

### SN74AHC1G126-EP

www.ti.com

#### SCLS731-DECEMBER 2013

## SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT

Check for Samples: SN74AHC1G126-EP

#### **FEATURES**

- Operating Range of 2 V to 5.5 V
- Max t<sub>pd</sub> of 6 ns at 5 V
- Low Power Consumption, 10-µA Max I<sub>CC</sub>
- ±8-mA Output Drive at 5 V
- Latch-Up Performance Exceeds 250 mA Per JESD 17

# SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- Controlled Baseline
- One Assembly and Test Site
- One Fabrication Site
- Available in Military (–55°C to 125°C) Temperature Range
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability

### DESCRIPTION

The SN74AHC1G126 is a single bus buffer gate and line driver with 3-state output. The output is disabled when the output-enable (OE) input is low. When OE is high, true data is passed from the A input to the Y output.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

#### ORDERING INFORMATION<sup>(1)</sup>

| TJ             | PACKAGE <sup>(2)</sup> |             | ORDERABLE PART NUMBER | TOP-SIDE MARKING | VID NUMBER     |
|----------------|------------------------|-------------|-----------------------|------------------|----------------|
| –55°C to 125°C | SOT (SC-70) – DCK      | Reel of 250 | 74AHC1G126MDCKTEP     | SLI              | V62/14605-01XE |

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

| INPU | OUTPUT |   |
|------|--------|---|
| OE   | Α      | Y |
| Н    | Н      | Н |
| Н    | L      | L |
| L    | Х      | Z |

#### Table 1. FUNCTION TABLE



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SCLS731 - DECEMBER 2013

www.ti.com

#### LOGIC DIAGRAM (POSITIVE LOGIC)



#### ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>

#### over operating junction temperature range (unless otherwise noted)

| $V_{CC}$         | Supply voltage range                              | -0.5 V to 7 V  |                                   |
|------------------|---------------------------------------------------|----------------|-----------------------------------|
| VI               | Input voltage range <sup>(2)</sup>                | -0.5 V to 7 V  |                                   |
| Vo               | Output voltage range <sup>(2)</sup>               |                | –0.5 V to V <sub>CC</sub> + 0.5 V |
| I <sub>IK</sub>  | Input clamp current V <sub>I</sub> < 0            |                | -20 mA                            |
| I <sub>OK</sub>  | Output clamp current $V_O < 0$ or $V_O > V_{CC}$  |                | ±20 mA                            |
| I <sub>O</sub>   | Continuous output current $V_{O} = 0$ to $V_{CC}$ |                | ±25 mA                            |
|                  | Continuous current through V <sub>CC</sub> or GND |                | ±50 mA                            |
| TJ               | Junction temperature range                        | −55°C to 150°C |                                   |
| T <sub>stg</sub> | Storage temperature range                         |                | −65°C to 150°C                    |

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output voltage ratings may be exceeded if the input and output current ratings are observed. (2)

#### THERMAL INFORMATION

|                    |                                                             | SN74AHC1G126-EP |       |
|--------------------|-------------------------------------------------------------|-----------------|-------|
|                    | THERMAL METRIC <sup>(1)</sup>                               | DCK             | UNITS |
|                    |                                                             | 5 PINS          |       |
| θ <sub>JA</sub>    | Junction-to-ambient thermal resistance <sup>(2)</sup>       | 282.8           |       |
| θ <sub>JCtop</sub> | Junction-to-case (top) thermal resistance <sup>(3)</sup>    | 91.1            |       |
| θ <sub>JB</sub>    | Junction-to-board thermal resistance <sup>(4)</sup>         | 60.1            | 8CAM  |
| Ψ <sub>JT</sub>    | Junction-to-top characterization parameter <sup>(5)</sup>   | 1.6             | -C/W  |
| Ψ <sub>JB</sub>    | Junction-to-board characterization parameter <sup>(6)</sup> | 59.2            |       |
| θ <sub>JCbot</sub> | Junction-to-case (bottom) thermal resistance <sup>(7)</sup> | N/A             |       |

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (1)

The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as (2)specified in JESD51-7, in an environment described in JESD51-2a.

The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-(3)standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB (4) temperature, as described in JESD51-8.

The junction-to-top characterization parameter,  $\psi_{JT}$ , estimates the junction temperature of a device in a real system and is extracted (5)from the simulation data for obtaining  $\theta_{JA}$ , using a procedure described in JESD51-2a (sections 6 and 7).

(6)The junction-to-board characterization parameter,  $\psi_{JB}$ , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining  $\theta_{JA}$ , using a procedure described in JESD51-2a (sections 6 and 7).

The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific (7)JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

www.ti.com

#### SCLS731-DECEMBER 2013

#### **RECOMMENDED OPERATING CONDITIONS<sup>(1)</sup>**

|                 |                                      |                                            | MIN  | MAX      | UNIT  |  |
|-----------------|--------------------------------------|--------------------------------------------|------|----------|-------|--|
| V <sub>CC</sub> | Supply voltage                       |                                            | 2    | 5.5      | V     |  |
|                 |                                      | $V_{CC} = 2 V$                             | 1.5  |          |       |  |
| VIH             | High-level input voltage             | $V_{CC} = 3 V$                             | 2.1  |          | V     |  |
|                 |                                      | $V_{CC} = 5.5 V$                           | 3.85 |          |       |  |
|                 |                                      | $V_{CC} = 2 V$                             |      | 0.5      |       |  |
| VIL             | Low-level input voltage              | $V_{CC} = 3 V$                             |      | 0.9      | V     |  |
|                 |                                      | $V_{CC} = 5.5 V$                           |      | 1.65     |       |  |
| VI              | Input voltage                        |                                            | 0    | 5.5      | V     |  |
| Vo              | Output voltage                       |                                            | 0    | $V_{CC}$ | V     |  |
|                 |                                      | $V_{CC} = 2 V$                             |      | -50      | μA    |  |
| I <sub>OH</sub> | High-level output current            | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |      | -4       | ~ ^   |  |
|                 |                                      | $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$   |      | -8       | ШA    |  |
|                 |                                      | $V_{CC} = 2 V$                             |      | -50      | μA    |  |
| I <sub>OL</sub> | Low-level output current             | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |      | 4        | ~ ^   |  |
|                 |                                      | $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$   |      | 8        | mA    |  |
| A+/A\/          | Input transition rise/fall time      | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |      | 100      | no//  |  |
| ΔυΔν            | input transition rise/rail time      | $V_{CC} = 5 V \pm 0.5 V$                   |      | 20       | IIS/V |  |
| TJ              | Operating junction temperature range |                                            | -55  | 125      | °C    |  |

(1) All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

### **ELECTRICAL CHARACTERISTICS**

over recommended operating junction temperature range (unless otherwise noted)

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST CONDITIONS                             | V <sub>cc</sub> | MIN | MAX  | UNIT |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------|-----|------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 2 V             | 1.9 |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I <sub>OH</sub> = -50 μA                    | 3 V             | 2.9 |      |      |
| V <sub>OH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 4.5 V           | 4.4 |      | V    |
| PARAMETER         TEST CONDITIONS $V_{CC}$ Min         M $V_{OH}$ $I_{OH} = -50 \ \mu A$ $2 \ V$ $1.9$ $3 \ V$ $2.9$ $V_{OH}$ $I_{OH} = -4 \ mA$ $3 \ V$ $2.9$ $4.5 \ V$ $4.4$ $I_{OH} = -4 \ mA$ $3 \ V$ $2.48$ $3 \ V$ $2.48$ $I_{OH} = -8 \ mA$ $4.5$ $3.8$ $2 \ V$ $1 \ OH$ $3 \ V$ $2.48$ $V_{OL}$ $I_{OH} = 50 \ \mu A$ $4.5 \ V$ $3 \ V$ $2.48$ $V_{OL}$ $I_{OH} = 50 \ \mu A$ $3 \ V$ $2.48$ $3 \ V$ $2.48$ $I_{OH} = 50 \ \mu A$ $A \ S \ V$ $4.5 \ V$ $3 \ V$ </td <td></td> <td></td> |                                             |                 |     |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $I_{OH} = -8 \text{ mA}$                    | 4.5             | 3.8 |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 2 V             |     | 0.1  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I <sub>OH</sub> = 50 μA                     | 3 V             |     | 0.1  |      |
| V <sub>OL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 4.5 V           |     | 0.1  | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $I_{OH} = 4 \text{ mA}$                     | 3 V             |     | 0.44 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I <sub>OH</sub> = 8 mA                      | 4.5             |     | 0.44 |      |
| I <sub>I</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V_I = 5.5 \text{ V or GND}$                | 0 V to 5.5 V    |     | ±1   | μA   |
| I <sub>OZ</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{O} = V_{CC}$ or GND                     | 5.5 V           |     | ±2.5 | μA   |
| I <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$ | 5.5 V           |     | 10   | μA   |
| Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V_1 = V_{CC} \text{ or } GND$              | 5 V             |     | 10   | pF   |



www.ti.com

#### SCLS731-DECEMBER 2013

#### SWITCHING CHARACTERISTICS

over recommended operating junction temperature range,  $V_{CC}$  = 3.3 V ±0.3 V (unless otherwise noted)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT)        | LOAD CAPACITANCE       | MIN                    | МАХ | UNIT |            |   |    |    |
|------------------|-----------------|-----------------------|------------------------|------------------------|-----|------|------------|---|----|----|
| t <sub>PLH</sub> | ٨               | V                     | C = 50  pF             | 1                      | 13  | ns   |            |   |    |    |
| t <sub>PHL</sub> | A               | $C_L = 50 \text{ pr}$ | C <sub>L</sub> = 50 pF | 1                      | 13  | ns   |            |   |    |    |
| t <sub>PZH</sub> | 05              | V                     | 0 50 -5                | 1                      | 13  | ns   |            |   |    |    |
| t <sub>PZL</sub> | UE              | Y                     | I                      | $C_L = 30 \ \text{pr}$ | 1   | 13   | ns         |   |    |    |
| t <sub>PHZ</sub> |                 | Y                     | Y C <sub>L</sub> = 5   | V                      | N N |      | Хилон Болб | 1 | 15 | ns |
| t <sub>PLZ</sub> | UE              |                       |                        | $C_L = 50 \text{ pF}$  | 1   | 15   | ns         |   |    |    |

#### SWITCHING CHARACTERISTICS

over recommended operating junction temperature range,  $V_{CC}$  = 5 V ±0.5 V (unless otherwise noted)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | LOAD CAPACITANCE       | MIN                      | MAX                   | UNIT |    |    |
|------------------|-----------------|----------------|------------------------|--------------------------|-----------------------|------|----|----|
| t <sub>PLH</sub> | ^               | V              | C = 50 pE              | 1                        | 8.5                   | ns   |    |    |
| t <sub>PHL</sub> | A               | ř              | C <sub>L</sub> = 50 pF | $C_L = 50 \text{ pr}$    | 1                     | 8.5  | ns |    |
| t <sub>PZH</sub> |                 | V              |                        | 1                        | 8                     | ns   |    |    |
| t <sub>PZL</sub> | UE              | ř              | I                      | - Ο <sub>L</sub> = 30 βi | 1                     | 8    | ns |    |
| t <sub>PHZ</sub> | OF              | V              | C = 50  pF             | 1                        | 10                    | ns   |    |    |
| t <sub>PLZ</sub> | UE              | Y              | ř                      | Ť                        | $C_L = 50 \text{ pr}$ | 1    | 10 | ns |

### **OPERATING CHARACTERISTICS**

 $V_{CC} = 5 V, T_{J} = 25^{\circ}C$ 

|                 | PARAMETER                     | TEST CONDITIONS    | TYP | UNIT |
|-----------------|-------------------------------|--------------------|-----|------|
| C <sub>pd</sub> | Power dissipation capacitance | No load, f = 1 MHz | 14  | pF   |



### SN74AHC1G126-EP

SCLS731-DECEMBER 2013

www.ti.com

#### PARAMETER MEASUREMENT INFORMATION



- NOTES: A.  $C_L$  includes probe and jig capacitance.
  - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
    - Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
  - C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  3 ns, t<sub>f</sub>  $\leq$  3 ns.
  - D. The outputs are measured one at a time, with one input transition per measurement.
  - E. All parameters and waveforms are not applicable to all devices.

#### Figure 1. Load Circuit and Voltage Waveforms

# **DCK0005A**



# **PACKAGE OUTLINE**

### SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
   This drawing is subject to change without notice.
   Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.
- 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side



# **DCK0005A**

# **EXAMPLE BOARD LAYOUT**

### SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

Publication IPC-7351 may have alternate designs.
 Solder mask tolerances between and around signal pads can vary based on board fabrication site.



# DCK0005A

# **EXAMPLE STENCIL DESIGN**

### SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

10. Board assembly site may have different recommendations for stencil design.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated