

ADS9813 SBASAQ6 - APRIL 2024

ADS9813 18-Bit, 2MSPS, 8-Channel, Simultaneous-Sampling ADC With Integrated **Analog Front-End**

1 Features

- 8-channel, 18-bit ADC with analog front-end:
 - Simultaneous sampling
 - Constant 1MΩ input impedance front-end
- Programmable analog input ranges:
 - ±12V, ±10V, ±7V, ±5V, ±3.5V, and ±2.5V
 - Single-ended and differential inputs
 - Common-mode voltage range: ±12V
 - Input overvoltage protection: Up to ±18V
- User-selectable analog input bandwidth:
 - 21kHz and 400kHz
- Integrated low-drift precision references:
 - ADC reference: 4.096V
 - 2.5V reference output for external circuits
- Excellent AC and DC performance at fullthroughput:

 DNL: ±0.35LSB. INL: ±1LSB SNR: 92.3dBFS, THD: -114dB

Power supply:

 Analog and digital: 5V and 1.8V Digital interface: 1.2V to 1.8V Temperature range: -40°C to +125°C

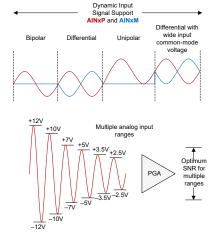
2 Applications

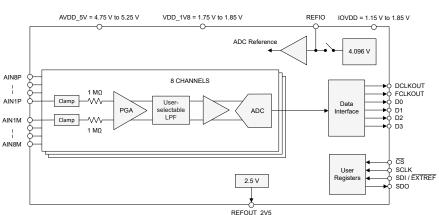
- Semiconductor tests
- Programmable DC power supplies
- Parametric measurement units (PMU)

3 Description

The ADS9813 is an eight-channel data acquisition (DAQ) system based on a simultaneous sampling, 18bit successive approximation register (SAR) analogto-digital converter (ADC). The ADS9813 features a complete analog front-end (AFE) for each channel with an input clamp. The device also features a $1M\Omega$ input impedance and a programmable gain amplifier (PGA) with user-selectable bandwidth options. The high input impedance allows direct connection with sensors and transformers, thus eliminating the need for external driver circuits. Configure the ADS9813 to accept ±12V, ±10V, ±7V, ±5V, ±3.5V, and ±2.5V bipolar inputs with up to ±12V input common-mode voltage.

A digital interface supporting 1.2V to 1.8V operation enables the ADS9813 to be used without external voltage level translators.


Package Information


PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)
ADS9813	RSH (VQFN, 56)	7mm × 7mm

- For more information, see the Mechanical, Packaging, and (1) Orderable Information.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Device Information

PART NUMBER	SPEED	TOTAL POWER
ADS9813	2MSPS/channel	220mW
ADS9811	1MSPS/channel	160mW

Device Block Diagram

Table of Contents

1 Features1	7 Re
2 Applications1	7.1
3 Description1	7.2
4 Pin Configuration and Functions3	7.3
5 Specifications5	8 Ap
5.1 Absolute Maximum Ratings5	8.1
5.2 ESD Ratings5	8.2
5.3 Recommended Operating Conditions6	8.3
5.4 Thermal Information6	8.4
5.5 Electrical Characteristics7	9 De
5.6 Timing Requirements10	9.1
5.7 Switching Characteristics11	9.2
5.8 Timing Diagrams11	9.3
5.9 Typical Characteristics14	9.4
6 Detailed Description18	9.5
6.1 Overview	10 R
6.2 Functional Block Diagram18	11 M
6.3 Feature Description19	Inf
6.4 Device Functional Modes	11.
6.5 Programming	

1	Register Map	32
	7.1 Register Bank 0	. 32
	7.2 Register Bank 1	
	7.3 Register Bank 2	
8	Application and Implementation	. 46
	8.1 Application Information	. 46
	8.2 Typical Application	
	8.3 Power Supply Recommendations	
	8.4 Layout	
9	Device and Documentation Support	
	9.1 Receiving Notification of Documentation Updates	51
	9.2 Support Resources	.51
	9.3 Trademarks	. 51
	9.4 Electrostatic Discharge Caution	51
	9.5 Glossary	51
1	0 Revision History	51
1	1 Mechanical, Packaging, and Orderable	
	Information	.51
	11.1 Mechanical Data	. 52

Submit Document Feedback

4 Pin Configuration and Functions

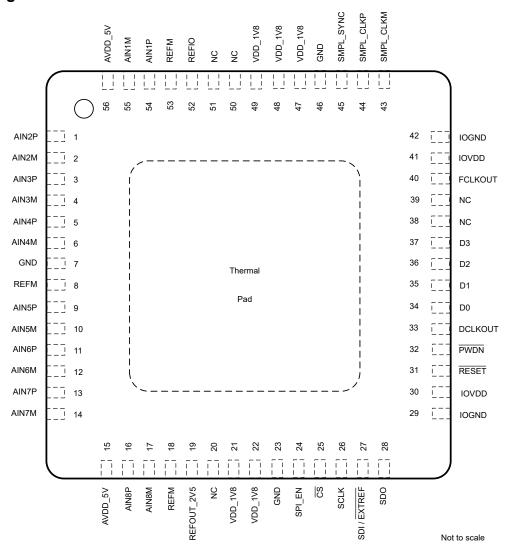


Figure 4-1. RSH Package, 56-Pin VQFN (Top View)

Table 4-1. Pin Functions

PI	IN	- TYPE ⁽¹⁾	DESCRIPTION		
NAME	NO.	1 TPE("/	DESCRIPTION		
AIN1M	55	Al	Analog input channel 1, negative input.		
AIN1P	54	Al	Analog input channel 1, positive input.		
AIN2M	2	Al	Analog input channel 2, negative input.		
AIN2P	1	Al	Analog input channel 2, positive input.		
AIN3M	4	Al	Analog input channel 3, negative input.		
AIN3P	3	Al	Analog input channel 3, positive input.		
AIN4M	6	Al	Analog input channel 4, negative input.		
AIN4P	5	Al	Analog input channel 4, positive input.		
AIN5M	10	Al	Analog input channel 5, negative input.		
AIN5P	9	Al	Analog input channel 5, positive input.		
AIN6M	12	Al	Analog input channel 6, negative input.		
AIN6P	11	Al	Analog input channel 6, positive input.		

Table 4-1. Pin Functions (continued)

P	IN		Table 4-1. Pin Functions (continued)
NAME	NO.	TYPE ⁽¹⁾	DESCRIPTION
AIN7M	14	Al	Analog input channel 7, negative input.
AIN7P	13	Al	Analog input channel 7, positive input.
AIN8M	17	Al	Analog input channel 8, negative input.
AIN8P	16	Al	Analog input channel 8, positive input.
AVDD_5V	15, 56	Р	5V analog supply. Connect 1μF and 0.1μF decoupling capacitors to GND.
CS	25	DI	Chip-select input for the SPI interface configuration; active low. This pin has an internal 100kΩ pullup resistor to IOVDD.
D0	34	DO	Serial output data lane 0.
D1	35	DO	Serial data output lane 1.
D2	36	DO	Serial data output lane 2.
D3	37	DO	Serial data output lane 3.
DCLKOUT	33	DO	Clock output for the data interface.
FCLKOUT	40	DO	Frame synchronization output for the data interface.
GND	7, 23, 46	Р	Ground.
IOGND	29, 42	Р	Ground for the digital interface. Connect to ground externally.
IOVDD	30, 41	Р	Digital I/O supply for the data interface. Connect 1µF and 0.1µF decoupling capacitors to GND.
NC	20, 38, 39, 50, 51	_	Not connected. No external connection.
PWDN	32	DI	Power-down control; active low. PWDN has an internal 100kΩ pullup resistor to the digital interface supply.
REFIO	52	AI/AO	REFIO acts as an internal reference output when the internal reference is enabled. REFIO functions as an input pin for the external reference when the internal reference is disabled. Connect a 10µF decoupling capacitor to the REFM pins.
REFM	8, 18, 53	Al	Reference ground potential. Connect to GND.
REFOUT_2V5	19	AO	2.5V reference output. Connect a decoupling 10µF capacitor to the REFM pins.
RESET	31	DI	Reset input for the device; active low. $\overline{\text{RESET}}$ has an internal $100 \text{k}\Omega$ pullup resistor to the digital interface supply.
SCLK	26	DI	Serial clock input for the configuration interface. \overline{SCLK} has an internal $100k\Omega$ pulldown resistor to the digital interface ground.
SDI/EXTREF	27	DI	SDI is a multifunction logic input. Pin function is determined by the SPI_EN pin. SDI has an internal $100 \text{k}\Omega$ pulldown resistor to GND. SPI_EN = 0b: SDI is the logic input to select between the internal or external reference. Connect SDI to GND for the external reference. Connect SDI to IOVDD for the internal reference. SPI_EN = 1b: Serial data input for the configuration interface.
SDO	28	DO	Serial data output for the configuration interface.
SMPL_CLKM	43	DI	Connect SMPL_CLKM to GND for a single-ended ADC sampling clock input. SMPL_CLKM is the negative input for the differential sampling clock input to the ADC.
SMPL_CLKP	44	DI	Single-ended ADC sampling clock input. SMPL_CLKP is the positive input for the differential sampling clock input to the ADC.
SMPL_SYNC	45	DI	Synchronization input. See the <i>Synchronizing Multiple ADCs</i> section on how to use the SMPL_SYNC pin.
SPI_EN	24	DI	Logic input to enable the SPI interface configuration ($\overline{\text{CS}}$, SCLK, SDI, and SDO). SPI_EN has an internal 100k Ω pullup resistor to the digital interface supply.
VDD_1V8	21, 22, 47, 48, 49	Р	1.8V power-supply. Connect 1μF and 0.1μF decoupling capacitors to GND.
Thermal pad	_	Р	Exposed thermal pad; connect to GND.

(1) I = input, O = output, I/O = input or output, G = ground, and P = power.

5 Specifications

5.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
AVDD_5V to GND	-0.3	6	V
VDD_1V8 to GND	-0.3	2.1	V
IOVDD to GND	-0.3	2.1	V
AINxP and AINxM to GND	-18	18	V
REFIO to REFM	REFM - 0.3	AVDD_5V + 0.3	V
REFM to GND	GND - 0.3	GND + 0.3	V
IOGND to GND	GND - 0.3	GND + 0.3	V
Digital inputs to IOGND	IOGND – 0.3	2.1	V
Input current to any pin except supply pins ⁽²⁾	-10	10	mA
Junction temperature, T _J	-40	150	°C
Storage temperature, T _{stg}	-60	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ Limit pin current to 10mA or less.

