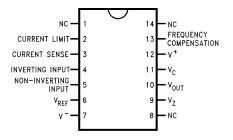


SNVS310A - FEBRUARY 2005 - REVISED APRIL 2013

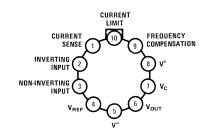
LM723QML Voltage Regulator

Check for Samples: LM723QML

FEATURES


- 150 mA Output Current Without External Pass
 Transistor
- Output Currents in Excess of 10A Possible by Adding External Transistors
- Input Voltage 40V Max
- Output Voltage Adjustable from 2V to 37V
- Can be Used as Either a Linear or a Switching Regulator

DESCRIPTION


The LM723 is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting.

The LM723 is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

Connection Diagram

Note: Pin 5 connected to case.

Figure 2. Metal Can Package (Top View) See Package LME0010C

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. SNVS310A -FEBRUARY 2005-REVISED APRIL 2013

www.ti.com

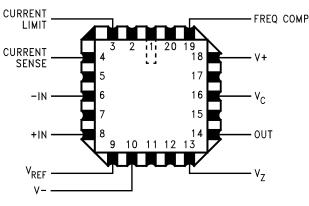
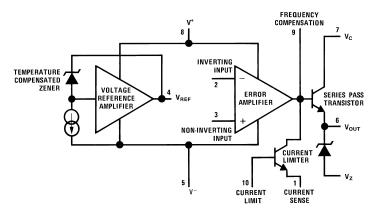
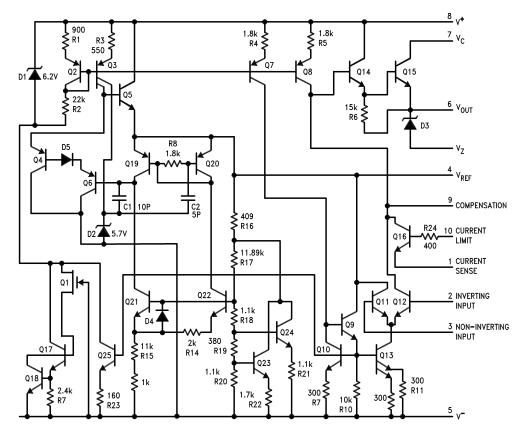



Figure 3. Top View See Package NAJ0020A

Equivalent Circuit



⁽¹⁾ Pin numbers refer to metal can package.

SNVS310A - FEBRUARY 2005 - REVISED APRIL 2013

Schematic Diagram

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾

	J -		5014		
Pulse Voltage from V ⁺ to V ⁻ (50 ms)			50V		
Continuous Voltage from V ⁺ to V ⁻			40V		
Input-Output Voltage Differential			40V		
Maximum Amplifier Input	Either Input	t	8.5V		
Voltage	Differential		5V		
Current from V _Z			25 mA		
Current from V _{REF}			15 mA		
Internal Power Dissipation Metal Cavity DIP ⁽²⁾			900 mW 800 mW		
Can ⁽²⁾ LCCC ⁽²⁾			900 mW		
Operating Temperature Range			-55°C ≤ T _A ≤ +125°C		
Maximum T _J			+150°C		
Storage Temperature Range			−65°C ≤ T _A ≤ +150°C		
Lead Temperature (Soldering, 4 sec	. max.)		300°C		
Thermal Resistance	θ _{JA}	CDIP (Still Air)	100°C/W		
		CDIP (500LF/ Min Air flow)	61°C/W		
		Metal Can (Still Air)	156°C/W		
		Metal Can (500LF/ Min Air flow)	89°C/W		
		LCCC (Still Air)	96°C/W		
		LCCC (500LF/ Min Air flow)	70°C/W		
	θ _{JC}	CDIP	22°C/W		
		Metal Can	37°C/W		
		LCCC	27°C/W		
ESD Tolerance ⁽³⁾			500V		

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For specified specifications and test conditions, see the Electrical Characteristics. The specified specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

(2) The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA}, and the ambient temperature, T_A. The maximum available power dissipation at any temperature is P_d = (T_{JMAX} - T_A)/θ_{JA} or the number given in the Absolute Maximum Ratings, whichever is less. See derating curves for maximum power rating above 25°C.

(3) Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

Quality Conformance Inspection — MIL-STD-883, Method 5005 — Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

4

SNVS310A - FEBRUARY 2005 - REVISED APRIL 2013

www.ti.com

Electrical Characteristics

DC Parameters⁽¹⁾

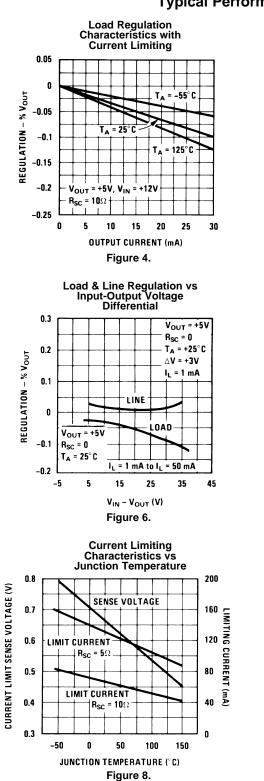
Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{rline}	Line Regulation	$12V \le V_{IN} \le 15V, V_{OUT} = 5V,$		-0.1	0.1	%V _{OUT}	1
		$I_L = 1mA$		-0.2	0.2	%V _{OUT}	2
				-0.3	0.3	%V _{OUT}	3
		$12V \le V_{IN} \le 40V, V_{OUT} = 2V,$ $I_L = 1mA$		-0.2	0.2	%V _{OUT}	1
		$9.5V \le V_{IN} \le 40V, V_{OUT} = 5V,$ $I_L = 1mA$		-0.3	0.3	%V _{OUT}	1
V _{rload}	Load Regulation	$1mA \le I_L \le 50mA, V_{IN} = 12V, V_{OUT} = 5V$		-0.1 5	0.15	%V _{OUT}	1
				-0.4	0.4	%V _{OUT}	2
				-0.6	0.6	%V _{OUT}	3
		$1\text{mA} \le \text{I}_{L} \le 10\text{mA}, \text{V}_{\text{IN}} = 40\text{V}, \\ \text{V}_{\text{OUT}} = 37\text{V}$		-0.5	0.5	%V _{OUT}	1
		$6mA \le I_L \le 12mA, V_{IN} = 10V, V_{OUT} = 7.5V$		-0.2	0.2	%V _{OUT}	1
V_{REF}	Voltage Reference	I _{REF} = 1mA, V _{IN} = 12V		6.95	7.35	V	1
				6.9	7.4	V	2, 3
I _{SCD}	Standby Current	$V_{IN} = 30V, I_L = I_{REF} = 0,$		0.5	3	mA	1
		V _{OUT} = V _{REF}		0.5	2.4	mA	2
				0.5	3.5	mA	3
I _{OS}	Short Circuit Current	$V_{OUT} = 5V, V_{IN} = 12V, R_{SC} = 10\Omega, R_L = 0$		45	85	mA	1
Vz	Zener Voltage	V _{IN} = 40V, V _{OUT} = 7.15V, I _Z = 1mA	See ^{(2) (3)}	5.58	6.82	V	1
V _{OUT}	Output Voltage	V _{IN} = 12V, V _{OUT} = 5V, I _L = 1mA		4.5	5.5	V	1, 2, 3

(1) Unless otherwise specified, $T_A = 25^{\circ}$ C, $V_{IN} = V^+ = V_C = 12V$, $V^- = 0$, $V_{OUT} = 5V$, $I_L = 1$ mA, $R_{SC} = 0$, $C_1 = 100$ pF, $C_{REF} = 0$ and divider impedance as seen by error amplifier $\leq 10 \ k\Omega$ connected as shown in Figure 15 Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken by dependent separately for high dissipation conditions.

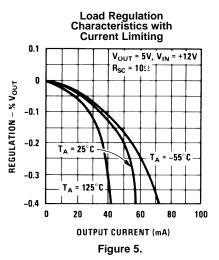
(2) For metal can applications where V_7 is required, an external 6.2V zener diode should be connected in series with V_{OUT} .

(3) Tested for DIPS only.

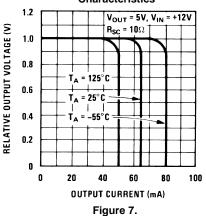
Electrical Characteristics

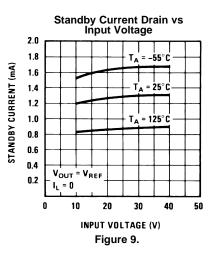

AC Parameters⁽¹⁾

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
Delta V _{OUT}	Ripple Rejection	$f = 120H_Z, C_{REF} = 0, V_{INS} = 2V_{RMS}$		55		dB	4
Delta V _{IN}		$\label{eq:rescaled_response} \begin{split} f &= 120 H_Z, \ C_{REF} = 5 \mu F, \\ V_{INS} &= 2 V_{RMS} \end{split}$		67		dB	4


(1) Unless otherwise specified, $T_A = 25^{\circ}$ C, $V_{IN} = V^+ = V_C = 12V$, $V^- = 0$, $V_{OUT} = 5V$, $I_L = 1$ mA, $R_{SC} = 0$, $C_1 = 100$ pF, $C_{REF} = 0$ and divider impedance as seen by error amplifier $\leq 10 \text{ k}\Omega$ connected as shown in Figure 15 Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.

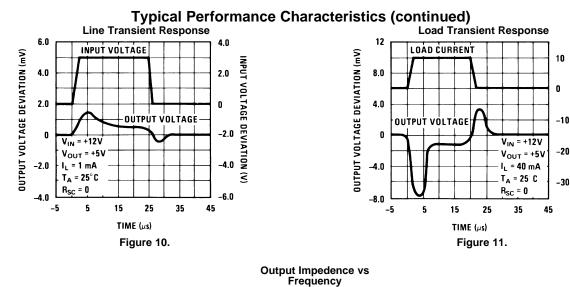
SNVS310A -FEBRUARY 2005-REVISED APRIL 2013


www.ti.com



Typical Performance Characteristics

Current Limiting Characteristics



6

LOAD DEVIATION (mA)

SNVS310A - FEBRUARY 2005 - REVISED APRIL 2013

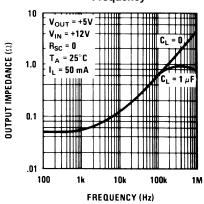
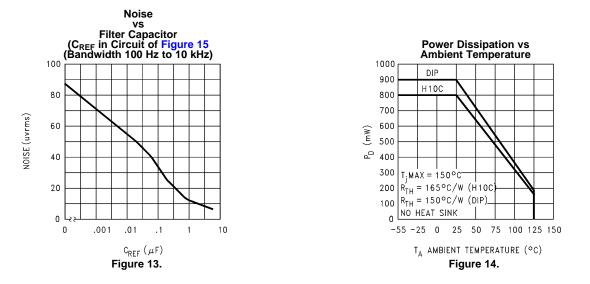


Figure 12.


LM723QML

SNVS310A -FEBRUARY 2005-REVISED APRIL 2013

TEXAS INSTRUMENTS

www.ti.com

XAS

STRUMENTS

SNVS310A -FEBRUARY 2005-REVISED APRIL 2013

www.ti.com

Positive	Applicable	Fix	ked	C	Output		Negative	I		ked	5% Output		put
Output	Figures	Out	tput	Ad	justab	le	Output	Applicable	Out	tput	Α	djusta	ible
Voltage		±5	5%	ť	1 0% ⁽¹⁾)	Voltage	Figures	±5%		±10%		6
	See ⁽²⁾	R1	R2	R1	P1	R2			R1	R2	R1	P1	R2
+3.0	1, 5, 6, 9, 12 (4)	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	102	2.2	10	91
+3.6	1, 5, 6, 9, 12 (4)	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
+5.0	1, 5, 6, 9, 12 (4)	2.15	4.99	0.75	0.5	2.2	-6 ⁽³⁾	3, (10)	3.57	2.43	1.2	0.5	0.75
+6.0	1, 5, 6, 9, 12 (4)	1.15	6.04	0.5	0.5	2.7	-9	3, 10	3.48	5.36	1.2	0.5	2.0
+9.0	2, 4, (5, 6, 9, 12)	1.87	7.15	0.75	1.0	2.7	-12	3, 10	3.57	8.45	1.2	0.5	3.3
+12	2, 4, (5, 6, 9, 12)	4.87	7.15	2.0	1.0	3.0	-15	3, 10	3.65	11.5	1.2	0.5	4.3
+15	2, 4, (5, 6, 9, 12)	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10
+28	2, 4, (5, 6, 9, 12)	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	97.6	2.2	10	91
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

(1)

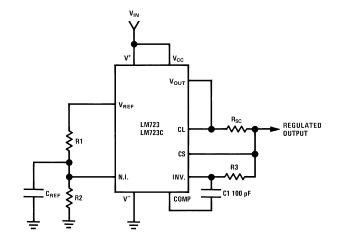

Replace R1/R2 in figures with divider shown in Figure 27. Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp. V⁺ and V_{CC} must be connected to a +3V or greater supply. (2) (3)

Table 1. Formulae for Intermediate Output Voltages

Outputs from +2 to +7 volts	Outputs from +4 to +250 volts	Current Limiting
(Figure 15, Figure 18, Figure 19, Figure 20, Figure 23, Figure 26)	(Figure 21)	
$V_{OUT} = \left(V_{REF} \times \frac{R2}{R1 + R2}\right) (1)$	$V_{OUT} = \left(\frac{V_{REF}}{2} \times \frac{R2 - R1}{R1}\right); R3 = R4$ (2)	$I_{\text{LIMIT}} = \frac{V_{\text{SENSE}}}{R_{\text{SC}}} $ (3)
Outputs from +7 to +37 volts	Outputs from −6 to −250 volts	Foldback Current Limiting
(Figure 16, Figure 18, Figure 19, Figure 20, Figure 23, Figure 26)	(Figure 17, Figure 22, Figure 24)	V _{OUT} R3 V _{SENSE} (R3 + R4)
$V_{OUT} = \left(V_{REF} \times \frac{R1 + R2}{R2}\right) $ (5)	$V_{OUT} = \left(\frac{V_{REF}}{2} \times \frac{R1 + R2}{R1}\right); R3 = R4$ (6)	$I_{\text{KNEE}} = \left(\frac{V_{\text{OUT}} R3}{R_{\text{SC}} R4} + \frac{V_{\text{SENSE}} (R3 + R4)}{R_{\text{SC}} R4}\right)$ $I_{\text{SHORT CKT}} = \left(\frac{V_{\text{SENSE}}}{R_{\text{SC}}} \times \frac{R3 + R4}{R4}\right) $ (4)

Typical Applications

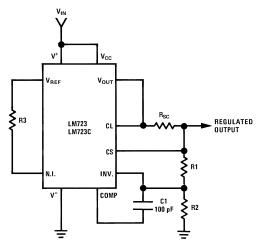

R1 R2

Table 2. Basic Low Voltage Regulator (V_{OUT} = 2 to 7 Volts)

Typical Performance			
Regulated Output Voltage	5V		
Line Regulation ($\Delta V_{IN} = 3V$)	0.5mV		
Load Regulation ($\Delta I_L = 50 \text{ mA}$)	1.5mV		

Note: $R3 = \frac{R1R2}{R1 + R2}$ for minimum temperature drift.

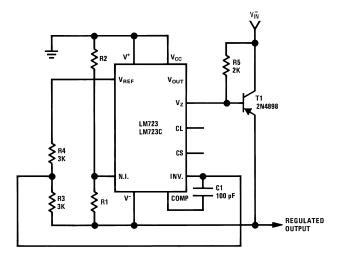

R3 may be eliminated for minimum component count.

Figure 16. Basic High Voltage Regulator $V_{OUT} = 7$ to 37 Volts)

Typical Performance				
Regulated Output Voltage	15V			
Line Regulation ($\Delta V_{IN} = 3V$)	1.5 mV			
Load Regulation ($\Delta I_L = 50 \text{ mA}$)	4.5 mV			

SNVS310A - FEBRUARY 2005 - REVISED APRIL 2013

Table 4. Negative Voltage Regulator

Typical Performance		
Regulated Output Voltage	-15V	
Line Regulation ($\Delta V_{IN} = 3V$)	1 mV	
Load Regulation ($\Delta I_L = 100 \text{ mA}$)	2 mV	

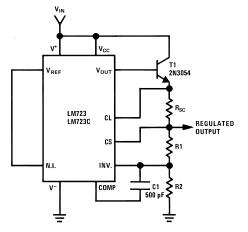
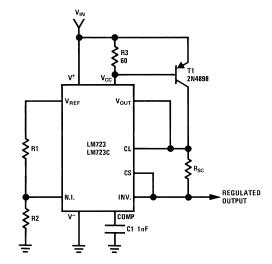



Figure 18. Positive Voltage Regulator - (External NPN Pass Transistor)

Typical Performance	
Regulated Output Voltage	+15V
Line Regulation ($\Delta V_{IN} = 3V$)	1.5 mV
Load Regulation ($\Delta I_L = 1A$)	15 mV

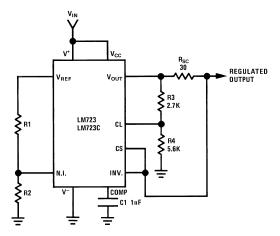
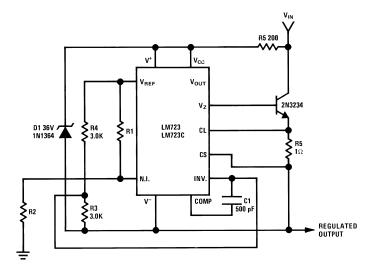


Figure 19. Positive Voltage Regulator – (External PNP Pass Transistor)

Table 6. Positive Voltage Regulator – (External PNP Pass Transistor)

Typical Performance	
Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5 mV
Load Regulation ($\Delta I_L = 1A$)	5 mV



Typical Performance	
Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5 mV
Load Regulation ($\Delta I_L = 10 \text{ mA}$)	1 mV
Short Circuit Current	20 mA

SNVS310A - FEBRUARY 2005 - REVISED APRIL 2013

Table 8	Docitivo	Electing	Populator
i apie o.	Positive	Floating	Regulator

Typical Performance	
Regulated Output Voltage	+50V
Line Regulation ($\Delta V_{IN} = 20V$)	15 mV
Load Regulation ($\Delta I_L = 50 \text{ mA}$)	20 mV

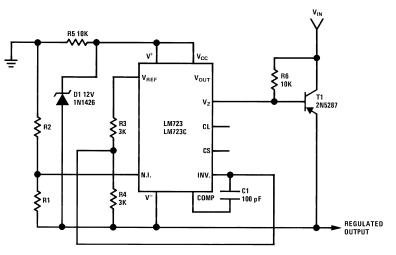
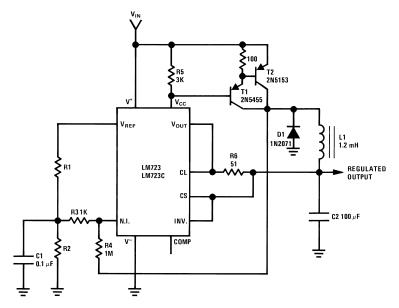
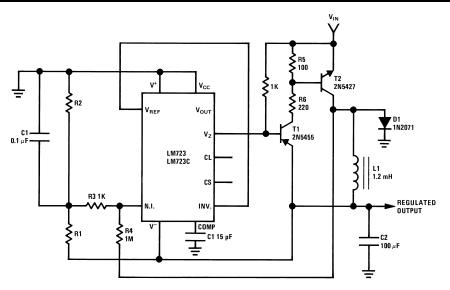


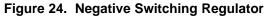
Figure 22. Negative Floating Regulator

Table 9. Negative Floating Regul	lator

Typical Performance	
Regulated Output Voltage	-100V
Line Regulation ($\Delta V_{IN} = 20V$)	30 mV
Load Regulation ($\Delta I_L = 100 \text{ mA}$)	20 mV




Figure 23. Positive Switching Regulator


Table 10. Positive Switching Regulator⁽¹⁾

Typical Performance	
Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 30V$)	10 mV
Load Regulation ($\Delta I_L = 2A$)	80 mV

(1) L₁ is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in. air gap

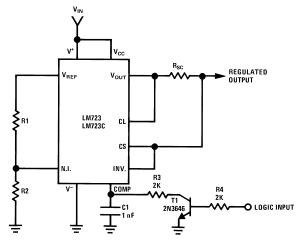


Table 11. Negative Switching Regulator⁽¹⁾

Typical Performance	
Regulated Output Voltage	-15V
Line Regulation ($\Delta V_{IN} = 20V$)	8 mV
Load Regulation ($\Delta I_L = 2A$)	6 mV

(1) L₁ is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in. air gap

Note: Current limit transistor may be used for shutdown if current limiting is not required.

Figure 25. Remote Shutdown Regulator with Current Limiting

Table 12. Remote Shutdown Regulator with Current Limiting

Typical Performance	
Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5 mV
Load Regulation ($\Delta I_L = 50 \text{ mA}$)	1.5 mV

SNVS310A -FEBRUARY 2005-REVISED APRIL 2013

www.ti.com

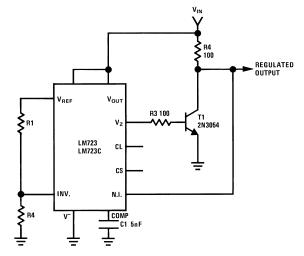
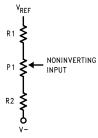



Figure 26. Shunt Regulator

Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 10V$)	0.5 mV
Load Regulation ($\Delta I_L = 100 \text{ mA}$)	1.5 mV

(1) Replace R1/R2 in figures with divider shown in Figure 27

Figure 27. Output Voltage Adjust

Revision History Section

Date Released	Revision	Section	Originator	Changes
02/15/05	A	New Release, Corporate format	L. Lytle	1 MDS data sheet converted into one Corp. data sheet format. MNLM723-X, Rev. 1A0. MDS data sheet will be archived. AC and Drift parameters removed from specification because they only applied to the JAN B/S devices, covered in a separate datasheet.

SNVS310A - FEBRUARY 2005 - REVISED APRIL 2013

REVISION HISTORY

Changes from Original (April 2013) to Revision A							
•	Changed layout of National Data Sheet to TI format	. 16					

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples	
	(1)		Draming		۹.,	(2)	(6)	(3)		(4/3)		
LM723 MD8	ACTIVE	DIESALE	Y	0	400	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples	
LM723E/883	ACTIVE	LCCC	NAJ	20	50	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	LM723E /883 Q ACO /883 Q >T	Samples	
LM723H/883	ACTIVE	TO-100	LME	10	20	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	LM723H/883 Q ACO LM723H/883 Q >T	Samples	
LM723J/883	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	LM723J/883 Q	Samples	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

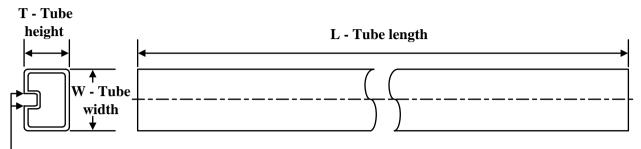
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

10-Aug-2024

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TEXAS INSTRUMENTS

www.ti.com

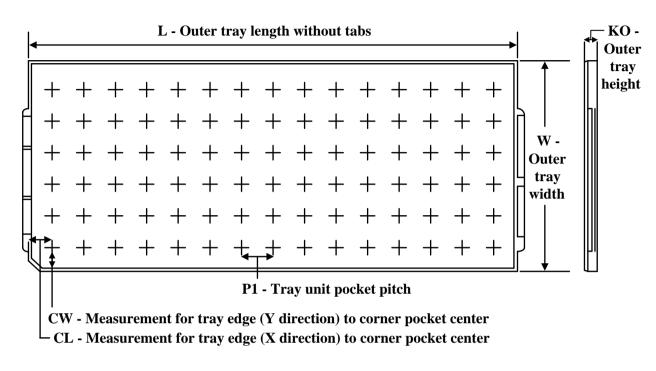
9-Aug-2022

TUBE

- B - Alignment groove width

*All dimensions are nominal

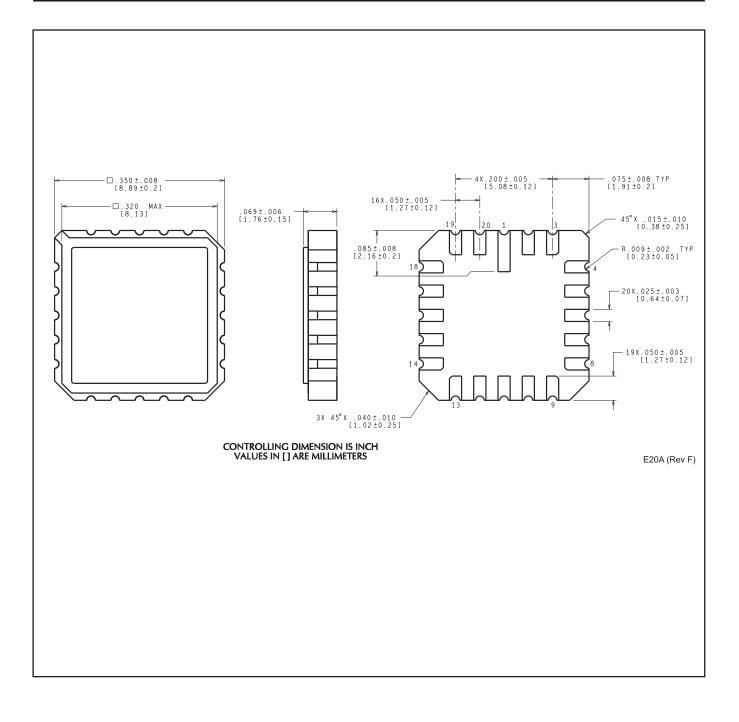
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
LM723E/883	NAJ	LCCC	20	50	470	11	3810	0
LM723J/883	J	CDIP	14	25	506.98	15.24	13440	NA


Texas Instruments

www.ti.com

TRAY

9-Aug-2022

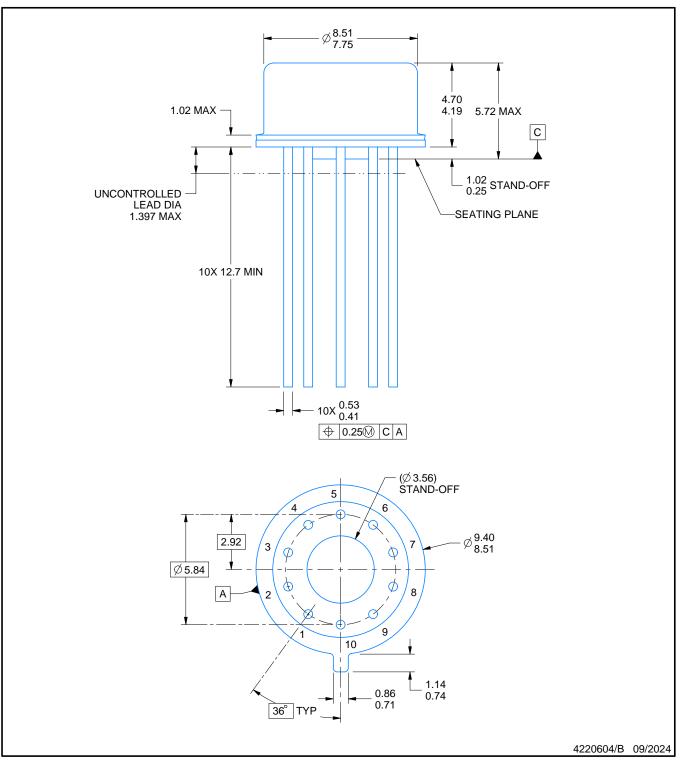

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
LM723H/883	LME	TO-CAN	10	20	2 X 10	150	126.49	61.98	8890	11.18	12.95	18.54

MECHANICAL DATA

NAJ0020A


LME0010A

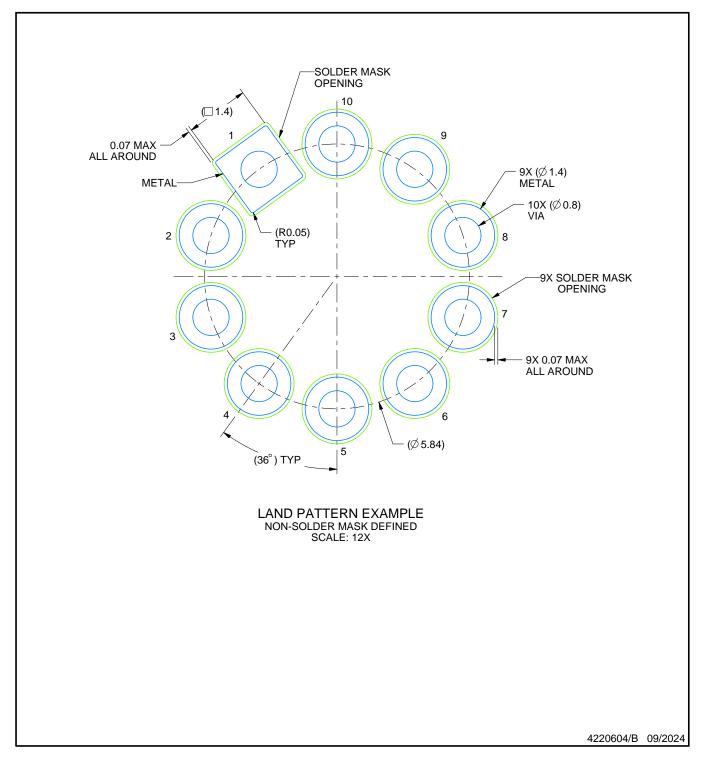
PACKAGE OUTLINE

TO-CAN - 5.72 mm max height

TRANSISTOR OUTLINE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Reference JEDEC registration MO-006/TO-100.

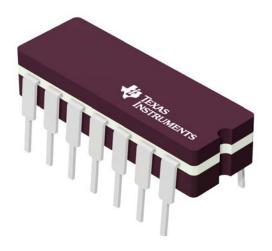


LME0010A

EXAMPLE BOARD LAYOUT

TO-CAN - 5.72 mm max height

TRANSISTOR OUTLINE

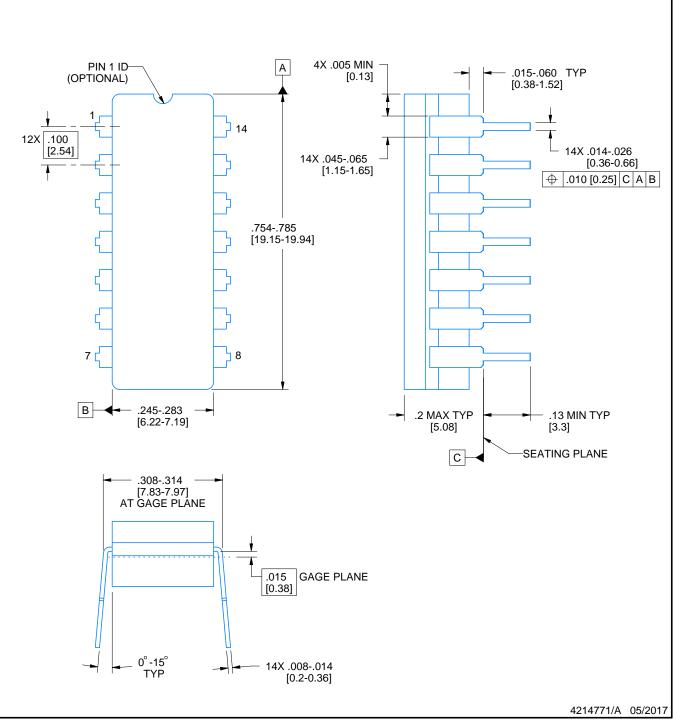


GENERIC PACKAGE VIEW

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


J0014A

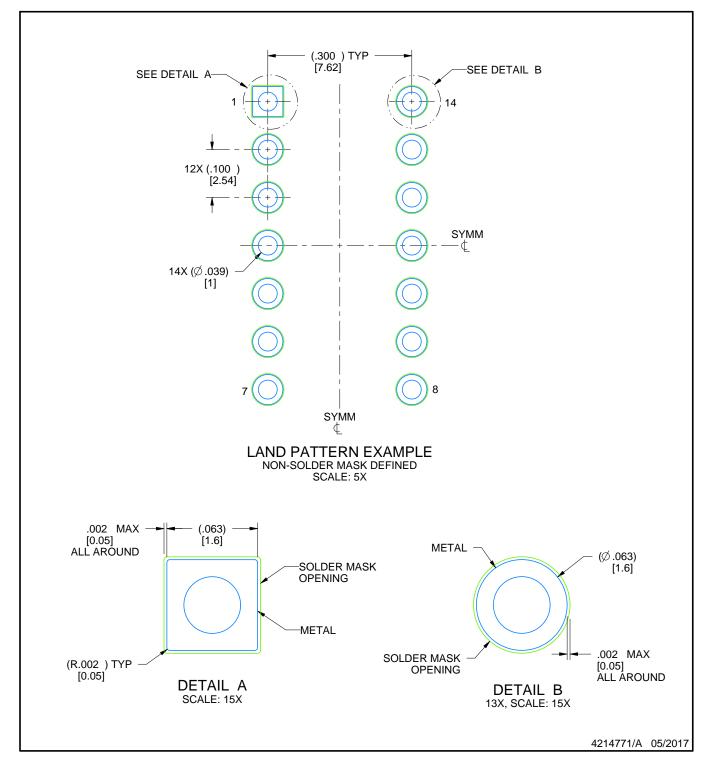
PACKAGE OUTLINE

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



J0014A

EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated