
desired direction in the current implementation is on-
axis, or equidistant from both elements in the array [3]-
[4]. Given that desired direction has a unity response, 
the array seeks to minimize the total output power.  The 
user only needs to physically steer the two-element 
array in the direction of the desired source; the array 
then presents the desired signal cleanly while rejecting 
sounds from all other directions. 

1.1 Algorithm 
Our system is a two-element array processor which 
generates its spatial filter taps based on a minimum 
variance criterion.  Linearly constrained minimum 
variance (LCMV) methods solve for the set of filter 
taps that best reduces output power given a set of linear 
constraints.  The spatial filter parameters are directly 
computed using the statistics of the inputs. The 
statistical quantities, autocorrelations and cross-
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correlations, of the two input signals constitute the 
correlation matrix R.   
 
To preserve on-axis signals, we use a point constraint to 
force the on-axis gain to unity. Our system is now left 
with one degree of freedom for optimization.  It can be 
shown that the optimal two-element LCMV filter  
weights (given our constraints) are 
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where Rij is the (i,j)th entry in R [4]. 
 
To allow different spatial filters at different frequencies, 
the minimum variance algorithm operates in the 
frequency domain.  That is, an N-point FFT breaks 
down each input signal into N input channels.  A 
minimum variance beamformer then operates 
independently in each channel. 
 
The block diagram of the system is shown in Figure 1. 
Successive FFTs are performed on the digitized input 
signals to produce a frequency buffer which contains 
the most recent FFT results.   Typical simulations 
compute FFTs every 16 samples. 
 
For each bin of the FFTs, a LCMV calculation is made 
to calculate the best set of filter taps given the on-axis 
constraint.  The weights are then applied to the data in 
the frequency buffer to perform the filtering.  To save 
computation and prevent processing artifacts, the filter 
weights are only updated with every eighth FFT 
calculation.  As with the frequency buffer creation, 
IFFTs are computed every 16 samples in order to 
generate 16 output time samples.  
 
Note that while the input and output samples are purely 
real, the rest of the algorithm is comprised of complex 
variables and arithmetic.  To implement on a DSP 
processor, the algorithm has to be broken into real and 
imaginary components.  Memory space has to be 
allocated for the real and imaginary components of the 
frequency buffers, the cross-correlations, the LCMV 
weights, and the weighted frequency data. 
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Figure 1- Array processing system 

1.2 Hardware 
The hardware required for the real-time implementation 
is shown in Figure 2.  The required components include 
two microphones, two microphone preamps, a DSP 
evaluation board, a headphone amp, and headphones.  
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Figure 2 - Hardware for real-time system 

 
The microphones can be mounted either in the free field 
on a stand or on the head of KEMAR, an acoustic 
mannequin.  Two types of miniature microphones, 
omnidirectional and cardioid, have been used with the 
real-time system.  The omnidirectional microphones in 
use are the Sennheiser MKE-2 Gold microphones.  The 
Sennheiser MKE 104 microphones have a cardioid 
response. 
 
The output level of microphones is much lower than 
nominal line-level audio signals.  Typical preamps 
providing up to 60 dB gain are used to amplify 
microphone signals to line-level.  The preamp used for 
the real-time system is the Millennia Media HV-3B 
with optional high-resolution gain switches.  This two-
channel microphone preamp has user-selectable gain 
from 8.5 to 60.5 dB and the two channels of the preamp 
are matched to 0.04 dB. 
 
The line-level signals from the microphone preamp are 

Microphones Headphones 
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sent to the Texas Instruments (TI) TMS320C62x 
evaluation board for processing.  The TI C62x is a 
high-performance fixed-point DSP processor.  The 
processor’s very long instruction word core allows up 
to eight parallel instructions per execution cycle; 
running at 133 MHz, the DSP is capable of up to 1064 
millions of instructions per second.  Audio input and 
output is provided via the evaluation board’s 16-bit 
A/Ds and D/As.   
 
The TI C62x evaluation board is provided with an 
efficient C compiler.  The C compiler greatly speeds up 
code development, since the algorithm can be written in 
C instead of the DSP’s assembly language.  Particularly 
slow sections of the C implementation can then be 
coded in assembly for computational efficiency. 
 
The processed output of the DSP evaluation board is 
then fed to a Headroom Home headphone amp, which 
can drive two pairs of Sennheiser HDA 200 
audiometric headphones.  The Sennheiser headphones 
are large over-the-ear headphones which help seal out 
outside sounds.  Reducing the intensity of outside 
sounds allows the user to attend only to the processed 
output and not the original sounds in the room. 
 

2. FIXED-POINT AND QUANTIZATION 
Fixed-point DSP processors are faster and cheaper than 
their floating-point counterparts.  While simulations are 
predominantly run in floating point, real-time 
implementations often require the extra speed that 
fixed-point processors can provide.  In many 
applications, the transition from floating point to fixed 
point is not a trivial one.  
 
The fixed-point issues addressed here are divided into 
two sections.  First, the input/output and weight 
application elements are examined.  The reasoning 
behind the scaling of the weights and the weight 
calculation itself is discussed second. 
 

2.1 I/O and weight application 
The A/D and D/A converters on the evaluation board 
have 16-bit resolution.  To maximize precision, the 
input data should be assumed to be close to full scale.  
The processing performed in the DSP should retain as 
much resolution as possible and then return the 
appropriate 16 bits to the D/A.  All instances of  right-
shifting should be postponed as late as possible in the 
processing chain.  
 
Since a 256-point FFT will have a maximum possible 

gain of 256, the input data would need to be right-
shifted eight bits before a 16-bit, 256-point FFT to 
prevent overflow within the FFT.  To avoid throwing 
away half of our precision, a 32-bit FFT was used.  The 
data from the A/D is now left-shifted by eight bits prior 
to the FFT, preserving all of the initial resolution of the 
input signal.    
 
The LCMV weights are 32-bit quantities and have been 
left-shifted by 23 bits; the subsequent section explains 
why this particular scaling was chosen.  Multiplying the 
32-bit FFT data with the 32-bit LCMV weights results 
in a 64-bit result.  The execution of this complex 
multiplication is performed with full 64-bit precision. 
 
The 64-bit weighted frequency data must now be 
converted to a time signal.  After right-shifting by eight 
bits (to prescale for the IFFT), the upper 32 bits of the 
frequency data are stored.  The weighted frequency data 
is then converted to a 32-bit time sequence.  The upper 
16 bits are passed along to the D/A for output. 
 

2.2 Weight calculation 
In order to calculate the filter taps, the elements of R 
must be estimated.  Calculating each element of R 
entails multiplying 32-bit frequency results together.  
The product is calculated with full 64-bit precision and 
then the top 40 bits are taken. 
 
Equation (1) illustrates that the calculation of the 
weights requires the division of two quantities; these 
quantities are a simple function of the elements of R.  
The numerator and denominator are calculated as 40-bit 
quantities.  Now the numerator and denominator must 
be scaled such that the calculated weights have the 
highest possible precision. 
 
The real and imaginary parts of the weights can take on 
values above and below unity.  In fixed-point 
implementations, accurately representing the weights 
requires scaling.  It can be shown in a one-talker 
simulation that the imaginary component of the weights 
can rise as high as 250 with a sensor spacing of 14.4 
cm; a conservative approach would allow the weights 
eight bits of headroom above the binary point.  Thus if 
the weights are 32-bit signed elements, the binary point 
can be placed 23 bits up. 
 
Even though the scaling of the weights has been 
determined, the problem of implementing the scaling 
still persists.  One approach would be to left-shift the 
numerator by 23 bits prior to the division.  However, if 
the numerator is larger than 16 bits, the numerator 
would overflow.  Conversely, the denominator could be 
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right-shifted by 23 bits prior to the division but that 
obviously compromises the precision of the calculation 
and introduces potential divide-by-zero problems. 
 
A good solution to the problem is to combine the two 
approaches into a variable scaling approach.  First 
check how many bits of headroom x are left in the 
numerator.  If x is equal to or greater than 23, left-shift 
by 23 bits and continue on to the division.  If x is less 
than 23, left-shift the numerator by x and right-shift the 
denominator by (23 - x).  Finally, the value of the 
shifted denominator is checked; if the denominator is 
zero, both weights are set to a nominal value of 0.5. 
 

3. RESULTS 
A single-talker test will be discussed to illustrate the 
performance of the real-time system.  Speech materials 
were recorded every 5° around the microphone array.  
The materials consisted of 14 s of male speech from a 
loudspeaker.  Data were taken with both the 
omnidirectional and cardioid microphones; 72 
recordings were made with each microphone set.   We 
will only look at the omnidirectional data here, but the 
directional data has been analyzed [4]. 
 
The microphone spacing was 15.2 cm and the 
loudspeaker was located 91 cm from the midpoint of 
the linear array.  The microphones are mounted in the 
free field on a stand.  The sign convention for 
identifying azimuth is established as negative for the 
region left of the array and positive for the region right 
of the array.   
 
A single loudspeaker rotates around the microphone 
array.  The energy of the processed output is a measure 
of the array’s performance, since the talker is 
considered noise for all but θ = 0°.  The energy of the 
signals at the array will serve as the reference for 
calculating the amount of spatial filtering.   
 
The average input energy and the energy of the 
processed signal are shown in Figure 3.  Notice that the 
energy has been reduced for all angles except 0° and 
180°.  Clearly the algorithm was able to cancel sources 
off-axis.  Note that sources from 180° were not 
attenuated since they are indistinguishable from those 
that originate from 0°.  
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Figure 3 - Average input and processed signal energies 

 
 
Taking the difference of the two curves in Figure 3, the 
total energy reduction can be calculated as shown in 
Figure 4.  The plot simply shows that the array is 
capable of cancelling out off-axis sources from all but 
the front and back 20° windows.  Note that the 
strongest level of attenuation is 14.3 dB at 60°. 
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Figure 4 - Energy reduction due to array processing 

 
Ideally, the processing algorithm can attenuate a single 
off-axis source from the left or right equally well.  
However, Figure 4 shows an uneven energy reduction 
from -90° to -150° that is not present on the other side 
of the array (i.e., from 90° to 150°).  Additionally, the 
response from 180° to 90° should be identical to that 
from 90° to 0°.  While that behavior is basically obeyed 
on the right side of the array, the left side of the array 
violates it.   
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Symmetry violations are most likely due to multipath 
variations.  Moving the loudspeaker throughout the 
room creates a room response that varies with angle. 
Note that this test shows that the array processor is able 
to attenuate interfering sources with data from real 
microphones.  However, the previous data were 
collected in only one room, while using only one 
sample of each microphone set.  Clearly, a much more 
rigorous study of the algorithm’s performance in real 
environments would be needed to make solid 
conclusions. 

4.  CONCLUSIONS 
The real-time system developed can significantly 
reduce off-axis noise while preserving the on-axis 
source.  A striking feature of this algorithm is that on-
axis speech sounds very natural.  Adaptation to the 
signal environment is exceptionally quick, since the 
algorithm computes new optimal weights every eight 
processing blocks. 
 
The scaling of the algorithm is designed to maximize 
the resolution of the calculations within a fixed-point 
context.  Lower resolution implementations 
compromise the algorithm’s ability to attenuate 
interfering sources as well as the underlying noise floor.  
Unfortunately, carrying a high level of precision 
throughout the processing raises the computation 
complexity.  The 64-bit complex multiplications, which 
enable the weighting procedure to incur no additional 
quantization, are implemented in pure assembly in 
order to reduce the considerable computational load.  
 
The moving-loudspeaker test verifies the system’s 
ability to remove off-axis sources.  Extending this test 
to include multiple rooms, sound sources, and 
microphone batches would yield a richer dataset for 
analysis.  However, it is important to not let engineering 
tests completely overshadow human subject tests, since 
helping people distinguish speech in noisy 
environments is the very objective of this research. 
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