⁽²⁾ JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

·	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SU	PPLY					
AVDD_5V	Analog power supply	AVDD_5V to GND	4.75	5	5.25	V
VDD_1V8	Power supply	VDD_1V8 to GND	1.75	1.8	1.85	V
IOVDD	Digital interface power supply	IOVDD to IOGND	1.15	1.8	1.85	V
REFERENC	E VOLTAGE				l	
V _{REF}	Reference voltage to the ADC	External reference	4.092	4.096	4.100	V
ANALOG IN	IPUTS	<u> </u>			1	
	Full-scale input range		-2.5		2.5	V
			-3.5		3.5	
\/			-5		5	
V_{FSR}			-7		7	V
			-10		10	
			-12		12	
AINxP	Operating input voltage, positive input		-14		14	V
AINxM	Operating input voltage, negative input		-14		14	V
TEMPERAT	URE RANGE	·			'	
T _A	Ambient temperature		-40	25	125	°C

5.4 Thermal Information

		ADS981x		
	THERMAL METRIC ⁽¹⁾	RSH (VQFN)	UNIT	
		56 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	23.2	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	10.5	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	6.1	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	0.1	°C/W	
Ψ_{JB}	Junction-to-board characterization parameter	6.0	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	0.9	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.5 Electrical Characteristics

at AVDD_5V = 4.75V to 5.25V, VDD_1V8 = 1.75V to 1.85V, IOVDD = 1.15V to 1.85V, V_{REF} = 4.096V (internal or external), and maximum throughput (unless otherwise noted); minimum and maximum values at T_A = -40°C to +125°C; typical values at T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG	INPUTS					
R _{IN}	Input impedance	All input ranges	0.85	1	1.15	МΩ
	Input impedance thermal drift	All input ranges		10	25	ppm/°C
	Input capacitance			10		pF
ANALOG	INPUT FILTER		,		'	
		Low-bandwidth filter, all input ranges		21		
		Wide-bandwidth filter, input range = ±2.5V		182		
		Wide-bandwidth filter, input range = ±3.5V		240		
BW _(-3 dB)	Analog input LPF bandwidth –3 dB	Wide-bandwidth filter, input range = ±5V		320		kHz
	-3 db	Wide-bandwidth filter, input range = ±7V		400		
		Wide-bandwidth filter, input range = ±10V		385		
		Wide-bandwidth filter, input range = ±12V		375		
DC PERF	ORMANCE					
	Resolution	No missing codes	18			Bits
DNL	Differential nonlinearity	Wide CM enabled and disabled, all ranges	-0.99	±0.5	0.99	LSB
	,	Wide CM enabled and disabled, all ranges, T _A = 0°C to 70°C	-4	±1.5	4	LSB
INL	Integral nonlinearity	Wide-CM enabled and disabled, all ranges, T _A = -40°C to 125°C	-4.5	±1.5	4.5	LSB
		Wide CM disabled, range = ±2.5V	-175	±90	175	
		Wide CM enabled, range = ±2.5V		±120		LSB
		Wide CM disabled, range= ±3.5V	-100	±60	100	
		Wide CM enabled, range= ±3.5V	,	±80		
	Offset error	Wide CM disabled, range = ±5V	-50	±10	50	
		Wide CM enabled, range = ±5V		±60		
		Wide CM enabled, range = ±7V	-100	±35	100	
		Wide CM enabled, range = ±10V	-50	±10	50	
		Wide CM enabled, range = ±12V	-75	±15	75	
		Wide CM disabled, range = ±2.5V	0	300	512	
		Wide CM enabled, range = ±2.5V	0	450	750	
		Wide CM disabled, range = ±3.5V	0	150	256	
		Wide CM enabled, range = ±3.5V	0	300	512	
	Offset error matching	Wide CM disabled, range = ±5V	0	25	64	LSB
		Wide CM enabled, range = ±5V	0	175	296	
		Wide CM enabled, range = ±7V	0	100	200	
		Wide CM enabled, range = ±10V	0	25	64	
		Wide CM enabled, range = ±12V	0	35	96	
	Offset error thermal drift	Wide CM enabled and disabled, all ranges		0.5	1.5	ppm/°C
		Wide CM disabled, range = ±2.5V, ±3.5V, and ±5V	-130	±48	130	
	Gain error	Wide CM enabled, range = ±2.5V, ±3.5V, and ±5V		±100		LSB
		Wide CM enabled, range = ±7V, ±10V, ±12V	-130	±48	130	

5.5 Electrical Characteristics (continued)

at AVDD_5V = 4.75V to 5.25V, VDD_1V8 = 1.75V to 1.85V, IOVDD = 1.15V to 1.85V, V_{REF} = 4.096V (internal or external), and maximum throughput (unless otherwise noted); minimum and maximum values at T_A = -40°C to +125°C; typical values at T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Wide CM disabled, range = ±2.5V, ±3.5V, and ±5V	0	±96	200	
	Gain error matching	Wide CM enabled, range = ±2.5V, ±3.5V, and ±5V	0	±200	600	LSB
		Wide CM enabled, range = ±7V, ±10V, ±12V	0	±96	200	
	Gain error thermal drift	Wide CM enabled and disabled, all ranges		0.7	3	ppm/°0
AC PER	FORMANCE					
		Low-noise filter, f _{IN} = 2kHz, range = ±2.5V	86.7	89.5		
		Low-noise filter, f _{IN} = 2kHz, range = ±3.5V	87.8	90.5		
		Low-noise filter, f _{IN} = 2kHz, range = ±5V	88.5	91.4		
		Low-noise filter, f _{IN} = 2kHz, range = ±7V	89.3	91.3		
		Low-noise filter, f _{IN} = 2kHz, range = ±10V	89.9	91.8		
		Low-noise filter, f _{IN} = 2kHz, range = ±12V	90	92		
SNR	Signal-to-noise ratio	Wide-bandwidth filter, f _{IN} = 2kHz, range = ±2.5V	79	82.5		dBFS
		Wide-bandwidth filter, f _{IN} = 2kHz, range = ±3.5V	80	83.5		ubi 3
		Wide-bandwidth filter, f _{IN} = 2kHz, range = ±5V	80.5	84.5		
		Wide-bandwidth filter, f _{IN} = 2kHz, range = ±7V	81.5	83.5		
		Wide-bandwidth filter, f _{IN} = 2kHz, range = ±10V	83	85		
		Wide-bandwidth filter, f _{IN} = 2 kHz, range = ±12V	83.5	85.5		
		Low-noise filter, f _{IN} = 2kHz, range = ±2.5V	85.7	88.9		
		Low-noise filter, f _{IN} = 2kHz, range = ±3.5V	86.7	89.9		
		Low-noise filter, f _{IN} = 2kHz, range = ±5V	87.3	90.7		
		Low-noise filter, f _{IN} = 2kHz, range = ±7V	88.0	90.6		
		Low-noise filter, f _{IN} = 2kHz, range = ±10V	88.5	91.1		
		Low-noise filter, f _{IN} = 2kHz, range = ±12V	88.6	91.3		
SINAD	Signal-to-noise + distortion ratio	Wide-bandwidth filter, f _{IN} = 2kHz, range = ±2.5V	78.6	82.2		dB
		Wide-bandwidth filter, f _{IN} = 2kHz, range = ±3.5V	79.5	83.2		
		Wide-bandwidth filter, f _{IN} = 2kHz, range = ±5V	80.0	84.2		
		Wide-bandwidth filter, f _{IN} = 2kHz, range = ±7V	80.9	83.2		
		Wide-bandwidth filter, f _{IN} = 2kHz, range = ±10V	82.3	84.7		
		Wide-bandwidth filter, f _{IN} = 2kHz, range = ±12V	82.8	85.1		
	Tatal hamas and added at	Low-noise filter, f _{IN} = 2kHz, all ranges		-113		.10
THD	Total harmonic distortion	Wide-bandwidth filter, f _{IN} = 2kHz, all ranges		-113		dB
SFDR	Spurious-free dynamic range	f _{IN} = 2kHz		113		dB
	CMRR	At dc		-70		dB
	Isolation crosstalk	At dc	,	-100		dB

Submit Document Feedback

5.5 Electrical Characteristics (continued)

at AVDD_5V = 4.75V to 5.25V, VDD_1V8 = 1.75V to 1.85V, IOVDD = 1.15V to 1.85V, V_{REF} = 4.096V (internal or external), and maximum throughput (unless otherwise noted); minimum and maximum values at T_A = -40°C to +125°C; typical values at T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF} (1)	Voltage on REFIO pin (configured as output)	1μF capacitor on REFIO pin, T _A = 25°C	4.092	4.096	4.1	V
	Reference temperature drift			10	25	ppm/°C
DIGITAL	INPUTS					
V _{IL}	Input low logic level		-0.3		0.3 IOVDD	V
V _{IH}	Input high logic level		0.7 IOVDD		IOVDD	V
	Input current		-1	0.1	1	μΑ
	Input capacitance			6		pF
LVDS SA	MPLING CLOCK INPUT					
V_{TH}	High-level input voltage				100	mV
V_{TL}	Low-level input voltage		-100			mV
V_{ICM}	Input common-mode voltage		0.3	1.2	1.4	V
DIGITAL	OUTPUTS					
V _{OL}	Output low logic level	I _{OL} = 500μA sink	0		0.2 IOVDD	V
V _{OH}	Output high logic level	I _{OH} = 500μA source	0.8 IOVDD		IOVDD	V
POWER	SUPPLY					
	Total power dissipation	Maximum throughput		232	304	mW
	Supply current from AVDD 5V	Maximum throughput, internal reference		26	32	mA
I _{AVDD_5V}	Supply current from AVDD_5V	Power-down		0.2	2	IIIA
1	Supply current from VDD 1V8	Maximum throughput, internal reference		50	70	mA
I _{VDD_1V8}	Supply culterit from VDD_1V6	Power-down		0.2	8	IIIA
1	Supply ourrent from IOV/DD	Maximum throughput		7	10	mA
IOVDD	Supply current from IOVDD	Power-down		0.1	2	IIIA

⁽¹⁾ Does not include the variation in voltage resulting from solder shift effects.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

9

5.6 Timing Requirements

at AVDD_5V = 4.75V to 5.25V, VDD_1V8 = 1.75V to 1.85V, IOVDD = 1.15V to 1.85V, V_{REF} = 4.096V (internal or external), and maximum throughput (unless otherwise noted); minimum and maximum values at T_A = -40°C to +125°C; typical values at T_A = 25°C

		MIN	MAX	UNIT
CONVERSION	CYCLE	-		
f _{SMPL_CLK}	Sampling frequency	3.6	8	MHz
t _{SMPL_CLK}	Sampling time interval	1 / f _{SMPL_CLK}		ns
t _{PL_SMPL_CLK}	SMPL_CLK low time	0.45 t _{SMPL_CLK}	0.55 t _{SMPL_CLK}	ns
t _{PH_SMPL_CLK}	SMPL_CLK high time	0.45 t _{SMPL_CLK}	0.55 t _{SMPL_CLK}	ns
SPI INTERFACI	TIMINGS (CONFIGURATION INTERFACE)			
f _{sclK}	Maximum SCLK frequency		20	MHz
t _{PH_CK}	SCLK high time	0.48	0.52	t _{CLK}
t _{PL_CK}	SCLK low time	0.48	0.52	t _{CLK}
t _{hi_CS}	Pulse duration: CS high	220		ns
t _{d_CSCK}	Delay time: CS falling to the first SCLK capture edge	20		ns
t _{su_CKDI}	Setup time: SDI data valid to the SCLK rising edge	10		ns
t _{ht_CKDI}	Hold time: SCLK rising edge to data valid on SDI	5		ns
t _{D_CKCS}	Delay time: last SCLK falling to CS rising	5		ns
CMOS DATA IN	TERFACE		·	
t _{su_SS}	Setup time: SMPL_SYNC rising edge to SMPL_CLK falling edge	10		ns
t _{ht_SS}	Hold time: SMPL_CLK falling edge to SMPL_SYNC high	10		ns

Submit Document Feedback

5.7 Switching Characteristics

at AVDD_5V = 4.75V to 5.25V, VDD_1V8 = 1.75V to 1.85V, IOVDD = 1.15V to 1.85V, V_{REF} = 4.096V (internal or external), and maximum throughput (unless otherwise noted); minimum and maximum values at T_A = -40°C to +125°C; typical values at T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
RESET					
t _{PU}	Power-up time for device			25	ms
SPI INTERFA	CE TIMINGS (Configuration Interface)				
t _{den_CKDO}	Delay time: 8 th SCLK rising edge to data enable			22	ns
t _{dz_CKDO}	Delay time: 24 th SCLK rising edge to SDO going Hi-Z			50	ns
t _{d_CKDO}	Delay time: SCLK falling edge to corresponding data valid on SDO			16	ns
t _{ht_CKDO}	Delay time: SCLK falling edge to previous data valid on SDO		2		ns
CMOS DATA	INTERFACE				
4	Dete cleak output	DDR mode	10		
t _{DCLK}	Data clock output	SDR mode	20		ns
	Clock duty cycle		45	55	%
t _{off_DCLKDO_r}	Time offset: DCLK rising to corresponding data valid	DDR mode	t _{DCLK} / 4 – 1.5	t _{DCLK} / 4 + 1.5	ns
t _{off_DCLKDO_f}	Time offset: DCLK falling to corresponding data valid	DDR mode	t _{DCLK} / 4 – 1.5	t _{DCLK} / 4 + 1.5	ns
t _{d_DCLKDO}	Time delay: DCLK rising to corresponding data valid	SDR mode	-1	1	ns
t _{d_SYNC_FCLK}	Time delay: SMPL_CLK falling edge with SYNC signal to corresponding FCLKOUT rising edge		3	4	t _{SMPL_CLK}

5.8 Timing Diagrams

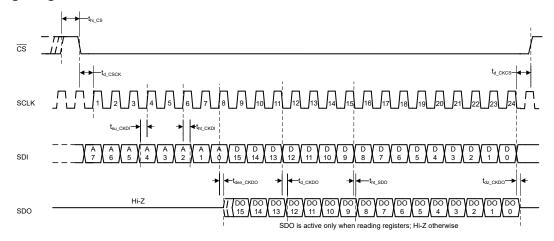


Figure 5-1. SPI Configuration Interface

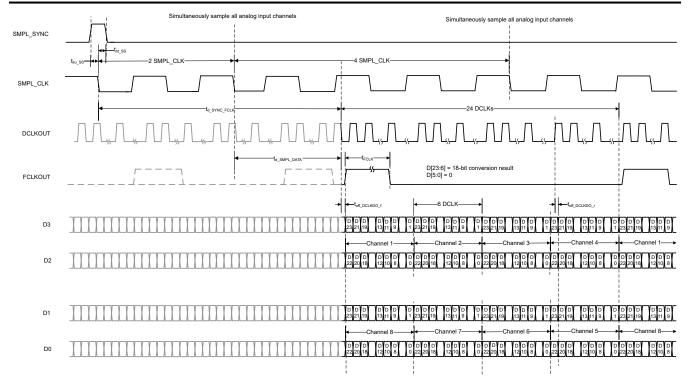


Figure 5-2. 4-SDO DDR CMOS Data Interface

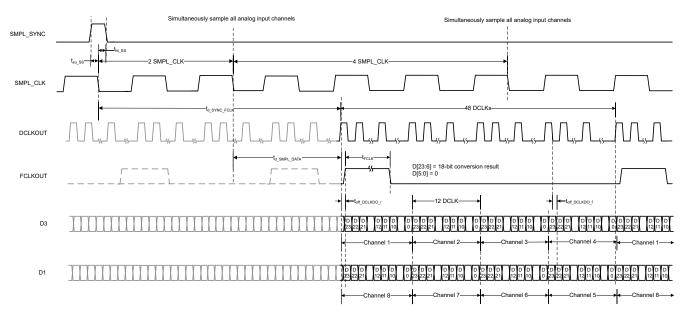


Figure 5-3. 2-SDO DDR CMOS Data Interface

Submit Document Feedback

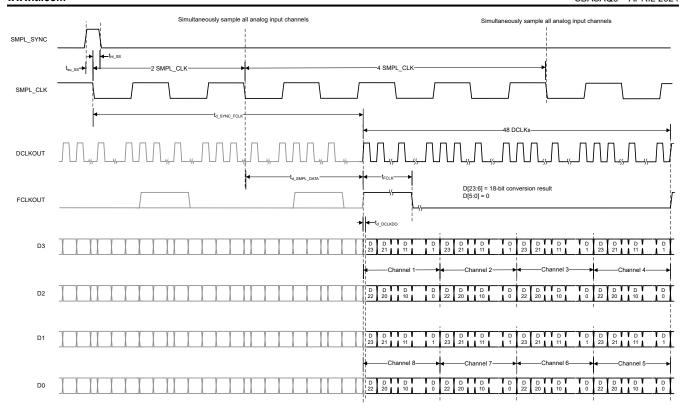


Figure 5-4. 4-SDO SDR CMOS Data Interface

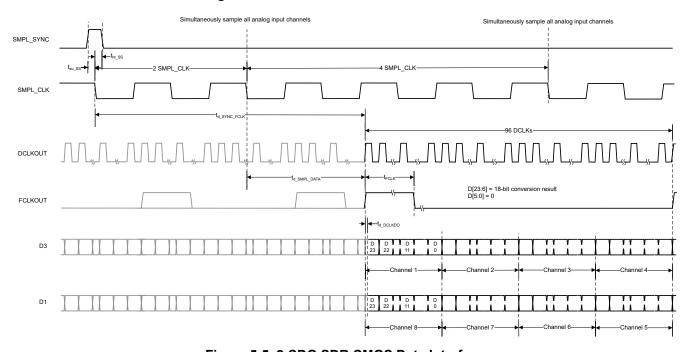
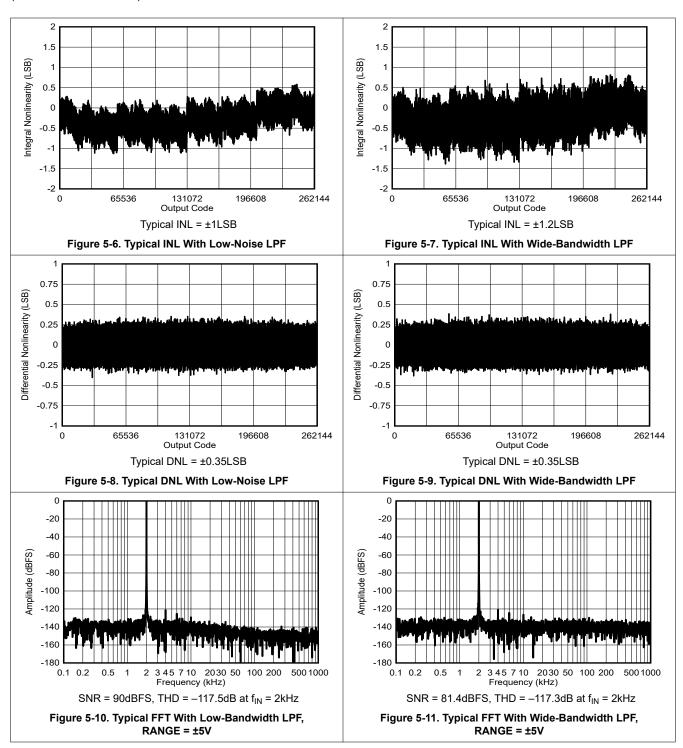
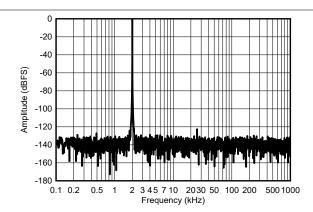



Figure 5-5. 2-SDO SDR CMOS Data Interface

5.9 Typical Characteristics

at T_A = 25°C, AVDD_5V = 5V, AVDD_1V8 = 1.8V, DVDD_1V8 = 1.8V, internal V_{REF} = 4.096V, and maximum throughput (unless otherwise noted)

Submit Document Feedback


5.9 Typical Characteristics (continued)

at T_A = 25°C, AVDD_5V = 5V, AVDD_1V8 = 1.8V, DVDD_1V8 = 1.8V, internal V_{REF} = 4.096V, and maximum throughput (unless otherwise noted)

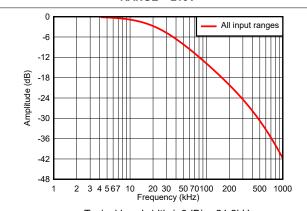

SNR = 90.2dBFS, THD = -117.6dB at f_{IN} = 2kHz

Figure 5-12. Typical FFT With Low-Bandwidth LPF, RANGE = ±10V

SNR = 83.7dBFS, THD = -121dB at f_{IN} = 2kHz


Figure 5-13. Typical FFT With Wide-Bandwidth LPF, RANGE = ±10V

Typical bandwidth (–3dB) = 21.2kHz

0 -6 -12 (gB) -18 Amplitude -24 -30 ±2.5 V range ±3.5 V range ±5 V range -36 ±7 V range -42 ±10 V range ±12 V range -48 1000

Figure 5-15. Wide-Bandwidth LPF Frequency Response Across Input Ranges

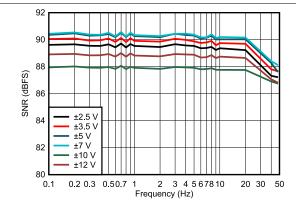
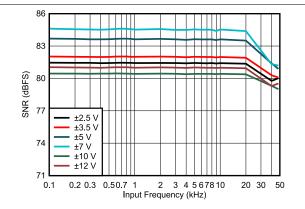
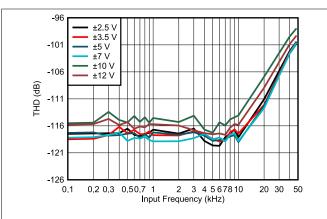


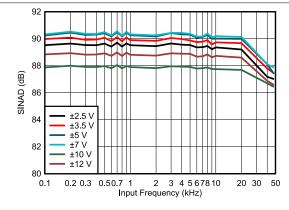
Figure 5-16. SNR vs Input Signal Frequency Across Input Ranges With Low-Bandwidth LPF




Figure 5-17. SNR vs Input Signal Frequency Across Input Ranges With Wide-Bandwidth LPF

5.9 Typical Characteristics (continued)

at T_A = 25°C, AVDD_5V = 5V, AVDD_1V8 = 1.8V, DVDD_1V8 = 1.8V, internal V_{REF} = 4.096V, and maximum throughput (unless otherwise noted)


-96

±2.5 V ±3.5 V -101 ±5 V ±7 V ±10 V -106 ±12 V THD (dB) -11 -116 -121 -126 0.2 0.3 20 30 0.1 0.50.7 1 2 3 4 5 6 7 8 1 0 Input Frequency (kHz)

Figure 5-18. THD vs Input Signal Frequency Across Input Ranges With Low-Bandwidth LPF

Figure 5-19. THD vs Input Signal Frequency Across Input Ranges With Wide-Bandwidth LPF

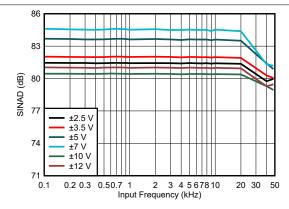
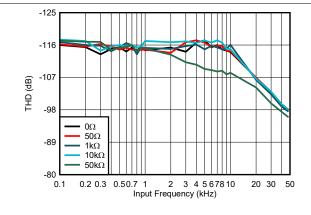



Figure 5-20. SINAD vs Input Signal Frequency Across Input Ranges With Low-Bandwidth LPF

Figure 5-21. SINAD vs Input Signal Frequency Across Input Ranges With Wide-Bandwidth LPF

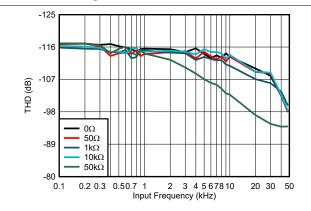


Figure 5-22. THD vs Input Signal Frequency Across Source Impedance With Low-Bandwidth LPF, RANGE = ±5V

Figure 5-23. THD vs Input Signal Frequency Across Source Impedance With Wide-Bandwidth LPF, RANGE = ±5V

Submit Document Feedback

5.9 Typical Characteristics (continued)

at $T_A = 25$ °C, AVDD_5V = 5V, AVDD_1V8 = 1.8V, DVDD_1V8 = 1.8V, internal $V_{REF} = 4.096$ V, and maximum throughput (unless otherwise noted)

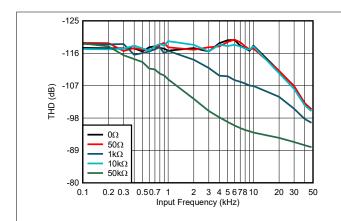


Figure 5-24. THD vs Input Signal Frequency Across Source Impedance With Low-Bandwidth LPF, RANGE = ±10V

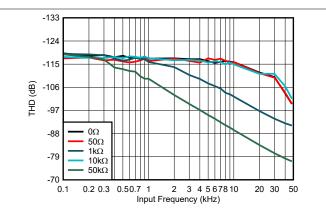
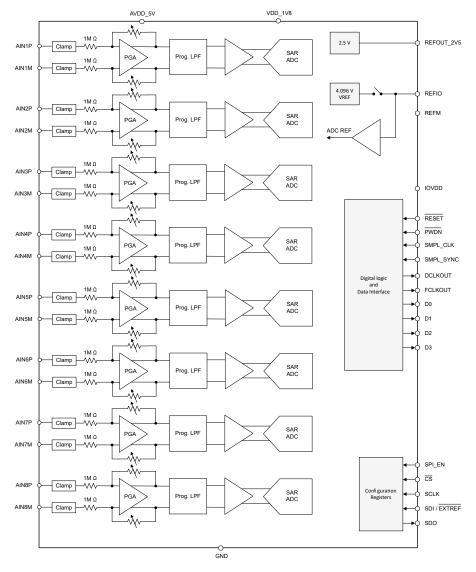


Figure 5-25. THD vs Input Signal Frequency Across Source Impedance With Wide-Bandwidth LPF, RANGE = ±10V

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

17


6 Detailed Description

6.1 Overview

The ADS9813 is an 18-bit data acquisition (DAQ) system with eight analog input channels configurable as either single-ended or differential. Each analog input channel consists of an input clamp protection circuit and a programmable gain amplifier (PGA) with user-selectable bandwidth options. The input signals are digitized with an 18-bit analog-to-digital converter (ADC), based on the successive approximation register (SAR) architecture. This overall system achieves a maximum throughput of 2MSPS per channel for all channels. The device has a 4.096V internal reference with several features that provide communication with a wide variety of digital hosts. These features include a fast-settling buffer, a programmable digital averaging filter to improve noise performance, and a high-speed data interface.

The device operates from 5V and 1.8V analog supplies and accommodates true bipolar input signals. The input clamp protection circuitry tolerates voltages up to $\pm 18V$. The device offers a constant $1M\Omega$ resistive input impedance irrespective of the sampling frequency or the selected input range. The ADS9813 offers a simplified end solution without requiring external high-voltage bipolar supplies and complicated driver circuits.

6.2 Functional Block Diagram

Submit Document Feedback

6.3 Feature Description

6.3.1 Analog Inputs

The ADS9813 incorporates eight, simultaneous sampling, 18-bit successive approximation register (SAR) analog-to-digital converters (ADCs). The device has a total of eight analog input pairs. The ADC digitizes the voltage difference between the analog input pairs AINxP – AINxM. Figure 6-1 shows the simplified circuit schematic for each analog input channel. This figure also shows the input clamp protection circuit, programmable gain amplifier (PGA), low-pass filter, high-speed ADC driver, and a precision 18-bit SAR ADC.

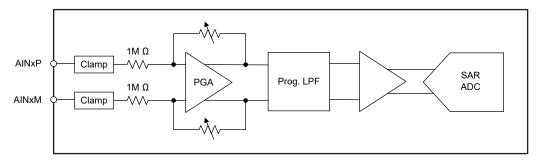


Figure 6-1. Front-End Circuit Schematic for the Selected Analog Input Channel

6.3.1.1 Input Clamp Protection Circuit

The ADS9813 features an internal clamp protection circuit (Figure 6-1) on each of the eight analog input channels. The input clamp protection circuit allows each analog input to swing up to a maximum voltage of ±18V. Beyond an input voltage of ±18V, the input clamp circuit turns on and still operates from the single 5V supply. Figure 6-2 shows a typical current versus voltage characteristic curve for the input clamp.

For input voltages above the clamp threshold, make sure that the input current never exceeds ±10mA. A resistor placed in series with the analog inputs is an effective way to limit the input current. In addition to limiting the input current, the series resistor also provides an antialiasing, low-pass filter (LPF) when coupled with a capacitor. Matching the external source impedance on the AINxP and AINxM pins cancels any additional offset error.

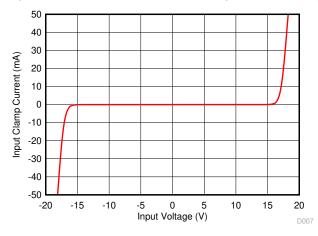


Figure 6-2. Input Protection Clamp Profile, Input Clamp Current vs Source Voltage

6.3.1.2 Programmable Gain Amplifier (PGA)

The ADS9813 features a PGA at every analog input channel. The PGA supports single-ended and differential inputs with a bipolar signal swing. Table 6-1 lists the supported analog input ranges. Configure the analog input range independently for each channel with the RANGE_CHx register fields in address 0xC2 and address 0xC3.

Table 6-1. Analog Input Ranges

	0.	
DIFFERENTIAL INPUTS	SINGLE-ENDED INPUTS	RANGE_CHx CONFIGURATION
±12V	±12V	5
±10V	±10V	4
±7V	±7V	3
±5V	±5V	0
±3.5V	±3.5V	1
±2.5V	±2.5V	2

Each analog input channel features an antialiasing, low-pass filter (LPF) at the output of the PGA. Table 6-2 lists the various programmable LPF options available in the ADS9813 corresponding to the analog input range. Figure 5-14 and Figure 5-15 illustrate the frequency responses for low-bandwidth and wide-bandwidth LPF configurations. Select the analog input bandwidth for the eight analog input channels with the ANA_BW[7:0] bits in address 0xC0 of register bank 1.

Table 6-2. Low-Pass Filter Corner Frequency

LPF	ANALOG INPUT RANGE	CORNER FREQUENCY (-3dB)
Low-bandwidth	All input ranges	21.2kHz
	±12V	375kHz
	±10V	385kHz
Wide-bandwidth	±7V	400kHz
wide-paridwidtri	±5V	320kHz
	±3.5V	240kHz
	±2.5V	185kHz

6.3.1.3 Wide-Common-Mode Voltage Rejection Circuit

The ADS9813 features a common-mode (CM) rejection circuit at the analog inputs that supports CM voltages up to ± 12 V. The CM voltage for differential inputs is given by Equation 1. On power-up or after reset, the common-mode voltage range for the analog input channels is ± 12 V (WIDE_CM_EN1 = 0b). In all cases, make sure the voltage at the analog inputs is within the *Absolute Maximum Ratings*.

Common mode voltage =
$$\frac{\text{(Voltage on AINP)} + \text{(Voltage on AINM)}}{2} \tag{1}$$

As described in Table 6-3, optimize the CM voltage rejection circuit for various CM voltages for differential inputs.

Table 6-3. Wide Common-Mode Configuration for Differential Inputs

COMMON-MODE	CM CTRL EN	ANALOG INPUT	CHANNELS 1-4	ANALOG INPUT CHANNELS 5-8		
(CM) RANGE	OW_CTRL_EN	CM_EN_CH[4:1] CM_RNG_CH[4:1]		CM_EN_CH[8:5]	CM_RNG_CH[8:5]	
CM ≤ ±1V		CM ≤ ±1V		Don't care	0	Don't care
CM ≤ ±RANGE / 2	1		0		0	
CM ≤ ±6V	1	1	2	1	2	
CM ≤ ±12V			1		1	

The CM voltage rejection circuit is configured depending on the analog input range of the PGA when using single-ended inputs. Table 6-4 lists the recommended configuration for single-ended inputs for various analog input voltage ranges.

Table 6-4. Wide Common-Mode Configuration for Single-Ended Inputs

PGA ANALOG INPUT RANGE	CM CTRL EN	ANALOG INPUT	ANALOG INPUT CHANNELS 5-8			
	OM_OTRE_EN	CM_EN_CH[4:1]	CM_RNG_CH[4:1]	CM_EN_CH[8:5]	CM_RNG_CH[8:5]	
±2.5V, ±3.5V, and ±5V	1	0	Don't care	0	Don't care	
±7V, ±10V, and ±12V		1	0	1	0	

6.3.2 ADC Transfer Function

The ADS9813 outputs 18 bits of conversion data in either straight-binary or binary two's-complement formats. The format for the output codes is the same across all analog channels. Select the format for the output codes with the DATA_FORMAT register bits. Figure 6-3 and Table 6-5 show the transfer characteristics for the ADS9813. The LSB size depends on the analog input range selected.

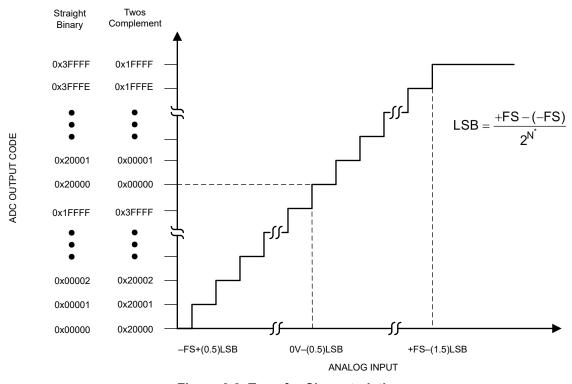


Figure 6-3. Transfer Characteristics

Table 6-5. ADC Full-Scale Range and LSB Size

RANGE	+FS	MIDSCALE	-FS	LSB
±2.5V	2.5V	0V	–2.5V	19.07µV
±3.5V	3.5V	0V	-3.5V	26.70µV
±5V	5V	0V	-5V	38.15µV
±7V	7V	0V	-7V	53.41µV
±10V	±10V 10V		-10V	76.29µV
±12V	12V	0V	–12V	91.55µV

6.3.3 ADC Sampling Clock Input

Operate the ADS9813 with a differential or a single-ended clock input where the single-ended clock consumes less power consumption. Make sure the sampling clock is a free-running continuous clock. After a free-running sampling clock is applied, the ADC generates valid output data, the data clock, and the frame clock tpu_SMPL_CLK. These parameters are specified in the *Switching Characteristics* section. The ADC output data, data clock, and frame clock are invalid when the sampling clock is stopped.

Figure 6-4 and Figure 6-5 show that the sampling clock is either differential or single-ended, respectively.

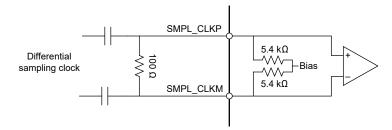


Figure 6-4. AC-Coupled Differential Sampling Clock

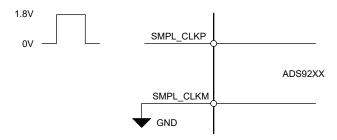


Figure 6-5. Single-Ended Sampling Clock

6.3.4 Synchronizing Multiple ADCs

Use the SMPL_SYNC signal to simultaneously sample all analog input channels of multiple ADS9813 devices. All ADS9813 devices share the same SMPL_CLK and SMPL_SYNC signals with identical delays external to the ADC. A positive pulse on the SMPL_SYNC pin centered around the falling edge of the SMPL_CLK signal synchronizes all ADCs; see Figure 5-2.

6.3.5 Reference Voltage

The ADS9813 has a precision, low-drift voltage reference internal to the device. For best performance, the internal reference noise is filtered (as shown in Figure 6-6) by connecting a $10\mu\text{F}$ ceramic bypass capacitor to the REFIO pin. As shown in Figure 6-7, an external reference is also connected at the REFIO pin. When using an external reference, disable the internal reference voltage by writing PD_REF = 1b in address 0xC1 of register bank 1.

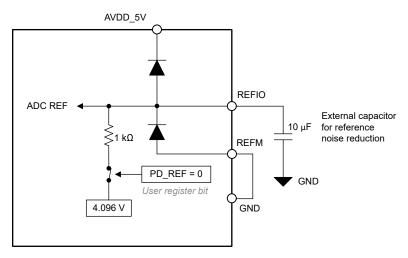


Figure 6-6. Internal Reference Voltage

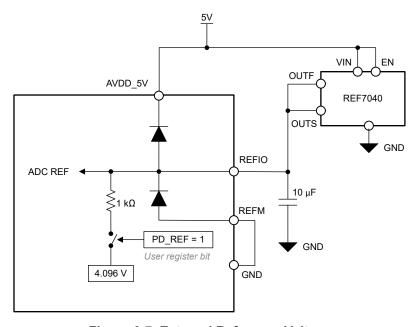


Figure 6-7. External Reference Voltage

6.3.6 Test Patterns for Data Interface

The ADS9813 features test patterns used by the host for debugging and verifying the data interface. The test patterns replace the ADC output data with predefined digital data. Enable the test patterns by configuring the corresponding register addresses 0x13 through 0x1B in bank 1.

Table 6-6 lists the test patterns supported by the ADS9813.

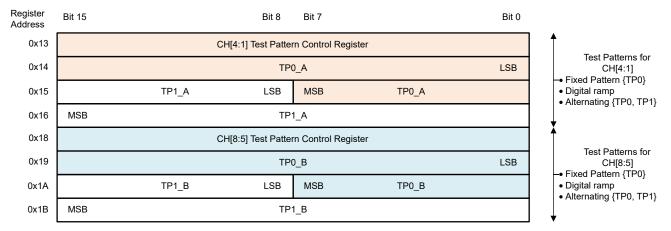


Figure 6-8. Register Bank for Test Patterns

Table 6-6. Test Pattern Configurations

			•	
ADC OUTPUT	TP_EN_CH[4:1] TP_EN_CH[8:5]	TP_MODE_CH[4:1] TP_MODE_CH[8:5]	SECTION	RESULT1
ADC conversion result	0			
Fixed pattern	1	0 or 1	Fixed Pattern	CH[4:1] = TP0_A CH[8:5] = TP0_B
Digital ramp	1	2	Digital Ramp	CH[4:1] = Digital ramp CH[8:5] = Digital ramp
Alternating test patterns	1	3	Alternating Test Pattern	CH[4:1] = TP0_A, TP1_A CH[8:5] = TP0_B, TP1_B

Note

1. Configure the test patterns for two separate channel groups CH[4:1] and CH[8:5].

6.3.6.1 Fixed Pattern

The ADC outputs fixed patterns defined in the TP0_A and TP0_B registers in place of the CH[4:1] and CH[8:5] data, respectively.

- Configure the test patterns in TP0_A and TP0_B
- Set TP_EN_CH[4:1] = 1, TP_MODE_CH[4:1] = 0 (address = 0x13), TP_EN_CH[8:5] = 1, and TP_MODE_CH[8:5] = 0 (address = 0x18)

6.3.6.2 Digital Ramp

The ADC outputs digital ramp values with increments specified in the RAMP_INC_A and RAMP_INC_B registers in place of the CH[4:1] and CH[8:5] data, respectively.

- Configure the increment value between two successive steps of the digital ramp in the RAMP_INC_A
 (address = 0x13) and RAMP_INC_B (address = 0x18) registers, respectively. The digital ramp increments by
 N + 1, where N is the value configured in these registers.
- Set TP_EN_CH[4:1] = 1, TP_MODE_CH[4:1] = 2 (address = 0x13), TP_EN_CH[8:5] = 1, and TP_MODE_CH[8:5] = 2 (address = 0x18)

6.3.6.3 Alternating Test Pattern

The ADC outputs alternating test patterns defined in the TP0_A, TP1_A and TP0_B, TP1_B registers in place of the CH[4:1] and CH[8:5] data, respectively.

- Configure the test patterns in TP0_A, TP1_A, TP0_B, and TP1_B
- Set TP_EN_CH[4:1] = 1, TP_MODE_CH[4:1] = 3 (address = 0x13), TP_EN_CH[8:5] = 1, and TP_MODE_CH[8:5] = 3 (address = 0x18)

6.4 Device Functional Modes

6.4.1 Reset

Power down the ADS9813 with a logic 0 on the RESET pin or write 1b to the RESET field of address 0x00 in register bank 0. The device registers are initialized to the default values after reset and the device is initialized with a sequence of register write operations. See the *Initialization Sequence* section for further information.

6.4.2 Power-Down

Power down the ADS9813 with a logic 0 on the PWDN pin or write 11b to the PD CH field in address 0xC0 in register bank 1. The device registers are initialized to the default values after power-up and the device is initialized with a sequence of register write operations. See the Initialization Sequence section for further information.

6.4.3 Initialization Sequence

As shown in Table 6-7, initialize the ADS9813 with a sequence of register writes after device power-up or reset. Connect a free-running sampling clock to the ADC before executing the initialization sequence. The ADS9813 registers are initialized with the default value after the initialization sequence is complete.

Table 6-7. ADS9813 Initialization Sequence

Table 6 117 12 000 10 Illinualization objection											
STEP NUMBER		REGISTER	COMMENT								
SIEP NUMBER	BANK	ADDRESS	VALUE[15:0]	COMMENT							
1	0	0x03	0x0000	Select register bank 0							
2	0	0x00	0x0004								
3	0	0x04	0x000B	INIT_1 configured							
4	0	0x03	0x0010	Select register bank 2							
5	2	0x22	0x0079	INIT_2 configured							
6	2	0x23	0xE000	INIT_3 configured							
7	2	0x26	0x0040	INIT_4 configured and device initialized							
8	0	0x03	0x0002	Select register bank 1							
9	1	0x0D	0x0080	Gain error calibration enabled							

As shown in ADS9813 User-Configuration, change the default settings of the ADS9813 for the user-defined configuration. Changes to the analog inputs changes the analog input range, bandwidth, and common-mode voltage range. Changes to the data interface change the number of output lanes (either single or double data rate).

Table 6-8. ADS9813 User-Configuration

STEP		COMMENT			
SIEP	BANK	ADDRESS	VALUE[15:0]	COMINIENT	
1	1	0xC1	User defined	Configure data interface and select internal or external reference	
2	1	0xC2 and 0xC3	User defined	Select analog input ranges, see Table 6-1	
3	1	0xC0	User defined	Select analog input bandwidth, see Table 6-2	
4	1	0xC4 and 0xC5	User defined	Select common-mode range for analog inputs, see Table 6-3 and Table 6-4	

6.4.4 Normal Operation

After the ADS9813 is initialized (see the *Initialization Sequence* section), the ADS9813 converts analog input voltages to digital output voltages. A free-running sampling clock is required for normal device operation; see the *ADC Sampling Clock Input* section.

6.5 Programming

6.5.1 Register Write

Register write access is enabled by setting SPI_RD_EN = 0b. The 16-bit configuration registers are grouped in three register banks and are addressable with an 8-bit register address. Select register bank 1 and register bank 2 for read or write operation by configuring the PAGE_SEL0 and PAGE_SEL1 bits, respectively. Registers in bank 0 are always accessible, irrespective of the PAGE_SELx bits. These register addresses are unique and are therefore not used in register banks 1 and 2.

As shown in Figure 6-9, steps to write to a register are:

- 1. Frame 1: Write to register address 0x03 in register bank 0 to select either register bank 1 or bank 2 for a subsequent register write. This frame has no effect when writing to registers in bank 0.
- Frame 2: Write to the register in the bank selected in frame 1. Repeat this step for writing to multiple registers in the same register bank.

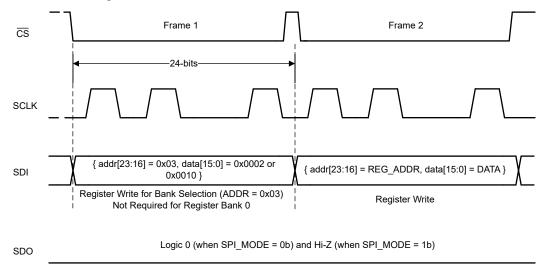


Figure 6-9. Register Write

6.5.2 Register Read

Select the desired register bank by writing to register address 0x03 in register bank 0. Register read access is enabled by setting SPI_RD_EN = 1b and SPI_MODE = 1b in register bank 0. As illustrated in Figure 6-10, read registers by using two 24-bit SPI frames after the SPI_RD_EN and SPI_MODE bits are set. The first SPI frame selects the register bank. The ADC returns the 16-bit register value in the second SPI frame corresponding to the 8-bit register address.

As illustrated in Figure 6-10, the steps to read a register are:

- 1. Frame 1: With SPI_RD_EN = 0b, write to register address 0x03 in register bank 0 to select the desired register bank 0 for reading.
- 2. Frame 2: Set SPI_RD_EN = 1b and SPI_MODE = 1b in register address 0x00 in register bank 0.
- Frame 3: Read any register in the selected bank using a 24-bit SPI frame containing the desired register address. Repeat this step with the address of any register in the selected bank to read the corresponding register.
- 4. Frame 4: Set SPI_RD_EN = 0 to disable register read and re-enable register writes.
- 5. Repeat steps 1 through 4 to read registers in a different bank.

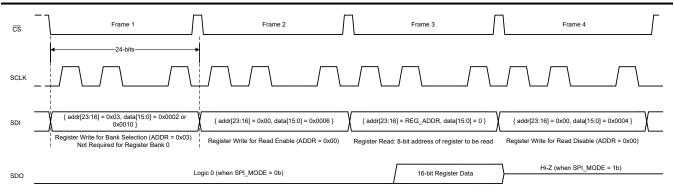


Figure 6-10. Register Read

6.5.3 Multiple Devices in a Daisy-Chain Topology for SPI Configuration

Figure 6-11 shows a typical connection diagram with multiple devices in a daisy-chain topology.

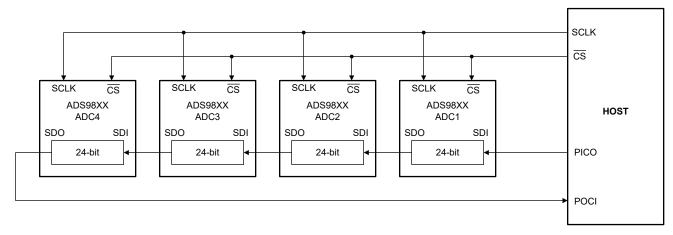


Figure 6-11. Daisy-Chain Connections for Configuration SPI

The $\overline{\text{CS}}$ and SCLK inputs of all ADCs are connected together and controlled by a single $\overline{\text{CS}}$ and SCLK pin of the controller, respectively. The SDI input pin of the first ADC in the chain (ADC1) is connected to the peripheral IN controller OUT (PICO) pin of the controller. Then, the SDO output pin of ADC1 is connected to the SDI input pin of ADC2, and so on. The SDO output pin of the last ADC in the chain (ADC4) is connected to the peripheral OUT controller IN (POCI) pin of the controller. The data on the PICO pin passes through ADC1 with a 24-SCLK delay, as long as $\overline{\text{CS}}$ is active.

Enable daisy-chain after power-up or after the device is reset. Set the daisy-chain length in the DAISY_CHAIN_LENGTH register to enable daisy-chain mode. The daisy-chain length is the number of ADCs in the chain excluding ADC1. In Figure 6-11, the DAISY_CHAIN_LENGTH is 3.

6.5.3.1 Register Write With Daisy-Chain

Writing to registers in daisy-chain requires N × 24 SCLKs in one SPI frame. As depicted in Figure 6-11, a register write operation in a daisy-chain containing four ADCs requires 96 SCLKs.

Daisy-chain mode is enabled on power-up or after device reset. Configure the DAISY CHAIN LENGTH field to enable daisy-chain mode. Repeat the waveform shown in Figure 6-12 N times, where N is the number of ADCs in daisy-chain. Figure 6-13 provides the SPI waveform, containing N SPI frames, for enabling daisy-chain mode for N ADCs.

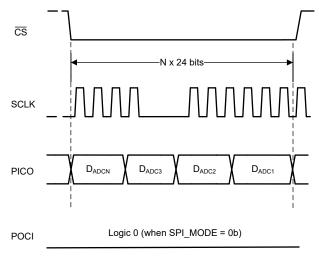


Figure 6-12. Register Write With Daisy-Chain

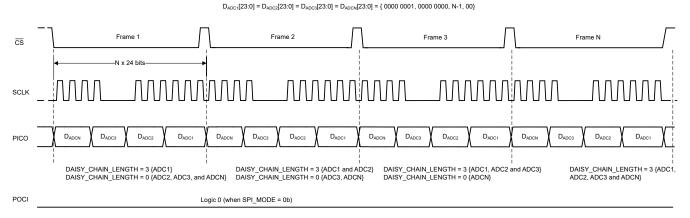


Figure 6-13. Register Write to Configure the Daisy-Chain Length

ADVANCE INFORMATION

6.5.3.2 Register Read With Daisy-Chain

Figure 6-14 depicts an SPI waveform for reading registers in daisy-chain. Steps for reading registers from N ADCs connected in daisy-chain are:

- 1. A register read is enabled by writing to the following registers using the *register write with daisy-chain operation*:
 - a. Write to PAGE SEL to select the desired register bank
 - b. Enable register reads by writing SPI RD EN = 0b (default on power-up)
- 2. With the register bank selected and SPI_RD_EN = 0b, the controller reads register data in the following two steps:
 - a. The N × 24-bit SPI frame containing the 8-bit register address is read: N-times {0xFE, 0x00, 8-bit register address}
 - b. The N × 24-bit SPI frame to read out register data is read: N-times {0xFF, 0xFF, 0xFF}

The 0xFE in step 2a configures the ADC for register reads from the specified 8-bit address. At the end of step 2a, the output shift register in the ADC is loaded with register data. The ADC returns the 8-bit register address and corresponding 16-bit register data in step 2b.

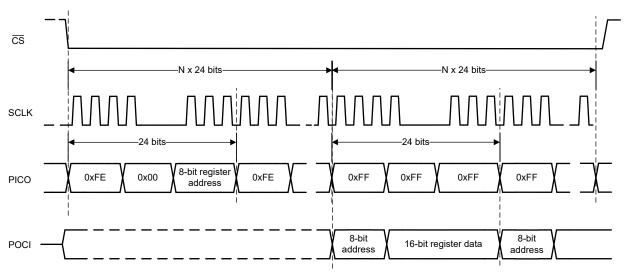


Figure 6-14. Register Read With Daisy-Chain

7 Register Map

7.1 Register Bank 0

Figure 7-1. Register Bank 0 Map

ADD	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
00h	RESERVED												SPI_MO DE	SPI_RD EN	RESET	
01h	RESERVED							DAISY_CHAIN_LEN RESERVED			RVED					
03h				RESE	RVED							REG_BA	NK_SEL			
	RESERVED							INI	T_1							
06h	REG_00H_READBACK															

Table 7-1. Register Section/Block Access Type Codes

Access Type	Code	Description		
R	R	Read		
W	W	Write		
R/W	R/W	Read or write		
Reset or Default Value				
-n		Value after reset or the default value		

7.1.1 Register 00h (offset = 0h) [reset = 0h]

Figure 7-2. Register 00h

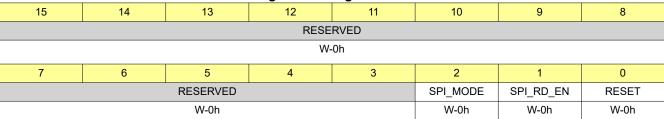


Figure 7-3. Register 00h Field Descriptions

Bit	Field	Туре	Reset Description				
15-3	RESERVED	W	0h	Reserved. Do not change from the default reset value.			
2	SPI_MODE	W	Oh	Select between legacy SPI mode and daisy-chain SPI mode for the configuration interface for register access. 0: Daisy-chain SPI mode 1: Legacy SPI mode			
1	SPI_RD_EN	W	Oh	Enable register read access in legacy SPI mode. This bit has no effect in daisy-chain SPI mode. 0 : Register read disabled 1 : Register read enabled			
0	RESET	W	Oh	ADC reset control. 0 : Normal device operation 1 : Reset ADC and all registers			

7.1.2 Register 01h (offset = 1h) [reset = 0h]

Figure 7-4. Register 01h

Figure 7-5. Register 01h Field Descriptions

				<u> </u>		
Bit	Field	Туре	Reset	Description		
15-7	RESERVED	R/W	0h Reserved. Do not change from the default reset v			
6-2	DAISY_CHAIN_L EN	R/W	0h	Number of ADCs connected in SPI daisy-chain 0 : 1 ADC 1 : 2 ADCs 31 : 32 ADCs		
1-0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.		

7.1.3 Register 03h (offset = 3h) [reset = 2h]

Figure 7-6. Register 03h

rigure 7-0. Negister voii										
15 14 13 12 11 10 9 8										
RESERVED										
R/W-0h										
7	6	5	4	3	2	1	0			
REG_BANK_SEL										
			R/V	V-2h						

Figure 7-7. Register 03h Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R/W	Reserved. Do not change from the default reset value.	
7-0	REG_BANK_SEL	R/W	2h	Register bank selection for read and write operations. 0 : Select register bank 0 2 : Select register bank 1 16 : Select register bank 2

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: ADS9813

7.1.4 Register 04h (offset = 4h) [reset = 0h]

Figure 7-8. Register 04h

Figure 7-9. Register 04h Field Descriptions

Bit Field Type			Reset	Description
15-4	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
3-0	3-0 INIT_1 R/W		0h	11 : Recommended value for normal operation.

7.1.5 Register 06h (offset = 6h) [reset = 2h]

Figure 7-10. Register 06h

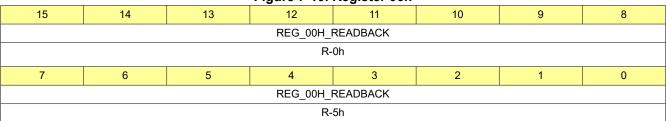


Figure 7-11. Register 06h Field Descriptions

Bit	Field	Type	Reset	Description
15-0	REG_00H_READ BACK	R	2h	This register is a copy of the register address 0x00 for readback.

7.2 Register Bank 1

Figure 7-12. Register Bank 1 Map

ADD	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0Dh	RESERVED DATA_F RESERVED ORMAT								GE_CAL RESERVED _EN1							
12h					ſ	RESERVE)					XOR_PR BS	XOR_EN		RESERVE	D
13h	RESERVED									RAMP_	_INC_A		TP_M0	DDE_A	TP_EN_ A	RESERV ED
14h	TPO_A															
15h				TP ⁻	1_A							TP	D_A			
16h	TP1_A															
18h	RESERVED								RAMP_INC_B TP_MODE_B			TP_EN_ B	RESERV ED			
19h								TP	0_B							
1Ah				TP ⁻	1_B				TP0_B							
1Bh								TP	1_B							
1Ch	RESE	RVED			USER_BIT	S_CH[8:5]			RESERVED USER_BITS_CH[4:1]							
C0h			RESE	RVED					ANA_BW PD_CH				_CH			
C1h		RESE	ERVED		PD_REF	RESE	RVED	DATA_R ATE				RESE	RVED			
C2h		RANG	E_CH4			RANG	E_CH3			RANG	E_CH2			RANG	E_CH1	
C3h	RANGE_CH8 RANGE_CH7								RANGE_CH6 RANGE_CH5							
C4h	RESERVED CM_RNG_CH[8:8						G_CH[8:5]	CM_RNG	S_CH[4:1]	RESE	RVED	CM_EN_ CH[8:5]	CM_EN_ CH[4:1]	RESERV ED	PD_CHI P	
C5h					ſ	RESERVE)					CM_CT RL_EN		RESE	RVED	

Table 7-2. Register Section/Block Access Type Codes

Access Type	Code	Description
R	R	Read
W	W	Write
R/W	R/W	Read or write
Reset or Default Value		
-n	Value after reset or the default value	

7.2.1 Register 0Dh (offset = Dh) [reset = 2002h]

Figure 7-13. Register 0Dh

15	14	13	12	11	10	9	8		
RESE	RVED	DATA_FORMAT		RESERVED					
R/W	/-0h	R/W-1h			R/W-0h				
7	6	5	4	3	2	1	0		
GE_CAL_EN1		RESERVED							
R/W-0h		R/W-2h							

Figure 7-14. Register 0Dh Field Descriptions

Bit	Field	Туре	Reset	Description		
15-14	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.		
13	DATA_FORMAT	R/W	W Select data format for the ADC conversion result. 0 : Straight binary format 1 : Two's-complement format			
12-8	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.		
7	GE_CAL_EN1	R/W	Global control for gain error calibration. 0h 0 : Gain error calibration disabled for all ch			
6-0	RESERVED	R/W	2h	Reserved. Do not change from the default reset value.		

Register 12h (offset = 12h) [reset = 2h]

Figure 7-15. Register 12h

<u> </u>										
15	14	13	12	11	10	9	8			
RESERVED										
	R/W-0h									
7	6	5	4	3	2	1	0			
	RESERVED XOR_PRBS XOR_EN RESERVED									
	R/W-0h R/W-0h R/W-2h									

Figure 7-16. Register 12h Field Descriptions

Bit	Field	Туре	Reset	Description
15-5	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
4	XOR_PRBS	R/W	0h	Select bit for XOR operation when XOR_EN = 1b. 0: PRBS is appended after the LSB of the ADC conversion result. The ADC conversion result is bit-wise XOR with the PRBS bit. 1: The ADC conversion result is bit-wise XOR with the LSB of the ADC conversion result.
3	XOR_EN	R/W	0h	Enables XOR operation on the ADC conversion result. 0: XOR operation is disabled 1: Bit-wise XOR operation on ADC conversion result is enabled
2-0	RESERVED	R/W	2h	Reserved. Do not change from the default reset value.

7.2.2 Register 13h (offset = 13h) [reset = 0h]

Figure 7-17. Register 13h

			ga.o	rtogiotoi ioii				
15	14	13	12	11	10	9	8	
	RESERVED							
	R/W-0h							
7	6	5	4	3	2	1	0	
	RAMP_INC_A TP_MODE_A TP_EN_A RESERVED							
	R/V	V-0h		R/W	V-0h	R/W-0h	R/W-0h	

Figure 7-18. Register 13h Field Descriptions

D:4	Field			Descriptions
Bit	Field	Туре	Reset	Description
15-8	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
7-4	RAMP_INC_A	R/W	0h	Increment value for the ramp pattern output. The output ramp increments by N+1, where N is the value configured in this register.
3-2	TP_MODE_A	R/W	Oh	Select digital test pattern for analog input channels 1, 2, 3, and 4. 0: Fixed pattern from the TP0_A register 1: Fixed pattern from the TP0_A register 2: Digital ramp output 3: Alternate fixed pattern output from the TP0_A and TP1_A registers
1	TP_EN_A	R/W	0h	Enable digital test pattern for data corresponding to channels 1, 2, 3, and 4. 0: Data output is the ADC conversion result 1: Data output is the digital test pattern for channels 1, 2, 3, and 4
0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.2.3 Register 14h (offset = 14h) [reset = 0h]

Figure 7-19. Register 14h

	rigule 7-13. Register 1411								
15 14 13 12 11 10 9 8									
TP0_A[15:0]									
R/W-0h									
7	6	5	4	3	2	1	0		
	TP0_A[15:0]								
			R/W	V-0h					

Figure 7-20. Register 14h Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	TP0_A[15:0]	R/W	0h	Lower 16 bits of test pattern 0

Product Folder Links: ADS9813

7.2.4 Register 15h (offset = 15h) [reset = 0h]

Figure 7-21. Register 15h

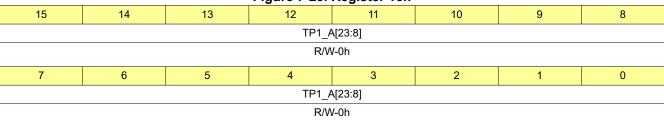

15	14	13	12	11	10	9	8		
	TP1_A[7:0]								
	R/W-0h								
7	6	5	4	3	2	1	0		
	TP0_A[23:16]								
			R/W	V-0h					

Figure 7-22. Register 15h Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	TP1_A[7:0]	R/W	0h	Lower eight bits of test pattern 1
7-0	TP0_A[23:16]	R/W	0h	Upper eight bits of test pattern 0

7.2.5 Register 16h (offset = 16h) [reset = 0h]

Figure 7-23. Register 16h

Figure 7-24. Register 16h Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	TP1_A[23:8]	R/W	0h	Upper 16 bits of test pattern 1

7.2.6 Register 18h (offset = 18h) [reset = 0h]

Figure 7-25. Register 18h

rigato r zorregioter for									
15	14	13	12	11	10	9	8		
	RESERVED								
	R/W-0h								
7	6	5	4	3	2	1	0		
	RAMP_INC_B TP_MODE_B TP_EN_B RESERVED								
	R/W	V-0h		R/W	V-0h	R/W-0h	R/W-0h		

Figure 7-26. Register 18h Field Descriptions

	rigure / 20. Register for Field Descriptions								
Bit	Field	Type	Reset	Description					
15-8	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.					
7-4	RAMP_INC_B	R/W	0h	Increment value for the ramp pattern output. The output ramp increments by N+1, where N is the value configured in this register.					
3-2	TP_MODE_B	R/W	Oh	Select digital test pattern for analog input channels 5, 6, 7, and 8. 0: Fixed pattern from the TP0_B register 1: Fixed pattern from the TP0_B register 2: Digital ramp output 3: Alternate fixed pattern output from the TP0_B and TP1_B registers					
1	TP_EN_B	R/W	0h	Enable digital test pattern for data corresponding to channels 5, 6, 7, and 8. 0 : Data output is the ADC conversion result 1 : Data output is the digital test pattern					
0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.					

7.2.7 Register 19h (offset = 19h) [reset = 0h]

Figure 7-27. Register 19h

	rigule 7-27. Register 1911								
15 14 13 12 11 10 9 8									
TP0_B[15:0]									
R/W-0h									
7	6	5	4	3	2	1	0		
	TP0_B[15:0]								
			R/W	V-0h					

Figure 7-28. Register 19h Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	TP0_B[15:0]	R/W	0h	Lower 16 bits of test pattern 0

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: ADS9813

7.2.8 Register 1Ah (offset = 1Ah) [reset = 0h]

Figure 7-29. Register 1Ah

15	14	13	12	11	10	9	8		
	TP1_B[7:0]								
	R/W-0h								
7	6	5	4	3	2	1	0		
	TP0_B[23:16]								
			R/W	V-0h					

Figure 7-30. Register 1Ah Field Descriptions

Bit	Field	Type	Reset Description	
15-8	TP1_B[7:0]	R/W	0h	Lower eight bits of test pattern 1
7-0	TP0_B[23:16]	R/W	0h	Upper eight bits of test pattern 0

7.2.9 Register 1Bh (offset = 1Bh) [reset = 0h]

Figure 7-31. Register 1Bh

	i igure 1-51. Negister ibli									
15 14 13 12 11 10 9 8										
TP1_B[23:8]										
R/W-0h										
7	6	5	4	3	2	1	0			
TP1_B[23:8]										
			R/W	/-0h						

Figure 7-32. Register 1Bh Field Descriptions

				•
Bit	Field	Type	Reset	Description
15-0	TP1_B[23:8]	R/W	0h	Upper 16 bits of test pattern 1

Register 1Ch (offset = 1Ch) [reset = 0h]

Figure 7-33. Register 1Ch

			rigare / co.	tegister rem					
15	14	13 12 11 10 9 8							
RESE	RVED		USER_BITS_CH[8:5]						
R/W	V-0h	R/W-0h							
7	6	5	4	3	2	1	0		
RESE	RVED	USER_BITS_CH[4:1]							
R/W	V-0h			R/W	/-0h				

Figure 7-34. Register 1Ch Field Descriptions

Bit	Field	Type	Reset	Description
15-8	USER_BITS_CH[8:5]	R/W	0h	User-defined bits appended to the ADC conversion result from channels 5, 6, 7, and 8.
7-0	USER_BITS_CH[4:1]	R/W	0h	User-defined bits appended to the ADC conversion result from channels 1, 2, 3, and 4.

7.2.10 Register C0h (offset = C0h) [reset = 0h]

Figure 7-35. Register C0h

15	14	13	12	11	10	9	8	
		ANA_BW						
	R/W-0h							
7	6	5	4	3	2	1	0	
	ANA_BW						PD_CH	
	R/W-0h R/W-0h							

Figure 7-36. Register C0h Field Descriptions

	i iguio i toi itogistoi etti i isia 2000.ipuone							
Bit	Field	Туре	Reset	Description				
15-10	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.				
9-2	ANA_BW	R/W	0h	Select analog input bandwidth for the respective analog input channels. MSB = BW control for channel 8 LSB = BW control for channel 1 0 : Low-noise mode 1 : Wide-bandwidth mode				
1-0	PD_CH	R/W	0h	Power-down control for the analog input channels. 0 : Normal operation 1 : Channels 5, 6, 7, and 8 powered down 2 : Channels 1, 2, 3, and 4 powered down 3 : All channels powered down				

Register C1h (offset = C1h) [reset = 0h]

Figure 7-37. Register C1h

			. igaio i oi i	i togiotoi e iii					
15	14	13	3 12 11 10 9		8				
	RESE	RVED		PD_REF	RESE	RVED	DATA_RATE		
	R/V	V-0h		R/W-0h	R/W-0h		R/W-0h		
7	6	5	4	3	2	1	0		
	RESERVED								
			R/V	V-0h					

Figure 7-38. Register C1h Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
11	PD_REF	R/W	0h	ADC reference voltage source selection. 0 : Internal reference enabled. 1 : Internal reference disabled. Connect the external reference voltage to the REFIO pin.
10-9	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
8	DATA_RATE	R/W	0h	Select data rate for the data interface. 0 : Double data rate (DDR) 1 : Single data rate (SDR)
7-0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.2.11 Register C2h (offset = C2h) [reset = 0h]

Figure 7-39. Register C2h

15	14	13	12	11 10 9 8				
	RANG	E_CH4		RANGE_CH3				
R/W-0h				R/W-0h				
7	6	5	4	3	2	1	0	
	RANG	E_CH2		RANGE_CH1				
	R/W-0h R/W-0h							

Figure 7-40. Register C2h Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RANGE_CH4	R/W	0h	Select the analog input voltage range.
11-8	RANGE_CH3	R/W	0h	0 : ±5V _ 1 : ±3.5V
7-4	RANGE_CH2	R/W	0h	2:±2.5V
3-0	RANGE_CH1	R/W	0h	3 : ±7V 4 : ±10V 5 : ±12V

Register C3h (offset = C3h) [reset = 0h]

Figure 7-41. Register C3h

			J					
15	14	13	12	11	10	9	8	
RANGE_CH8 RANGE_CH7								
	R/W	/-0h		R/W-0h				
7	6	5	4	3	2	1	0	
	RANG	E_CH6		RANGE_CH5				
R/W-0h R/W-0h								

Figure 7-42. Register C3h Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RANGE_CH8	R/W	0h	Select the analog input voltage range.
11-8	RANGE_CH7	R/W	0h	□ 0 : ±5V □ 1 : ±3.5V
7-4	RANGE_CH6	R/W	0h	2:±2.5V
3-0	RANGE_CH5	R/W	0h	3:±7V 4:±10V 5:±12V

7.2.12 Register C4h (offset = C4h) [reset = 0h]

Figure 7-43. Register C4h

15	14	13	12	11	10	9	8		
		RESE	RVED			CM_RNG_CH[8:5]			
		R/W	/-0h			R/W-0h			
7	6	5 4		3	2	1	0		
CM_RNG	G_CH[4:1]	RESE	RVED	CM_EN_CH[8:5	CM_EN_CH[4:1]	RESERVED	PD_CHIP		
R/V	V-0h	R/W	/-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h		

Figure 7-44. Register C4h Field Descriptions

Bit	Field	Туре	Reset	Description
15-10	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
9-8	CM_RNG_CH[8:5]	R/W	0h	CM_RNG_CH[4:1] sets the common-mode range for
7-6	CM_RNG_CH[4:1]	R/W	0h	channels 1, 2, 3, and 4. CM_RNG_CH[8:5] sets the common-mode range for channels 5, 6, 7, and 8. 0 : CM range is equal to ±RANGE / 2 1 : CM range is equal to ±6V 2 : CM range is equal to ±12V
5-4	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
3	CM_EN_CH[8:5]	R/W	0h	CM_EN_CH[4:1] enables wide common-mode range
2	CM_EN_CH[4:1]	R/W	0h	control for channels 1 to 4. CM_EN_CH[8:5] enables the wide common-mode range control for channels 5 to 8. 0 : Wide common-mode range control disabled 1 : Wide common-mode range control enabled
1	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
0	PD_CHIP	R/W	0h	Full chip power-down control. 0 : Normal device operation 1 : Full device powered-down

7.2.13 Register C5h (offset = C5h) [reset = 0h]

Figure 7-45. Register C5h

Figure 7-46. Register C5h Field Descriptions

Bit	Field	Type	Reset	Description
15-5	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
4	CM_CTRL_EN	R/W	0h	Enable the wide common-mode range control for all analog input channels. 0 : CM range for all analog input channels is ±12V 1 : CM range is user-defined in the CM_EN_CH[4:1], CM_EN_CH[8:5], CM_RNG_CH[4:1], and CM_RNG_CH[8:5] registers
3-0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.3 Register Bank 2

Figure 7-47. Register Bank 2 Map

						-		•								
ADD	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
22h	INIT_2															
23h		INIT_3														
26h		INIT_4														

Table 7-3. Register Section/Block Access Type Codes

Access Type	Code	Description
R	R	Read
W	W	Write
R/W	R/W	Read or write
Reset or Default Value		
-n		Value after reset or the default value

7.3.1 Register 22h (offset = 22h) [reset = 0h]

Figure 7-48. Register 22h

rigulo / 40. Register 2211								
15	14	13 12 11 10		10	9	8		
	INIT_2							
	R/W-0h							
7	6	5	4	3	2	1	0	
	INIT_2							
			R/W	/-0h				

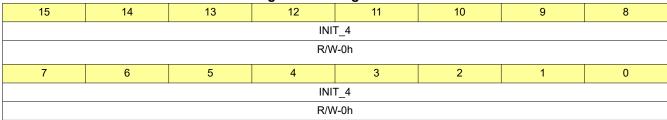
Figure 7-49. Register 12 Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	INIT_2	R/W	0h	INIT_2 field for device initialization. Write 0x0079 during initialization sequence. See <i>Initialization Sequence</i> .

7.3.2 Register 23h (offset = 23h) [reset = 0h]

Figure 7-50. Register 23h

	ga							
15	14	13	12	11	10	9	8	
	INIT_3							
	R/W-0h							
7	6	5	4	3	2	1	0	
	INIT_3							
			R/W	V-0h				


Figure 7-51. Register 23 Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	INIT_3	R/W	l ()h	INIT_3 field for device initialization. Write 0xE000 during initialization sequence. See <i>Initialization Sequence</i> .

7.3.3 Register 26h (offset = 26h) [reset = 0h]

Figure 7-52. Register 26h

Figure 7-53. Register 26h Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	INIT_4	R/W	0h	INIT_4 field for device initialization. Write 0x0040 during initialization sequence. See <i>Initialization Sequence</i> .

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The ADS9813 enables high-precision measurement of up to eight analog signals simultaneously. The following section gives an example application circuit and recommendations for using the ADS9813 in automated test equipment (ATE) systems.

8.2 Typical Application

8.2.1 Parametric Measurement Unit (PMU)



Figure 8-1. Typical PMU

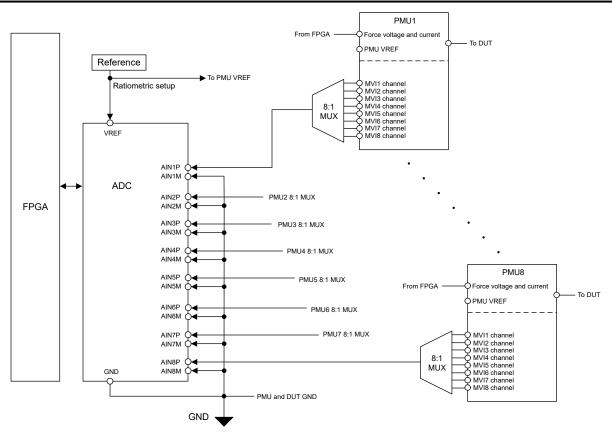


Figure 8-2. PMU With a Multiplexer

8.2.2 Design Requirements

The goal of this application is to select an ADC for ATE applications. Table 8-1 shows the parameters for this design example.

Table 8-1. Design Parameters

PARAMETER	VALUE
Sampling rate	Up to 2MSPS/channel
Total unadjusted error (TUE) over 25°C ±5°C	<0.01% with calibration
Supports external switches or multiplexer	Full-scale step settling to 99.99% of full-scale in <1.8μs

8.2.3 Detailed Design Procedure

The ADS9813 is an eight-channel, 18-bit, 2MSPS data acquisition (DAQ) system that simultaneously samples all analog input channels and avoids phase delay. The device has a built-in analog front-end that makes the ATE signal chain easier to design and more accurate.

The ADC accuracy is based on the total-unadjusted-error (TUE), which combines INL, offset, and gain errors. Calibrate the external system for offset and gain errors at a specified temperature and supply voltage. When calibrated (as described in Table 8-2), only the INL, thermal offset drifts, and gain contribute to TUE. The ADS9813 has a TUE of 0.0016% at 25°C ±5°C post-calibration, meeting the design error requirement.

Table 8-2.	. TUE at T⊿	= 25°C	Calculation
-------------------	-------------	--------	-------------

CALIBRATION	INL (ppm)	OFFSET ERROR (ppm)	GAIN ERROR (ppm)	TUE (ppm)	ERROR (%)
No calibration	15.26	495.9	183.1	528.8	0.053
Post-calibration	15.26	0	0	15.3	0.0015
Post-calibration ±5°C	15.26	2.5	3.5	15.9	0.0016

The pin-electronics subsystem manages the PMU outputs. The subsystem connects each PMU output to separate ADC channels (Figure 8-1) or uses a multiplexer to link multiple PMU outputs to one ADC channel (Figure 8-2). This subsystem allows more pin-electronics channels on the card. The ADC requires more bandwidth with multiplexers (Table 8-3) for fast settling when switching PMU channels. The ADS9813 has two bandwidth modes: Low-noise (up to 21kHz) and wide-bandwidth (up to 400kHz). As described in Figure 8-3 the wide-bandwidth mode samples multiplexed PMU signals and settles to 99.99% FS in 1.73µs.

Table 8-3. Step-Settling Performance

ANALOG INPUT BANDWIDTH	SETTLING TIME (99.99% of FS)	SNR (Typical)
Low BW (21kHz)	1.73µs	92dB
Wide BW (400kHz)	69.42µs	85.5dB

8.2.4 Application Curve

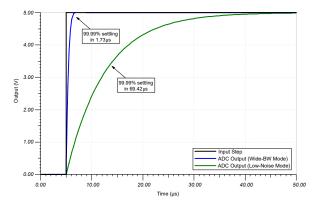


Figure 8-3. Step-Settling Performance

8.3 Power Supply Recommendations

The ADS9813 has three separate power supplies: AVDD_5V, VDD_1V8, and IOVDD. There is no requirement for a specific power-up sequence. The data and configuration digital interfaces are powered by IOVDD. A common 1.8V supply powers the VDD_1V8 and IOVDD pins. Figure 8-4 illustrates the decoupling capacitor connections for the respective power supplies. Make sure each power-supply pin has separate decoupling capacitors.

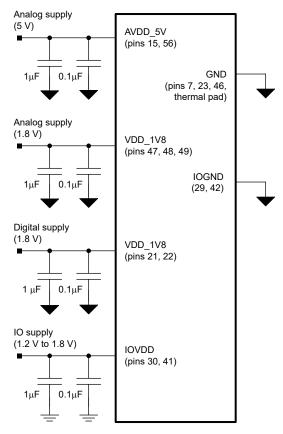


Figure 8-4. Power-Supply Decoupling

8.4 Layout

8.4.1 Layout Guidelines

Figure 8-5 illustrates a board layout example for the ADS9813. Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference signals away from noise sources.

Use 0.1µF ceramic bypass capacitors in close proximity to the AVDD_5V, VDD_1V8, and IOVDD power-supply pins. Avoid placing vias between the power-supply pins and the bypass capacitors.

Place the reference decoupling capacitor close to the device REFIO and REFM pins. Avoid placing vias between the REFIO pin and the bypass capacitors. Connect the GND, REFM, and IOGND pins to a ground plane using short, low-impedance paths.

8.4.2 Layout Example

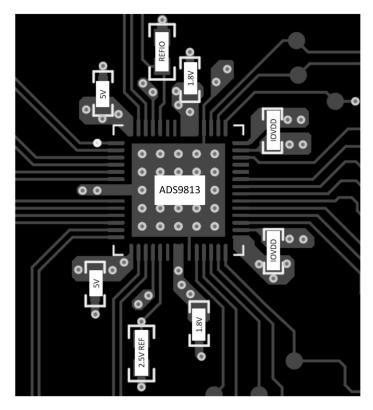


Figure 8-5. Example Layout

Submit Document Feedback

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

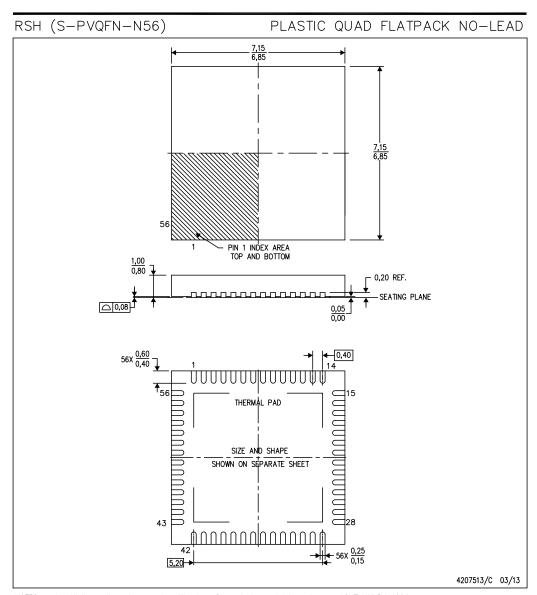
TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
April 2024	*	Initial Release


11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

11.1 Mechanical Data

MECHANICAL DATA

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 C. Quad Flatpack, No-leads (QFN) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

Submit Document Feedback

THERMAL PAD MECHANICAL DATA

RSH (S-PVQFN-N56)

PLASTIC QUAD FLATPACK NO-LEAD

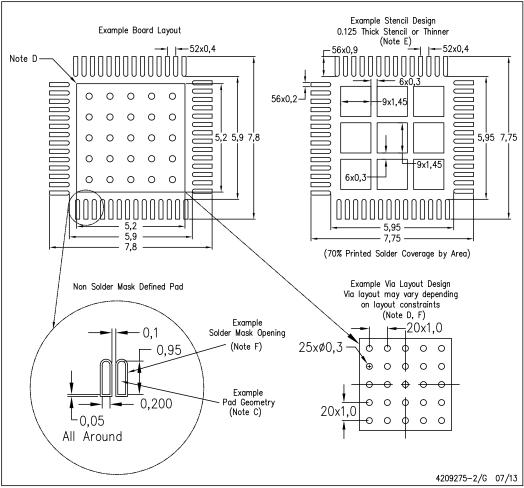
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters



LAND PATTERN DATA

RSH (S-PVQFN-N56)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

Submit Document Feedback

www.ti.com 13-Apr-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
PADS9813RSHT	ACTIVE	VQFN	RSH	56	250	TBD	Call TI	Call TI	-40 to 125		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

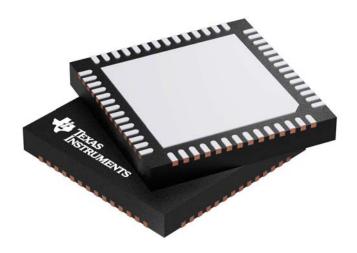
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

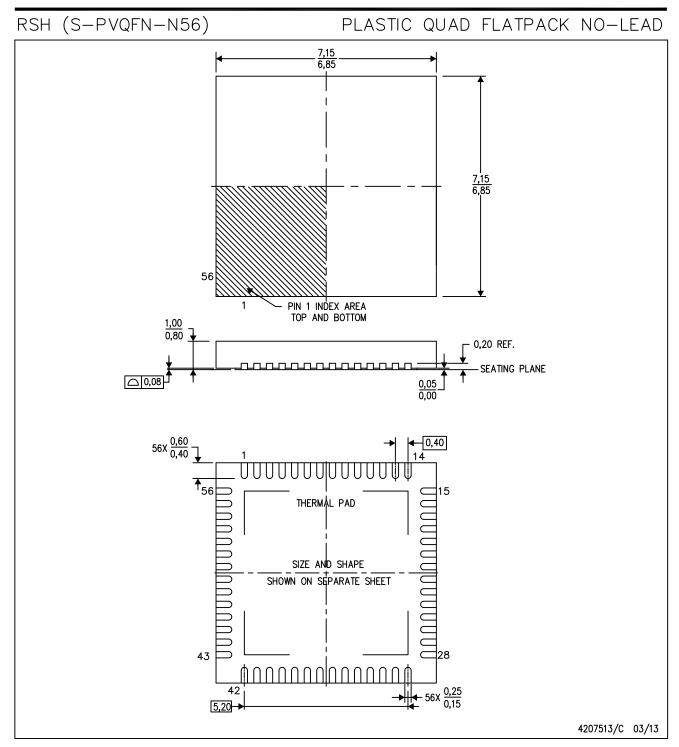
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.


Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PLASTIC QUAD FLATPACK - NO LEAD

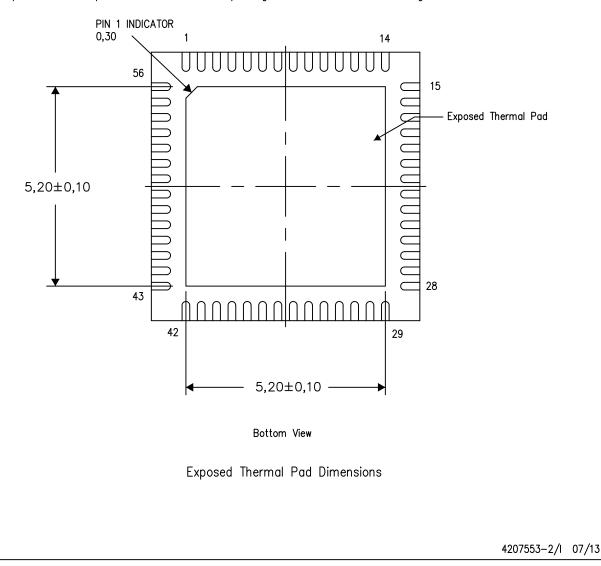
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207513/D

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RSH (S-PVQFN-N56)

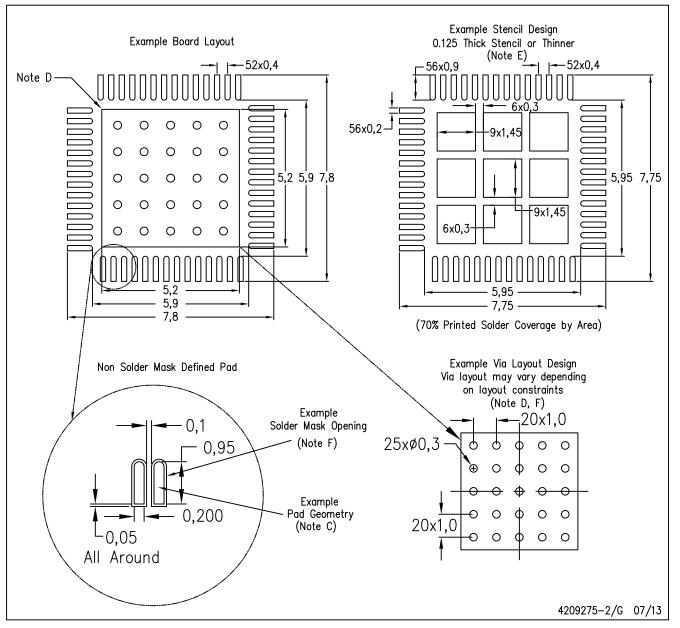

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

RSH (S-PVQFN-N56)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated