
Elledge, et. al REAL-TIME IMPLEMENTATION…

Texas Instruments DSPSFest 2000 1

REAL-TIME IMPLEMENTATION OF A FREQUENCY-DOMAIN
BEAMFORMER ON THE TI C62X EVM

MARK E. ELLEDGE1, MICHAEL E. LOCKWOOD2, ROBERT C. BILGER2, ALBERT S. FENG2,

DOUGLAS L. JONES2, CHARISSA R. LANSING2, WILLIAM D. O'BRIEN2, AND BRUCE WHEELER2

1Motorola, Austin, TX, USA
elledge11@yahoo.com

2University of Illinois, Urbana, IL, USA

A minimum-variance, frequency-domain beamformer has been developed to provide speech separation for hearing-aid
applications. The beamformer has the ability to cancel interfering sound sources from different spatial directions at
different frequencies while preserving the desired source. A real-time system has been implemented on the Texas
Instruments C62x evaluation module. Hardware and fixed-point issues (including quantization and scaling) will be
discussed. A simple one-talker experiment is shown to demonstrate the effectiveness of the algorithm at attenuating
unwanted sound sources. This research was funded by the Beckman Institute at the University of Illinois at Urbana-
Champaign.

INTRODUCTION
A real-time implementation of a frequency-selective
array processing system has been developed to provide
direction-based noise cancellation. Many people with
hearing loss have difficulties separating desired speech
(for example, the person talking from across the table in
a noisy cafeteria) from interfering speech. Array
processing algorithms that remove noise from all but a
single, desired direction would give back to the user the
ability to listen selectively.

Once an algorithm has demonstrated the ability to
effectively attenuate simulated interference sources, a
real-time implementation is crucial for evaluation. Not
only is the processing time for simulated data greatly
reduced, but interactive performance evaluations can be
made using data from real environments. Qualitative
measures such as speed of adaptation and fidelity of
output can be investigated. With a real-time
implementation, the algorithm designer can assume the
role of the end user.

Implementing an algorithm on a fixed-point DSP board
requires judiciously scaling the algorithm so that the
precision of the processing is not compromised.
Understanding both the algorithm and the capabilities
of the DSP processor are essential for retaining the
most precision possible while developing an efficient

implementation. System implementation is discussed
from signal processing and hardware requirement
standpoints. Quantization and scaling issues are also
examined. The performance of the system is illustrated
with tests utilizing real data.

1. SYSTEM OVERVIEW
Our beamforming system is designed to allow a user to
listen to sounds from a single direction [1]-[2]. The
desired direction in the current implementation is on-
axis, or equidistant from both elements in the array [3]-
[4]. Given that desired direction has a unity response,
the array seeks to minimize the total output power. The
user only needs to physically steer the two-element
array in the direction of the desired source; the array
then presents the desired signal cleanly while rejecting
sounds from all other directions.

1.1 Algorithm
Our system is a two-element array processor which
generates its spatial filter taps based on a minimum
variance criterion. Linearly constrained minimum
variance (LCMV) methods solve for the set of filter
taps that best reduces output power given a set of linear
constraints. The spatial filter parameters are directly
computed using the statistics of the inputs. The
statistical quantities, autocorrelations and cross-

Elledge, et. al REAL-TIME IMPLEMENTATION…

AES 17th International conference on High Quality Audio Coding 2

correlations, of the two input signals constitute the
correlation matrix R.

To preserve on-axis signals, we use a point constraint to
force the on-axis gain to unity. Our system is now left
with one degree of freedom for optimization. It can be
shown that the optimal two-element LCMV filter
weights (given our constraints) are

21122211

1222

RRRR
RR

−−+
−=1w (1)

and

12 1 ww −= (2)

where Rij is the (i,j)th entry in R [4].

To allow different spatial filters at different frequencies,
the minimum variance algorithm operates in the
frequency domain. That is, an N-point FFT breaks
down each input signal into N input channels. A
minimum variance beamformer then operates
independently in each channel.

The block diagram of the system is shown in Figure 1.
Successive FFTs are performed on the digitized input
signals to produce a frequency buffer which contains
the most recent FFT results. Typical simulations
compute FFTs every 16 samples.

For each bin of the FFTs, a LCMV calculation is made
to calculate the best set of filter taps given the on-axis
constraint. The weights are then applied to the data in
the frequency buffer to perform the filtering. To save
computation and prevent processing artifacts, the filter
weights are only updated with every eighth FFT
calculation. As with the frequency buffer creation,
IFFTs are computed every 16 samples in order to
generate 16 output time samples.

Note that while the input and output samples are purely
real, the rest of the algorithm is comprised of complex
variables and arithmetic. To implement on a DSP
processor, the algorithm has to be broken into real and
imaginary components. Memory space has to be
allocated for the real and imaginary components of the
frequency buffers, the cross-correlations, the LCMV
weights, and the weighted frequency data.

Microphones •
•
•

LCMV
Beamformer

LCMV
Beamformer

f1,R

System
Output

fM

f1

fM,R

•
•
•

Noise
Cancellation

Noise
Cancellation

•
•
•

fM,L

•
•
•

Frequency
Buffer

L

R A/D

FFT

f1,L

fM,L

•
•
•

f1,L

f1,R

fM,R

•
•
•

f1,L

f1,R

fM,L

fM,R

FFT

A/D

Frequency
Buffer

IFFT D/A
•
•
•

Figure 1- Array processing system

1.2 Hardware
The hardware required for the real-time implementation
is shown in Figure 2. The required components include
two microphones, two microphone preamps, a DSP
evaluation board, a headphone amp, and headphones.

Microphone
Preamp

Microphone
Preamp

Texas
Instruments

TMS320C62x DSP
Evaluation Board

Headphone
Amp

Figure 2 - Hardware for real-time system

The microphones can be mounted either in the free field
on a stand or on the head of KEMAR, an acoustic
mannequin. Two types of miniature microphones,
omnidirectional and cardioid, have been used with the
real-time system. The omnidirectional microphones in
use are the Sennheiser MKE-2 Gold microphones. The
Sennheiser MKE 104 microphones have a cardioid
response.

The output level of microphones is much lower than
nominal line-level audio signals. Typical preamps
providing up to 60 dB gain are used to amplify
microphone signals to line-level. The preamp used for
the real-time system is the Millennia Media HV-3B
with optional high-resolution gain switches. This two-
channel microphone preamp has user-selectable gain
from 8.5 to 60.5 dB and the two channels of the preamp
are matched to 0.04 dB.

The line-level signals from the microphone preamp are

Microphones Headphones

Elledge, et. al REAL-TIME IMPLEMENTATION…

AES 17th International conference on High Quality Audio Coding 3

sent to the Texas Instruments (TI) TMS320C62x
evaluation board for processing. The TI C62x is a
high-performance fixed-point DSP processor. The
processor’s very long instruction word core allows up
to eight parallel instructions per execution cycle;
running at 133 MHz, the DSP is capable of up to 1064
millions of instructions per second. Audio input and
output is provided via the evaluation board’s 16-bit
A/Ds and D/As.

The TI C62x evaluation board is provided with an
efficient C compiler. The C compiler greatly speeds up
code development, since the algorithm can be written in
C instead of the DSP’s assembly language. Particularly
slow sections of the C implementation can then be
coded in assembly for computational efficiency.

The processed output of the DSP evaluation board is
then fed to a Headroom Home headphone amp, which
can drive two pairs of Sennheiser HDA 200
audiometric headphones. The Sennheiser headphones
are large over-the-ear headphones which help seal out
outside sounds. Reducing the intensity of outside
sounds allows the user to attend only to the processed
output and not the original sounds in the room.

2. FIXED-POINT AND QUANTIZATION
Fixed-point DSP processors are faster and cheaper than
their floating-point counterparts. While simulations are
predominantly run in floating point, real-time
implementations often require the extra speed that
fixed-point processors can provide. In many
applications, the transition from floating point to fixed
point is not a trivial one.

The fixed-point issues addressed here are divided into
two sections. First, the input/output and weight
application elements are examined. The reasoning
behind the scaling of the weights and the weight
calculation itself is discussed second.

2.1 I/O and weight application
The A/D and D/A converters on the evaluation board
have 16-bit resolution. To maximize precision, the
input data should be assumed to be close to full scale.
The processing performed in the DSP should retain as
much resolution as possible and then return the
appropriate 16 bits to the D/A. All instances of right-
shifting should be postponed as late as possible in the
processing chain.

Since a 256-point FFT will have a maximum possible

gain of 256, the input data would need to be right-
shifted eight bits before a 16-bit, 256-point FFT to
prevent overflow within the FFT. To avoid throwing
away half of our precision, a 32-bit FFT was used. The
data from the A/D is now left-shifted by eight bits prior
to the FFT, preserving all of the initial resolution of the
input signal.

The LCMV weights are 32-bit quantities and have been
left-shifted by 23 bits; the subsequent section explains
why this particular scaling was chosen. Multiplying the
32-bit FFT data with the 32-bit LCMV weights results
in a 64-bit result. The execution of this complex
multiplication is performed with full 64-bit precision.

The 64-bit weighted frequency data must now be
converted to a time signal. After right-shifting by eight
bits (to prescale for the IFFT), the upper 32 bits of the
frequency data are stored. The weighted frequency data
is then converted to a 32-bit time sequence. The upper
16 bits are passed along to the D/A for output.

2.2 Weight calculation
In order to calculate the filter taps, the elements of R
must be estimated. Calculating each element of R
entails multiplying 32-bit frequency results together.
The product is calculated with full 64-bit precision and
then the top 40 bits are taken.

Equation (1) illustrates that the calculation of the
weights requires the division of two quantities; these
quantities are a simple function of the elements of R.
The numerator and denominator are calculated as 40-bit
quantities. Now the numerator and denominator must
be scaled such that the calculated weights have the
highest possible precision.

The real and imaginary parts of the weights can take on
values above and below unity. In fixed-point
implementations, accurately representing the weights
requires scaling. It can be shown in a one-talker
simulation that the imaginary component of the weights
can rise as high as 250 with a sensor spacing of 14.4
cm; a conservative approach would allow the weights
eight bits of headroom above the binary point. Thus if
the weights are 32-bit signed elements, the binary point
can be placed 23 bits up.

Even though the scaling of the weights has been
determined, the problem of implementing the scaling
still persists. One approach would be to left-shift the
numerator by 23 bits prior to the division. However, if
the numerator is larger than 16 bits, the numerator
would overflow. Conversely, the denominator could be

Elledge, et. al REAL-TIME IMPLEMENTATION…

AES 17th International conference on High Quality Audio Coding 4

right-shifted by 23 bits prior to the division but that
obviously compromises the precision of the calculation
and introduces potential divide-by-zero problems.

A good solution to the problem is to combine the two
approaches into a variable scaling approach. First
check how many bits of headroom x are left in the
numerator. If x is equal to or greater than 23, left-shift
by 23 bits and continue on to the division. If x is less
than 23, left-shift the numerator by x and right-shift the
denominator by (23 - x). Finally, the value of the
shifted denominator is checked; if the denominator is
zero, both weights are set to a nominal value of 0.5.

3. RESULTS
A single-talker test will be discussed to illustrate the
performance of the real-time system. Speech materials
were recorded every 5° around the microphone array.
The materials consisted of 14 s of male speech from a
loudspeaker. Data were taken with both the
omnidirectional and cardioid microphones; 72
recordings were made with each microphone set. We
will only look at the omnidirectional data here, but the
directional data has been analyzed [4].

The microphone spacing was 15.2 cm and the
loudspeaker was located 91 cm from the midpoint of
the linear array. The microphones are mounted in the
free field on a stand. The sign convention for
identifying azimuth is established as negative for the
region left of the array and positive for the region right
of the array.

A single loudspeaker rotates around the microphone
array. The energy of the processed output is a measure
of the array’s performance, since the talker is
considered noise for all but θ = 0°. The energy of the
signals at the array will serve as the reference for
calculating the amount of spatial filtering.

The average input energy and the energy of the
processed signal are shown in Figure 3. Notice that the
energy has been reduced for all angles except 0° and
180°. Clearly the algorithm was able to cancel sources
off-axis. Note that sources from 180° were not
attenuated since they are indistinguishable from those
that originate from 0°.

 10 dB

 20 dB

 30 dB

30

-150

60

-120

90

-90

120

-60

150

-30

180 0

Unprocessed
Processed

Figure 3 - Average input and processed signal energies

Taking the difference of the two curves in Figure 3, the
total energy reduction can be calculated as shown in
Figure 4. The plot simply shows that the array is
capable of cancelling out off-axis sources from all but
the front and back 20° windows. Note that the
strongest level of attenuation is 14.3 dB at 60°.

 5 dB

 10 dB

 15 dB

30

-150

60

-120

90

-90

120

-60

150

-30

180 0

Figure 4 - Energy reduction due to array processing

Ideally, the processing algorithm can attenuate a single
off-axis source from the left or right equally well.
However, Figure 4 shows an uneven energy reduction
from -90° to -150° that is not present on the other side
of the array (i.e., from 90° to 150°). Additionally, the
response from 180° to 90° should be identical to that
from 90° to 0°. While that behavior is basically obeyed
on the right side of the array, the left side of the array
violates it.

Elledge, et. al REAL-TIME IMPLEMENTATION…

AES 17th International conference on High Quality Audio Coding 5

Symmetry violations are most likely due to multipath
variations. Moving the loudspeaker throughout the
room creates a room response that varies with angle.
Note that this test shows that the array processor is able
to attenuate interfering sources with data from real
microphones. However, the previous data were
collected in only one room, while using only one
sample of each microphone set. Clearly, a much more
rigorous study of the algorithm’s performance in real
environments would be needed to make solid
conclusions.

4. CONCLUSIONS
The real-time system developed can significantly
reduce off-axis noise while preserving the on-axis
source. A striking feature of this algorithm is that on-
axis speech sounds very natural. Adaptation to the
signal environment is exceptionally quick, since the
algorithm computes new optimal weights every eight
processing blocks.

The scaling of the algorithm is designed to maximize
the resolution of the calculations within a fixed-point
context. Lower resolution implementations
compromise the algorithm’s ability to attenuate
interfering sources as well as the underlying noise floor.
Unfortunately, carrying a high level of precision
throughout the processing raises the computation
complexity. The 64-bit complex multiplications, which
enable the weighting procedure to incur no additional
quantization, are implemented in pure assembly in
order to reduce the considerable computational load.

The moving-loudspeaker test verifies the system’s
ability to remove off-axis sources. Extending this test
to include multiple rooms, sound sources, and
microphone batches would yield a richer dataset for
analysis. However, it is important to not let engineering
tests completely overshadow human subject tests, since
helping people distinguish speech in noisy
environments is the very objective of this research.

REFERENCES
[1] M.E. Lockwood, D.L. Jones, R.C. Bilger, M.E.

Elledge, A.S. Feng, M. Goueygou, C.R.
Lansing, C. Liu, W.D. O’Brien Jr., and B.C.
Wheeler, “A minimum-variance frequency
domain algorithm for binaural hearing aid
processing”, presented at 138th Meeting of the
Acoustical Society of America, Columbus, OH,
1999.

[2] M.E. Lockwood, “Development and testing of a
frequency domain minimum-variance algorithm
for use in a binaural hearing aid,” M.S. thesis,
University of Illinois, Urbana, IL, 1999.

[3] M.E. Elledge, M.E. Lockwood, R.C. Bilger, M.
Goueygou, D.L. Jones, C.R. Lansing, W.D.
O’Brien Jr., B.C. Wheeler, “A real-time dual
microphone signal processing system for hearing
aids,” presented at 138th Meeting of the
Acoustical Society of America, Columbus, OH,
1999.

[4] M.E. Elledge, “Real-time implementation of a
frequency-domain array processor,” M.S. thesis,
University of Illinois, Urbana, IL, 2000.

	1.	SYSTEM OVERVIEW
	1.1	Algorithm
	1.2 Hardware

	FIXED-POINT AND QUANTIZATION
	2.1 I/O and weight application
	2.2 Weight calculation

	3.	RESULTS
	4. 	CONCLUSIONS

