TPS80032

TPS80032 Fully Integrated Power Management With Power Path and Battery Charger

Device Overview

1.1 **Features**

- Five Highly Efficient Buck Converters
 - One 3 MHz, 0.6 to 2.1 V at 5.0 A, DVS-Capable
 - One 6 MHz, 0.6 to 2.1 V at 2.5 A, DVS-Capable
 - Three 6 MHz, 0.6 to 2.1 V at 1.1 A, One Being **DVS-Capable**
- 11 General-Purpose Low-Dropout Voltage Regulators (LDOs)
 - Six 1.0 to 3.3 V at 0.2 A with Battery or Preregulated Supply:
 - One can be Used as Vibrator Driver
 - One 1.0 to 3.3 V at 50 mA with Battery or Preregulated Supply
 - One Low-Noise 1.0 to 3.3 V at 50 mA with Battery or Preregulated Supply
 - One 3.3 V at 100 mA USB LDO
 - Two LDOs for TPS80032 Internal Use
- · USB OTG Module:
 - ID Detection, Accessory Charger Adapter (ACA) Support
 - Accessory Detection Protocol (ADP) Support
- Backup Battery Charger
- 12-bit Sigma-Delta Analog-to-Digital Converter (ADC) with 19 Input Channels:
 - Seven External Input Channels
- 13-bit Coulomb Counter with Four Programmable Integration Periods
- Low-Power Consumption:
 - 8 µA in BACKUP State
 - 20 µA in WAIT-ON State
 - 110 μA in SLEEP State, with Two DC-DCs Active
- Real-Time Clock (RTC) with Timer and Alarm Wake-Up:
 - Three Buffered 32-kHz Outputs
- SIM and SD/MMC Card Detections
- Two Digital PWM Outputs
- Thermal Monitoring:
 - High-Temperature Warning
 - Thermal Shutdown

Applications

- Mobile Phones and Smart Phones
- **Tablets**
- **Gaming Handsets**
- Portable Media Players
- Portable Navigation Systems

Control:

- Configurable Power-Up and Power-Down Sequences (OTP Memory)
- Configurable Sequences Between SLEEP and **ACTIVE States (OTP Memory)**
- Three Digital Output Signals that can be Included in the Startup Sequence to Control **External Devices**
- Two Inter-Integrated Circuit (I²C) Interfaces
- All Resources Configurable by I²C
- System Voltage Regulator/Battery Charger with Power Path from USB:
 - Input Current Limit to Comply with USB Standard
 - 3-MHz Switched-Mode Regulator with Integrated Power FET for up to 2.0-A Current
 - Dedicated Control Loop for Battery Current and Voltage
 - External Low-Ohmic FET for Power Path and **Battery Charging**
 - Boost Mode Operation for USB OTG
 - Supplement Mode to Deliver Current from Battery During Power Path Operation
 - Charger for Single-Cell Li-Ion and Li-Polymer **Battery Packs**
 - Safety Timer and Reset Control
 - Thermal Protection
 - Input/Output Overvoltage Protection
 - Charging Indicator LED Driver
 - Compliant with:
 - **USB 2.0**
 - OTG and EH 2.0
 - **USB Battery Charging 1.2**
 - YD/T 1591-2006
 - Japanese Battery Charging Guidelines (JEITA)
- Battery Voltage Range from 2.5 to 5.5 V
- Package 5.21 mm × 5.36 mm 155-pin WCSP
- Handheld Devices
- Industrial Applications

1.3 Description

The TPS80032 device is an integrated power-management integrated circuit (PMIC) for applications powered by a rechargeable battery. The device provides five configurable step-down converters with up to 5.0-A current capability for memory, processor core, I/O, auxiliary, preregulation for LDOs, and so forth. The device also contains nine LDO regulators for external use that can be supplied from a battery or a preregulated supply. The power-up/power-down controller is configurable and can support any power-up/power-down sequence (programmed in OTP memory). The RTC provides three 32-kHz clock outputs: seconds, minutes, hours, day, month, and year information; as well as alarm wakeup and timer. The TPS80032 device supports 32-kHz clock generation based on a crystal oscillator.

The device integrates a switched-mode system supply regulator from a USB connector. The device includes power paths from the USB and battery with supplemental mode for immediate startup, even with an empty battery. The battery switch uses an external low-ohmic PMOS transistor allowing minimal serial resistance during fast charging and when operating from battery. The device can also be used without the external PMOS transistor; the battery is then always tied to the system supply and the switched-mode regulator is used for battery charging.

The TPS80032 device is available in a 155-pin WCSP package, 5.21 mm x 5.36 mm with a 0.4-mm ball pitch.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE
TPS80032	YFF (155)	5.21 mm × 5.36 mm

(1) For more information, see Section 8, Mechanical Packaging and Orderable Information.

1.4 Functional Block Diagram

Figure 1-1 shows the TPS80032 device block diagram.

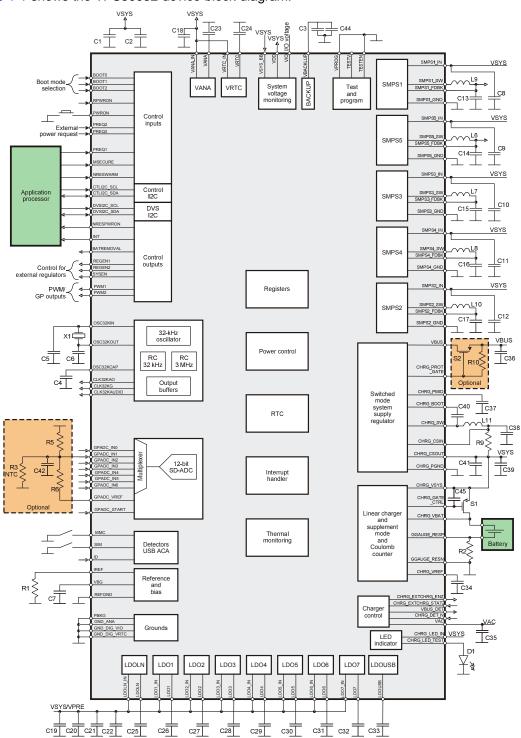


Figure 1-1. TPS80032 Device Block Diagram

Table of Contents

1	Devi	ice Overview <u>1</u>		5.9	Battery Charging	61
	1.1	Features 1		5.10	USB OTG	. 92
	1.2	Applications 1		5.11	Gas Gauge	100
	1.3	Description 2		5.12	General-Purpose ADC	102
	1.4	Functional Block Diagram3		5.13	Vibrator Driver and PWM Signals	107
2	Revi	ision History <u>5</u>		5.14	Detection Features	108
3	Tern	ninal Configuration and Functions 6		5.15	Thermal Monitoring	109
	3.1	Pin Diagram 6		5.16	I ² C Interface	110
	3.2	Pin Attributes 7		5.17	Secure Registers	110
4	Spec	cifications <u>12</u>		5.18	Access Protocol	111
	4.1	Absolute Maximum Ratings 12		5.19	Interrupts	112
	4.2	Handling Ratings 12	6	Reco	ommended External Components	115
	4.3	Recommended Operating Conditions 12	7	Devi	ce and Documentation Support	117
	4.4	Thermal Characteristics for YFF Package 13		7.1	Device Support	117
	4.5	Electrical Characteristics 14		7.2	Community Resources	117
	4.6	Typical Characteristics41		7.3	Trademarks	117
5	Deta	ailed Description 42		7.4	Electrostatic Discharge Caution	118
	5.1	Real-Time Clock		7.5	Export Control Notice	118
	5.2	Clocks		7.6	Glossary	118
	5.3	Power Management 43		7.7	Additional Acronyms	118
	5.4	Reset System <u>50</u>		7.8	Detailed Revision History	118
	5.5	System Control	8		hanical Packaging and Orderable	
	5.6	System Voltage/Battery Comparator Thresholds 56		Info	mation	121
	5.7	Power Resources		8.1	Packaging Information	121
	5.8	Backup Battery Charger				

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

For a more detailed list of revision notes, see Section 7.8.

Changes from Revision H (August 2012) to Revision I

Page

3 Terminal Configuration and Functions

3.1 Pin Diagram

Figure 3-1 shows the TPS80032 device bottom view ball mapping.

	1	2	3	4	5	6	7	8	9	10	11	12	13
N	PBKG	SMPS1_SW	SMPS1_GND	SMPS5_IN	SMPS5_SW	LDO2	LDO3	LDO4	SMPS3_SW	SMPS3_IN	SMPS2_GND	SMPS2_SW	PBKG
М	SMPS1_IN	SMPS1_SW	SMPS1_GND	SMPS5_IN	SMPS5_GND	SMPS5_GND	LDO3_IN	SMPS3 _GND	SMPS3 _GND	SMPS3_IN	SMPS2_GND	SMPS2_SW	SMPS2_IN
L	SMPS1_IN	SMPS1_SW	SMPS1_GND	SMPS5 _FDBK	VDD	LDO2_IN	GND_DIG _VIO	LDO4_IN	GND_ANA	GPADC _START	SMPS3 _FDBK	SMPS2_SW	SMPS2_IN
ĸ	SMPS1_IN	SMPS1_SW	SMPS1_GND	MSECURE	SYSEN	PREQ2	INT	CLK32KG	CLK32KAO	ммс	PWM2	PWM1	SMPS2 _FDBK
J	REGEN2	PWRON	CTLI2C_SCL	CTLI2C_SDA	NRES PWRON				SIM	BAT REMOVAL	DVSI2C_SCL	SMPS4_IN	SMPS4_IN
н	SMPS1 _FDBK	RPWRON	REGEN1	NRESWARM		PREQ3	PREQ1	GND_ANA		VIO	DVSI2C_SDA	SMPS4_SW	SMPS4_SW
G	CHRG_PROT _GATE	VDD	GND_DIG _VRTC	PBKG		VBACKUP	ID	REFGND		GPADC_IN5	SMPS4 _FDBK	SMPS4 _GND	SMPS4 _GND
F	LDO1	LDO1_IN	CHRG _EXTCHRG _STATZ	CHRG _extchrg _enz		воот2	VBUS _DET	VRTC_IN		VBG	GPADC_IN6	LDO5_IN	LDO5
E	GND_ANA	CHRG _BOOT	TESTEN	воот0						IREF	VDD	LDOLN_IN	LDOLN
D	VBUS	CHRG_VREF	воот1	CHRG_CSIN	CHRG _CSOUT	VPROG	VRTC	GPADC _IN1	GGAUGE _RESP	GGAUGE _RESN	GPADC_IN0	LDO6_IN	LDO6
С	VBUS	CHRG_PMID	CHRG_SW	CHRG_SW	CHRG _PGND	VAC	GND_ANA	REFGND	CLK32K AUDIO	OSC32KCAP	VSYS_BB	CHRG_VSYS	CHRG _GATE _CTRL
В	VBUS	CHRG_PMID	CHRG_SW	CHRG_SW	CHRG _PGND	CHRG_LED _TEST	VDD	LDO7_IN	OSC32KOUT	VANA_IN	GPADC _VREF	GPADC_IN3	CHRG _VBAT
A	РВКС	CHRG_PMID	CHRG_SW	CHRG _DET_N	CHRG _PGND	CHRG_LED _IN	LDOUSB	LDO7	OSC32KIN	VANA	GPADC_IN4	GPADC_IN2	TESTV
	1	2	3	4	5	6	7	8	9	10	11	12	13

Figure 3-1. Bottom View Ball Mapping

3.2 Pin Attributes

Pin Attributes

					CONNECTION IF	PULLUP /
NAME	BALL	TYPE	1/0	DESCRIPTION	NOT USED	PULLDOW N
System Supply Regula	tor/Batte	ry Charge	r			
CHRG_BOOT	E2	Analog	0	Switched-mode regulator boot-strapped capacitor for the high-side MOSFET gate driver	Floating	_
CHRG_CSIN	D4	Analog	I	Switched-mode regulator current-sense input (without power path)	Ground	_
CHRG_CSOUT	D5	Analog	I	Switched regulator auxiliary power supply, connected to the system supply/battery to provide power in high-impedance mode, switched regulator system/battery voltage/current sense input	System supply	_
CHRG_DET_N	A4	Analog	1	USB charging port detection signal from USB PHY	Ground	-
CHRG_EXTCHRG_EN Z	F4	Digital	0	Output control signal to an external VAC charger (default high)	Floating	_
CHRG_EXTCHRG_ST ATZ	F3	Digital	I	External VAC charger status input pin	Floating	PU 70 to 190 kΩ
CHRG_LED_IN	A6	Power	1	Input supply for LED indicator	Ground	_
CHRG_LED_TEST	B6	Analog	I/O	External LED driver output	Ground	_
CHRG_PGND	A5, B5, C5	Ground	I	Switched regulator power ground	Ground	_
CHRG_PMID	A2, B2, C2	Analog	0	Switched regulator connection point between reverse blocking MOSFET and high-side switching MOSFET	Floating	_
CHRG_SW	A3, B3, C3, B4, C4	Power	0	Switched regulator output for inductor connection	Floating	_
CHRG_VREF	D2	Analog	0	Switched regulator internal bias regulator voltage	Floating	_
VAC	C6	Power	1	VAC charger input sense line	Ground	_
VBUS	B1, C1, D1	Power	I/O	VBUS input, USB system supply/battery charger power supply	Ground (must be connected to VBUS if VBUS detection from PMIC is needed; for example, USB boot up)	_
CHRG_VSYS	C12	Power	I	System supply	System supply	_
CHRG_VBAT	B13	Power	I/O	Battery voltage for battery charging	System supply	_
VBUS_DET	F7	Digital	0	VBUS detection signal (VSYS level)	Floating	-
CHRG_GATE_CTRL	C13	Analog	0	Control signal for gate of external PMOS (battery switch)	Floating	_
CHRG_PROT_GATE	G1	Analog	0	Control signal for gate of external PMOS to protect against negative input voltage (optional)	Floating	- -
Power Supplies	T					
GND_ANA	C7, E1, H8, L9	Ground	I	Analog power ground	Ground	_
GND_DIG_VIO	L7	Ground	I	VIO digital ground	Ground	_
GND_DIG_VRTC	G3	Ground	I	VRTC digital ground	Ground	_

NAME	BALL	TYPE	I/O	DESCRIPTION	CONNECTION IF NOT USED	PULLUP / PULLDOW N
PBKG	A1, G4, N1, N13	Substrate	I	Substrate ground	Ground	_
VDD	B7, E11, G2, L5	Power	I	Analog input voltage supply	System supply	_
VIO	H10	Power	ı	The PMIC digital I/O input supply voltage (1.8 V)	N/A	_
VPROG	D6	Power	I	OTP memory programming voltage	Ground	_
VBACKUP	G6	Analog	I	Backup battery connection	Ground	_
VSYS_BB	C11	Power	I	Sense line for system supply	System supply	_
Clocking	"					I.
CLK32KAO	K9	Digital	0	32-kHz digital output clock always on when VIO input supply is present	Floating	_
CLK32KAUDIO	C9	Digital	0	32-kHz digital gated output clock (for example, for audio device)	Floating	_
CLK32KG	K8	Digital	0	32-kHz digital gated output clock controlled by software	Floating	_
OSC32KCAP	C10	Analog	0	VRTC power supply external filtering capacitor for the 32-kHz crystal oscillator	Floating	_
OSC32KIN	A9	Analog	ı	32-kHz crystal oscillator input or digital clock input	N/A	
OSC32KOUT	В9	Analog	0	32-kHz crystal oscillator output or floating in case of digital clock input	N/A or floating	_
References						
IREF	E10	Analog	I/O	Reference current generation	N/A	-
REFGND	C8, G8	Ground	I	System reference ground	Ground	
VBG	F10	Analog	0	Band-gap output reference voltage	N/A	_
Testing						
TESTEN	E3	Digital	I	Test mode enable	Ground	PD 170 to 950 kΩ
TESTV	A13	Analog	0	Internal voltages sense line	Floating	_
System Control	.	*				*
CTLI2C_SCL	J3	Digital	I	Control I ² C serial clock (external pullup)	N/A	PPU 1.46 to 7.4 kΩ
CTLI2C_SDA	J4	Digital	I/O	Control I ² C serial bidirectional data (an external pullup)	N/A	PPU 1.46 to 7.4 kΩ
INT	K7	Digital	0	Maskable interrupt request to the host processor	N/A	_
BATREMOVAL	J10	Digital	0	Battery removal indicator	Floating	-
воото	E4	Digital	I	Boot ball 0 for power-up sequence selection	Ground or VRTC	_
BOOT1	D3	Digital	l	Boot ball 1 for power-up sequence selection	Ground or VRTC	_
BOOT2	F6	Digital	I	Boot ball 2 for power-up sequence selection	Ground or VRTC	-
NRESPWRON	J5	Digital	0	System reset/power-on output	Floating	_
NRESWARM	H4	Digital	I	Warm reset input	Floating	PU 70 to 190 kΩ
PREQ1	H7	Digital	I	Power request input 1	Floating	PPU/*PPD 170 to 950 kΩ

				in Attributes (continued)		
NAME	BALL	TYPE	1/0	DESCRIPTION	CONNECTION IF NOT USED	PULLUP / PULLDOW N
PREQ2	K6	Digital	I	Power request input 2	Floating	PPU/*PPD 170 to 950 kΩ
PREQ3	H6	Digital	I	Power request input 3	Floating	PPU/*PPD 170 to 950 kΩ
PWM1	K12	Digital	0	Pulse width modulation/general-purpose output 1	Floating	_
PWM2	K11	Digital	0	Pulse width modulation/general-purpose output 2	Floating	_
PWRON	J2	Digital	I	External on-button switch-on event (primary input to launch system wakeup)	N/A	PU 55 to 370 kΩ
REGEN1	НЗ	Digital	0	External regulator enable 1	Floating	-
REGEN2	J1	Digital	0	External regulator enable 2	Floating	-
RPWRON	H2	Digital	I	External remote switch-on event (secondary input to launch system wakeup)	Floating	PU 55 to 370 kΩ
SYSEN	K5	Digital	0	External system enable	Floating	_
MSECURE	K4	Digital	I	Secure mode input. Allows I ² C access to secure registers	Ground or floating	PD 170 to 950 kΩ
DVSI2C_SCL	J11	Digital	I	DVS I ² C serial clock (external pullup)	N/A	PPU 1.46 to 7.4 kΩ
DVSI2C_SDA	H11	Analog	I/O	DVS I ² C serial data (external pullup)	N/A	PPU 1.46 to 7.4 kΩ
Detection						
ID	G7	Digital	I/O	USB connector identification signal	Floating	-
ммс	K10	Digital	I	MMC card insertion and extraction detection to deactivate the LDO5 regulator	Floating	PPU/*PPD 70 to 190 kΩ
SIM	J9	Power	I	SIM card insertion and extraction detection to deactivate the LDO7 regulator	Floating	PPU/*PPD 70 to 190 kΩ
LDO Regulators						
VANA	A10	Power	0	Output voltage for VANA regulator	N/A	_
VANA_IN	B10	Power	I	Input voltage supply for VANA regulator	System supply	_
LDO2	N6	Power	0	Output voltage for LDO2 regulator	Floating	_
LDO2_IN	L6	Power	I	Input voltage supply for LDO2 regulator	System supply	-
LDO4	N8	Power	0	Output voltage for LDO4 regulator	Floating	_
LDO4_IN	L8	Power	I	Input voltage supply for LDO4 regulator	System supply	_
LDO3	N7	Power	0	Output voltage for LDO3 regulator (vibrator driver output)	Floating	_
LDO3_IN	M7	Power	I	Input voltage supply for LDO3 regulator	System supply	_
LDO6	D13	Power	0	Output voltage for LDO6 regulator	Floating	_
LDO6_IN	D12	Power	I	Input voltage supply for LDO6 regulator	System supply	_
LDOLN	E13	Power	0	Output voltage for LDOLN regulator	Floating	-
LDOLN_IN	E12	Power	I	Input voltage supply for LDOLN regulator	System supply	_
LDO5	F13	Power	0	Output voltage for LDO5 regulator	Floating	_
LDO5_IN	F12	Power	I	Input voltage supply for LDO5 regulator	System supply	_
LDO1	F1	Power	0	Output voltage for LDO1 regulator	Floating	_
LDO1_IN	F2	Power	I	Input voltage supply for LDO1 regulator	System supply	_

NAME	BALL	TYPE	1/0	DESCRIPTION	CONNECTION IF NOT USED	PULLUP / PULLDOW N
VRTC	D7	Power	0	Output voltage for VRTC regulator	N/A	_
VRTC_IN	F8	Power	I	Input voltage supply for VRTC regulator	System supply	_
LDOUSB	A7	Power	0	Output voltage for LDOUSB regulator	Floating	-
LDO7	A8	Power	0	Output voltage for LDO7 regulator	Floating	-
LDO7_IN	B8	Power	1	Input voltage supply for LDO7 regulator	System supply	_
Monitoring	•					•
GGAUGE_RESN	D10	Analog	I	Sense resistor input signal negative (ground side) NOTE: Shared with battery charger.	Ground	_
GGAUGE_RESP	D9	Analog	I	Sense resistor input signal positive (battery negative side) NOTE: Shared with battery charger.	Ground	_
GPADC_IN0	D11	Analog	I/O	General-purpose analog-to-digital converter (GPADC) input 0	Ground	-
GPADC_IN1	D8	Analog	I/O	GPADC input 1	Ground	_
GPADC_VREF	B11	Analog	0	GPADC output reference voltage	Floating	_
GPADC_IN2	A12	Analog	Ι	GPADC input 2	Ground	_
GPADC_IN3	B12	Analog	I/O	GPADC input 3	Ground	_
GPADC_IN4	A11	Analog	1/0	GPADC input 4	Ground	-
GPADC_IN5	G10	Analog	1	GPADC input 5	Ground	_
GPADC_IN6	F11	Analog	1	GPADC input 6	Ground	-
GPADC_START	L10	Digital	I	Trigger hardware request to start GPADC synchronous conversion	Ground	*PPD 170 to 950 kΩ
SMPS Regulators	,					
SMPS4_FDBK	G11	Analog	I	SMPS4 feedback	Ground	_
SMPS4_GND	G12, G13	Ground	I	SMPS4 ground	Ground	-
SMPS4_IN	J12, J13	Power	-	SMPS4 input voltage	System supply	-
SMPS4_SW	H12, H13	Power	0	SMPS4 switch	Floating	-
SMPS2_FDBK	K13	Analog	1	SMPS2 feedback	Ground	_
SMPS2_GND	M11, N11	Ground	I	SMPS2 ground	Ground	-
SMPS2_IN	L13, M13	Power	I	SMPS2 input voltage	System supply	-
SMPS2_SW	L12, M12, N12	Power	0	SMPS2 switch	Floating	-
SMPS3_FDBK	L11	Analog	I	SMPS3 feedback	Ground	_
SMPS3_GND	M8, M9	Ground	I	SMPS3 ground	Ground	-
SMPS3_IN	M10, N10	Power	-	SMPS3 input voltage	System supply	-
SMPS3_SW	N9	Power	0	SMPS3 switch	Floating	_
SMPS1_FDBK	H1	Analog	ı	SMPS1 feedback	Ground	_
SMPS1_GND	K3, L3, M3, N3	Ground	I	SMPS1 ground	Ground	_

NAME	BALL	TYPE	I/O	DESCRIPTION	CONNECTION IF NOT USED	PULLUP / PULLDOW N
SMPS1_IN	K1, L1, M1	Power	1	SMPS1 input voltage	System supply	_
SMPS1_SW	K2, L2, M2, N2	Power	0	SMPS1 switch	Floating	-
SMPS5_FDBK	L4	Analog	I	SMPS5 feedback	Ground	_
SMPS5_GND	M5, M6	Ground	I	SMPS5 ground	Ground	-
SMPS5_IN	M4, N4	Power	I	SMPS5 input voltage	System supply	_
SMPS5_SW	N5	Power	0	SMPS5 switch	Floating	_

4 Specifications

4.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)

PARAMETER	MIN	MAX	UNIT
All battery and system supply related input balls (LDOs and SMPSs) and supply voltage: _IN, VDD, VSYS_BB, CHRG_VSYS, CHRG_VBAT	-0.3	5.5	V
All SMPS-related input balls _FDBK	-0.3	SMPSmax + 0.3	V
Backup battery supply voltage VBACKUP	-0.3	5.5	V
I/O digital supply voltage VIO	-0.3	VIOmax + 0.3	V
Battery charger supply voltage VBUS	-0.3	20.0	V
Battery charger supply voltage VAC	-0.3	20.0	V
Battery charger CHRG_PMID	-0.3	20.0	V
Battery charger CHRG_SW, CHRG_BOOT	-0.7	20.0	V
Voltage difference between CHRG_CSIN and CHRG_CSOUT inputs	-7.0	7.0	V
Battery charger CHRG_VREF	-0.3	6.5	V
Battery charger CHRG_DET_N	-0.3	5.5	V
All other charger analog-related input balls, such as CHRG_CSIN, CHRG_CSOUT, and CHRG_LED_IN	-0.3	5.5	V
Voltage on the USB OTG ID ball	-0.3	5.5	V
Voltage on the VRTC GPADC balls: GPADC_IN0, GPADC_IN1, and GPADC_IN4	-0.3	VRTCmax + 0.3	V
Voltage on the VANA GPADC balls: GPADC_IN2, GPADC_IN3, GPADC_IN5, and GPADC_IN6	-0.3	VANAmax + 0.3	V
Voltage on the crystal oscillator OSC32KIN ball	-0.3	VRTCmax + 0.3	V
Voltage on all other analog input balls such as GGAUGE_RESN and GGAUGE_RESP	-0.3	VANAmax + 0.3	V
OTP memory supply voltage VPROG	-0.3	20.0	V
Voltage on VRTC digital input balls	-0.3	VRTCmax + 0.3	V
Voltage on VIO digital input balls	-0.3	VIOmax + 0.3	V
Voltage on VBAT digital input balls	-0.3	VBATmax + 0.3	V
Junction temperature range	-45	150.0	°C
Peak output current on all terminals other than power resources	-5.0	5.0	mA

4.2 Handling Ratings

				MIN	MAX	UNIT
T _{stg}	Storage temperature range	ge		-65	150	°C
V _{ESD}	Electrostatic discharge	Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001 ⁽¹⁾	All pins	-1	1	kV
202	(ESD) performance:	Charged Device Model (CDM), per JE	SD22-C101 ⁽²⁾	-250	250	V

¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

PARAMETER	MIN	NOM	MAX	UNIT
All battery and system supply related input balls (LDOs and SMPSs) and supply voltage: _IN, VDD, VSYS_BB, CHRG_VSYS, CHRG_VBAT	2.5	3.8	4.8	V
All SMPS-related input balls _FDBK	V_{OUTmin}		V_{OUTmax}	V
Backup battery supply voltage VBACKUP	1.9	3.2	4.8	V
I/O digital supply voltage VIO	VIOmin	VIO	VIOmax	V
Battery charger supply voltage VBUS	0	5.0	6.7	V

Specifications

Copyright © 2011–2014, Texas Instruments Incorporated

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions (continued)

Over operating free-air temperature range (unless otherwise noted)

PARAMETER	MIN	NOM	MAX	UNIT
Battery charger supply voltage VAC	0	5.0	10.0	V
Battery charger CHRG_PMID	0	5.0	6.0	V
Battery charger CHRG_SW and CHRG_BOOT	0	5.0	6.0	V
Battery charger CHRG_VREF	0	5.0	6.5	V
Battery charger CHRG_DET_N	0	LDOUSB	4.8	V
All other charger analog-related input balls such as CHRG_CSIN, CHRG_CSOUT, and CHRG_LED_IN	0	3.8	4.8	V
Voltage on the USB OTG ID ball	0	LDOUSB	LDOUSBmax	V
Voltage on the VRTC GPADC balls GPADC_IN0, GPADC_IN1, and GPADC_IN4		VRTC	VRTCmax	V
Voltage on the VANA GPADC balls GPADC_IN2, GPADC_IN3, GPADC_IN5, and GPADC_IN6		VANA	VANAmax	V
Voltage on the crystal oscillator OSC32KIN ball		VRTC	VRTCmax	V
Voltage on all other analog input balls such as GGAUGE_RESN and GGAUGE_RESP		VANA	VANAmax	V
OTP memory supply voltage VPROG		8.0	10.0	V
Voltage on VRTC digital input balls		VRTC	VRTCmax	V
Voltage on VIO digital input balls		VIO	VIOmax	V
Voltage on VBAT digital input balls	0	3.8	4.8	V
Ambient temperature range	-40	27	85	°C
Junction temperature (T _J)	-40	27	125	°C
Storage temperature range	-65	27	150	°C
Lead temperature (soldering, 10 seconds)		260		°C

4.4 Thermal Characteristics for YFF Package

NAME	DESCRIPTION	(°C/W) ⁽¹⁾	AIR FLOW (m/s) ⁽²⁾
$R\Theta_{JC}$	Junction-to-case (top)	0.1	0.00
$R\Theta_{JB}$	Junction-to-board	19.0	0.00
$R\Theta_{JA}$	Junction-to-free air	37.7	0.00
Psi _{JT}	Junction-to-package top	0.7	0.00
Psi _{JB}	Junction-to-board	18.6	0.00

- (1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RO_{JC}] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:
 - JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air)
 - JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
 - JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
 - JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
- The maximum power, 0.4 W, is at 85°C ambient temperature.
- (2) m/s = meters per second

4.5 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)

4.5.1 Switched-Mode Regulators

Table 4-1 through Table 4-3 lists the SMPS electrical characteristics.

Table 4-1. SMPS1 Switched-Mode Regulator Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Cı	Input capacitor		1.5	4.7		μF
	Output filter capacitor: (3-A mode)		11	22	29	
Co	Output filter capacitor: (5-A mode)		22	44	58	μF
ŭ	Filter capacitor ESR	f = [1 to 10] MHz	1	10	20	mΩ
	Filter inductor: (3-A mode)	Single inductor	0.4	1.0	1.3	
	Filter inductor: (5-A mode)	Single inductor	0.4	1.0	1.3	μH
L_{O}	Filter inductor: (5-A mode)	Single inductor	0.2	0.5	0.65	
	Filter inductor: (5-A mode)	Two inductors in parallel, total inductance (value of single inductor)	0.2 (0.4)	0.5 (1.0)	0.65 (1.3)	•
DOD	Filter inductor DC resistance			50	100	mΩ
DCR_L	Filter inductor Q factor	> 6 MHz	20			
		ILIMIT[1:0] = 00 (No current limitation)	_	_	_	
	NMOS current limit (high side) (3.0-A mode)	ILIMIT[1:0] = 01 (2.0 A)	2800	3500	4200	mA
		ILIMIT[1:0] = 10 (2.5 A)	3500	4350	5150	
		ILIMIT[1:0] = 11 (3.0 A)	4100	5150	6200	•
	NMOS current limit (high side) (5-A mode)	ILIMIT[1:0] = 00 (No current limitation)	-	_	_	
		ILIMIT[1:0] = 01 (3.3 A)	3900	4800	5800	mA
		ILIMIT[1:0] = 10 (4.2 A)	4750	5900	7000	mA
		ILIMIT[1:0] = 11 (5.0 A)	5600	6900	8200	
	Input current limit under short-circuit conditions	SW = 0 V	10	20	30	mA
V_{INF}	Input voltage (functional)	VSYS	max (V _{OUT} + 0.4, 2.3)		5.5	V
V _{INP}	Input voltage (performance)	vsys	max (V _{OUT} + MinDO V, 2.5)	3.8	4.8	V
		I _{OUT} = 2.0 A	0.55			
		I _{OUT} = 2.5 A	0.7			V
MinDOV	Dropout voltage (performance)	I _{OUT} = 3.0 A	0.85	-		
IVIII IDOV	$(DOV = V_{IN} - V_{OUT})$	I _{OUT} = 3.3 A	0.91			V
		I _{OUT} = 4.2 A	1.15			
		I _{OUT} = 5.0 A	1.38			

Table 4-1. SMPS1 Switched-Mode Regulator Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T-	Total DC output voltage accuracy (3-A mode) Includes voltage references, DC load/line regulations, process, and temperature (-1.8%/+3.2%) V _{OUT} > 0.75 V (-2.8%/+4.2%) V _{OUT} < 0.75 V	0.6 V 1.0 V 1.2 V 1.3 V 1.8 V	0.591 0.995 1.194 1.293 1.791	0.608 1.013 1.216 1.317 1.824	0.634 1.045 1.255 1.359 1.882	V
T _{DCOV}	Total DC output voltage accuracy (5-A mode) Includes voltage references, DC load/line regulations, process, and temperature (-2.4%/+3.2%) V _{OUT} > 0.75 V (-3.4%/+4.2%) V _{OUT} < 0.75 V	0.6 V 1.0 V 1.2 V 1.35 V 1.5 V	0.587 0.989 1.187 1.334 1.483	0.608 1.013 1.216 1.367 1.519	0.634 1.045 1.255 1.411 1.568	V
I _{OUT}	Rated output current	PWM mode: SMPS1 (3-A mode) PWM mode: SMPS1 (5-A mode) ⁽¹⁾ PFM mode		200	3000 5000	mA
V _{OUT}		Low range High range	0.6	200	1.3	V
		Step size	0.7	12.5	1.4	mV
	Output voltage, programmable	Other selectable voltages		1.35 1.5 1.8 1.9 2.1		V
		Extended voltage range, multiplier for nominal levels (enabled by OTP bit)		3.0476		
R_V	Ripple voltage Measured with 20-MHz LPF	PWM mode (3-A mode), $I_{LOAD} = 0$ to I_{OUTmax} PWM mode (5-A mode), $I_{LOAD} = 0$ to I_{OUTmax}		10 15	20 30	mVpp
		PFM mode, ΔV _{OUT} /V _{OUT}		1.9 %	3.8 %	р-р
		PWM mode, (3-A mode): I _{OUT} = 0 to I _{OUTmax}		0.25 %	0.6 %	
DC_{LDR}	DC load regulation, ∆V _{OUT} /V _{OUT}	PWM mode, (5-A mode): I _{OUT} = 0 to I _{OUTmax}		0.6 %	1.2 %	
DC _{LNR}	DC line regulation, $\Delta V_{OUT}/V_{OUT}$	PWM mode, (3-A mode): V _{IN} = V _{INPmin} to V _{INPmax} , I _{OUT} = I _{OUTmax} PWM mode, (5-A mode): V _{IN} = V _{INPmin} to		0.8 %	1.6 % 2.5 %	
	Transient load regulation	V _{INPmax} , I _{OUT} = I _{OUTmax} 1.0 V		1.4 %	2.5 %	mV
T_{LDR}	(3-A mode) Transient load regulation (5-A mode)	I_{OUT} = 10 to 500 mA, t_R/t_F = 100 ns 1.2 V I_{OUT} = 1.5 to 5.0 A, t_R/t_F = 1 μ s		67	101	mV
	Transient line regulation, (3-A	V_{IN} step = ±600 mV Rise/fall time = 10 μ s, V_{OUT} < 0.75 V		0.7 %	1.4 %	
-	mode), T _{LNR} /V _{OUT}	V _{OUT} ≥ 0.75 V		0.5 %	1.0 %	
T_LNR	Transient line regulation, (5-A	V_{IN} step = ±600 mV Rise/fall time = 10 μ s, V_{OUT} < 0.75 V		1.0 %	1.9 %	
	mode), T _{LNR} /V _{OUT}	V _{OUT} ≥ 0.75 V		0.8 %	1.5 %	
t _{ON}	Off to on	I _{OUT} = 200 mA, V _{OUT} within accuracy limits		350	500	μs
t _{OFF}	On to off	$I_{OUT} = 0$, V_{OUT} down to 10% x V_{OUT} With 44 μ F output capacitance: $I_{OUT} = 0$, V_{OUT}		250	500 800	μs
		down to 10% x V _{OUT}		<u> </u>		
R _{PD}	Pulldown resistor	Off mode	3.8	7.5	15	Ω
SR	Slew rate during rise time	From $0.1 \times V_{OUT}$ to $0.9 \times V_{OUT}$ From $V_{OUT} = 0.6 \text{ V}$ to $V_{OUT} = 1.3 \text{ V} \pm 5\%$, $I_{LOAD} = 1.3 \text{ V} \pm 5\%$		30	150	mV/us

⁽¹⁾ Lifetime is 75,000 power on hours (POH) at maximum junction temperature of 125°C and $V_{OUT} \le 1.4 \text{ V}$ and 50,000 POH at maximum junction temperature of 125°C and $V_{OUT} > 1.4 \text{ V}$.

Table 4-1. SMPS1 Switched-Mode Regulator Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Output voltage settling time (normal mode)	From V_{OUT} = 0.6 V to V_{OUT} = 1.3 V ±5%, I_{LOAD} = $I_{LOADmax}$	50	57	65	μs
	Overshoot				100	mV
f _{SW}	Switching frequency		2.6	3	3.5	MHz
	Off ground current	Off mode, T = 25°C		0.1	0.25	μA
IQOFF		Off mode		0.2	1	
		PFM mode, no switching		25		μΑ
IQ	On ground current	PWM mode I _{OUT} = 0 mA, V _{IN} = 3.8 V		12		mA

Table 4-2. SMPS2 Switched-Mode Regulator Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Cı	Input capacitor		0.6	4.7		μF
	Output filter capacitor: (Option 1)		4	10	15	
Co	Output filter capacitor: (Option 2)		11	22	29	μF
	Filter capacitor ESR	f = [1 to 10] MHz	1	10	20	mΩ
	Filter inductor: (Option 1)		0.4	1.0	1.3	
Lo	Filter inductor: (Option 2)		0.2	0.5	0.65	μH
DOD	Filter inductor DC resistance			50	100	mΩ
DCR _L	Filter inductor Q factor	> 6 MHz	20			
		ILIMIT[1:0] = 00 (No current limitation)	_	_	_	
	DMOC command limit (binds aids)	ILIMIT[1:0] = 01 (1.4 A)	2050	2550	3100	^
	PMOS current limit (high side)	ILIMIT[1:0] = 10 (1.8 A)	2400	3000	3500	mA
		ILIMIT[1:0] = 11 (2.5 A)	3100	3800	4400	
	Input current limit under short-circuit conditions	SW = 0 V	10	20	30	mA
V _{INF}	Input voltage (functional)	VSYS	max (V _{OUT} + 0.4, 2.3)		5.5	V
V _{INP}	Input voltage (performance)	vsys	max (V _{OUT} + MinDO V, 2.5)	3.8	4.8	V
		I _{OUT} = 0.5 A	0.3 ⁽¹⁾			
		I _{OUT} = 0.8 A	0.5			
		I _{OUT} = 1.0 A	0.6			
		I _{OUT} = 1.2 A	0.7			
MinDOV	Dropout voltage (performance)	I _{OUT} = 1.5 A	0.9			V
MINDOV	$(DOV = V_{IN} - V_{OUT})$	I _{OUT} = 1.8 A	1.1			
		I _{OUT} = 2.0 A	1.2			
		I _{OUT} = 2.2 A	1.3			
		I _{OUT} = 2.5 A (Option 1)	1.5			
		I _{OUT} = 2.5 A (Option 2)	1.7			

Table 4-2. SMPS2 Switched-Mode Regulator Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	FARAWETER					ONIT
	Total DC output voltage accuracy	0.6 V 1.1 V	0.601 1.101	0.608 1.114	0.623 1.141	
	(Option 1)	1.1 V 1.225 V	1.226	1.241	1.141	
	Includes voltage references, DC	1.3 V	1.301	1.317	1.349	.,
	load/line regulations, process, and	1.35 V	1.352	1.368	1.401	V
	temperature	1.8 V	1.801	1.823	1.867	
	$(-1.2\%/+2.4\%) V_{OUT} > 0.75 V$	1.9 V	1.902	1.925	1.971	
T_{DCOV}		2.1 V	2.101	2.127	2.178	
· DCOV	T	0.6 V	0.598	0.608	0.623	
	Total DC output voltage accuracy	1.1 V	1.095	1.114	1.141	
	(Option 2) Includes voltage references, DC	1.225 V 1.3 V	1.220 1.295	1.241 1.317	1.271 1.349	
	load/line regulations, process, and	1.35 V	1.345	1.368	1.401	V
	temperature	1.8 V	1.792	1.823	1.867	
	(-1.7%/+2.4%) V _{OUT} > 0.75 V	1.9 V	1.892	1.925	1.971	
	, 661	2.1 V	2.091	2.127	2.178	
		PWM mode			2500	
I _{OUT}	Rated output current	PFM mode		200		mA
		Low range	0.6		1.3	
		High range	0.7		1.4	V
		Step size		12.5		mV
				1.35		
V_{OUT}	Output voltage, programmable			1.5		
001	3,7,1,2	Other selectable voltages		1.8		V
				1.9		
				2.1		
		Extended voltage range, multiplier for nominal levels (enabled by OTP bit)		3.0476		
		PWM mode: I _{OUT} = 0 to 2.2 A		5	10	mVpp
	Ripple voltage (Option 1) Measured with 20-MHz LPF	PWM mode: I _{OUT} = 0 to I _{OUTmax}		5	15	mVpp
		PFM mode, ΔV _{OUT} /V _{OUT}		1.0 %	2.0 %	
R_V						p-p
	Ripple voltage	PWM mode: I _{LOAD} = 0 to I _{OUTmax}		15	25	mVpp
	(Option 2) Measured with 20-MHz LPF	PFM mode, $V_{OUT} > 0.75 \text{ V}$, $\Delta V_{OUT} / V_{OUT}$		1.0 %	2.0 %	р-р
		PFM mode, $V_{OUT} < 0.75 \text{ V}$, $\Delta V_{OUT} / V_{OUT}$		1.5 %	3.0 %	
DC_{LDR}	DC load regulation, ΔV _{OUT} /V _{OUT}	PWM mode, (Option 1): I _{OUT} = 0 to I _{OUTmax}		0.25 %	0.5 %	<u> </u>
LDIK	3 7 331 331	PWM mode, (Option 2): I _{OUT} = 0 to I _{OUTmax}		0.25 %	1.2 %	
DC_{LNR}	DC line regulation, $\Delta V_{OUT}/V_{OUT}$	PWM mode, $V_{IN} = V_{INPmin}$ to V_{INPmax} , $I_{OUT} = I_{OUTmax}$		0.8 %	1.6 %	
		V _{OUT} < 0.75 V				
		$I_{OUT} = 0$ to 150 mA, $t_R/t_F = 100$ ns		3.3 %	4.0.0/	
		$I_{OUT} = 50$ to 250 mA, $t_R/t_F = 100$ ns		3.3 %	4.2 %	
	Transient load regulation, $\Delta V_{OUT}/V_{OUT}$	$I_{OUT} = 350 \text{ to } 800 \text{ mA}, t_R/t_F = 100 \text{ ns}$				
	(Option 1)	V _{OUT} ≥ 0.75 V				
	(-1)	$I_{OUT} = 0$ to 150 mA, $t_R/t_F = 100$ ns		2.8 %	3.6 %	
		$I_{OUT} = 50 \text{ to } 250 \text{ mA}, t_R/t_F = 100 \text{ ns}$		2.0 70	0.0 70	
T_LDR		$I_{OUT} = 350 \text{ to } 800 \text{ mA}, t_R/t_F = 100 \text{ ns}$				
		$V_{OUT} < 0.75 \text{ V}$				
		$I_{OUT} = 0$ to 150 mA, $t_R/t_F = 100$ ns $I_{OUT} = 50$ to 250 mA, $t_R/t_F = 100$ ns		1.5 %	3.0 %	
	Transient load regulation,	$I_{OUT} = 350 \text{ to } 250 \text{ mA}, t_R/t_F = 100 \text{ ns}$				
	$\Delta V_{OUT}/V_{OUT}$	V _{OUT} ≥ 0.75 V				
	(Option 2)	$I_{OUT} = 0$ to 150 mA, $t_R/t_F = 100$ ns		400	0.5.4	
		$I_{OUT} = 50 \text{ to } 250 \text{ mA}, t_{R}/t_{F} = 100 \text{ ns}$		1.3 %	2.5 %	
		$I_{OUT} = 350 \text{ to } 800 \text{ mA}, t_R/t_F = 100 \text{ ns}$				
		V _{IN} step = ±600 mV		0.7 %	1.4 %	
T_{LNR}	Transient line regulation, T_{LNR}/V_{OUT}	Rise/fall time = 10 μs, V _{OUT} < 0.75 V		U.1 70	1.4 70	
		V _{OUT} ≥ 0.75 V		0.5 %	1.0 %	
	Off to on	I _{OUT} = 200 mA, V _{OUT} within accuracy limits	1	350	500	1

Table 4-2. SMPS2 Switched-Mode Regulator Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{OFF}	On to off	$I_{OUT} = 0$, V_{OUT} down to 10% x V_{OUT}		250	500	μs
R _{PD}	Pulldown resistor	Off mode	3.8	7.5	15	Ω
SR	Slew rate during rise time	From 0.1 × V _{OUT} to 0.9 × V _{OUT}		30	150	mV/μs
SR _{DVS}	Slew rate	From V_{OUT} = 0.6 V to V_{OUT} = 1.3 V ±5%, I_{LOAD} = $I_{LOADmax}$, <smps>_CFG_STEP = 6 (minimum)</smps>	11	12.7	14	mV/μs
	Output voltage settling time (normal mode)	From V_{OUT} = 0.6 V to V_{OUT} = 1.3 V ±5%, I_{LOAD} = $I_{LOADmax}$	50	57	65	μs
	Overshoot				100	mV
f_{SW}	Switching frequency		4.5	6	6.6	MHz
	Off arranged arranged	Off mode, T = 25°C		0.1	0.25	
I _{QOFF}	Off ground current	Off mode		0.2	1	μA
		PFM mode, no switching		35	50	μA
IQ	On ground current	PWM mode, I _{OUT} = 0 mA, V _{IN} = 3.8 V		12		mA

Table 4-3. SMPS3, SMPS4, SMPS5 Switched-Mode Regulators Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _I	Input capacitor		0.6	4.7		μF
-			4	10	15	μF
Co	Filter capacitor ESR	f = [1 to 10] MHz	1	10	20	mΩ
Lo	Filter inductor		0.4	1.0	1.3	μΗ
DOD	Filter inductor DC resistance			50	100	mΩ
DCR _L	Filter inductor Q factor	> 6 MHz	20			
		ILIMIT[1:0] = 00 (No current limitation)	_	_	_	
	PMOS current limit (high side)	ILIMIT[1:0] = 01	1300	1620	2000	mA
		ILIMIT[1:0] = 1X	1640	2050	2520	
	Input current limit under short-circuit conditions	SW = 0 V	10	20	30	mA
V _{INF}	Input voltage (functional)	VSYS	max (V _{OUT} + 0.4, 2.3)		5.5	V
V _{INP}	Input voltage (performance)	vsys	max (V _{OUT} + MinDO V, 2.5)	3.8	4.8	V
		I _{OUT} = 0.5 A	0.41 ⁽¹⁾			
MinDOV	Dropout voltage (performance) (DOV = $V_{IN} - V_{OUT}$)	I _{OUT} = 0.8 A	0.65			V
	(DOV = VIN = VOUT)	I _{OUT} = 1.0 A	0.9			
T _{DCOV}	Total DC output voltage accuracy Includes voltage references, DC load/line regulations, process, and temperature (-1.2%/+2.4%) V _{OUT} > 0.75 V	0.6 V 1.1 V 1.225 V 1.3 V 1.35 V 1.8 V 1.9 V 2.1 V	0.601 1.101 1.226 1.301 1.352 1.801 1.902 2.101	0.608 1.114 1.241 1.317 1.368 1.823 1.925 2.127	0.623 1.141 1.271 1.349 1.401 1.867 1.971 2.178	V
	Datad autnut aurrant	PWM mode			1100	A
I _{OUT}	Rated output current	PFM mode		200		mA

(1) Minimum dropout voltage of 0.5 V is needed to ensure PFM operation with V_{OUT} > 2.1 V.

Table 4-3. SMPS3, SMPS4, SMPS5 Switched-Mode Regulators Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Low range	0.6		1.3	.,
		High range	0.7		1.4	V
	Output voltage, programmable	Step size		12.5		mV
V _{OUT}		Other selectable voltages		1.35 1.5 1.8 1.9 2.1		V
		Extended voltage range, multiplier for nominal levels (enabled by OTP bit)		3.0476		
Б	Ripple voltage	PWM mode: I _{LOAD} = 0 to I _{OUTmax}		5	10	mVpp
R _V	Measured with 20-MHz LPF	PFM mode, ΔV _{OUT} /V _{OUT}		1.0 %	2.0 %	р-р
DC _{LDR}	DC load regulation, $\Delta V_{OUT}/V_{OUT}$	PWM mode: I _{OUT} = 0 to I _{OUTmax}		0.25 %	0.5 %	
DC _{LNR}	DC line regulation, $\Delta V_{OUT}/V_{OUT}$	PWM mode, $V_{IN} = V_{INPmin}$ to V_{INPmax} , $I_{OUT} = I_{OUTmax}$		0.8 %	1.6 %	
т	Transient load regulation, $\Delta V_{OUT}/V_{OUT}$	V_{OUT} < 0.75 V I_{OUT} = 0 to 150 mA, t_R/t_F = 100 ns I_{OUT} = 50 to 250 mA, t_R/t_F = 100 ns I_{OUT} = 150 to 400 mA, t_R/t_F = 100 ns		2.0 %	3.0 %	
T _{LDR}		$V_{OUT} \ge 0.75 \text{ V}$ $I_{OUT} = 0 \text{ to } 150 \text{ mA}, t_R/t_F = 100 \text{ ns}$ $I_{OUT} = 50 \text{ to } 250 \text{ mA}, t_R/t_F = 100 \text{ ns}$ $I_{OUT} = 150 \text{ to } 400 \text{ mA}, t_R/t_F = 100 \text{ ns}$		1.0 %	1.5 %	
T _{LNR}	Transient line regulation, T _{LNR} /V _{OUT}	V_{IN} step = ±600 mV Rise/fall time = 10 μ s, V_{OUT} < 0.75 V		0.7 %	1.4 %	
		V _{OUT} ≥ 0.75 V		0.5 %	1.0 %	
t _{ON}	Off to on	I _{OUT} = 200 mA, V _{OUT} within accuracy limits		350	500	μs
t _{OFF}	On to off	$I_{OUT} = 0$, V_{OUT} down to 10% x V_{OUT}		250	500	μs
R_{PD}	Pulldown resistor	Off mode	3.8	7.5	15	Ω
SR	Slew rate during rise time	From 0.1 × V _{OUT} to 0.9 × V _{OUT}		30	150	mV/µs
SR_{DVS}	Slew rate SMPS5	From V_{OUT} = 0.6 V to V_{OUT} = 1.3 V ±5%, I_{LOAD} = $I_{LOADmax}$, <smps>_CFG_STEP = 6 (minimum)</smps>	11	12.7	14	mV/µs
	Output voltage settling time (normal mode) SMPS5	From V_{OUT} = 0.6 V to V_{OUT} = 1.3 V ±5%, I_{LOAD} = $I_{LOADmax}$	50	57	65	μs
	Overshoot				100	mV
f _{SW}	Switching frequency		5.4	6	6.6	MHz
looss	Off ground current	Off mode, T = 25°C		0.1	0.25	μA
I _{QOFF}	On ground current	Off mode		0.2	1	μΛ
		PFM mode, no switching		35	50	μA
l _Q	On ground current	PWM mode, $I_{OUT} = 0$ mA, $V_{IN} = 3.8$ V		8		mA

4.5.2 LDO Regulators

Table 4-4 lists the LDO regulators electrical characteristics.

Over operating free-air temperature range (unless otherwise noted)

Table 4-4. LDO Regulators Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LDO Re	egulators				•	
C _{IN}	Input filtering capacitor	Connected from LDO_IN to GND. Shared input tank capacitance (depending on platform requirements and power tree)	0.3	2.2		μF
		Connected from CHRG_PMID to GND	0.9	4.7	6.5	
C _{OUT}	Output filtering capacitor	Connected from LDO output to GND	0.6	2.2	2.7	μF
D	Filtering DC capacitor ESR	< 100 kHz	20	100	600	mΩ
R _{ESR}	Filtering AC capacitor ESR	[1 to 10] MHz	1	10	20	mΩ
		VRTC, VBRTC: VSYS during ACTIVE, SLEEP and WAIT-ON state	2.3		5.5	
		VRTC, VBRTC: VSYS during BACKUP state	1.9		3.1	
	Input voltage (functional)	VRTC, VBRTC: VBACKUP during BACKUP state	1.9		5.5	V
V _{INF}		LDO1_IN, LDO2_IN, LDO3_IN, LDO4_IN, LDO5_IN, LDO6_IN, LDO7_IN, LDOLN_IN (V _{OUT} ≥ 1.5 V)	T _{DCOV} + D _V - 0.2		5.5	
		LDO1_IN, LDO2_IN, LDO3_IN, LDO4_IN, LDO5_IN, LDO6_IN, LDO7_IN, LDOLN_IN (V _{OUT} < 1.5 V)	1.8		5.5	
		VANA	2.3		5.5	
		LDOUSB: Supplied from VSYS	3.5		5.5	
		LDOUSB: Supplied from CHRG_PMID	3.5		6.8	
		VRTC, VBRTC	2.5	3.8	4.8	
		VANA	2.5	3.8	4.8	
.,	Lead with a forest and a second	LDO1_IN, LDO2_IN, LDO3_IN, LDO4_IN, LDO5_IN, LDO6_IN, LDO7_IN, LDOLN_IN (V _{OUT} ≥ 1.5 V)	T _{DCOV} + D _V	3.8	4.8	V
V_{INP}	Input voltage (performance)	LDO1_IN, LDO2_IN, LDO3_IN, LDO4_IN, LDO5_IN, LDO6_IN, LDO7_IN, LDOLN_IN (V _{OUT} < 1.5 V)	1.8	3.8	4.8	
		LDOUSB: from VSYS	3.6	3.8	4.8	
		LDOUSB: from CHRG_PMID, OVV protection	4.3	5.0	5.5	

Table 4-4. LDO Regulators Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{DCOV}	Total DC output voltage accuracy Includes voltage references, DC load/line regulations, process and temperature (−1.7%/1.2%), _IN ≥ 2.5 V (−3.0%/1.2%), _IN < 2.5 V and V _{OUT} < 1.5 V (except VRTC, VBRTC and VANA)	1.0 V, _IN ≥ 2.5 V 1.0 V, _IN < 2.5 V 1.2 V, _IN ≥ 2.5 V 1.2 V, _IN < 2.5 V 1.3 V, _IN < 2.5 V 1.8 V 1.9 V 2.0 V 2.1 V 2.2 V 2.3 V 2.4 V 2.5 V 2.75 V 2.8 V 2.9 V 3.0 V 3.3 V (LDOUSB)	1.001 0.987 1.202 1.185 1.301 1.283 1.801 1.902 2.002 2.102 2.203 2.302 2.402 2.503 2.753 2.802 2.903 3.003 3.304 3.245	1.018 1.018 1.222 1.222 1.323 1.323 1.832 1.934 2.036 2.138 2.240 2.341 2.443 2.545 2.800 2.850 2.952 3.054 3.359 3.301	1.030 1.030 1.236 1.236 1.339 1.339 1.854 1.957 2.060 2.163 2.266 2.369 2.472 2.575 2.834 2.884 2.987 3.090 3.399 3.341	V
	VBRTC VRTC VANA		1.550 1.801 2.102	1.805 1.832 2.138	1.854 1.890 2.163	V
D_V	Dropout voltage _IN ≥ 2.3 V	LDO6, LDOLN: $I_{OUT} = I_{OUTmax}$ LDO5, LDO7: $I_{OUT} = 50 \text{ mA}$ LDOUSB LDO1, LDO2, LDO3, LDO4, LDO5, LDO7, VRTC: $V_{INPmin} = T_{DCOV} + D_{V}$			150 140 200 300	mV
	Dropout voltage _IN ≥ 1.8 V	LDO6, LDOLN: $I_{OUT} = I_{OUTmax}$ LDO1, LDO2, LDO3, LDO4, LDO5, LDO7: $V_{INPmin} = T_{DCOV} + D_{V}$			250 400	
Іоит	Rated output current	VBRTC VANA, VRTC LDOLN LDO1: $V_{OUT} \le 2.75 \text{ V}$ LDO1: $V_{OUT} \ge 2.8 \text{ V}$ LDOUSB LDO2, LDO3, LDO4, LDO5, LDO6, LDO7 LDO6 ($D_V = 300 \text{ mV}$, $V_{OUT} \ge 1.8 \text{ V}$)			1.5 25 50 50 80 100 200 250	mA
V _{OUT}	Output voltage, programmable (except VRTC, VBRTC and VANA)	Range Step size Additional selectable voltage level	1.0	100	3.3	V mV V
I _{LIMIT}	Load current limitation	VANA, VRTC, LDO1, LDOLN LDOUSB LDO2, LDO3, LDO4, LDO5, LDO6, LDO7	100 150 400	250 250 650	400 600 900	mA
DC _{LDR}	DC load regulation, ΔV_{OUT} / V_{OUT}	I _{OUT} = 0 to I _{OUTmax}		4	10	mV
DC _{LNR}	DC line regulation, ΔV_{OUT} / V_{OUT}	$V_{IN} = V_{INPmin}$ to V_{INPmax} $I_{OUT} = I_{OUTmax}$		0.1 %	0.2 %	
t _{ON}	Turn-on time	$I_{OUT} = 0$, $V_{OUT} = 0.1$ V up to V_{OUTmin}		100	500	μs
t _{OFF}	Turn-off time (except VRTC and VBRTC)	I _{OUT} = 0, V _{OUT} down to 10% x V _{OUT}		250	500	μs
R _{PD}	Pulldown resistor (except VRTC and VBRTC)	Off mode	40	60	80	Ω

Table 4-4. LDO Regulators Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		f = 217 Hz, I _{OUT} = I _{OUTmax}	45	90		
	Power supply ripple rejection (Except LDO1)	f = 50 kHz, I _{OUT} = I _{OUTmax}	35	45		
	(Except EDOT)	f = 1 MHz, I _{OUT} = I _{OUTmax}	20	35		
PSRR		f = 217 Hz, I _{OUT} = I _{OUTmax}	45	90		dB
	Power supply ripple rejection (LDO1: D _V > 550 mV)	f = 50 kHz, I _{OUT} = I _{OUTmax}	35	45		
	(LDO1. DV > 330 IIIV)	f = 1 MHz, I _{OUT} = I _{OUTmax}	20	35		
	0"	Off mode, T = 25°C		0.05	0.15	
I _{QOFF}	Off ground current	Off mode		0.2	1	μA
		I _{OUT} = 0, (except LDOLN, LDOUSB, VANA, VRTC, VBRTC)	12	18	29	
		I _{OUT} = 0, LDOLN	75	150	175	
I_{Q0}	On ground current	I _{OUT} = 0, LDOUSB, from VSYS, ACTIVE state			60	μA
		I _{OUT} = 0, LDOUSB, from VSYS, SLEEP state			40	
		I _{OUT} = 0, LDOUSB, from CHRG_PMID			20	1
	On ground current coefficient	I _{OUT} < 100 μA		4 %		
α_{Q}	On mode, $I_{QOUT} = I_{Q0} + \alpha_Q \times I_{OUT}$	100 μA < I _{OUT} < 1 mA		2 %		
		I _{OUT} > 1 mA		1 %		
_	Transient load regulation, ΔV _{OUT} / V _{OUT}	On mode, I_{OUT} = 10 mA to I_{OUTmax} / 2, I_R = I_F = 1 μs	-25		28	
T_{LDR}		On mode, I_{OUT} = 100 μA to I_{OUTmax} / 2, I_{R} = I_{F} = 1 μs	-50		33	mV
_	Transient line regulation, ΔV_{OUT} / V_{OUT} (except LDO6)	V_{IN} step = 600 mV _{PP} , $t_R = t_F = 10 \mu s$		0.25 %	0.6 %	
T_{LNR}	Transient line regulation, ΔV_{OUT} / V_{OUT} (LDO6)	V_{IN} step = 600 m V_{PP} , $t_R = t_F = 10 \mu s$		0.25 %	1.0 %	
		100 Hz < f < 10 kHz		5000	8000	
	Naise (see and I BOLAI)	10 kHz < f < 100 kHz		1250	2500	nV/√H
	Noise (except LDOLN)	100 kHz < f < 1 MHz		150	300	z
V_{noise}		f > 1 MHz		250	500	
		100 Hz < f < 5 kHz		200	400	,
	Noise (LDOLN)	5 kHz < f < 400 kHz		62	125	nV/√H z
		400 kHz < f < 10 MHz		25	50	
LDO3 Wh	nen Used As Vibrator Driver					
	Output regulated output range	Configurable step of 100 mV	1.0		3.3	V
C _{OUT}	Output filtering capacitor	Connected between LDO3 output and GND	0.6	2.2	2.7	μF
$L_{Vibrator} \\$	Vibrator load inductance		70	350	700	μΗ
$R_{Vibrator} \\$	Vibrator load resistance		15	40	50	Ω

4.5.3 Reference Generator

Table 4-5 lists the reference generator electrical characteristics.

Table 4-5. Reference Generator Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{OUT}	Filtering capacitor	Connected between VBG and REFGND	30	100	150	nF
R _{Bias}	Biasing resistor (±1%) at 25°C	Connected between IREF and REFGND	505	510	515	kΩ
	Biasing resistor (±1%) temperature coefficient				50	ppm/°C
V _{INP}	Input voltage V _{INP}	Performance	1.9	3.8	5.5	V
IQ	Ground current		15	20	40	μA
t _{startup}	Start-up time			1	3	ms

4.5.4 Crystal Oscillator

Table 4-6 lists the crystal oscillator electrical characteristics.

Table 4-6. Crystal Oscillator Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Crystal C	Characteristics	TEST CONDITIONS	IVIIIA	111	IVIAA	ONIT
Ci ystai C	Crystal frequency	at specified load capacitor value		32768		Hz
$f_{\rm osc}$	Crystal tolerance	T = 25°C	-20	0	20	ppm
В	Secondary temperature coefficient	1 - 20 0	-0.04	-0.035	-0.03	ppm/°C
	, ,		0.04	0.000		
R _{ESR}	Crystal series resistor	at fundamental frequency	0.4		90	kΩ
DL	Operating drive level		0.1		0.5	μW
C _L	Crystal load capacitor (according to crystal data sheet)			12.5		pF
C _{shunt}	Shunt capacitor			1.4	2.6	pF
Q	Quality factor		8000		80000	
Crystal C	Scillator External Components			,		·
	VRTC power supply external filtering capacitor	OSC32KCAP	0.6	2.2	2.7	μF
	<u> </u>	Normal and high-performance (HP)				
	Load capacitors on OSC32KIN and OSC32KOUT External capacitor includes the parasitics of PCB	mode: External capacitor	9	15	17	pF
C _{Load}		Internal capacitance	8	10	12	
		Backup mode:	9	15	17	
		External capacitor Internal capacitance	Ö	0	0	
	Frequency accuracy (taking into	at 25°C, normal and HP modes	-30	0	30	
	account crystal tolerance and internal load capacitors variation)	at 25°C, backup mode	-80	0	80	ppm
	Oscillator capacitor ratio: C _{OSC32KIN} / C _{OSC32KOUT}			1		
Square V	Vave Input Clock for Bypass					
		Frequency		32768		Hz
	Input bypass clock	Duty cycle	40	50 %	60 %	
	OSC32KIN input OSC32KOUT floating	Rise and fall time (10% to 90%)		10	20	ns
	o o o o o o o o o o o o o o o o o o o	Setup time			1	ms
Crystal C	Oscillator Characteristics			<u> </u>		
	Frequency temperature coefficient	Oscillator contribution in normal and HP modes (not including the crystal variations)		±0.5		ppm/°C
	SSB phase noise at a 1-kHz offset from the carrier	HP mode OSC_HPMODE = 1			-125	dBc/Hz
	SSB phase noise at a 100-Hz offset from the carrier	HP mode OSC_HPMODE = 1			-105	dBc/Hz
	Cycle jitter short term (peak-to-peak)	Normal mode OSC_HPMODE = 0			25	ns
	Into motod Stee (UD d-)	20 Hz to 20 kHz flat			0.86	
	Integrated jitter (HP mode)	80 Hz to 20 kHz flat			0.43	ns _{RMS}
_	Ctoutum time for a sure	Shunt capacitor ≤ 1.4 pF			300	
T _{startup}	Startup time for power on	Shunt capacitor 1.4 to 2.6 pF			400	ms
	Sixth harmonic mode rejection RS32/RS200	Oscillator ratio between negative resistance at 32 kHz and negative resistance at 200 kHz (sixth harmonic)	10			

Table 4-6. Crystal Oscillator Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IQ	Ground current	Crystal mounted: - Backup mode (at 25°C) - Normal mode: OSC_HPMODE = 0 - HP mode: OSC_HPMODE = 1 - Start-up (boost) phase			1.5 3 5 20	μА
	Duty cycle CLK32KAO/CLK32KG	Logic output signal	40	50 %	60 %	
T _{Rise} ,T _{Fall}	Rise and fall time (10% to 20%)	CLK32KAO/CLK32KG	5	20	100	ns

4.5.5 RC Oscillators

Table 4-7 lists the RC oscillators electrical characteristics.

Table 4-7. RC Oscillators Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
32-kHz l	RC Oscillator		'			
	Output frequency			32768		Hz
f _{OUT}	Output frequency accuracy	After trimming	-10 %		10 %	
	Cycle jitter (RMS)				10 %	
D	Output duty cycle		40 %	50 %	60 %	
	Settling time				150	μs
IQ	Active current consumption			4	8	μΑ
I_{QOFF}	Power-down current				30	nA
6-MHz R	RC Oscillator					
	Output frequency			6		MHz
f _{OUT}	Output frequency accuracy	After trimming	-10 %	0 %	10 %	
	Cycle jitter (RMS)				5 %	
D	Output duty cycle		40 %	50 %	60 %	
	Settling time				5	μs
IQ	Active current consumption			35	70	μA
I _{QOFF}	Power-down current				50	nA

4.5.6 CLK32KAUDIO Buffer

Table 4-8 lists the CLK32AUDIO buffer electrical characteristics.

Table 4-8. CLK32KAUDIO Buffer Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Settling time			25	50	μs
IQ	Active current consumption		5	7	10	μA
I _{QOFF}	Power down current				30	nA
V_{HOUT}	High output level	VRTC supply		1.832		V
	Duty cycle degradation contribution		-2 %		2 %	
	Integrated jitter contribution	20 Hz to 20 kHz flat 80 Hz to 20 kHz flat		25 10	50 20	ps _{RMS}
C _{Load}	External output load		5	10	50	pF
T _{Rise} , T _{Fall}	Output rise/fall time	Output load = 10 pF	5	7.5	10	ns
	Output drive strongth	V _{OL} = 0.2 V	-1		-2	m ^
I _{OUT}	Output drive strength	$V_{OH} = V_{HOUT} - 0.2 V$	1		2	mA

4.5.7 Backup Battery Charger

Table 4-9 lists the backup battery charger electrical characteristics.

Table 4-9. Backup Battery Charger Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Backup I	Battery Charger					
	VBACKUP to GPADC input attenuation	VBACKUP from 2.4 to 4.5 V	0.2	0.25	0.35	V/V
I _{Charge}	Backup battery charging current	VBACKUP = 0 to 2.6 V BB_CHG_EN = 1	350	650	900	μА
		$I_{VBACKUP} = -10 \mu A$, BB_SEL = 00 (VSYS > 3.2 V)	2.90	3.00	3.10	
	End backup battery charging voltage: VBBCHGEND	$I_{VBACKUP} = -10 \mu A$, BB_SEL = 01 (VSYS > 2.7 V)	2.42	2.52	2.60	
V_{Charge}		$I_{VBACKUP} = -10 \mu A$, BB_SEL = 10 (VSYS > 3.35 V)	3.05	3.15	3.25	V
		$I_{VBACKUP} = -10 \mu A, BB_SEL = 11$ (VSYS > 2.5 V)	VSYS - 0.3	VSYS		
		$I_{VBACKUP} = -10 \mu A$, BB_SEL = XX (VSYS < 2.5 V)	VSYS - 0.2	VSYS		
IQ	Current consumption	BB_CHG_EN = 1, I _{VBACKUP} = 0 μA			10	μΑ
R _{Series}	Backup battery serial resistance	Without additional capacitor in parallel			20	Ω
20.100		With additional capacitor in parallel			1500	1
C _{OUT}	Capacitance of the additional capacitor (C44)		2.0	4.7		μF

4.5.8 Switched-Mode System Supply Regulator

Table 4-10 lists the system supply regulator electrical characteristics.

Table 4-10. System Supply Regulator Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Switched-l	Mode System Supply Regulator					
		0 V < VBUS < 5.25 V	1.2	4.7	6.5	μF
C _{VBUS}	VBUS capacitor (connected between VBUS and PGND)	0 V < VBUS < 6 V	0.9	4.7	6.5	μF
	Services (1200 and 1 GNZ)	ESR (1 to 10 MHz)	1	10	20	mΩ
		0 V < VBUS < 5.25 V	1.2	4.7	6.5	
C _{PMID}	PMID capacitor (connected between PMID and PGND)	0 V < VBUS < 6 V	0.9	4.7	6.5	μF
	between I wild and I GND)	ESR (1 to 10 MHz)	1	10	20	mΩ
C _{CSOUT}	Output capacitor (connected between CSOUT and PGND)	0 V < CSOUT < 4.5 V	3	10	15	μF
		ESR (1 to 10 MHz)			20	mΩ
C	Output capacitor (connected	0 V < CSIN < 4.5 V	20	100	150	nF
C _{CSIN}	between CSIN and PGND)	ESR (100 kHz)			400	mΩ
C	Bootstrap capacitor (connected		50	100	200	nF
C _{BOOT}	between BOOT and SW)	ESR (9 MHz)			200	mΩ
	Reference voltage capacitor	0 V < V _{REF} < 6.5 V	0.7	2.2	2.86	μF
C _{VREF}	(connected between V _{REF} and PGND)	ESR (1 to 10 MHz)			20	mΩ
	Coil (option 1), (connected	Inductance	0.7	1	1.45	μH
L	between SW and CSIN)	DCR			130	mΩ
R9	Sense resistor (connected between CSIN and CSOUT)	Short circuited with power path	-1%	68 mΩ	+1%	

Table 4-10. System Supply Regulator Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Maximum output average current	CHRG_SW		1.5	1.545	А
	, ,	VBUS > V _{BUSmin} , PWM switching		10		
I _{VBUS}	VBUS supply current control	VBUS > V _{BUSmin} , PWM not switching			5	mA
.500		0°C < T _J < 85°C, HZ_MODE= 1, 32S mode			30	μA
VBUS_LEAK	Leakage current from battery to VBUS ball	$0^{\circ}\text{C} < \text{T}_{\text{J}} < 85^{\circ}\text{C}, \text{ CSOUT} = 4.2 \text{ V},$ Hi-Z mode			5	μА
	Output voltage for preconditioning/precharge			3.8		V
	Output voltage for full charge mode			VBAT + ΔLIN		V
V_{SYS}	Nominal output voltage, programmable	20-mV steps	3.50	3.54	4.76	V
	Voltage regulation accuracy	T = 25°C	-0.5 %		0.5 %	
	(except full charge mode), I _{OUT} < 200 mA	0°C < T < 125°C	-1.0 %		1.0 %	
VICHRG	Nominal output current Without power Path, programmable	With R9 = $68 \text{ m}\Omega$	300		1500	mA
VICHKG	Current accuracy	I _{OCHARGE} ≤ 500 mA	-5 %		5 %	
	Current accuracy	I _{OCHARGE} ≥ 600 mA	-3 %		3 %	
		VAC_DET rising edge threshold	2.9	3.4	3.6	
VAC_DET	VAC detection	VAC_DET falling edge threshold	2.7	3.0	3.4	V
		Hysteresis	100	135	350	mV
		VBUS_DET rising edge threshold	2.9	3.4	3.6	
	VBUS detection	VBUS_DET falling edge threshold	2.8	3.0	3.35	V
VBUS_DET		Hysteresis	50	135	170	mV
	VAC/VBUS detection deglitch time		25	30	36	ms
	VBUS input voltage lower limit	Input power source detection for battery charging, threshold for falling edge	3.6	3.8	4.0	V
V _{VBUS_MIN}	Deglitch time for V _{BUS} rising above V _{VBUS_MIN}	Rising voltage, 2-mV overdrive, t _R = 100 ns	4	5	6	ms
	Hysteresis for V _{VBUS_MIN}	Input voltage rising	100		200	mV
	VBUS collapse threshold	Input current is automatically reduced, programmable, 80-mV steps	4.2		4.76	V
	VBUS DPM loop kick-in threshold accuracy		-2 %		2 %	
int	Detection interval	Input power source detection	1.7	2	2.6	S
1	VBUS input current-limiting	Programmable	100		2250	mA
IN_LIMIT	threshold	Accuracy	-15 %	-9 %	-1 %	
System Supp	oly Regulator, Sleep Comparator (T	o Detect USB Unplug)		"		•
V _{SLP}	SLEEP state entry threshold	VBUS above CSOUT, 2.3 V ≤ CSOUT ≤ VOREG, VBUS falling	0	40	100	mV
V _{SLP_ EXIT}	SLEEP state exit hysteresis	2.3 V ≤ CSOUT ≤ VOREG	140	200	260	mV
-	Deglitch time for VBUS rising above VSLP + VSLP_EXIT	Rising voltage, 2-mV overdrive, $t_R = 100 \text{ ns}$	31	32	34	ms
System Supp	oly Regulator, Battery Detection (E	nabled by OTP Bit)		·		1
	IDETECT battery detection	Begins after termination detected,		0.45		Λ
	current before charge done (sink current)	CSOUT ≤ VOREG		-0.45		mA

Table 4-10. System Supply Regulator Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
System Supr	oly Regulator, PWM					
System Supp	Internal top reverse blocking					
	MOSFET on-resistance			100	200	mΩ
	Internal top N-channel switching MOSFET on-resistance	Measured from PMID to SW		120	200	mΩ
	Internal bottom N-channel MOSFET on-resistance	Measured from SW to PGND		120	240	mΩ
fosc	Oscillator frequency		2.7	3	3.3	MHz
D _{MIN}	Minimum duty cycle		0 %			
D _{MAX}	Maximum duty cycle			93 %		
Boost Mode	for VBUS Voltage Generation					
V _{BUS_B}	Boost output voltage (to pin VBUS)	2.7 V < CHRG_CSOUT < 4.5 V	4.75	5.10	5.25	V
I _{BO1}	Rated output current of the boost, combination of VBUS output current and LDOUSB input current from CHRG_PMID node	V _{BUS_B} = 5.10 V, 2.7 V < CHRG_CSOUT < 4.5 V			300	mA
	Rated LDOUSB input current from CHRG_PMID node	V _{BUS_B} = 5.10 V, 2.7 V < CHRG_CSOUT < 4.5 V			100	mA
I _{BLIMIT}	Cycle-by-cycle current limit for boost	V _{BUS_B} = 5.10 V, 2.7 V < CHRG_CSOUT < 4.5 V		1.0		А
V_{BUSOVP}	Overvoltage protection threshold for boost (VBUS pin)	Threshold over VBUS to turn off converter during boost	5.8	6.0	6.2	V
	Hysteresis	VBUS falling from above V _{BUSOVP}		125		mV
	Efficiency	CSOUT = 3.6 V, I _{BO} = 200 mA, T _A = 25°C, synchronous operation		85 %		
I _{DDQ}	Quiescent current			5		mA
V.	Maximum system voltage for boost (CSOUT pin)	VCSOUT rising edge during boost	4.75	4.9	5.05	V
V _{SYSMAX}	Hysteresis	VCSOUT falling from above V _{SYSMAX}		200		mV
V	Minimum system voltage for boost (CSOUT pin)				2.5	٧
V _{SYSMIN}	Boost output resistance at HP mode (from VBUS to PGND)	HZ_MODE = 1		60		kΩ
System Supp	oly, Protection, Current Consumpti	ons				
V _{OVP_ VBUS}	VBUS OVP threshold voltage	Threshold over VBUS to turn off converter during charge	6.3	6.5	6.7	V
J VD00	Hysteresis	VBUS falling from above V _{OVP_VBUS}		140		mV
	System voltage OVP threshold voltage, VCSOUT threshold over	Power Path mode and DCDC in PWM mode	130 %	133 %	136 %	
V _{OVP_ VSYS}	VOREG to turn off the regulator during operation	Other cases	110 %	117 %	121 %	
	Hysteresis	Lower limit for VCSOUT falling from above V _{OVP_VSYS}		11 %		
	VBAT OVP threshold voltage	Threshold over VBAT to turn off battery charging	110 %	117 %	121 %	
V_{OVP_VBAT}	Hysteresis			11 %		
	Debounce time for falling edge			3		ms
	Cycle-by-cycle current limit for	BUCK_HSLIMI = 0: 2.55 A	2.10	2.55	3.30	
I _{LIMIT}	charge	BUCK_HSLIMI = 1: 1.90 A default	1.50	1.90	2.60	A
	Short-circuit voltage threshold	CSOUT rising (default)	2.00	2.10	2.20	V
V _{SYS_ SHORT}	Hysteresis	CSOUT falling from above V _{SYS_SHORT}		100		mV

Table 4-10. System Supply Regulator Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{SYS_ SHORT}	Short-circuit detection current	CSOUT ≤ V _{SYS_SHORT}	20	30	40	mA
I _{VBUS}	VBUS input current	VBUS = 9.7 V, OVP active			4	mA
	Regulator thermal shutdown	Temperature threshold, T _{CHRGSHTDWN}		148		°C
		Hysteresis, T _{CHRGHYS}		10		
	Analog thermal regulation loop	Threshold to start limiting the current, T _{CF} , I _{VBUS} = 1.5 A		130		ŝ
		Threshold for 0 A current level			T _{CHRGSHTDWN} – 5	
		System supply regulator enabled, charger enabled		1.3		mA
	Current consumption of the linear charger and supplement mode control	System supply regulator enabled, charger disabled		0.9		IIIA
	S	System supply regulator disabled, system switch forced to connect			1	μΑ

4.5.9 Battery Charger

Table 4-11 lists the battery charger electrical characteristics.

Table 4-11. Battery Charger Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Battery Cha	arger			-		-
R2	Sense resistor of linear charging loop ⁽¹⁾	15-mΩ resistor allows maximum of 2.0-A charging current 20-mΩ resistor allows maximum of 1.5-A charging current	15	20		mΩ
IBAT_SHO	Preconditioning current (for short-	VSYS = 3.6 V, VBAT ≤ V _{BAT_SHORT}	13	20	27	A
RT _	circuit detection)	VSYS = 3.8 V, VBAT ≤ V _{BAT_SHORT}	20	30	40	mA
VBAT_SH ORT	Preconditioning positive threshold voltage	Programmable: 2.1, 2.45, and 2.8-V voltage levels	2.1		2.8	V
	Hysteresis		50	100	150	mV
	Debounce time			1		ms
	Linear precharge current, programmable	V _{BAT_SHORT} < VBAT < V _{BAT_FULL} CHRG 100-mA steps	100		400	mA
VICHRG_ PC	Accuracy, without autocalibration		-75 %		0 %	
		I _{CHARGE} < 300 mA	-10 %		+10 %	
	Accuracy, with autocalibration	300 mA ≤ I _{CHARGE} ≤ 400 mA	- 5 %		+5 %	
		VBAT_FULLCHRG = 000	2.61	2.65	2.73	
		VBAT_FULLCHRG = 001	2.705	2.75	2.835	
		VBAT_FULLCHRG = 010	2.805	2.85	2.94	
	Threshold level, low to high	VBAT_FULLCHRG = 011	2.905	2.95	3.04	V
VBAT_FU LLCHRG	transition	VBAT_FULLCHRG = 100	3.00	3.05	3.145	V
LLCITING		VBAT_FULLCHRG = 101	3.10	3.15	3.245	
		VBAT_FULLCHRG = 110	3.20	3.25	3.35	
		VBAT_FULLCHRG = 111	3.295	3.35	3.455	
	Hysteresis		50	100	150	mV

⁽¹⁾ Battery current level depends on the resistor R2 value as the loop is sensing the voltage across the resistor.

Table 4-11. Battery Charger Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Linear full charge current,	$VBAT > V_{BAT_FULLCHRG}$, 100-mA steps, R2 = 20 mΩ	100		1500	0
	programmable (1)	BAT > $V_{BAT_FULLCHRG}$, 133-mA steps, R2 = 15 m Ω	133		2000	mA
VICHRG	Accuracy, without autocalibration	I _{CHARGE} ≤ 400 mA	-75 %	-37 %	0 %	
	Accuracy, without autocalibration	I _{CHARGE} ≥ 500 mA	-50 %		0 %	
	Accuracy with outcoolibration	I _{CHARGE} ≤ 400 mA	-5 %		5 %	
	Accuracy, with autocalibration	I _{CHARGE} ≥ 500 mA	-3 %		3 %	
	Linear full charge output voltage	Programmable, 20-mV steps	3.5		4.76	V
VOREG	A	T = 25°C	-0.5 %		0.5 %	
	Accuracy, with autocalibration	0°C < T < 125°C	-1.0 %		1.0 %	
	Charger termination current ⁽¹⁾	Programmable, 50-mA steps R2 = 20 mΩ	50		400	A
VITERM	Charger termination current	Programmable, 67-mA steps R2 = 15 m Ω	67		533	mA
	Accuracy		-33 %		33 %	%
ΔLIN	Charger dropout voltage, voltage	Programmable, 50-mV steps	100		200	m\/
ΔLIN	between VSYS and VBAT	Accuracy	-20		20	mV
	DPPM regulation, voltage between VSYS and VBAT	VBAT > V _{BATMIN_} HI		0.5 × ΔLIN		V
	DPPM regulation, VSYS voltage	VBAT < V _{BATMIN} HI		3.4		V
VSYS_OV	Contain accomplished and data etion	Positive threshold	5.7	5.9	6.1	V
V	System overvoltage detection	Hysteresis	50	100	200	mV
	Recharge threshold voltage (in	Below VOREG	70	120	170	mV
	Power Path mode enabled always, in non-Power Path mode enabled when CHARGE_ONCE bit is 0)	Deglitch time, VBAT decreasing below threshold, t _F = 100 ns, 10-mV overdrive		128		ms
Supplemen	nt Mode				+	
	DOATE discontinue	Fall time, C _{gate} = 8 nF, VSYS to VSYS - 2 V, VSYS = 3.2 V			1.0	
	PGATE driver time	Rise time, $C_{gate} = 8 \text{ nF}$, 0 V to VSYS - 0.1 V, VSYS = 3.2 V		2.5		μs
	Supplement mode threshold level	VSYS below VBAT, programmable	20	30	50	mV
	(when entering supplement mode)	Accuracy	-10		10	IIIV
	Supplement mode threshold level (when exiting supplement mode)	I _{BAT}	50	100	150	mA
	Check the need for supplement mode			100		ms
	Charging restart delay				500	μs
Battery Ter	mperature Measurement					
	Reference voltage	GPADC_VREF		1.25		V
	Low and high threshold voltages	OTP bits, RATIO_LO[2:0], RATIO_HI[2:0]	0.2 × GPADC_VREF		0.9 x GPADC_VREF	
	Threshold error				1 %	%
	Comparator offset				10	mV
Battery Pre	esence Detector					
R _{BRI}	External pulldown resistor				130	kΩ
I _{BRI}	See Table 4-15, GPADC_IN0 current source.					
V _{BRIRef}	Detection threshold	Threshold	1.5		1.6	V
	Current consumption of the comparator				10	μΑ
-	-	· · · · · · · · · · · · · · · · · · ·				

Table 4-11. Battery Charger Electrical Characteristics (continued)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Delay of	of the comparator	With > 10-mV overdrive			10	μs

4.5.10 Indicator LED Driver

Table 4-12 lists the indicator LED driver electrical characteristics.

Table 4-12. Indicator LED Driver Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Indicate	or LED Driver					
	VSYS				4.8	V
		CURR_LED[1:0] = 00		0		
	LED surrent	CURR_LED[1:0] = 01	0.85	1	1.15	^
	LED current	CURR_LED[1:0] = 10	2.125	2.5	2.875	mA
		CURR_LED[1:0] = 11	4.25	5	5.75	
	Rise and fall time for the current	Transition on PWM signal, 10 to 90%			5	μs
	Startup time	CURR_LED[1:0] from 00 to any other value			20	μs
		Disabled				
		VRTC			2	
		VAC (at 20 V)			70	μA
	Out-count summer	CHRG_PMID (at 5.25 V)			20	
	Quiescent current	CHRG_PMID (at 20 V)			70	
		CURR_LED[1:0] = 01 (1 mA)			200	
		CURR_LED[1:0] = 10 (2.5 mA)			400	μA
		CURR_LED[1:0] = 11 (5 mA)			750	
	Pulldown resistance	CURR_LED[1:0] = 00, can be disabled by DIS_PULLDOWN bit	50	100	200	kΩ
	Voltage at the output for performance				3.2	V
	Voltage at the output for tolerance	CHRG_LED_TEST pin is driven externally			5.5	V
	Dropout voltage	1 mA	0.2			
	Minimum voltage between CHRG_LED_IN and CHRG_LED_TEST	2.5 mA	0.4			V
		5 mA	0.6			
	VAC voltage	During operation	4.1			V
	VBUS voltage	During operation	4.0			V
	CHRG_LED_IN voltage		2.3		5.5	V

4.5.11 USB OTG

Table 4-13 lists the USB OTG electrical characteristics.

Table 4-13. USB OTG Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Pullup and Pulldow		I	T			T
R _{ID_PU_100K}	ID 100k pullup to LDOUSB		70	100	130	kΩ
R _{ID_PU_220K}	ID 220k pullup to LDOUSB		160	220	280	kΩ
R _{ID_GND_DRV}	ID 10k pulldown to ground		1	10	20	kΩ
	ID internal leakage without GPADC (7 V)				350	nA
R _{ID_ LKG}	ID internal leakage without GPADC (2 V)				650	nA
	ID external leakage		-1.5	0	1	μA
R _{A_BUS_IN}	A-device VBUS Input Impedance To GND		10	40	100	kΩ
R _{VBUS_DISCHRG}	B-device VBUS SRP pulldown		5	10	15	kΩ
R _{VBUS_CHRG_VBAT}	B-device VBUS SRP pullup on VBAT		1.5	2.5	5	kΩ
R _{VBUS_CHRG_PMID}	B-device VBUS SRP pullup on CHRG_PMID		1.5	2.5	5	kΩ
V _{VBUS_LKG}	OTG device leakage voltage				0.7	V
I _{B_UNCFG}	B-device unconfigured average VBUS input current				2.5	mA
External ID resistar	nces					
R _{ID_FLOAT}	ID pulldown when ID pin is floating		220			
R _{ID_A}	ACA ID pulldown, OTG device as A-device		122	124	126	
R _{ID_B}	ACA ID pulldown, OTG device as B- device, can't connect		67	68	69	kΩ
R _{ID_C}	ACA ID pulldown, OTG device as B- device, can connect		36	36.5	37	
R _{ID_GND}	ID pulldown when ID pin is grounded				1	
Comparators		 	 	+		-
V _{ID_WK}	ID wake-up comparator threshold	No hysteresis	0.300	0.650	1.150	V
R _{ID_WK_UP}	ID wake-up equivalent threshold resistance		10	100	220	kΩ
V _{ID_CMP1}	ID comparator 1 threshold	No hysteresis	0.150	0.200	0.250	V
V _{ID_CMP2}	ID comparator 2 threshold	No hysteresis	0.683	0.720	0.757	V
V _{ID_CMP3}	ID comparator 3 threshold	No hysteresis	1.300	1.400	1.500	V
V _{ID_CMP4}	ID comparator 4 threshold	No hysteresis	2.350	2.500	2.650	V
Current Sources						
I _{ID WK SRC}	ID wake-up current source	V _{ID} < 2.75 V	3.5	9	25	μA
I _{ID_SRC_16u}	ID current source (trimmed)	V _{ID} < 2.75 V	15.5	16	16.5	μA
I _{ID_SRC_5u}	ID current source	V _{ID} < 2.75 V	4.5	5	5.5	μA
ADP Comparators	1	I	1			
V _{ADP_ PRB}	ADP probing voltage threshold	No hysteresis	0.6	0.65	0.7	V
V _{ADP_SNS}	ADP sensing voltage threshold	No hysteresis	0.20	0.40	0.55	V
V _{ADP_DSCHRG}	ADP discharge voltage	,			0.15	V
ADP Current Source	, , , , , , , , , , , , , , , , , , ,	<u> </u>	<u> </u>		-	
VBUS_IADP_SRC	ADP source current	VBUS < 0.8 V	1.10	1.40	1.65	mA

Table 4-13. USB OTG Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIDLIC TADD CINIC	ADD sink suggest	0.5 V < V _{BUS} < 0.8 V	1.1	1.5	2	A
VBUS_IADP_SINK	ADP sink current	0.15 V < V _{BUS} < 0.8 V	0.5	1.5	2	mA
ADP Timings						
T_ADP_SINK	ADP sink time		13	14	15	ms
TA_ADP_PRB	ADP probing period, A-device		1.25	1.75	1.85	s
TB_ADP_PRB	ADP probing period, B-device		1.9	2.0	2.6	s
T_ADP_SNS	ADP sensing time-out		3			S
Comparators						
VVBUS WKUP UP	VBUS wake-up comparator	Positive threshold	2.8	3.2	3.6	V
VVBU3_WKUP_UP		Hysteresis	50	100	175	mV
VA_VBUS_VLD	A-device VBUS valid comparator threshold	Threshold, no hysteresis	4.4	4.5	4.6	V
\/D	B-device session valid comparator	Positive threshold	2.2	2.4	2.6	V
VB_SESS_VLD_UP		Hysteresis	20	80	140	mV
\\A_CECC_\/\B_L\B_	A-device session valid comparator	Positive threshold	0.9	1.1	1.3	V
VA_SESS_VLD_UP		Hysteresis	10	40	70	mV
VD CECC END LID	B-device session end comparator	Positive threshold	0.3	0.5	0.8	V
VB_SESS_END_UP		Hysteresis	10	40	70	mV
VOTO CECC VID UD	OTG session valid comparator	Positive threshold	2.90	3.10	3.40	V
VOTG_SESS_VLD_UP		Hysteresis	20	80	140	mV
VOTC OVV UD	OTC averyaltage comparator	Positive threshold	6.3	6.5	6.8	V
VOTG_OVV_UP	OTG overvoltage comparator	Hysteresis	40	110	180	mV

4.5.12 Gas Gauge

Table 4-14 lists the gas gauge electrical characteristics.

Table 4-14. Gas Gauge Electrical Characteristics

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	0	20-mΩ sense resistor	-3.1		3.1	
	Current measurement range	15-mΩ sense resistor	-4.13		4.13	Α
	Measurement accuracy of single measurement result after calibration. Includes reference, temperature, offset, and 3 σ statistical variation. Tolerance of the sense resistor R2 is not included.	CC_ACTIVE_MODE[1:0] = 00 CC_ACTIVE_MODE[1:0] = 01 CC_ACTIVE_MODE[1:0] = 10 CC_ACTIVE_MODE[1:0] = 11	-Vmeas × 1% -0.11 -0.28 -0.74 -2.15		Vmeas × 1% 0.11 0.28 0.74 2.15	mV
	Offset before autocalibration	CC_ACTIVE_MODE[1:0] = 00 CC_ACTIVE_MODE[1:0] = 01 CC_ACTIVE_MODE[1:0] = 10 CC_ACTIVE_MODE[1:0] = 11		200 200 200 450		μV
	Offset after autocalibration (software must calculate the calibrated result)	CC_ACTIVE_MODE[1:0] = 00 CC_ACTIVE_MODE[1:0] = 01 CC_ACTIVE_MODE[1:0] = 10 CC_ACTIVE_MODE[1:0] = 11		10 10 100 450		μV
	Usable input voltage range		-62		62	mV
	Input clock frequency	32-kHz crystal oscillator		32768		Hz
	Current consumption	Power on; FG_EN = 1		50	70	μA
	Current consumption	Power off; FG_EN = 0			0.2	μΑ
		CC_ACTIVE_MODE[1:0] = 00		250		
	Integration period (sample counter	CC_ACTIVE_MODE[1:0] = 01		62.5		ms
	uses 32-kHz crystal oscillator)	CC_ACTIVE_MODE[1:0] = 10		15.625		
		CC_ACTIVE_MODE[1:0] = 11		3.9062 5		
R2	External sense resistor		10	20		mΩ
		CC_ACTIVE_MODE[1:0] = 00		1 + 13		
	Internation data sine (20 complement)	CC_ACTIVE_MODE[1:0] = 01		1 + 11		D:4
	Integrator data size (2s complement)	CC_ACTIVE_MODE[1:0] = 10		1 + 9		Bit
		CC_ACTIVE_MODE[1:0] = 11		1 + 7		
INL	Integral nonlinearity (average on 10 measurement results)	CC_ACTIVE_MODE[1:0] = 00 CC_ACTIVE_MODE[1:0] = 01 CC_ACTIVE_MODE[1:0] = 10 CC_ACTIVE_MODE[1:0] = 11	-3.5 -2.5 -2.0 -1.5		3.5 2.5 2.0 1.5	LSB
DNL	Differential nonlinearity (average on 10 measurement results)	CC_ACTIVE_MODE[1:0] = 00 CC_ACTIVE_MODE[1:0] = 01 CC_ACTIVE_MODE[1:0] = 10 CC_ACTIVE_MODE[1:0] = 11	-4.0 -2.5 -1.5 -1.0		4.0 2.5 1.5 1.0	LSB
	Accumulator data size			1 + 31		Bit
	Offset data size			1+9		Bit
	Sample counter data size			24		Bit

4.5.13 GPADC

Table 4-15 lists the GPADC electrical characteristics.

Table 4-15. GPADC Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IQ	Current consumption	GPADC_EN = 1		1600		μA
I _{QOFF}	Off mode current	GPADC_EN = 0			1	μA
f	Running frequency			3		MHz
	Resolution			12		Bit
	Number of external inputs			7		
	Number of internal inputs			12		
	Turn on/off time	GPADC_EN 0 to 1 or GPADC_EN 1 to 0		10	20	μs
	Gain error without calibration (inputs without scaler)		-2 %		2 %	
	Gain error without calibration (inputs	GPADC_IN10	- 5 %		3 %	
	with scaler)	Others than GPADC_IN10	-3		3	
	Offset error without calibration		-36		36	LSB
	Gain error with calibration (at 25°C	GPADC_IN10	-0.7 %		0.7 %	
	temperature) ⁽¹⁾	Others than GPADC_IN10	-0.22 %		0.22 %	
	Offset error with calibration (at 25°C	GPADC_IN10	-3		3	LCD
	temperature) ⁽¹⁾	Others than GPADC_IN10	-5		5	LSB
	Gain error drift (Temperature and	GPADC_IN0 - GPADC_IN6, GPADC_IN17	-0.6 %		0.25 %	
	supply)	Other channels	-0.6 %		0.45 %	
	Offset drift (Temperature and supply)		-2		2	LSB
	Integral nonlinearity	Best fitting, GPADC_IN9	-3		4	LSB
INL		Best fitting, GPADC_IN14	-16		12	
		Best fitting, other channels	-3		3	
DNL	Differential nonlinearity		-2		2	LSB
(GPADC_IN17		4		_
C _{IN}	Input capacitance	Other inputs		0.5		pF
Г	Source input impedance (external	Source resistance without capacitance			20	kΩ
R _{Ext}	inputs) ⁽²⁾	Source capacitance with > $20-k\Omega$ source resistance	100			nF
	GPADC_VREF voltage reference			1.25		V
	GPADC_VREF output current	External load			200	μA
	Input range (Sigma-Delta ADC; the	Typical range	0		1.25	
V_{IN}	input voltage and nonsaturated ranges of the scaled inputs are described in Table 5-2)	Assured range without saturation	0.01		1.215	V
		1 channel, sampling = 0		210		
_	Conversion time	1 channel, sampling = 1		640		
T _{Conv}		2 channels, sampling = 0		290		μs
		2 channels, sampling = 1		720		
	GPADC_IN0 current source	_	6.65	7	7.35	
	GPADC_IN0 with additional current source	GPADC_ISOURCE_EN = 1	20.9	22	23.1	μA

⁽¹⁾ Total accuracy is a combination of Gain error with calibration (at 25°C temperature), Gain error drift, Offset error with calibration (at 25°C temperature), Offset drift and INL.

Product Folder Links: TPS80032

If the source impedance is more than 20 k Ω , then 100 nF must be connected to the input.

Table 4-15. GPADC Electrical Characteristics (continued)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
GPADC_IN3 curre	GPADC_IN3 current sources	GPADC_REMSENSE[1:0] = 00		0		- μΑ
		GPADC_REMSENSE[1:0] = 01	8.5	9.5	10.5	
		GPADC_REMSENSE[1:0] = 10	340	380	420	
		GPADC_REMSENSE[1:0] = 11	675	750	825	

4.5.14 Thermal Monitoring

Table 4-16 lists the thermal monitoring electrical characteristics.

Table 4-16. Thermal Monitoring Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Off ground current (two sensors on	Off mode			0.1	
IQOFF	the die, specification for one sensor)	at 25°C off mode			0.5	μA
	On ground current (two sensors on	On mode, standard mode		7	15	
IQ	the die, specification for one sensor)	On mode, GPADC measurement		25	40	μA
		Rising temperature	104	117	127	°C
	00 (first hot-die threshold)	Falling temperature	95	108	119	
	04 (Rising temperature	109	121	132	°C
	01 (second hot-die threshold)	Falling temperature	99	112	123	
	10 (third hat die throubold)	Rising temperature	113	125	136	°C
	10 (third hot-die threshold)	Falling temperature	104	116	128	
	44 /5	Rising temperature	118	130	141	°C
	11 (fourth hot-die threshold)	Falling temperature	108	120	132	
		Rising temperature	136	148	160	°C
	Thermal shutdown	Falling temperature	126	138	150	

4.5.15 System Control Thresholds

Table 4-17 lists the system control thresholds electrical characteristics.

Table 4-17. System Control Thresholds Electrical Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VSYSMIN_HI threshold, rising edge	Programmable, step size is 50 mV	2.5		3.55	V
VSYSMIN_HI threshold accuracy		-1.6 %		+3.2 %	
VSYSMIN_LO threshold, falling edge	Programmable, step size is 50 mV	2.3		3.1	V
VSYSMIN_LO threshold accuracy		-1.6 %		+3.2 %	
POR rising-edge threshold		2.00	2.15	2.50	V
POR fallng-edge threshold		1.90	2.00	2.10	V
POR hysteresis	Rising edge to falling edge	40	150	350	mV

4.5.16 Current Consumption

Table 4-18 lists the current consumption electrical characteristics.

Table 4-18. Current Consumption Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Backup Mode						
I _{VBACKUP(Backup)}	VBACKUP, supplied on VBACKUP	VSYS = 0 V VBACKUP = 3.2 V		8	10	μA
I _{VSYS(Backup)}	VSYS, supplied on VSYS	VBACKUP = 0 V VSYS = 2.7 V		12	19	μA
WAIT-ON State						
I _{VSYS(WAIT-ON)}		VSYS = 3.8 V, VRTC in a low-power mode		20	30	μA
SLEEP State						
I _{VSYS(SLEEP)}	SMPS2 and SMPS3 enabled, no load	VSYS = 3.8 V		110		μA

4.5.17 Digital Input Signal Electrical Parameters

Table 4-19 lists the digital input signal electrical parameters.

Table 4-19. Digital Input Signal Electrical Parameters

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PWRON	, RPWRON					
V _{IL}	Low-level input voltage related to VSYS/VDD		-0.3	0	0.35 × VSYS	V
V _{IH}	High-level input voltage related to VSYS/VDD		0.65 × VSYS	VSYS	VSYS + 0.3 ≤ 5.5	V
GPADC_	START, MMC, MSECURE, NRESWARM, PRI	EQ1, PREQ2, PRE	Q3, SIM, TESTEN	ı		
V _{IL}	Low-level input voltage related to VIO		-0.3	0	0.35 × VIO	V
V _{IH}	High-level input voltage related to VIO		0.65 × VIO	VIO	VIO + 0.3	V
воото,	BOOT1, BOOT2, CHRG_EXTCHRG_STATZ,	OSC32KIN				
V _{IL}	Low-level input voltage related to VRTC		-0.3	0	0.35 × VRTC	V
V _{IH}	High-level input voltage related to VRTC		0.65 × VRTC	VRTC	VRTC + 0.3	V
CTLI2C_	SCL, CTLI2C_SDA, DVSI2C_SCL, DVSI2C_S	DA			•	
V _{IL}	Low-level input voltage related to VIO		-0.3	0	0.3 × VIO	V
V _{IH}	High-level input voltage related to VIO		0.7 × VIO	VIO	VIO + 0.3	V
	Hysteresis		0.1 × VIO			V
1.2-V Sp	ecific Related I/Os: PREQ3 ⁽¹⁾⁽²⁾			1		
V _{IL}	Low-level input voltage related to VIO		-0.3	0	0.3 × VIO	V
V _{IH}	High-level input voltage related to VIO		0.7 × VIO	VIO	VIO + 0.3	V

⁽¹⁾ PREQ3 can be programmed for two different input supplies (1.2 V/1.8 V) and, as such, has a configurable input threshold.

4.5.18 Digital Output Signal Electrical Parameters

Table 4-20 lists the digital output signal electrical parameters.

Table 4-20. Digital Output Signal Electrical Parameters

	PARAMETER ⁽¹⁾	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REGEN	1, REGEN2, VBUS_DET					
V_{OL}	Low-level output voltage	$I_{OL} = 100 \mu A$	0		0.2 × VSYS	V
V _{OH}	High-level output voltage	I _{OH} = 100 μA	0.8 × VSYS		VSYS	V
BATRE	MOVAL, CLK32KAO, CLK32KG, INT, N	RESPWRON, PWM1, PWM2, S	YSEN			
V _{OL}	Low-level output voltage related to VIO	I _{OL} = 2 mA	0		0.45	V
V_{OL}	Low-level output voltage related to VIO	I _{OL} = 100 μA	0		0.2	V
V_{OH}	High-level output voltage related to VIO	I _{OH} = 2 mA	VIO – 0.45		VIO	V
V _{OH}	High-level output voltage related to VIO	I _{OH} = 100 μA	VIO - 0.2		VIO	V
CLK32k	(AUDIO, CHRG_EXTCHRG_ENZ					
V _{OL}	Low-level output voltage related to VRTC	I _{OL} = 2 mA	0		0.45	V
V _{OL}	Low-level output voltage related to VRTC	I _{OL} = 100 μA	0		0.2	V

⁽¹⁾ All output signals are assured low when VRTC is not available, especially REGEN1, REGEN2, and SYSEN, all three of which control some external power resources.

Specifications

²⁾ Applying 1.8-V input logic on the PREQ3 ball when the 1.2-V supply mode is selected does not damage the PREQ3 input buffer. Nevertheless, because the threshold is reduced to its 1.2-V configuration, the input buffer is more sensitive to the low 1.8-V logic level.

Table 4-20. Digital Output Signal Electrical Parameters (continued)

	PARAMETER ⁽¹⁾	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage related to VRTC	I _{OH} = 2 mA	VRTC - 0.45		VRTC	V
V _{OH}	High-level output voltage related to VRTC	Ι _{ΟΗ} = 100 μΑ	VRTC - 0.2		VRTC	V
CTLI2C_S	CTLI2C_SDA, DVSI2C_SDA					
V _{OL}	Low-level output voltage related to VIO	3-mA sink current	0	· · · · · · · · · · · · · · · · · · ·	0.2 × VIO	V

4.5.19 Digital Output Signal Timing Characteristics

Table 4-21 lists the digital output signal timing characteristics.

Table 4-21. Digital Output Signal Timing Characteristics

DALL NAME/OUTDUT DUFFED	LOA	D (pF)		ISE/FALL TIME (ns)		
BALL NAME/OUTPUT BUFFER	MIN	MAX	MIN	NOM	MAX	
CHRG_EXTCHRG_ENZ	5	35	5		15	
INT	5	35	5		15	
BATREMOVAL	5	35	5		15	
NRESPWRON	5	35	5		15	
PWM1	5	35	5		15	
PWM2	5	35	5		15	
REGEN1	5	35	5		25	
REGEN2	5	35	5		25	
SYSEN	5	35	5		15	
		5	1		6	
VRTC supply output buffer and	20		4		11	
VIO supply output buffer	3	35	5	MIN NOM 5 5 5 5 5 5 5 5 5 5 1 4	15	
	5	50	8		20	
		5	1		9	
VCVC averally average by the	2	20	35 5 5 35 5 35 5 5 5 5 5 5 5 5 5 5 5 5	17		
VSYS supply output buffer	3	35	5	5 5 5 5 5 1 4 5 8 1 3 5 6 5 8	25	
	5	50	6		34	
		5	5		15	
CLK32KAO output buffer and	20		8		30	
CLK32KG output buffer	3	35	10		45	
	Ę	50	15		100	

4.6 Typical Characteristics

Figure 4-1 shows the 5.0-A SMPS regulator efficiency. Figure 4-2 shows 1.1-A SMPS regulator efficiency.

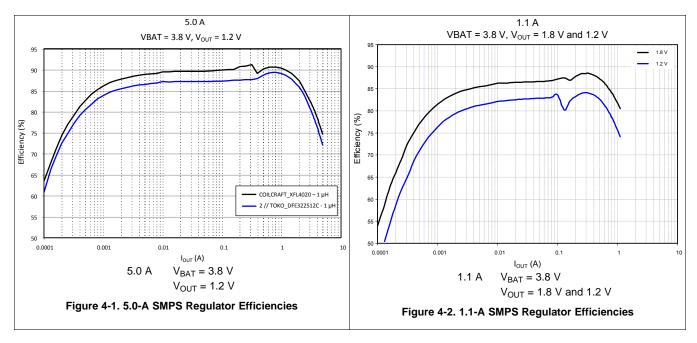
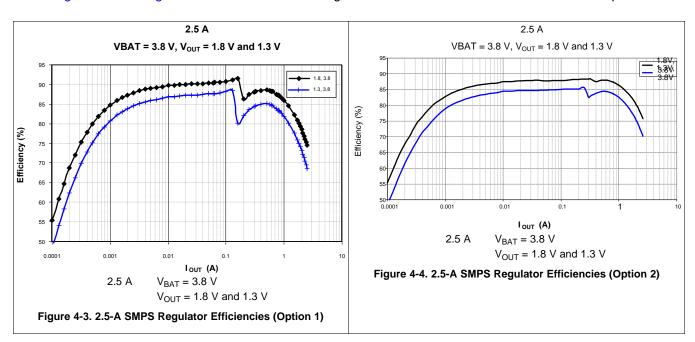



Figure 4-3 and Figure 4-4 show 2.5-A SMPS regulator efficiencies with two different inductor options.

Detailed Description

5.1 Real-Time Clock

The RTC is driven by the 32-kHz oscillator and provides the alarm and timekeeping functions. The RTC is supplied by the backup battery (when available) if the main battery fails and if no external power is applied.

The main functions of the RTC block are:

- Time information (seconds/minutes/hours) in binary coded decimal (BCD) code.
- Calendar information (day/month/year/day of the week) in BCD code up to year 2099.
- Programmable interrupts generation. The RTC can generate two interrupts:
 - Timer interrupts periodically (1s/1m/1h/1d period) in the ACTIVE and SLEEP states (can be during the SLEEP period with the IT SLEEP MASK EN RTC_INTERRUPTS_REG register in order to prevent the host processor from waking up)
 - Alarm interrupt at a precise time of the day (alarm function) in the ACTIVE and SLEEP states and switch-on transition from the WAIT ON state
- Oscillator frequency calibration and time correction with 1/32768 resolution.

For security purposes, the registers related to time and calendar information are protected by restricting their write access to software running in the secure mode of the host (the MSECURE pin set to 1). Read access is always allowed, even in a nonsecured mode. However, it is possible to disable the secure mode with the MSECURE OTP bit. In this case, the read and write accesses are available regardless of the status of the MSECURE pin.

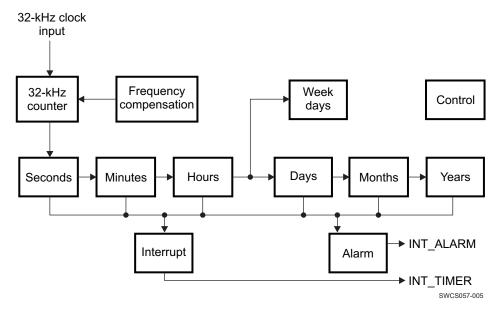


Figure 5-1. Block Diagram of the RTC Digital Section

Detailed Description

42

5.2 Clocks

The TPS80032 device is independent of any high-frequency system clock; it provides only a 32-kHz clock to the platform. The oscillator can use an external crystal unit to generate the clock or use an external 32-kHz oscillator, in which case the internal oscillator module is bypassed.

To provide a high-performance 32-kHz clock for peripherals, like an audio device, a dedicated output buffer is implemented on the CLK32KAUDIO ball. This audio buffer uses the 1.8-V VRTC regulator as power. CLK32KAO is always active when 1.8-V I/O voltage is available, whereas the CLK32KG and CLK32KAUDIO outputs can be controlled by PREQ signals and register bits (CLK32KG_CFG_TRANS, CLK32KG_CFG_STATE, CLK32KAUDIO_CFG_TRANS, and CLK32KAUDIO_CFG_STATE).

The TPS80032 device also includes a 32-kHz RC oscillator and a 6-MHz RC oscillator, which are used internally.

5.3 Power Management

The power-management state machine manages control of the state of the different resources included in the TPS80032 device depending on system activity and energy availability. It ensures the detection of external or internal triggering events that initiate a change of system power state. It controls the transition sequences required to change the system from current power state to a new power state by configuring the resources according to the desired final power state.

Host processor can access the configuration registers using the general-purpose I²C interface (CTL-I²C). Figure 5-2 shows a block diagram of the power-management system.

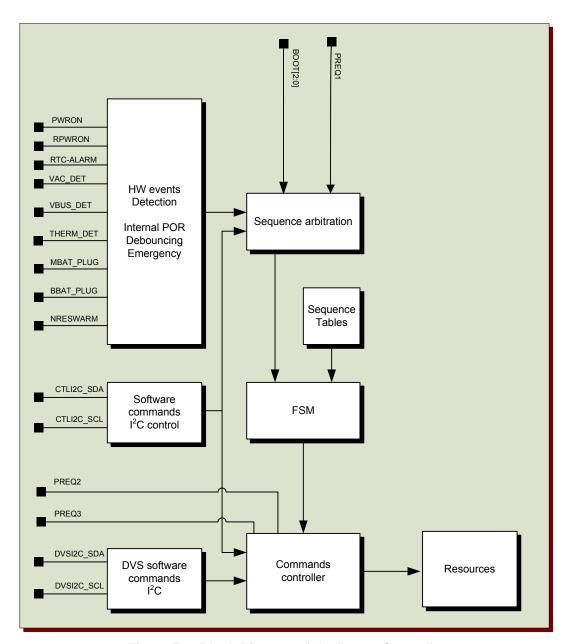


Figure 5-2. Block Diagram of the Power Controller

5.3.1 Finite State Machine (FSM)

The TPS80032 FSM controls boot sequences, TPS80032 state changes and resources initialization. The power sequences are stored in a hard coded table (OTP memory). The FSM reacts on events, which initiates power state transitions.

5.3.2 Hardware Events

- Starting events (going into ACTIVE state):
 - Power on button (PWRON ball)
 - Remote power on (Accessories) (RPWRON ball)
 - Battery plug (VSYS ball)
 - VAC detection (VAC ball)
 - USB VBUS detection (VBUS ball)
 - USB ID detection (USB ID ball)
 - RTC alarm
- Stopping events (going into OFF state):
 - Short PWRON key press (interrupt to the processor that initiates switch off)
 - Long PWRON key press (hardware switch off)
 - Remote power on (RPWRON) (interrupt to processor that initiates switch off)
 - Primary watchdog expire (hardware switch off)
 - Regulator short circuit protection (hardware switch off)
 - Thermal shutdown (hardware switch off)
- Backup events or shutdown events (going into NO SUPPLY or BACKUP state):
 - Removal of main and/or backup battery
 - Low main and/or backup battery

5.3.3 Software Events

- Stopping events (going into OFF state):
 - DEVOFF instruction: DEV OFF register bit all set to one (PHOENIX DEV ON register)
 - Software reset (SW_RESET), going to OFF state and then restart to ACTIVE

5.3.4 Resource Definition

A resource is an element that provides the necessary to a system to operate. Typical resources are supplies, clocks, resets, references, bias. Each resource can be addressed with its unique I²C address RES_ID (Resource Identification).

A remapping of the resource state versus the system state can be done. For example, a resource can be set either ON or OFF when the system state is SLEEP.

5.3.5 Resource Operating Modes

5.3.5.1 Voltage Regulator Operating Modes (All Types)

In order to optimize the power consumption, three operating modes may be allowed for a voltage regulator:

- OFF mode: The output voltage is not maintained and the power consumption is minimized.
- **AMS** mode: The regulator is able to deliver its nominal output voltage with a full load current capability. Quiescent current adapts automatically to load current.
- FORCE mode: Force active mode.

5.3.5.2 REGEN1 / REGEN2 / SYSEN Operating Modes

- **DISABLE**: The REGEN1 / REGEN2 / SYSEN I/O drives the signal to its disable state.
- ACTIVE: The REGEN1 / REGEN2 / SYSEN I/O drives the signal to its active state.

5.3.5.3 SMPS Operating Modes

OFF mode: The output voltage is not maintained and the power consumption is minimized.

- AUTO mode: The SMPS is able to deliver its nominal output voltage with a full load current capability.
 PFM or PWM is automatically selected versus load current.
- FORCED_PWM mode: The SMPS runs always in PWM even at light load. It allows to maintain a low output voltage ripple.

5.3.5.4 Main Bandgap Operating Modes

- OFF mode: The reference voltage is not maintained and the bandgap power consumption is minimized.
- ON ACCURATE mode: The bandgap is able to deliver accurate nominal reference voltage.
- LOW POWER mode: A nominal but less accurate voltage reference is maintained with very low power consumption.
- ON FAST mode: The nominal reference voltage is maintained with less precision as the low pass filter
 on the VBG output is disabled. This condition during power up phase allows a quicker setting of the
 reference voltage. This mode is only used during a BOOT or WAKEUP phase.

5.3.5.5 Comparators Operating Modes

- OFF mode: The comparator is disabled, result of compare operation is forced to true, power consumption is minimized.
- ON mode: The comparator is enabled result of compare depends on its inputs.

5.3.5.6 Hot-die Warning Operating Modes

- ACTIVE mode: The hot-die warning feature is enabled.
- OFF mode: The hot-die warning feature is disabled.

5.3.5.7 Clocks and PWM1 / PWM2 Drivers Operating Modes

- DISABLE mode: The signal at driver output is stopped.
- ACTIVE mode: The signal at driver output is running.

5.3.6 Addressing Resources Registers

Three types of register can be associated to a resource:

- Configuration Registers:
 - CFG_TRANS register
 - CFG STEP register (DVS resource)
- State Register:
 - CFG_STATE register
- DVS Registers:
 - CFG_FORCE register
 - CFG_VOLTAGE register (DVS resource)

The configuration registers are intended for resource configuration, while state registers are intended to manage the resource state transition; finally DVS registers are intended to dynamic voltage control via DVS-I²C. Configuration and state registers contribute to determine resource behavior. The state register defines to which state the resource has to switch and the timing for the transition. The configuration register defines the resource behavior in a defined state. Although both types of registers can be access by the FSM and the CTL-I²C, it is preferable to reserve I²C access to configuration registers and FSM access to state registers. Access to DVS registers is exclusively done via DVS-I²C in applications using DVS capability.

These registers can be accessed in different ways, individual access to allow accessing registers through their physical address (ID) and broadcast messages that are interpreted by individual resources in function of their configuration

5.3.6.1 State Register (CFG_STATE)

Purpose of this register is to set the state of the resource. If the resource is associated to a Power request pin (PREQ1, PREQ2 or PREQ3), any state change of the Power request pin will be transmitted to all its associated resources.

5.3.6.2 State Mapping Register (CFG_TRANS)

Purpose of this register is to map the individual resource state to the state resulting from system states arbitration (RES_STATE).

5.3.6.3 Voltage Register (CFG_VOLTAGE)

This register is dedicated to resources belonging to the power provider category (LDO or SMPS), is used to set the voltage level of the SMPS and LDO.

5.3.6.4 Force Register (CFG_FORCE)

This register is dedicated to DVS-SMPS. It can be accessed through DVS-I²C and power management control FSM during power on sequence. This is used to force the voltage without ramping.

5.3.6.5 Step Register (CFG STEP)

This register is dedicated to DVS-SMPS; its purpose is to control the slope of voltage ramping when VSEL content is modified.

5.3.7 Power Management I/Os Functionality

5.3.7.1 BOOT[2:0]

Purpose of these input balls is to select the boot sequence executed by the TPS80032 device during the startup phase. BOOT [2:0] balls provide indication on the following parameters to select the correct value for the supply voltages and detection thresholds (see PH_STS_BOOT register).

- BOOT0: Battery chemistry (cut-off voltage), described in EPROM Application Note.
- BOOT1: Described in EPROM Application Note.
- BOOT2: Described in EPROM Application Note.

5.3.7.2 PWRON

The PWRON ball is intended to be connected to a push button to control system power on / off. An internal pull up on the battery domain is implemented on this input.

Three timers are associated to this input duration:

- A short timer of 15ms to confirm the key press detection; this confirmation initiates a power-on sequence or generation of an interrupt depending on system state.
- A long timer, programmable from 50 ms to 1.55 seconds, that measures the key press. A register bit (KPD_STS bit in KEY_PRESS_DURATION_CFG register) is set and an interrupt (SPDURATION) is generated if the key press duration exceeds the timer duration.
- A very long timer of 8 or 4 seconds (the duration is selected with LPK_TIME bit in KEY_PRESS_DURATION_CFG register) that generates a shutdown by forcing the TPS80032 device to the WAIT-ON state. The shutdown reason is indicated by a register bit (DEVOFF_LPK in PHOENIX_LAST_TURNOFF_STS register). The shutdown feature can be disabled by an OTP memory bit (LPK_DISABLE) and there is another OTP memory bit (LPK_RESTART) which can be used to generate a startup just after the transition to WAIT-ON.

PWRON detection is performed on both falling and rising edges (1 interrupt line, 1 interrupt status bit). The polarity is defined as following:

- High level: Key released
- Low level: Key pressed

5.3.7.3 RPWRON

RPWRON is also intended to control the system power on / off. An internal pull up on the battery domain is implemented on this input. One timer is associated to this input duration:

A short timer of 15ms to confirm detection, this confirmation initiates a power-on sequence or generation of an interrupt depending on system state.

RPWRON can be programmed with OTP bit (RPWRON_OFF_DIS) to generate a shutdown sequence. In this situation there is 1 second delay between the interrupt generation and the shutdown sequence.

RPWRON detection is performed on both falling and rising edges. The polarity is defined as following:

- High level: Key released
- Low level: Key pressed

5.3.7.4 REGEN1, REGEN2

The power management FSM controls these output signals. These balls are activated during the power on / power off sequences. The timing of activation is dependant of the power sequence (OTP memory). REGEN1 and REGEN2 can be used to control two different external power supplies. The associated registers are:

- REGEN1_CFG_TRANS, REGEN1_CFG_STATE
- REGEN2_CFG_TRANS, REGEN2_CFG_STATE

The polarity is defined as following:

High level: Active Low level: Disabled

5.3.7.5 SYSEN

This output signal is controlled by the power management FSM, is activated during the power on / power off sequences. The timing of activation is dependant of power sequence. SYSEN can be used to control an external power supply or a slave PM device. SYSEN related registers are:

SYSEN_CFG_TRANS, SYSEN_CFG_STATE

The polarity is defined as following:

High level: Active Low level: Disabled

5.3.8 PREQ1, PREQ2, PREQ3 Hardware Commands

ACTIVE and SLEEP state transitions are transmitted to the TPS80032 device using signal PREQ1. On a PREQ1 transition, the FSM executes an ACTIVE to SLEEP or SLEEP to ACTIVE sequence. This sequence is hardcoded in the OTP memory. FSM conveys sequence information to the resources assigned to PREQ1 (assigned by PREQ1_RES_ASS_X register), by writing in to CFG_STATE register and set each resource in a state based on the state of the PMIC and based on the translation state register setting (XXX_CFG_TRANS). The request signals PREQ2 and PREQ3 are used as enable signals for resources. The regulators and SYSEN, REGEN1, and REGEN2 signals can be assigned to PREQ2 or PREQ3 (PREQ2_RES_ASS_X and PREQ3_RES_ASS_X register), and they are controlled as enabled/disabled with PREQ2 or PREQ3 signals.

If one of the request signal requests the resource, it will be enabled. If none of the request signal requests the resource and the corresponding CFG_STATE register is cleared, it will be disabled.

By default PREQ signals are masked. System state is not affect by PREQ signals while they are masked. PREQ masks configuration bits (MSK_PREQ1, MSK_PREQ2, MSK_PREQ3) are located in the register PHOENIX_MSK_TRANSITION.

PREQ balls status are available in the STS_HW_CONDITIONS register (STS_PREQ1, STS_PREQ2 and STS_PREQ3 bits). PREQ1, PREQ2, PREQ3 are supplied on VIO voltage domain.

The polarity is defined as following:

- · High level: resources are in active state
- · Low level: resources are in sleep state

Dedicated register bits (SENS_PREQ1, SENS_PREQ2 and SENS_PREQ3) allow reversing the PREQ balls polarity (PHOENIX_SENS_TRANSITION register).

5.3.9 DVS Software Commands

Only SMPS DVS compliant can be accessed by the DVS-I²C.

On top of hardware commands, DVS compliant power resources (SMPS1/2/5) can receive additional commands via the DVS-I²C. The DVS-I²C port can address two types of register:

- · A command register
- · A voltage register

The DVS command field (2 MSB bits of xxxx_CFG_FORCE register) will be interpreted as follow:

- 00: ON Force Voltage: The power resource is set in ON mode with the voltage value defined in the 6 LSB bits of the command register SMPS1/2/5_CFG_FORCE
- 01: ON: The power resource is set in ON mode with the voltage value defined in the SMPS1/2/5_CFG_VOLTAGE voltage register
- 10: SLEEP Force Voltage: The power resource is set in SLEEP mode with the voltage value defined in the 6 LSB bits of the command register SMPS1/2/5 CFG FORCE
- 11: SLEEP: The power resource is set in SLEEP mode with the voltage value defined in the SMPS1/2/5_CFG_VOLTAGE voltage register

The SLEEP Force Voltage command with the voltage value set at 000000 must be naturally interpreted as a shutdown command for the power resource.

ON FORCE / SLEEP FORCE set the voltage independently of the adaptive voltage scaling. ON / SLEEP follow the adaptive voltage scaling.

NOTE

- Default value is the voltage value register (both register will be set with the same default value)
- When the voltage is switched on the force voltage value, this is done smoothly with a maximum ramping define by register STEP
- DVS has only access to register voltage and force voltage (no access to register step) for SMPS1, SMPS2 and SMPS5

All power resources, LDOs and non-DVS-SMPS, can be accessed by the control I²C (CTL-I²C). The control I²C allows the host processor to access all the internal registers for configuration purpose or resource commands. LDOs state can be changed by writing to the register xxx_CFG_STATE register and the output voltage level can be controlled by xxx_CFG_VOLTAGE register. The five LSBs represent a binary value used to compute the absolute voltage value to be generated by the LDO:

Absolute Voltage value = 1.0 V + 0.1 V * (binary value - 00000001)

This equation applies to all general-purposes LDOs, for all codes from 00000001 to 00011000. For the remaining codes, it has been specified dedicated output voltages:

- 00000000 sets the output voltage to 0 V
- 00011001 to 00011110 codes are reserved
- 00011111 code sets the output voltages at 2.75 V

SMPS state (on/off) can be changed by writing to the register xxx_CFG_STATE register. SMPS_OFFSET and SMPS_MULT are used to control the offset and the extended mode of the SMPS respectively. The output voltage of the SMPS is calculated based on the equations below:

- Offset and Extended mode disabled
 - Nominal Voltage value = 0.6077 V + 0.01266 V * (binary value 00000001)
- Offset enabled and Extended mode disabled
 - Nominal Voltage value = 0.6077 V + 0.1013 V + 0.01266 V * (binary value 00000001)
- · Offset disabled and Extended mode enabled
 - Nominal Voltage value = (0.6077 V + 0.01266 V * (binary value 00000001)) * (43/21 + 1)
- Offset and Extended mode enabled
 - Nominal Voltage value = (0.6077 V + 0.1013 V + 0.01266 V * (binary value 00000001)) * (43/21 + 1)

5.4 Reset System

This section describes the different reset triggers and the signals related to resets.

5.4.1 Warm Reset (NRESWARM)

The TPS80032 device detects a request for a warm reset on the NRESWARM ball. The warm reset restarts the system without turning off the supplies. After a warm reset, the system is configured the same as after a first switch on (default configuration), except that the states of all resources are unchanged and all supply voltage values can be preserved, depending on the warm-reset sensitivity bit value (WR_S bit in SMPSx_CFG_VOLTAGE and LDOx_CFG_VOLTAGE registers):

- All resources not included in the switch-on sequence keep the state (ON or OFF) they have just before
 the warm reset occurs.
- Depending on the sensitivity bit, those resources either keep the value they had before the warm reset or are set to their default value.
- All resources included in the start-up sequence are always restarted.

During the power-on sequence, the TPS80032 device ignores the warm reset until the host processor releases it.

NRESWARM is an input reset signal. A peripheral or host processor can activate this signal by a software reset. A reset button can be connected to this line to generate a warm reset. The minimum duration of NRESWARM is two clock periods of 32 kHz. The polarity of NRESWARM is active low.

The warm reset affects the POWER and CHARGER registers. Registers for other modules like the USB, FUEL GAUGE, GPADC, and PWM are not affected by a warm reset.

5.4.2 Primary Watchdog Reset

The TPS80032 device includes a primary watchdog timer that generates a reset of the system in case of a software anomaly (no response, infinite loop). The primary watchdog is programmable from 1 to 127 seconds with 1-second steps and a default value of 32 seconds. If the primary watchdog expires, a reset with a new startup is generated. At the same time, the DEVOFF_WDT bit (in the PHOENIX_LAST_TURNOFF_STS register) is set to indicate the primary watchdog expiration. The DEVOFF_WDT bit must be cleared in order to allow a new reset/start-up sequence if a primary watchdog expires again. If the bit has not been cleared the TPS80032 device generates a reset, thus forcing the device to the WAIT-ON/OFF state. This prevents infinite looping in case of software corruption.

The watchdog is initialized to its default value when the system is in the WAIT-ON/OFF state, and starts leaving the WAIT-ON/OFF state to go to the ACTIVE/SLEEP states. The primary watchdog cannot be disabled by I²C writing if it is enabled by the MSK_WDT OTP memory bit.

The HOLD_WDG_INSLEEP bit (in the CFG_INPUT_PUPD1 register) is used to select the states in which the watchdog is running. If the bit is 0, the watchdog is running in the SLEEP and ACTIVE states, whereas if the bit is 1, the watchdog is running in the ACTIVE state and is gated in the SLEEP state.

5.4.3 Thermal Shutdown

If the die temperature gets too high, the thermal shutdown generates a reset, thus forcing the TPS80032 device to the WAIT-ON/OFF state.

5.4.4 NRESPWRON

The NRESPWRON output signal is the reset signal delivered to the host processor at the end of the power-on sequence. It is released when all the TPS80032 supply voltages (core and I/Os) are correctly set up. In addition, the NRESPWRON signal is gated until the 32-kHz crystal oscillator is stable and delivered to the platform. The polarity of the NRESPWRON signal is active low.

5.5 System Control

Internal hardware monitors the different energy sources (main and backup) and charging sources (VAC or VBUS). A set of comparators is dedicated to energy source selection to generate an uninterrupted power supply (UPR), which exists as soon as a valid energy source is present. The backup battery is considered to be a valid energy source after the device is first powered up. POR is released when UPR rises above to POR threshold and the voltage regulator VBRTC provides a supply for the digital control, the 32-kHz oscillators, and the low-power bandgap.

When the system voltage rises above the V_{SYSMIN_LO} threshold, the digital control enables the checks of the startup events. When a startup event is detected, a final check of the system voltage is done versus the V_{SYSMIN_HI} threshold to pursue the power-up sequence.

When the system is active the V_{SYSMIN_HI} comparator can be used for system voltage monitoring (VSYS[5:0] bits in VSYSMIN_HI_THRESHOLD register) to perform checks on system voltage. It compares system voltage versus a programmable value and generates interrupt (VSYS_VLOW) when voltage rises above and drops below the programmed threshold. The comparator can be programmed from 2.3 to 4.6 V in 50-mV steps. The interrupt generation can be masked if the feature is not used.

If the system voltage drops below the $V_{\text{SYSMIN_LO}}$ threshold during operation, the TPS80032 system enters the WAIT-ON state.

Figure 5-3 shows a block diagram of the analog power control.

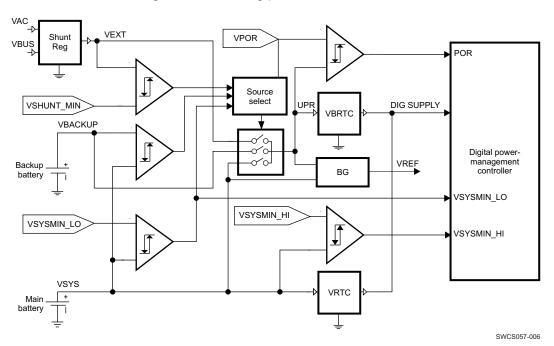


Figure 5-3. Block Diagram of the Analog Power Control

NOTE

- UPR = V_{SYS} if: (V_{SYS} > V_{SYSMIN_LO}) or (V_{SYS} > V_{BACKUP}) and (V_{SHUNT} < V_{SHUNT_MIN})
- UPR = V_{BACKUP} if: $(V_{SYS} < V_{SYSMIN_LO})$ and $(V_{SYS} < V_{BACKUP} 0.1 \text{ V})$ and $(V_{SHUNT} < V_{SHUNT_MIN})$ and POR = 0
- UPR = V_{SHUNT} if: (V_{SYS} < V_{SYSMIN_LO}) and (V_{SHUNT} > V_{SHUNT_MIN})

Figure 5-4 shows the power state transition diagram.

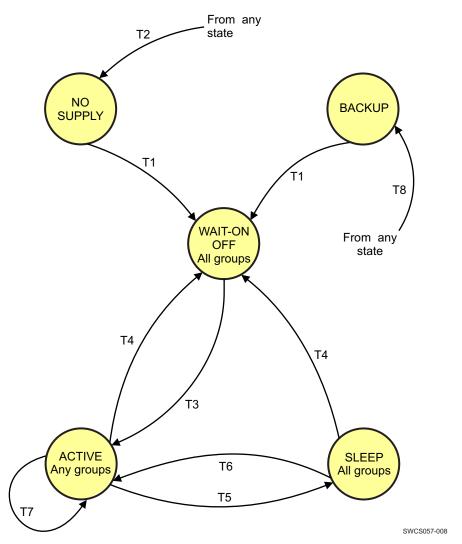


Figure 5-4. Power State Transition Diagram

- Power-on transitions: T1
 - System is in NO SUPPLY or BACKUP state. Connection of a valid energy source initiates the transition to WAIT-ON state.
 - Triggering event: VSYS > V_{SYSMIN_LO}
 - · Insertion of a charged main battery
 - Precharge is active main battery voltage rises
 - Condition: VUPR > VPOR
- Power-off transition: T2
 - The system is in any state. Removal of all energy sources initiates a transition to NO SUPPLY state
 - Triggering event: VUPR < VPOR
 - Main battery discharge or removal
 - · Backup battery discharge or removal
 - Charger unplugged
 - Condition: No more valid energy source
- Switch-on transition: T3
 - The system is in WAIT-ON state, able to accept a hardware switch-on condition, which initiates a transition to ACTIVE state.
 - Triggering event:
 - Push button pressed and released (PWRON)
 - Charging source plug (USB or external)
 - RTC alarm
 - Accessory plug (RPWRON)
 - Insertion of a charged main battery or battery charge running (enabled by default)
 - Software reset (following transition T4)
 - USB ID plug insertion (disabled by default)
 - Condition: VSYS > V_{SYSMIN} HI and no thermal shutdown active
- · Switch-off transition: T4
 - System is powered and in ACTIVE or SLEEP state. A hardware condition may initiate a transition to reach WAIT-ON state.
 - Triggering event:
 - Group DEVOFF command (software)
 - Thermal shutdown
 - Primary watchdog timer expired
 - Software reset (followed by transition T3)
 - Long key press (8/4 seconds) on PWRON
- Sleep-on transition: T5
 - System is powered and in ACTIVE state. A hardware condition initiates a transition to SLEEP state.
 - Triggering event: Subsystem group sleep command (hardware) (PREQ1 ball)

- Sleep-off transition: T6
 - System is powered and in SLEEP state. A hardware condition can initiate a transition to ACTIVE state.
 - Triggering event:
 - Subsystem group active command (hardware) (PREQ1 ball)
 - Warm reset (reinitialization of the TPS80032 device)
 - Active reset transition: T7
 - System is powered and in ACTIVE state. A hardware condition can initiate a reset; system remains in ACTIVE state.
 - Triggering event: Warm reset (reinitialization of the device)
 - Backup-on transition: T8
 - System is powered and in ACTIVE, SLEEP, or WAIT-ON state. The detection of a low main battery initiates the transition to BACKUP state.
 - Triggering event: System voltage < V_{SYSMIN LO} (discharge/removal)
 - Condition: VUPR > VPOR

5.6 System Voltage/Battery Comparator Thresholds

Three thresholds of battery voltage condition the system state transitions:

- POR
 - Released when the energy source provides a voltage greater than 2 V
 - POR threshold is the minimum voltage below which the TPS80032 device is reset.
- VSYSMIN LO
 - Threshold of hardware switch off
 - Two values, depending on the battery technology, are stored in OTP memory (VSYSMIN_LO_MIN, VSYSMIN_LO_MAX bits) and selected by BOOT0 pin.
 - The comparator threshold (V_{SYSMIN_LO}) is configurable from 2.0 to 3.1 V in 50-mV steps.
- VSYSMIN_HI
 - Threshold of switch on
 - Checked as condition to initiate any sequence to ACTIVE state
 - Two values, depending on the battery technology, are stored in OTP memory (VSYSMIN_HI_MIN, VSYSMIN_HI_MAX bits) and selected by BOOT0 pin.
 - The comparator threshold (V_{SYSMIN HI}) is configurable from 2.5 to 4.6 V in 50-mV steps.
 - For correct system behavior, the value of the V_{SYSMIN_HI} threshold must not be programmed higher than the default system supply/charging voltage. Otherwise, the TPS80032 device does not switch on after a charger plug with empty battery.

NOTE

The system voltage must be above the VSYSMIN_HI threshold level in order to begin the start-up sequence. The TPS80032 device initiates the shut-down sequence if the system voltage decreases below VSYSMIN_LO. The dropout voltage requirements for the SMPSs and LDOs must be taken into account, otherwise the regulators may not fulfill their specifications.

5.7 Power Resources

The power resources provided by the TPS80032 device include inductor-based SMPSs and linear LDO voltage regulators. These supply resources provide the required power to the external processor cores and external components as well as to the modules embedded in the TPS80032 device.

5.7.1 Short-Circuit Protection

The short-circuit current limits for all LDOs and SMPS regulators embedded in the TPS80032 device are approximately twice their respective maximum load current. For specific LDO use cases, when the output of the module is shorted to ground, the power dissipation can exceed the power dissipation requirement, if no continuous preventive action is engaged.

The short-circuit protection scheme compares an LDO/SMPS output voltage to a reference voltage and detects a short circuit if the regulator voltage drops slightly below its minimum output voltage (1 V for LDOs and 0.6 V for SMPSs). A short-circuit protection scheme is included in each power resource of the TPS80032 device to ensure that if the output of an LDO or SMPS is short-circuited, the power dissipation does not increase drastically.

All LDOs/SMPSs include this short-circuit protection that monitors the regulator output voltage and generates an interrupt when a short-circuit is detected (see interrupt mapping). The VRTC regulator is the unique power resource that cannot generate an interrupt when shorted. Therefore, this regulator includes a different analog short-circuit mechanism that does not require a switch off the regulator.

If the short-circuit is detected the SMPS_LDO_SHORT_STS register is updated and the application processor needs to clear the short-circuit interrupt (VXXX_SHORT) and turn off the associated power resource within the 10-ms default time. If the interrupt is not cleared before the counter expires, the TPS80032 device switches off automatically. In parallel, the primary watchdog can shut down the device, if the watchdog expires.

In normal use conditions, when the TPS80032 device is turned off, all LDO/SMPS resources (except VRTC/VBRTC) are turned off and their corresponding short-circuit mechanisms are reset. If a short-circuit condition persists in which all power resources should normally be off, the TPS80032 device does not power up again.

CAUTION

If the external components of the SMPSs or LDOs are not placed and the regulator is enabled, the short-circuit detection triggers. If software is unable to clear the interrupt and shut down the regulator within the short-circuit counter time, the PMIC shuts down.

To generate a successful start-up sequence, all the regulators enabled during start up must include the external components (capacitors and coils).

5.7.2 SMPS Regulators

The TPS80032 device includes five SMPS regulators, three of which have DVS capability and thus can be selected to provide independent core voltage domains to the host processor. Each SMPS is a high-frequency, synchronous, step-down DC-DC converter allowing the use of low-cost chip inductors and capacitors.

SMPS1 operates with a 3-MHz fixed-switching frequency and the other SMPSs operate at 6-MHz fixed-switching frequency and enters the power-save mode operation at light load currents to maintain high efficiency over the entire load current. Pulse-frequency modulation (PFM) mode extends the battery life by reducing the quiescent current to 30 μ A (typical) during light load and standby operation. For noise-sensitive applications, the appropriate SMPS can be forced into fixed-frequency pulse-width modulation (PWM) mode (FORCE PWM setting in SMPSx_CFG_TRANS registers). In shutdown mode, the current consumption is reduced to less than 1 μ A.

Each SMPS is a synchronous step-down converter operating with a fixed-frequency, PWM at moderate-to-heavy load currents. At light load currents, the converter operates in power-save mode with PFM. The converter uses a unique frequency locked-ring oscillating modulator to achieve best-in-class load and line response and allows the use of tiny inductors and small ceramic input and output capacitors. At the beginning of each switching cycle, the P-channel MOSFET switch is turned on and the inductor current ramps up, raising the output voltage until the main comparator trips. The control logic then turns off the switch.

One key advantage of the nonlinear architecture is the absence of a traditional feedback loop. The loop response to change in VO is essentially instantaneous, which explains its extraordinary transient response. The absence of a traditional, high-gain compensated linear loop means that the regulator is inherently stable over a wide range of L and CO. Each SMPS integrates a current limit in the P-channel MOSFET (in SMPS1 in the high-side N-channel MOSFET). When the current in the MOSFET reaches its current limit, the MOSFET is turned off and the low-side N-channel MOSFET is turned on for at least 150 ns.

With decreasing load current, the device automatically switches into pulse-skipping operation in which the power stage operates intermittently based on load demand. By running cycles periodically, the switching losses are minimized, and the device runs with a minimum quiescent current and maintains high efficiency. The converter positions the DC output voltage approximately 1% above the nominal output voltage. This voltage-positioning feature minimizes voltage drops caused by a sudden load step. When in PFM mode, the converter resumes its operation when the output voltage trips below the nominal voltage. It ramps up the output voltage with a minimum of three pulses and goes into PFM mode when the inductor

current has returned to a zero steady state. Because of the dynamic voltage positioning, the average output voltage in PFM mode is slightly higher than its nominal value in PWM mode. During PFM operation, the converter operates only when the output voltage trips below a set threshold voltage. It ramps up the output voltage with several pulses and goes into PFM mode when the output voltage exceeds the nominal output voltage.

The rated output current is 5.0/3.0 A for SMPS1, 2.5 A for SMPS2, and 1.1 A for SMPS3, SMPS4, and SMPS5 regulators.

5.7.2.1 Soft Start

Each SMPS has an internal soft-start circuit that limits the inrush current and thus the input voltage drop during start up. The soft-start system progressively increases the on-time from a minimum pulse-width of 30 ns as a function of the output voltage. This mode of operation continues for 200 µs after enable. If the output voltage does not reach its targeted value by this time, such as in the case of heavy load, the soft-start transitions to a second mode of operation. The converter then operates in a current-limit mode, specifically the PMOS current limit is set to half the nominal limit and the N-channel MOSET remains on until the inductor current is reset. After an additional 100 µs, the device ramps up to full current-limit operation, providing that the output voltage rises above approximately 0.7 V. Therefore, the start-up time mainly depends on the output capacitor and load current.

5.7.2.2 Inductor Selection

All step-down converters are designed to operate with an effective inductance value from 0.40 to 1.30 μH and with output capacitors from 4 to 15 μF (15 to 29 μF for SMPS1). The maximum output capacitor value is normally used during the start-up phase, when the capacitor is still unbiased. The internal compensation is optimized to operate with an output filter of L = 1.0 μH and CO = 10 μF (SMPS2, SMPS3, SMPS4, and SMPS5) and CO = 22 μF (SMPS1). Larger or smaller inductor values can be used to optimize the performance of the device for specific operation conditions. If SMPS1 is used for up to 5.0-A current levels, it is recommended to use two 1.0- μH inductors in parallel.

The inductor value affects the following:

- · The peak-to-peak ripple current
- The PWM-to-PFM transition point
- The output voltage ripple
- The efficiency

The selected inductor must be rated for its DC resistance and saturation current. The ripple current of the inductor decreases with higher inductance and increases with higher VI or VO.

In high-frequency converter applications, the efficiency is essentially affected by the inductor AC resistance (quality factor) and to a smaller extension by the inductor DCR value. To achieve high-efficiency operation, special care must be taken to select inductors featuring a quality factor above 20 at the switching frequency. Increasing the inductor value produces lower RMS currents, but degrades transient response. For a given physical inductor size, increased inductance usually results in an inductor with lower saturation current.

The total losses of the coil consist of the losses in the DC resistance and the following frequency-dependent components:

- The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)
- Additional losses in the conductor from the skin effect (current displacement at high frequencies)
- Magnetic field losses of the neighboring windings (proximity effect)
- Radiation losses

5.7.2.3 Output Capacitor Selection

SMPS advanced fast-response voltage mode control allows the use of tiny ceramic capacitors. Ceramic capacitors, with low ESR values, provide the lowest output voltage ripple. The output capacitor requires either an X7R or an X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their wide variation in capacitance over temperature, become resistive at high frequencies.

At nominal load current, the device operates in PWM mode and the overall output voltage ripple is the sum of the voltage step caused by the output capacitor ESL and the ripple current flowing through the output capacitor reactance.

At light loads, the device operates in power-save mode, and the output voltage ripple is independent of the output capacitor value. The output voltage ripple is set by the internal comparator thresholds and propagation delays.

5.7.2.4 Input Capacitor Selection

Because the buck converter has a pulsating input current, a low ESR input capacitor must prevent large voltage transients that can cause misbehavior of the device or interferences with other circuits in the system. Although a 2.2-µF capacitor is sufficient for most applications, a 4.7-µF capacitor is recommended to improve input noise filtering.

CAUTION

Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could even damage the part. In this case, additional bulk capacitance (electrolytic or tantalum) must be placed between C_1 and the power source lead to reduce ringing that can occur between the inductance of the power source leads and C_1 .

5.7.2.5 SMPS1, SMPS2, SMPS5

The TPS80032 device includes three SMPS buck converters (SMPS1, SMPS2, and SMPS5) with DVS-control capability; their output voltages (SMPSx_CFG_FORCE registers) are independently controlled using the DVS-I²C dedicated interface. The output voltages can be also controlled using the CTL-I²C interface with SMPSx_CFG_VOLTAGE registers. Default output voltage at power up is configurable by the OTP memory. The regulators can be used, for example, for a processor or 1.8-V I/O supply.

SMPS1 has two output current ranges selectable by OTP memory bit (SMPS1_5A). A 3-A mode supports output currents up to a 3-A level and 5-A mode supports output currents up to a 5-A level. The electrical characteristics depend on the selected mode (see Table 4-1).

5.7.2.6 SMPS3, SMPS4

The TPS80032 device includes two SMPS buck converters (SMPS3 and SMPS4) that can be used, for example, for memory supply, peripheral, or preregulation.

5.7.3 LDO Regulators

All LDOs are integrated so that they can be connected to an internal preregulator, to an external buck boost SMPS, or to another preregulated voltage source.

The output voltages of all LDOs can be selected, regardless of the LDO input voltage level V_{IN}. There is no hardware protection to prevent software from selecting an improper output voltage if the V_{IN} minimum level is lower than T_{DCOV} (total DC output voltage) + D_V (dropout voltage). In such conditions, the output voltage would be lower and nearly equal to the input supply. For example, in further electrical tables, only the possible input supplies, which fulfill the electrical performances on all their range, are mentioned at each selected output.

The regulator output voltage cannot be modified on the fly, from the voltage range of 1.0 to 2.1 V to the other voltage range of 2.2 to 3.3 V and vice versa. The regulator must be restarted in these cases.

If an LDO is not needed and not turned on by software or a switch-on sequence, the external components can be removed. The TPS80032 device is not damaged by this configuration, and the other functions do not depend on the unmounted LDOs and continue to work.

5.7.3.1 VANA

The VANA voltage regulator is dedicated to supply the analog functions of the TPS80032 device, such as the GPADC, gas gauge, and other analog circuitries.

VANA can be enabled and disabled individually or when associated with a power group. This power resource control optimizes the overall SLEEP state current consumption. This regulator also can be used at platform level to supply other applications, provided they do not generate noise to the supply line and the maximum current is less than 15 mA.

5.7.3.2 VRTC, VBRTC

The VRTC voltage regulator supplies always-on functions, such as RTC and wake-up functions. This power resource is active as soon as a valid energy source is present.

This resource has two modes:

- Normal mode when supplied from main battery and able to supply all digital part of the TPS80032
- Backup mode when supplied from a backup battery or from weak main battery and able to supply only always-on parts

VRTC supplies the digital part of the TPS80032 device. In BACKUP state, the VRTC regulator is in lowpower mode (VBRTC) and is supplied from backup battery or from weak main battery; the digital activity is reduced to the RTC parts only and maintained in retention registers of the backup domain. The rest of the digital is under reset and the clocks are gated.

In WAIT-ON state, the turn-on events and detection mechanism are also added to the previous RTC current load and are still supplied on VRTC or VBRTC (the supply is controlled with VRTC EN OFF STS bit in BBSPOR CFG register).

In ACTIVE state, by default the VRTC switches automatically into standard power mode (the supply is controlled with VRTC PWEN bit in BBSPOR CFG register). The reset is released and the clocks are available.

In SLEEP state, VRTC is kept active. The reset is released and only the 32-kHz clock is available. Still, to reduce power consumption, VBRTC instead of VRTC can be used by software (VRTC EN SLP STS bit in BBSPOR_CFG register).

5.7.3.3 LDO1, LDO2, LDO3, LDO4, LDO5, LDO6, LDO7

LDO5 is a programmable linear voltage converter used to power, for example, a multimedia card (MMC) slot. On top of the normal control by the power controller, it can be turned off when card removal is detected (the LDO5_AUTO_OFF bit in the MMCCTRL register).

Voltage regulator LDO7 can be used to supply removable USIM memory. In addition to the normal control by the power controller, it can be turned off when card removal is detected (the VSIM_AUTO_OFF bit in the SIMCTRL register).

The TPS80032 device includes five general-purpose resources (LDO1, LDO2, LDO3, LDO4, and LDO6) to supply external peripherals, such as cameras sensors, display drivers, memories (eMMC), and others. When not used as a supply, LDO3 can deliver a PWM supply to drive a vibrator motor.

5.7.3.4 LDOLN, LDOUSB

The LDOLN regulator supplies noise-sensitive functions. LDOLN can be preregulated by SMPS.

The LDOUSB regulator supplies the USB PHY from the PMID node of the USB VBUS input or from system supply/battery.

5.8 Backup Battery Charger

The TPS80032 device provides a BACKUP state in which a backup battery powers the RTC and other secure registers when no other energy source is available. The backup battery is optional and can be nonrechargeable or rechargeable. The rechargeable battery can be charged from the system supply using the backup battery charger.

The backup battery charger includes two control loops (CC and CV). A current loop limits the charging current when backup battery voltage is low and a voltage loop that gradually reduces the charging current as backup battery voltage approaches its final value. The charge current limit is fixed and the end of charge voltage is programmable (BB_SEL[1:0] bits in BBSPOR_CFG register).

The backup battery charger is controlled with BB_CHG_EN bit (in BBSPOR_CFG register) and the charging starts if the system supply voltage is 100 mV above backup battery voltage; charging stops when backup battery voltage equals either the selected end of charge voltage level or the system supply voltage, if it is below the end of the charge level programmed. Backup battery charge cannot start if system supply voltage is lower than VSYSMIN_LO. The backup battery switch controls when the system enters BACKUP state (supplied by the backup battery).

During the transition from system supply to backup battery there can be a current spike from the backup battery. If the output resistance of the backup battery is large, an additional capacitor is needed in parallel with the backup battery. See the electrical characteristics for more details.

Figure 5-5 shows a block diagram of the backup battery charger.

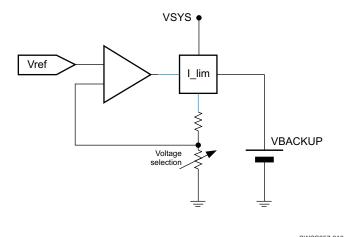


Figure 5-5. Block Diagram of the Backup Battery Charger

5.9 Battery Charging

The TPS80032 device has an integrated switched-mode battery charger designed to generate a system supply and to charge the battery from a USB port. In addition, it can control an external battery charging IC (like BQ24159) to generate a system supply and charge the battery during hardware-controlled charging and selects the priority of the chargers so that only one is enabled at time.

Figure 5-6 shows the block diagram of the USB charging electronics. The figure shows the USB charging-related functions with external components. The device supports two charging configurations, operation with Power Path and without Power Path.

In the Power Path configuration the battery line is connected to the system supply with external PMOS transistor. The system supply is regulated by switched-mode regulator and the battery charging current and voltage are controlled with a battery charger loop and external PMOS transistor. The sense resistor at the output of switched-mode regulator is not needed. When the platform is supplied by battery the external PMOS is closed.

In the non-Power Path configuration the battery line is used as a system supply and the external PMOS is not needed because the battery current is monitored with a resistor placed between ground and negative terminal of the battery. In this configuration a sense resistor at the output of the switched-mode regulator is needed as it is used to control the battery charging current.

For information about the functions and external components related to VAC charging, see Section 5.9.12, Support for External Charging IC.

Figure 5-6. Block Diagram of the System Supply Regulator and Battery Charger

The TPS80032 device supports a wide variety of rechargeable lithium-based battery technologies. Recent battery technologies, such as Li-SiAn and LiFePo4, present a flat discharge region in the range of 3.2–3.3 V; technologies such as LiCoO2 and LiNiMnCoO2 present a flat discharge region in the range of 3.6–3.7 V. To support the different battery chemistries effectively, the TPS80032 device has programmable VSYSMIN thresholds (OTP bits).

The charger also performs monitoring functions:

- AC charger detection
- VBUS detection
- · Battery presence detection

- VBUS overvoltage detection
- Battery overvoltage detection
- · Battery end-of-charge detection
- Thermal protection
- Watchdogs

The same switches and external components that are used for system supply generation in buck mode can be used to generate a 5-V USB OTG supply in boost mode. In this mode, the TPS80032 device can deliver up to 300 mA of total current for USB connector and for LDOUSB.

The VBUS input in the TPS80032 device operates up to 6.3 V; above this, level the system supply regulator is disabled. The VBUS input tolerates up to 20-V input voltages and down to -0.3-V input voltages. The negative input voltage protection can be improved with external PMOS transistor and resistor (shown in Figure 5-6 as optional components). This gives tolerance down to -14 V.

NOTE

The charging source terms are defined as follows (USB Battery Charging Specification, Rev. 1.2)

- Standard Downstream Port (SDP): a downstream port on a device that complies with the USB 2.0 definition of a host or hub.
- Charging Downstream Port (CDP): a downstream port on a device that complies with the USB 2.0 definition of a host or a hub, except that it shall support the Charging Downstream Port features allowing higher charging currents.
- Dedicated Charging Port (DCP): a downstream port on a device that outputs power through a USB connector, but is not capable of enumerating a downstream device.
- USB Charger: a device with a DCP, such as a wall adapter or car power adapter.
- Accessory Charger Adaptor (ACA): an adaptor which allows a single USB port to be attached to both a charger and another device at the same time.
- · Charging Port: a DCP, CDP or ACA

5.9.1 Charger and System Supply Regulator Controller Operation

The operation of the battery charger and the system supply regulator depends on the platform configuration. There are two different configurations for hardware:

- Power Path configuration (POP_APPSCH OTP bit is 1); an external PMOS is needed between VSYS and VBAT.
- Non-Power Path configuration (POP_APPSCH OTP bit is 0); VBAT is used as a system voltage.

In addition, software interaction with battery charging in both configurations depends on the AUTOCHARGE OTP bit:

- Hardware controlled charging (AUTOCHARGE bit is 1); software interaction is minimized.
- Software controlled charging (AUTOCHARGE bit is 0); software controls the battery charging.

The operation in the four different modes has been described in Section 5.9.1.1 through Section 5.9.1.4. The flow chart for startup, shutdown, and fallback (Power Control) operates in parallel with a flow chart of the system supply regulator and battery charging (Charger Control). The safety timer and watchdog operation is described in Section 5.9.6 and the charging profile and default charging parameters are described in Section 5.9.3.

5.9.1.1 Power Path with Hardware Controlled Charging

The TPS80032 device starts up for the VBUS or VAC plug insertion as soon as the system voltage is above the VSYSMIN_HI threshold level if the device is not already powered on. The hardware starts the system supply regulation and battery charging automatically if a USB Charging Port or VAC Charger is detected, or if the battery voltage is below VBATMIN_HI and the device is powered off. If the VBUS is supplied by the USB standard downstream port and the battery is above VBATMIN_HI or the device is powered on, the system supply regulator and battery charger are not started by hardware. The host processor must enumerate to the USB host, configure to a certain current level, set the VBUS input current limit, and enable the system supply regulator and battery charging.

If the system voltage drops below VSYSMIN_LO, the device shuts down and sets a fallback bit to indicate the fallback situation. A new startup is initiated when the battery is charged above the VBATMIN_HI voltage level and after startup, the host processor clears the bit. If the fallback bit is active during the shutdown, the system supply regulator and battery charging is disabled. This prevents infinite looping in a low/no battery case with a weak charger. The operation is shown in Figure 5-7.

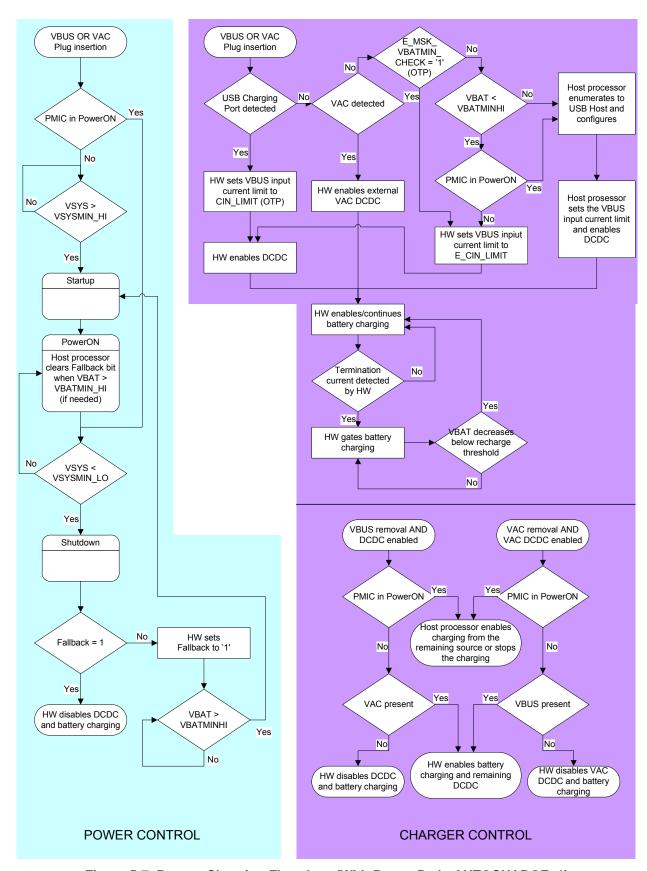


Figure 5-7. Battery Charging Flowchart (With Power Path, AUTOCHARGE=1)

5.9.1.2 Power Path with Software Controlled Charging

The TPS80032 device starts up for the VBUS or VAC plug insertion as soon as system voltage is above the VSYSMIN_HI threshold level if the device is not already powered on. If the device is powered off, the hardware sets the correct VBUS input current limit and starts the system supply regulator either from VBUS or from VAC and the battery charging using the default values from OTP memory. The default charging voltage must be set to the proper battery threshold voltage level to comply with the USB standard. When the device is powered on, the host processor takes control over charging.

If the system voltage drops below VSYSMIN_LO, the device shuts down and sets a fallback bit to indicate the fallback situation. A new startup is initiated when the battery is charged above the VBATMIN_HI level and the host processor clears the bit. If the fallback bit is active during the shutdown, the system supply regulator and battery charging is disabled. This prevents infinite looping in a low/no battery case with a weak charger. The operation is shown in Figure 5-8.

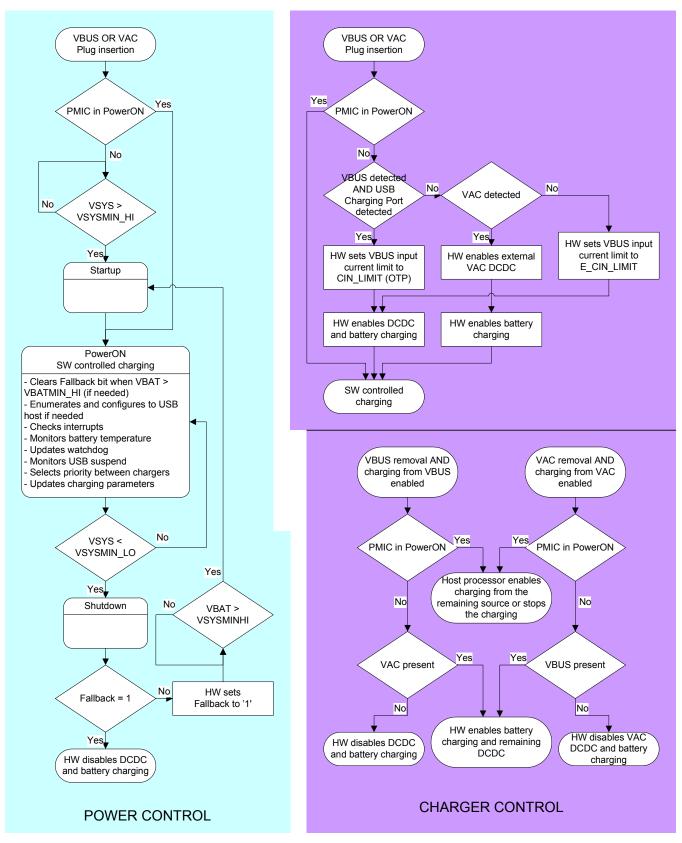


Figure 5-8. Battery Charging Flowchart (With Power Path, AUTOCHARGE=0)

5.9.1.3 Non-Power Path with Hardware Controlled Charging

The TPS80032 device starts up for the VBUS or VAC plug insertion as soon as battery voltage is above the VSYSMIN_HI threshold level if the device is not already powered on. The hardware starts the battery charging automatically if USB Charging Port or VAC Charger is detected, or if the battery voltage is below VBATMIN_HI and the device is powered off. If the VBUS is supplied by the USB standard downstream port and the battery voltage is above VBATMIN_HI or the device is powered on, the battery charger is not started by hardware. The host processor must enumerate to the USB host, configure to a certain current level, set the VBUS input current limit, and enable the battery charging.

If the battery voltage drops below VSYSMIN_LO, the device shuts down and sets a fallback bit to indicate about the fallback situation. A new startup is initiated when the battery is charged above the VSYSMIN_HI threshold level and after startup the host processor clears the bit. If the fallback bit is active during shutdown, the battery charging is disabled. This prevents infinite looping in low/no battery case with weak charger. The operation is shown in Figure 5-9.

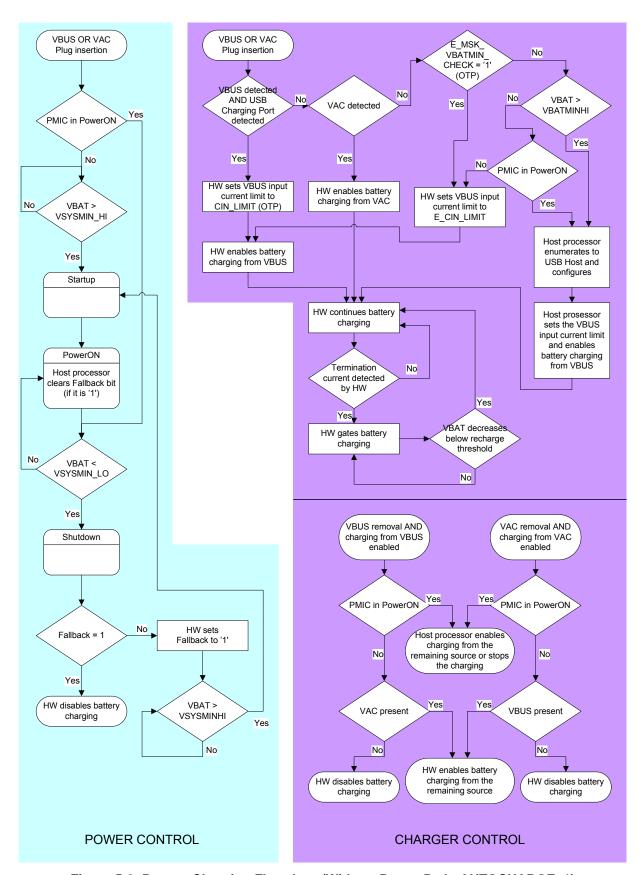


Figure 5-9. Battery Charging Flowchart (Without Power Path, AUTOCHARGE=1)

5.9.1.4 Non-Power Path with Software Controlled Charging

The TPS80032 device starts up for the VBUS or VAC plug insertion as soon as battery voltage is above the VSYSMIN_HI threshold level if the device is not already powered on. If the device is powered off, the hardware sets the correct VBUS input current limit and starts the battery charging using the default values from OTP memory. The default charging voltage need to be set to good battery threshold voltage level in order to comply with the USB standard. When the device is powered on, the host processor takes control over charging.

If the battery voltage drops below VSYSMIN_LO, the device shuts down and sets a fallback bit to indicate the fallback situation. A new startup is initiated when the battery is charged above the VSYSMIN_HI threshold level and the host processor clears the bit. If the fallback bit is active during the shutdown, the battery charging is disabled. This prevents infinite looping in a low/no battery case with a weak charger. The operation is shown in Figure 5-10.

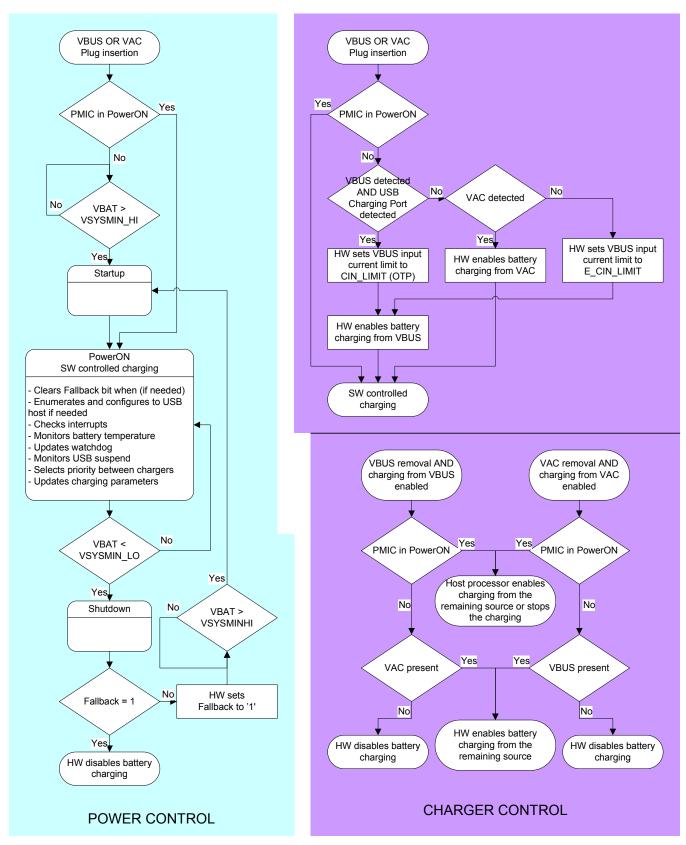


Figure 5-10. Battery Charging Flowchart (Without Power Path, AUTOCHARGE=0)

5.9.2 System Supply Regulator

During software-controlled charging, software selects the VBUS input current limit, the VBUS input voltage collapse level, and the system supply regulation voltage. The programmable resources are:

- Input limit current set point register CIN_LIMIT[3:0] (maximum current drawn from VBUS charging source)
- Input voltage set point register BUCK_VTH[2:0] (VBUS voltage collapsing level)
- · System supply voltage set point register

The system supply regulation voltage can be a fixed voltage or follow the battery voltage allowing the linear battery charger to regulate the charging current and voltage (DPPM control mode).

5.9.3 Battery Charging

5.9.3.1 Power Path Configuration

When the Power Path configuration is used, the battery charging consists of two different regulators, the system supply regulator generating the system supply (VSYS) from the USB VBUS voltage and a linear battery charging loop regulating the battery node (VBAT) from the system supply (VSYS) using an external PMOS transistor. During the preconditioning phase, an integrated current source is used for battery charging. The use of the dedicated loop for battery charging allows monitoring of the battery current and voltage independently and minimizes the power dissipation thanks to the low-ohmic external transistor.

The TPS80032 device includes five analog loops that influence the system supply regulator's output current:

- System voltage regulation loop, maintaining the system voltage (VSYS) at constant level (VSYS_PC) during preconditioning and precharging and at (VBAT+DLIN[1:0]) level during full-charge phase and end-of-charge phase.
- VBUS voltage anticollapse loop sensing the VBUS voltage and preventing the VBUS voltage from dropping below the programmed level (BUCK_VTH[2:0]).
- VBUS input current loop sensing the input current and limiting it below the programmed level (CIN_LIMIT[5:0]).
- Thermal regulation loop sensing the DCDC temperature and limiting it below thermal shutdown level.
- Cycle-by-cycle current monitoring loop sensing the current in high-side switch and limiting it below cycle-by-cycle limit (BUCK_HSLIMI).

The dedicated battery charging control includes three loops that influence the battery charging current:

- Constant current (CC) loop sensing the battery current and limiting it below charging current level (VICHRG[3:0]).
- Constant voltage (CV) loop sensing the battery voltage and limiting it below charging voltage level (VOREG[5:0]).
- DPPM loop monitoring the voltage between system voltage and battery voltage and limiting the voltage to threshold level (DLIN[1:0]/2) by decreasing the charging current.

Figure 5-11 shows the control loops for the system supply regulation and for the battery charging.

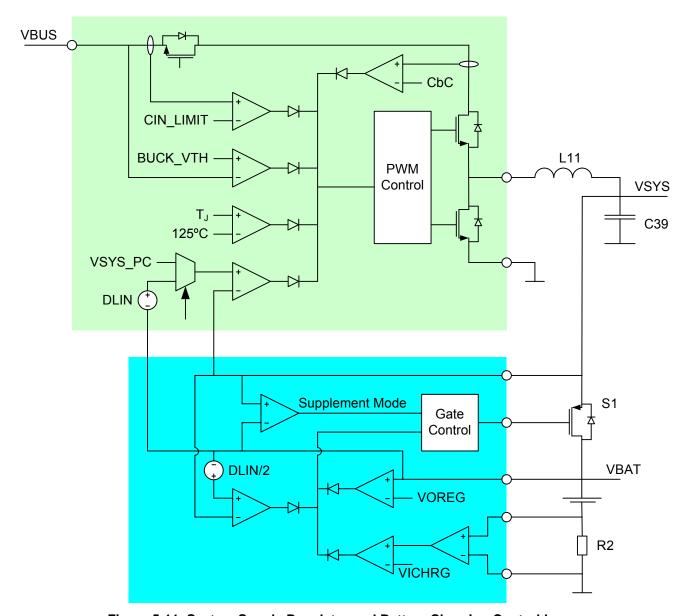


Figure 5-11. System Supply Regulator and Battery Charging Control Loops

CAUTION

Resistor R2 is used for charging current control in Power Path configuration and must be placed even if Gas Gauge is not used.

In addition, a battery current is monitored and if the termination current level (VITERM[2:0]) is detected an interrupt is generated and battery charging is stopped according to the selected operation.

The battery charging profile consists of three phases:

- Preconditioning
- Precharging
- Full-charge phase

NOTE

The DLIN[1:0] voltage level must be selected so that the voltage is higher than the maximum dropout on the switch (maximum charging current multiplied by the maximum resistance of the switch).

Figure 5-12 shows a charging profile and the different parameters programmed in OTP memory and software programmable parameters for charging with Power Path. The charging current is usually limited by the VBUS input current loop when charging from the standard downstream port because the limit is set to 100 or 500 mA. If the charging source cannot provide the current the charger is drawing, the VBUS voltage decreases. The VBUS anticollapse loop senses the VBUS voltage and decreases the current so that the voltage does not fall below the programmed voltage level (see Section 5.9.4).

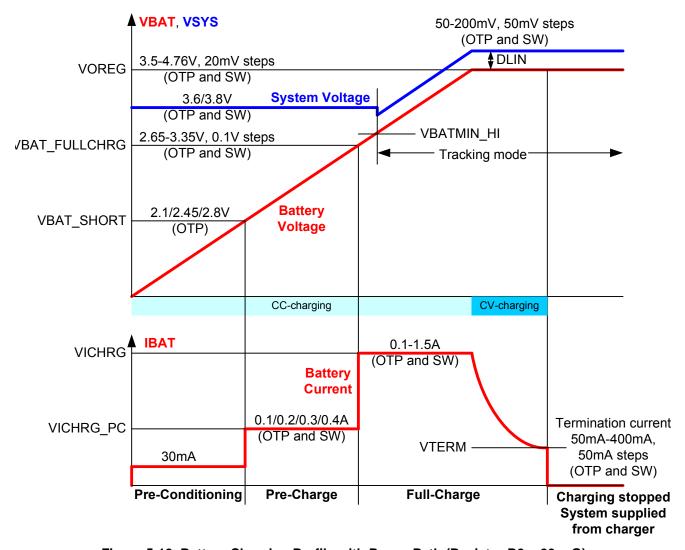


Figure 5-12. Battery Charging Profile with Power Path (Resistor R2 = 20 m Ω)

5.9.3.2 Non-Power Path Configuration

When the non-Power Path configuration is used, the battery charging is controlled by switched-mode regulator from the USB VBUS voltage.

The TPS80032 device includes six analog loops that influence the output current:

- VBUS voltage anticollapse loop sensing the VBUS voltage and preventing the VBUS voltage from dropping below the programmed level (BUCK_VTH[2:0]).
- VBUS input current loop sensing the input current and limiting it below the programmed level (CIN_LIMIT[5:0]).
- Constant voltage (CV) loop sensing the battery voltage and limiting it below charging voltage level (VOREG[5:0]).
- Constant current (CC) loop sensing the battery current and limiting it below charging current level (VICHRG[3:0]).
- Cycle-by-cycle current monitoring loop sensing the current in high-side switch and limiting it below cycle-by-cycle limit (BUCK_HSLIMI).
- Thermal regulation loop sensing the DCDC temperature and limiting it below thermal shutdown level.

Figure 5-13 shows the control loops for the battery charging.

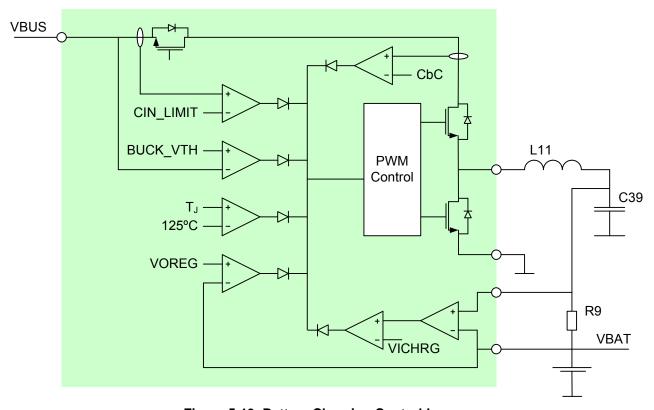


Figure 5-13. Battery Charging Control Loops.

In addition, a battery current is monitored and if the termination current level (VITERM[2:0]) is detected an interrupt is generated and battery charging is stopped according to the selected operation.

The battery charging profile consists of three phases:

- Preconditioning
- Precharging
- Full-charge phase

Figure 5-14 shows a charging profile and the different parameters programmed in OTP memory and software programmable parameters for HW controlled operation (AUTOCHARGE=1) and Figure 5-15 shows a charging profile and the different parameters programmed in OTP memory and software programmable parameters for SW controlled operation (AUTOCHARGE=0). The charging current is usually limited by the VBUS input current loop when charging from the standard downstream port because the limit is set to 100 or 500 mA. If the charging source cannot provide the current the charger is drawing, the VBUS voltage decreases. The VBUS anticollapse loop senses the VBUS voltage and decreases the current so that the voltage does not fall below the programmed voltage level (see Section 5.9.4).

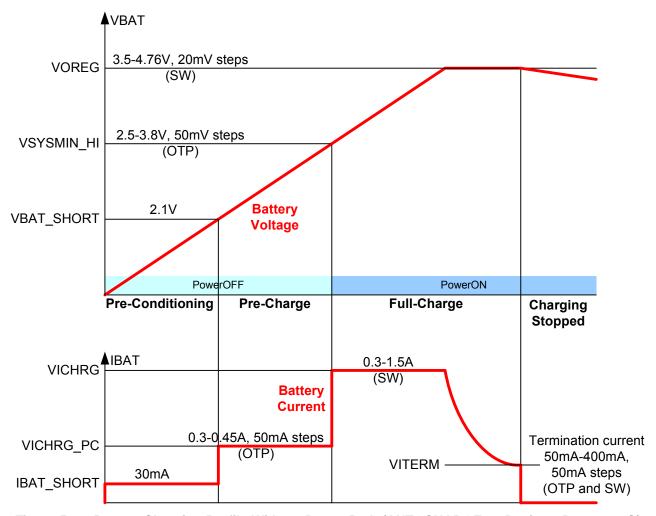


Figure 5-14. Battery Charging Profile Without Power Path (AUTOCHARGE=1, Resistor R9 = 68 mΩ)

Submit Documentation Feedback Product Folder Links: TPS80032

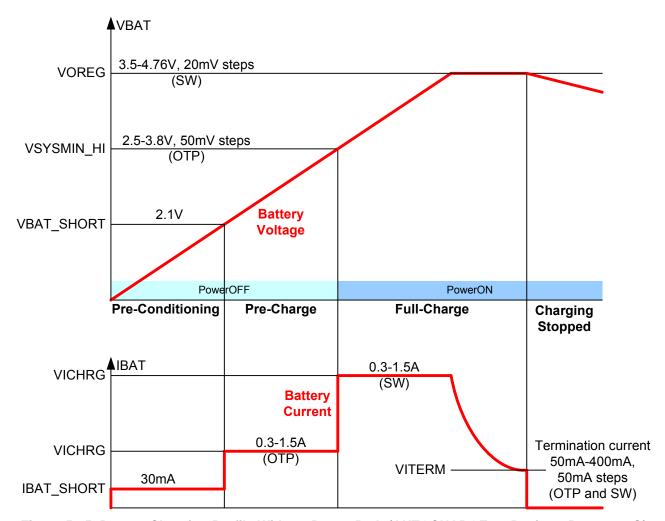


Figure 5-15. Battery Charging Profile Without Power Path (AUTOCHARGE=0, Resistor R9 = 68 mΩ)

5.9.3.3 Preconditioning

During preconditioning, the battery voltage is below the VBAT_SHORT level and the charging current is limited to 30 mA (IBAT SHORT). If the system supply in Power Path configuration decreases during the preconditioning phase, the preconditioning current is automatically reduced. In this mode, the charger uses a linear charging operation mode. This phase detects a defective (shorted) battery and brings the battery voltage to a level acceptable for higher charging current. If the battery is defective (shorted) and the battery voltage doesn't increase above VBAT_SHORT level the charger stays in preconditioning phase. As soon as the battery voltage is above VBAT SHORT, a precharging phase is entered automatically. In Power Path configuration the VBAT SHORT level is programmed by OTP memory (VBAT SHORT[1:0] bits).

5.9.3.4 Precharge Phase

The precharging phase is used when the battery voltage is between VBAT_SHORT and VBAT_FULLCHRG (VSYSMIN_HI without Power Path). If the system supply in Power Path configuration decreases during the precharge phase, the precharge current is automatically reduced (DPPM loop). During precharging, the charging current is limited to decrease the power dissipation in the external PMOS. The precharging current is programmed in OTP memory (VICHRG_PC[1:0] bits).

The precharge current level is controlled by monitoring the voltage across the sense resistor. The default currents are available with resistor R9 = 68 m Ω without Power Path and R2 = 20 m Ω with Power Path.

5.9.3.5 Full-Charge Phase

The full-charge phase starts when the battery voltage is above VBAT_FULLCHRG and the system supply is regulated from a charging source (without Power Path, the threshold level is VSYSMIN_HI).

With Power Path, the transition from a fixed system supply level into a tracking system supply level is done when the battery voltage is at the VBATMIN_HI level. The VBATMIN_HI level is the same as VSYSMIN_HI level (defined by OTP memory bits, VSYSMIN_HI[5:0]) except that the level is limited to 3.7 V. This means that if the VSYSMIN_HI is programmed above the 3.7-V level, the transition is done at the 3.7-V level. VBATMIN_HI is defined in the VBATMIN_HI_THRESHOLD register and the host processor can change the level. The threshold is updated with the default value from OTP memory during startup.

If the system voltage decreases during the full-charge phase, the charging current is automatically reduced (DPPM loop) to a value keeping the dropout voltage higher than 50% of the dropout voltage setting (programmed with the DLIN[1:0] bits in the CONTROLLER_VSEL_COMP register), to ensure proper operation of the charging circuitry.

The full-charge current level is controlled by monitoring the voltage across the sense resistor. The default currents are available with resistor R9 = $68 \text{ m}\Omega$ without Power Path and R2 = $20 \text{ m}\Omega$ with Power Path.

5.9.3.6 Termination Current Detection

The battery current is monitored during CV-charging and if the termination current level is triggered in the Power Path configuration, the battery charging is gated but the system voltage regulation from the VBUS input continues. If the battery voltage decreases 120 mV below the charging voltage (VOREG) level, the full-charge phase is continued.

In the non-Power Path configuration the operation during termination current level detection is defined by the CHARGE_ONCE and TERM bits. If the CHARGE_ONCE bit is 1, the battery charging is terminated when the termination current threshold is triggered. If the CHARGE_ONCE bit is 0 and TERM bit is 1, the battery charging is gated when the termination current level is triggered. If the battery voltage decreases 120 mV below the charging voltage (VOREG) level, the full-charge phase is continued.

The termination current level is monitored by measuring the voltage across the sense resistor. The default currents are available with resistor R9 = $68 \text{ m}\Omega$ without Power Path and R2 = $20 \text{ m}\Omega$ with Power Path.

5.9.4 Anticollapse Loop and Supplement Mode

There are two different anticollapsing loops; one monitoring the VBUS input and controlling the switched-mode regulator and another one with Power Path operation (DPPM) monitoring the VSYS line and controlling the linear battery charger loop.

The anticollapse loop of the VBUS input operates so that the VBUS input voltage is monitored continuously and the current of the switched-mode regulator is controlled by an analog loop to maintain the defined VBUS input voltage (programmed with the BUCK_VTH[2:0] bits in the ANTICOLLAPSE_CTRL1 register). If the VBUS source cannot deliver high enough current and the VBUS voltage drops, the VBUS input current is decreased by the analog loop so that the VBUS voltage stays at programmed level. If an external PMOS is used to protect the VBUS input against negative voltage, then the VBUS voltage at the connector can be slightly different because the anticollapse loop monitors the voltage at the PMIC input.

The anticollapse loop of the linear battery charger (DPPM) monitors the system voltage (VSYS) and controls the battery charging current. If battery voltage is below the VBATMIN_HI the threshold, the level for the DPPM loop is 3.4 V, whereas if the battery voltage is above VBATMIN_HI, the VSYS voltage tracks the VBAT voltage and the DPPM threshold is 50% of the programmed tracking voltage.

Figure 5-16 shows an example of DPPM loop and supplement mode operation. The charging current is set to 1 A and the VBUS input current limit is 1.5 A. When the system load is small the 1000 mA charging current can be generated with around 750 mA VBUS current, thanks to the efficient DCDC converter. If the system load is increased to around 900 mA level, the 1500 mA VBUS input current limit is reached and the DPPM loop decreases the battery charging current in order to maintain 50% of the programmed tracking voltage across the external FET. If the system load is increased further up to around 1900 mA level, the battery charging current decreases to 0 mA and the supplement mode is enabled. Increasing the system load above 1900 mA level directly affects the battery discharge current level. When the system load is decreased the operation is opposite entering from supplement mode into DPPM loop operation and finally out from VBUS input current limit mode.

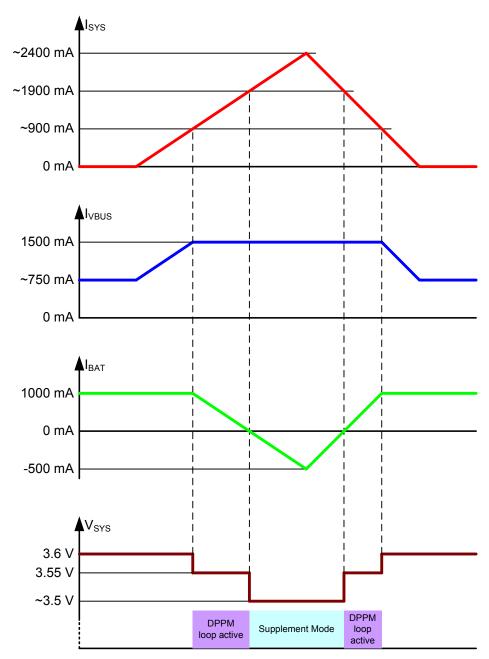


Figure 5-16. Example of DPPM Loop and Supplement Mode Operation ($V_{VBUS} = 5 \text{ V}$, $V_{BAT} = 3.5 \text{ V}$, 1.5 A VBUS Input Current Limit)

5.9.5 Battery Temperature Monitoring

JEITA requirements define the maximum battery charging current and voltage at different temperature ranges for Li-Ion batteries. The TPS80032 device supports the JEITA requirements with hardware-based temperature measurement gating the battery charging below and above the preset temperature values (typically 0°C and 60°C). Between these limits host processor must monitor the battery temperature using the integrated general-purpose analog-to-digital converter (GPADC) and setting the charging current and voltage accordingly. Figure 5-17 shows the voltage and current limits at different temperatures.

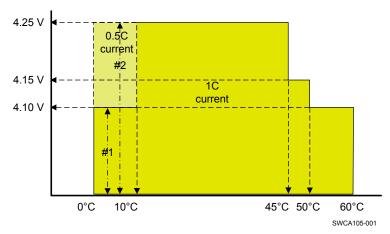


Figure 5-17. Charging Current and Voltage Limits at Different Temperatures

Figure 5-17 allows two options for charging between 0°C and 10°C. As shown in the figure, #1 allows charging up to 4.10 V with 1C current and #2 allows charging up to 4.25 V with 0.5C current. The term 1C defines the charging current related to the battery capacity. For a 1200-mA-h battery 1C corresponds to a 1.2-A current.

The battery temperature is measured using an external NTC resistor. The measurement is enabled before the charging starts and the temperature is constantly monitored during charging. If the battery temperature is outside of the valid range, the charging is gated; if the temperature returns to the valid range, the charging continues. In Power Path mode the system supply regulation is continued when the battery charging is gated. The gating of the charging can be disabled with an OTP memory bit (EN_BAT_TEMP) if needed. The temperature measurement circuitry is enabled if VBUS or an external charger is detected. An interrupt (CHRG_CTRL) is always generated when the battery temperature crosses the temperature limits in both directions. The interrupt generation can be masked if needed.

Figure 5-18 shows the battery temperature measurement circuitry.

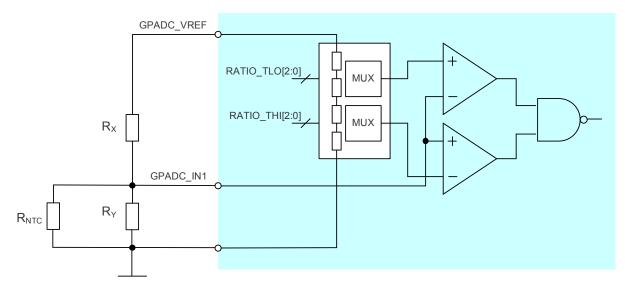


Figure 5-18. Battery Temperature Measurement

Because the NTC characteristics are highly nonlinear, it is combined with two resistors allowing linearization of its characteristics and making the sensitivity of the system more constant over a wide temperature range. The resulting voltage at GPADC_IN1 can be measured using the GPADC and is also monitored by two comparators that enable the charge of the battery only when the temperature is within a specified window, typically 0°C to 60°C. Resistors R_X and R_Y are used to set the desired temperature threshold levels.

5.9.6 Safety Timer and Charging Watchdog

The TPS80032 device includes a safety timer, the timing of which depends on the charging control mode and the USB Charging Port detection result. During hardware-controlled charging, the period for the USB charging port and the USB standard downstream port is approximately 6 minutes; for customer-specific chargers, this period is approximately 14 minutes. Longer values can be selected with the OTP memory (CHWDT_DEP0 bit), 11 minutes instead of 6 minutes and 29 minutes instead of 14 minutes. Charger source dependency on the timer values can be enabled and disabled by OTP memory (CHWDT_DEP_DETN bit). If disabled, the timer value is always set as for the USB standard downstream port and for the customer-specific charger (longer timer value). During software-controlled charging the safety timer is replaced by charging watchdog (SW WDT), host processor can select the watchdog time up to 127 seconds. The transition from safety timer to software-controlled watchdog occurs when software updates the WDG_RST, WDT[6:0], VICHRG[3:0], VOREG[5:0] bits or CONTROLLER_CTRL1 register. The different safety timer and watchdog times are summarized in the EPROM bits Application Note. If the AUTOCHARGE mode is selected by OTP memory bit, the fixed 8-hour watchdog (HW WDT) is taken into use when the battery voltage is above the VBATMIN HI level.

If the safety timer or watchdog expires, the battery charging is gated and interrupt is sent to host processor. In Power Path configuration, the system supply regulator still continues to operate when the battery charging is gated.

The operation of the safety timer and watchdog is presented in Figure 5-19.

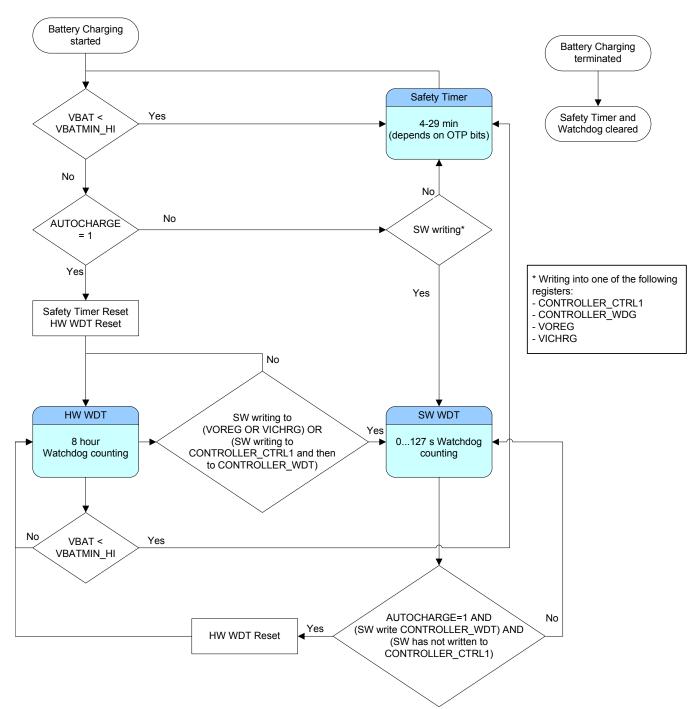


Figure 5-19. Safety Timer and Charging Watchdog

Product Folder Links: TPS80032

5.9.7 Limit Registers

During the full-charge phase, host processor sets the charging voltage and current. However, the device limits the current and voltage to a level that is defined in the limit registers (CHARGERUSB_CTRLLIMIT1 and CHARGERUSB_CTRLLIMIT2). The limit registers in the device must be written just after the startup. Host processor must check the battery type and define the maximum charging current and voltage for the battery being used, write the limit values, and lock the limit registers with the LOCK_LIMIT bit, so that these cannot be changed when the device is powered on. This ensures that third-party software or a virus cannot set a charging current or voltage that is too high. The limit values are reset during power off by the NRESPWRON signal and they must be written by host processor during every power up. Figure 5-20 shows the structure of the limit and programming registers.

Figure 5-20. Charging Current and Voltage Limit Registers

5.9.8 Battery Presence Detector

The TPS80032 device supports battery detection. The presence of the battery can be detected with the GPADC_IN0 input signal. The interface has two different functions:

- Detect battery removal and presence
- Measure the size of the resistor connected to the GPADC_IN0 line in the battery pack using the GPADC

Battery pack removal is detected by a comparator that monitors $GPADC_IN0$. The battery pack must have a pull-down resistor (R_{BRI}) and the device has a current source (I_{BRI}) in the line. If the battery pack is removed, $GPADC_IN0$ rises above the comparator threshold level, the battery removal is detected, and the device sends an indication (BAT interrupt) to the host processor. In addition, battery charging is terminated if the battery is not present. Battery removal is detected with a comparator and a current source supplied on the VRTC supply domain. This supply scheme allows detection in a dead battery case configuration, because the VRTC can be supplied from the VBUS or VAC lines. The battery presence detection module is enabled during the charging and during the ACTIVE and SLEEP states.

Figure 5-21 shows a block diagram of the battery presence detection circuitry.

Detailed Description

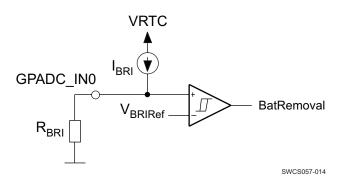


Figure 5-21. Battery Presence Detector

CAUTION

If the GPADC_IN0 line is not used for battery presence detection in the Power Path configuration (POP_APPSCH OTP bit is 1), the capacitance of the VBAT line must be below 100 μ F. Otherwise a fully discharged battery cannot be detected correctly by the battery charging loop.

5.9.9 Indicator LED Driver

The device has an indicator LED driver that indicates charging is ongoing during hardware-controlled charging. During hardware-controlled charging, the LED driver is enabled only if the charging is ongoing and it is turned off if the battery is not charged. The supply for the charging indicator LED driver is generated from CHRG_PMID or VAC, depending on the active charging path. The CHRG_PMID pin is used instead of the VBUS line so that the LED indicator current is included into the VBUS input current limit.

During power on, host processor can control the indicator LED regardless of the charging with register bits (LED_PWM_CTRL1 and LED_PWM_CTRL2). The supply for the LED can be selected as CHRG_PMID, VAC, or CHRG_LED_IN. The current level can also be selected and the dimming function can be used. Dimming is done with a 128-Hz PWM signal, which has 255 linear steps. The LED output pin has a selectable pulldown when the module is disabled; the pulldown is enabled by default.

The indicator LED driver is also used to indicate if the device cannot power on after a key press (PWRON). If the battery voltage is too low for startup, the LED driver gives three 300-ms pulses with a 300-ms duration between the pulses.

5.9.10 Supported Charging Sources

The following chargers are supported with the integrated switched-mode charger from the USB connector:

- Dedicated Charging Port (DCP)
- Charging Downstream Port (CDP)
- Standard Downstream Port (SDP)
- · Chinese charger

To configure the system supply regulator and charger for proper operation mode depending on the charging source characteristics, the charging source type must be detected and identified. The detection of the charger attached to the USB connector is made inside the device by detecting a voltage greater than VINmin on the charger input.

To minimize the capacitance of the data lines, the type of the charger connected to the USB connector can be identified by the USB PHY and the information of the maximum current drawn from the charging source can be transmitted to the device with a dedicated signal (CHRG_DET_N). The TPS80032 device enables detection by delivering the LDOUSB supply (selectable by OTP memory bit, AUTO_LDOUSB_DIS). The charger detection circuitry must deliver at least a 1.8-V voltage level to the CHRG_DET_N input pin, by default a high logic level indicating that a USB charging port is detected. The polarity of the charger detection signal can be selected with an OTP memory (DET_N_POL bit). The accessory charger adapter (ACA) is identified in the TPS80032 device. A typical connection of the PMIC and USB PHY is shown in Figure 5-22.

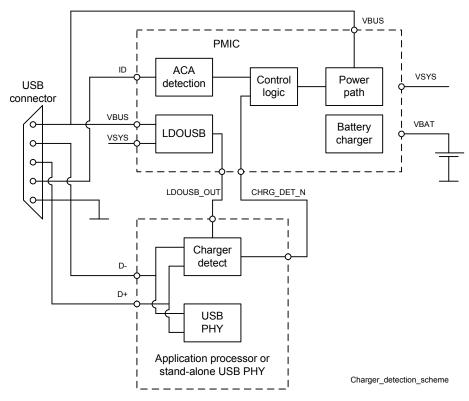
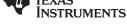


Figure 5-22. Connection for the USB Charging Port Detection

The device can be interfaced with an ACA (external to the terminal) to support charging from the USB Charging Port and USB communication to other USB devices from the USB port. For a description of ACA detection, see USB OTG, USB OTG.

5.9.11 USB Suspend


The TPS80032 device includes a HZ_MODE bit which is usable, for example during USB suspend periods. The benefit of the bit is that it can be used to gate the charging without changing any charging parameters. When the suspend period ends, clearing the bit continues the battery charging.

5.9.12 Support for External Charging IC

The TPS80032 device can be interfaced with an auxiliary stand-alone charger device to support the following use cases:

- Simultaneous battery charging from other than USB connector (different connector) and OTG operating
 mode with USB connector (the integrated switched-mode system supply regulator used as the VBUS
 supply)
- System supply generation and charging from the sources not connected to the USB connector

Detailed Description

In the Power Path configuration the battery charging is always controlled by the TPS80032 device and the external IC only generates the system supply which is needed for the battery charging. In the non-Power Path configuration the external IC is used for battery charging. Figure 5-23 shows the connections between TPS80032 device, application processor and external charging IC (BQ24159) in Power Path configuration.

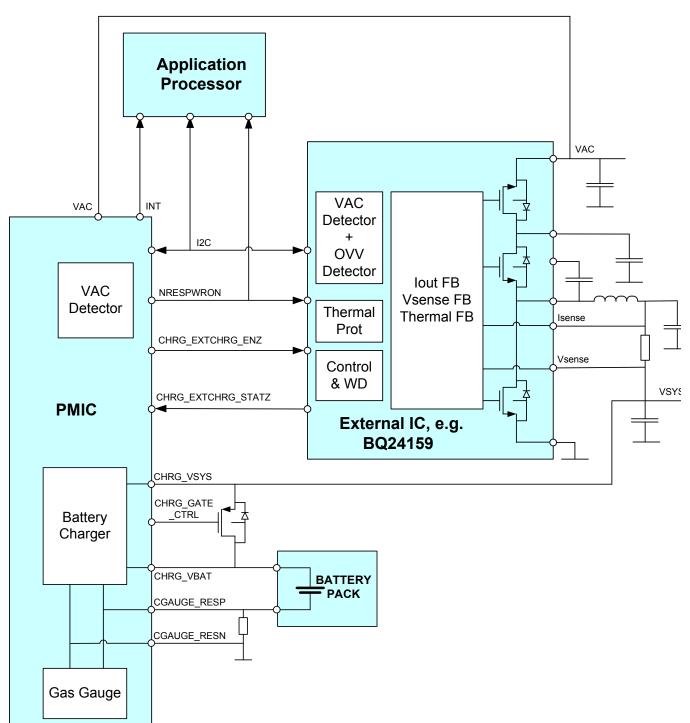


Figure 5-23. Connection Diagram for External Charging Interface in Power Path Configuration

The external IC is enabled with a 1.8-V CMOS level signal, CHRG_EXTCHRG_ENZ. A low logic level indicates that the regulator is enabled. The system supply regulation / battery charging status is indicated with the CHRG_EXTCHRG_STATZ signal. An external IC pulls the signal down during operation.

The integrated USB regulator can be associated with an external VAC regulator. For that reason, the VAC wall charger input is connected to the device to define the priorities. These priorities are controlled by hardware when the device is powered off (NRESPWRON=0):

- When the VBUS is detected and the VAC is not detected, the USB input is used.
- · When the VAC is detected and the VBUS is not detected, the external charging input (VAC) is used.
- When the VBUS and VAC are detected:
 - If CHRG_DET_N = 0 and ACA (RID_A, RID_B or RID_C) is not detected (100-mA VBUS input current limit), the VAC wall charger is expected to be better (or equivalent) and thus is chosen as the default input path.
 - If CHRG_DET_N = 1 or ACA (RID_A, RID_B or RID_C) is detected (USB Charging Port detected), the USB is expected to be sufficient for system supply generation and charging and thus is chosen as the default input path.

If there is a fault condition on a charger during hardware-controlled operation and the fault condition continues for at least 2.5 seconds, the input source is changed for a lower priority input. The change into a lower priority input only prevents infinite looping between inputs. If only one charger is attached, the regulator is not disabled in a fault condition, and if the fault condition does not disappear; the input is terminated when the watchdog expires.

NOTE

In the Power Path mode the system voltage level is regulated according to the voltage level set in the BQ24159. There is no automatic tracking of the battery voltage like when integrated DCDC is used for system supply regulation. The voltage tracking must be done by host processor in order to maintain high enough dropout for the external PMOS transistor and on the other hand to limit the power dissipation in the PMOS transistor.

5.9.13 Battery Charger Interrupts

Figure 5-24 shows the system supply regulator and battery charger interrupt handling structure.

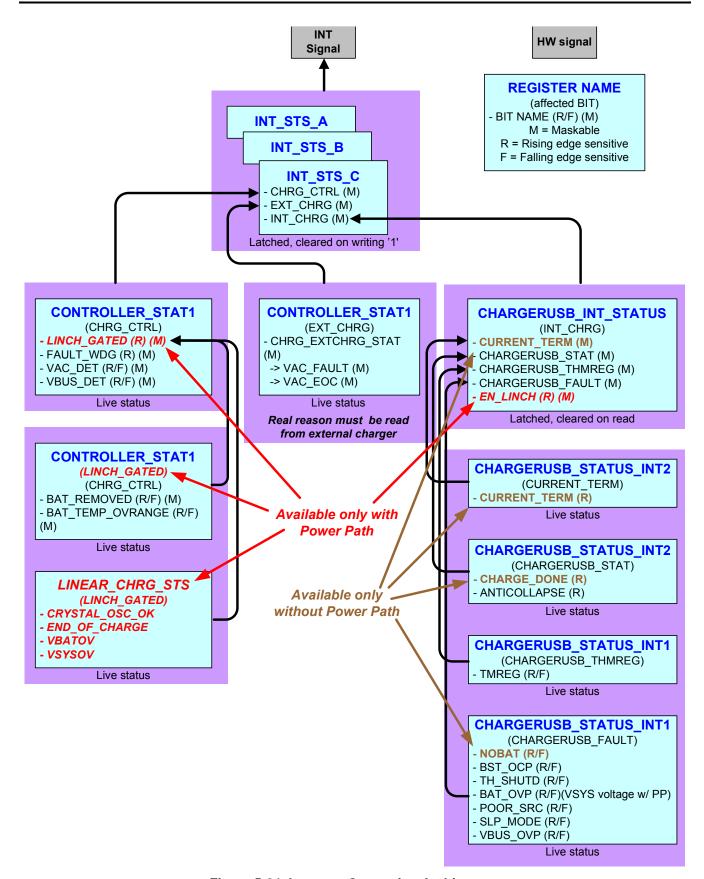


Figure 5-24. Interrupt Generation Architecture

When the INT interrupt signal is set, host processor must read the reason of the interrupt by reading the three interrupt status registers (INT_STS_A, INT_STS_B, and INT_STS_C). The battery charging related register bits (CHRG_CTRL, EXT_CHRG, and INT_CHRG) are in the INT_STS_C register. The source of the interrupt is

- CHRG_CTRL: The interrupt source is in the charger controller.
- EXT_CHRG: The interrupt source is in external charging IC.
- INT_CHRG: The interrupt source is in the TPS80032 battery charger.

The CHRG_CTRL indication can be further identified from the CONTROLLER_STAT1 register. This register shows the actual status of the different interrupt sources, so if the situation disappears before software can read it, software cannot know the real reason for the interrupt.

The origin of the external charger interrupt must be read from the external charging IC. The CHRG_EXTCHRG_STATZ bit shows the actual level of the status signal.

The source for the INT_CHRG interrupt must be further clarified in the CHARGERUSB_INT_STATUS register, which stores the latched information. The bits in the CHARGERUSB_INT_STATUS register are cleared by read access.

As an example, if the battery temperature goes above threshold level the BAT_TEMP_OVRANGE bit in CONTROLLER_STAT1 register is high. This sets LINCH_GATED bit in CONTROLLER_STAT1 register to high which sets CHRG_CTRL interrupt bit high and sets INT line low. Host processor detects the interrupt and reads INT_STS_A, INT_STS_B, INT_STS_C, CONTROLLER_STAT1 and LINEAR_CHRG_STS registers and finds the reason for the interrupt.

5.9.13.1 Sources of the Interrupt

The interrupt sources are described in the following lists, together with the actions software must take.

5.9.13.1.1 Charger Controller Interrupts

The charger controller interrupts are:

- FAULT_WDG: The charging watchdog has expired. Host processor must reset the timer in the CONTROLLER_WDG register. In addition, host must initialize the charging and restart it.
- VAC_DET: The VAC detection threshold voltage has been crossed. The VAC charger has been either
 inserted or removed. If the VAC charger is inserted, host processor can initialize and enable the
 charging and select the charging source using the CONTROLLER_CTRL1 register bits. The
 parameters for the VAC charging are programmed in the external IC.
- VBUS_DET: The VBUS detection threshold voltage has been crossed. The USB plug has been either
 inserted, removed, or the VBUS delivery has been started or stopped. If the USB plug is inserted, the
 host processor can initialize and enable the charging and select the charging source using the
 CONTROLLER_CTRL1 register bits.
- BAT_REMOVED: The battery is either removed or inserted. This battery detection is based on the pull-down resistor on the GPADC_IN0 line. This feature can be enabled and disabled using the OTP memory (EN BAT DET bit).
- BAT_TEMP_OVRANGE: The battery temperature has crossed the minimum or maximum temperature limit set by the external resistors. The battery charging is gated outside of the valid range automatically by hardware. This feature can be enabled and disabled using the OTP memory (EN_BAT_TEMP bit).
- CRYSTAL_OSC_OK: The charger crystal oscillator failed.
- END_OF_CHARGE: The end of charge current is detected from the linear charger loop. The host
 processor can terminate the charging if the battery is full. This function is valid only with Power Path
 (OTP bit POP_APPSCH = 1).
- VBATOV: Battery overvoltage is detected. There is something wrong in the battery charging and it should be stopped. This function is valid only with Power Path (OTP bit POP_APPSCH = 1).

Detailed Description

VSYSOV: System supply overvoltage is detected. There is something wrong or there is transient spike
in the system supply. The system supply level must be monitored with the ADC, and if it is
continuously too high, the system supply regulator must be disabled. This function is valid only with
Power Path (OTP bit POP APPSCH = 1).

5.9.13.1.2 External Charger Interrupt

The external charger interrupt is:

 EXT_CHRG: Interrupt from the external charger IC. The reason for the interrupt must be read from the external charger IC.

5.9.13.1.3 Internal Charger Interrupts

The internal charger interrupts are:

- CURRENT_TERM: The current termination level has been detected. The functionality must be
 controlled by host processor using the TERM and CHARGE_ONCE bits in the CHARGERUSB_CTRL1
 and CHARGERUSB_CTRL3 registers. This bit is controlled only when the PMIC is used without Power
 Path (OTP bit POP_APPSCH = 0).
- CHARGE_DONE: The charging termination current level is detected. Host processor can terminate the
 battery charging. This bit is controlled only when the PMIC is used without Power Path (OTP bit
 POP_APPSCH = 0).
- ANTICOLLAPSE: The anticollapse loop limiting the VBUS input voltage drop is active.
- TMREG: The thermal regulation loop of the USB charger is active. The temperature of the IC must be
 monitored and if it becomes too high, some power dissipation must be removed by decreasing the
 charging current or by disabling functions.

WARNING

The thermal regulation loop does not work if the CIN_LIMIT[5:0] VBUS input current limit is set to unlimited. The thermal regulation loop shares the same analog loop as the VBUS input current limit and it is disabled in this situation. However, the high temperature detection still operates and it gates the DC-DC operation if triggered.

NOTE

The thermal regulation loop generates an interrupt when the DC-DC in Power Path mode and the battery charger in non-Power Path mode is enabled. The host processor must check the TMREG bit to see if the thermal regulation loop is active to identify and clear the false interrupt.

- NOBAT: The battery is not detected by the USB charger. This bit is controlled only when the PMIC is
 used without Power Path (OTP bit POP_APPSCH = 0) and the feature is enabled and disabled using
 the OTP bit (EN_BQBAT_DET).
- BST_OCP: The OTG boost supply overcurrent protection is active. There can be a short circuit or an
 excessively high load in the VBUS. The boost regulator must be disabled if the VBUS voltage is not
 increasing.
- TH_SHUTD: The temperature of the USB charger is higher than the threshold level and the battery charging is gated. The power dissipation must be decreased by reducing the charging current or by disabling some functions.
- BAT_OVP: The battery voltage is higher than the overvoltage threshold, and the charging is gated (without Power Path). Something may be wrong in the battery charging and it should be stopped. This bit indicates system overvoltage with Power Path.

- POOR_SRC: The VBUS voltage is between the system supply voltage and the minimum VBUS detection voltage. The voltage is too low for battery charging. The charging from VBUS must be terminated.
- SLP_MODE: The charger is in a low-power sleep mode. The VBUS voltage is below the sleep-mode entry threshold and VBUS is higher than the VBUS detection threshold.
- VBUS_OVP: The VBUS voltage is higher than the overvoltage threshold and the charging is gated.
 The voltage can be monitored with the ADC and if the high voltage situation continues, the charging
 from VBUS must be terminated by host processor.
- EN_LINCH: The linear charging has been enabled by the charger controller. This bit is controlled only
 when the PMIC is used with Power Path (OTP bit POP_APPSCH = 1).

5.10 USB OTG

The device embeds all hardware analog mechanisms associated to VBUS and ID lines. The other aspects of the OTG system, such as the OTG controller (hardware/software) or the USB data line (DP/DM) with HNP and SRP signaling, are embedded in the USB PHY, which can be either integrated into the application processor or there is stand-alone USB OTG PHY.

The device supports the Battery Charging Specification Revision 1.2 and it includes hardware required for both OTG 1.3 and OTG 2.0 standards.

The device supports the following functions.

FUNCTION/FEATURE	REGISTER/REGISTER BIT	OTG Rev.	MODE/STATE	SUPPLIES NEEDED	
SRP – Pulsing method VBUS charge on VSYS	VBUS_CHRG_VSYS	OTG 1.3	ACTIVE	VRTC VSYS	
SRP – Pulsing method VBUS charge on PMID	VBUS_CHRG_PMID	OTG 1.3	ACTIVE	VRTC CHRG_PMID	
SRP – Pulsing method VBUS discharge	VBUS_DISCHRG	OTG 1.3	ACTIVE	VRTC	
ADP – Probing VBUS charge	VBUS_IADP_SRC, VADP_PRB	OTG 2.0	ACTIVE	VRTC VANA	
ADP – Probing VBUS discharge	VBUS_IADP_SINK, VADP_PRB	OTG 2.0	ACTIVE	VRTC	
ADP – Sensing	VADP_SNS	OTG 2.0	SLEEP ACTIVE	VRTC	
VBUS detection	VA_VBUS_VLD, VA_SESS_VLD, VB_SESS_VLD, VB_SESS_END, VOTG_SESS_VLD	OTG 1.3 OTG 2.0	SLEEP ACTIVE	VRTC VANA	
VBUS wake-up detection	Always enabled if VBUS or VAC is present	-	PRECHARGE/OFF SLEEP/ACTIVE	VRTC	
VBUS GPADC measurement	VBUS_MEAS	-	ACTIVE	VRTC VANA	
ID 220-kΩ pullup on ID_PU_220K LDOUSB		-	ACTIVE	VRTC LDOUSB	
ID 100-kΩ pullup on LDOUSB	ID_PU_100K	_	ACTIVE	VRTC LDOUSB	
ID ground drive	ground drive ID_GND_DRV		ACTIVE	VRTC	
ID 16-μA source current ID_SRC_16U		BC 1.2	PRECHARGE SLEEP/ACTIVE	VRTC LDOUSB	
ID 5-μA source current	D 5-μA source current ID_SRC_5U		ACTIVE	VRTC LDOUSB	
D detection ID_GND, ID_A, ID_B, BC 1.2 ID_C, ID_FLOAT OTG 1.3 OTG 2.0		OTG 1.3	PRECHARGE SLEEP/ACTIVE	VRTC LDOUSB	
ID wake-up detection	ID_WK_UP_COMP - OFF SLEEP/ACTIVE		VRTC		
ID GPADC measurement	ID_MEAS	_	ACTIVE	VRTC VANA	

NOTE

- Both VBUS and ID wake-up comparators can generate a start event when the device is
 in WAIT-ON state. The VBUS wake-up is enabled always, the ID wake-up enable is
 configurable and disabled by default (ID_WK_UP_COMP bit in BACKUP_REG register).
 Those comparators can also make the device leave the SLEEP state and enter the
 ACTIVE state. An interrupt is sent to the host processor if they are not masked.
- In PRECHARGE state, the VBUS wake-up comparator, the LDOUSB regulator, the ID comparators, and the 16-µA current source are enabled automatically. The ACA detection result increases the VBUS input current limit in case USB Charging Port is detected.
- The OTG_REV bit (in BACKUP_REG register) unlocks the respective VBUS detection features and associated electrical parameters specific to each OTG revision 1.3 and revision 2.0 (see the VBUS_ACT_COMP bit).
- All TPS80032 OTG registers are unlocked and operate either with a read/write (R/W) access or a read/set/clear (R/S/C) process.
- VBUS_ACT_COMP (USB_VBUS_CTRL_SET/USB_VBUS_CTRL_CLR) is the only R/W
 register bit that relies on the OTG_REV OTP bit value. This bit enables the needed
 VBUS comparators, reducing the power consumption of the OTG VBUS analog section.
 Therefore, all deactivated comparators have their corresponding source and latch
 registers fixed at 0.
- For some of the analog electrical parameters that are not backward-compatible between OTG revision 1.3 and OTG revision 2.0 but also are not manageable through the OTG_REV preselection bit, it is assumed throughout this section that the OTG revision 2.0 characteristic limits supersede the OTG revision 1.3 electrical limits and, thus, OTG 2.0 is the reference.
- OTG revision 1.3 devices have just emerged on the electronic market and should be outnumbered shortly by OTG revision 2.0 devices.
- In addition, the USB-IF consortium suggests a fast-forward transition to OTG revision 2.0 to solve current incompatibilities and limitations between OTG revision 1.3 devices.
- All electrical parametric deviations from OTG revision 1.3 are explicitly highlighted through this section.
- The full list of nonbackward-compatible electrical parameters is available on the USB-IF website in the developer forum section.

There are two types of VBUS and ID comparators, referred to throughout this section as wake-up (normally used in TPS80032 SLEEP state) and active comparators (generally activated in TPS80032 ACTIVE state). Those comparators are not exclusively working in respective TPS80032 SLEEP, and ACTIVE states, but can also pretend to additional usages' conditions. Indeed, the wake-up comparators are targeting low power consumptions, whereas the active comparators are intended for accurate level detections:

- The wake-up comparators are working in TPS80032 PRECHARGE, WAIT-ON, SLEEP, and ACTIVE states. Those comparators can wake up the device from SLEEP state but can also switch on the device from WAIT-ON state. VBUS wake-up comparator can also start the precharge, provided that all other precharging conditions are met.
- The active comparators work in TPS80032 SLEEP and ACTIVE states. When working in the SLEEP state, all required power and clock resources should remain active. ID active comparators, used for ACA detections, are automatically enabled in PRECHARGE state; VBUS active comparators remain off.

5.10.1 ID Line

The USB Battery Charging Specification describes the operation of the ACA. The RID_A, RID_B, and RID_C resistors are related only to the different ACA operations, whereas the grounded and floating IDs (ROTG_A, ROTG_B = RID_FLOAT) are related to the connections of the USB OTG standard plugs (See "Battery Charging Specification, Revision 1.2"). When either of the RID_A, RID_B, or RID_C resistance is in place, the VBUS is delivered by the ACA. This allows the device to wake up from VBUS or ID. The host can then enable the ID active comparators by writing ID_ACT_COMP bit (in USB_ID_CTRL_SET register) to correctly identify the different RID values. In addition, an interrupt is generated if the resistance on the ID ball is changing.

During hardware-controlled charging, the TPS80032 device monitors if an ACA is connected and sets the corresponding VBUS input current limit.

The following pullup and pulldown resistors and current sources can be connected to the ID line:

- ID PU 220K bit enables an ID 220-kΩ pullup to the LDOUSB supply.
- ID PU 100K bit enables an ID 100-kΩ pullup to the LDOUSB supply.
- ID_GND_DRV bit enables an ID 10-kΩ pulldown.
- ID SRC 16U bit enables an ID 16-µA current source on the LDOUSB supply.
- ID_SRC_5U bit enables an ID 5-µA current source on the LDOUSB supply.
- ID WK UP COMP enables an ID 9-µA current source (IID WK SRC) on the VRTC supply.

The ID wake-up comparator is used when the TPS80032 device is in the WAIT-ON or SLEEP state. It allows start up of the TPS80032 device when a USB cable A-plug is attached (A-plug has a pulldown resistor, ROTG_A, to ground on the ID line).

Four comparators, supplied on the LDOUSB regulator, are implemented to evaluate the proper external ID resistor. Additional logic between those comparators allows the detection of the five debounced interrupts (fixed 30-ms debouncing):

- ID FLOAT
- ID_A
- ID B
- ID_C
- ID GND

It is possible to use the GPADC to monitor the voltage on the ID line (channel 14). A 6.875-V maximum voltage on the ID line corresponds to a 1.25-V maximum dynamic at the input stage of the GPADC converter, allowing a 6.0-V maximum measurement.

Figure 5-25 shows the block diagram of the ID resistance detection and the decoding. Table 5-1 lists the ID resistance interrupt decoding.

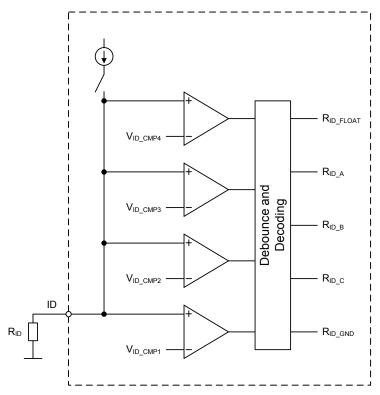


Figure 5-25. ID Resistance Detection

Table 5-1. ID Resistance Interrupt Decoding

ID pin level	R _{ID} Resistance	Interrupt
$V_{ID} < V_{ID_CMP1}$	R_{ID} < 1 k Ω	ID_GND
$V_{ID_CMP1} < V_{ID} < V_{ID_CMP2}$	$36 \text{ k}\Omega < R_{\text{ID}} < 37 \text{ k}\Omega$	ID_C
$V_{ID_CMP2} < V_{ID} < V_{ID_CMP3}$	$67 \text{ k}\Omega < R_{\text{ID}} < 69 \text{ k}\Omega$	ID_B
$V_{ID_CMP3} < V_{ID} < V_{ID_CMP4}$	122 k Ω < R _{ID} < 126 k Ω	ID_A
$V_{ID} > V_{ID_CMP4}$	$R_{ID} > 220 \text{ k}\Omega$	ID_FLOAT

5.10.2 VBUS Line

The VBUS wake-up comparator is used when the TPS80032 device is in the PRECHARGE, WAIT-ON, SLEEP, or ACTIVE state. It allows startup of the TPS80032 device when a USB cable plug is attached with a VBUS voltage level of 3.6 V minimum being present on the VBUS line.

The LDOUSB regulator, the ACA comparators and 16-μA current source can be selected to be controlled by the VBUS wake-up comparator until the first I²C write access to the LDOUSB resource state register (LDOUSB_CFG_STATE) (by setting the AUTO_LDOUSB_DIS OTP bit to 0).

The following pullup and pulldown resistors and current sinks/sources can be connected to the VBUS line:

- VBUS_CHRG_VBAT bit enables a VBUS 2-kΩ pullup to the VSYS supply.
- VBUS CHRG PMID bit enables a VBUS 2-kΩ pullup to the CHRG PMID supply.
- VBUS_DISCHRG bit enables a VBUS 10-kΩ pulldown.
- VBUS_IADP_SRC bit enables a VBUS 1.4-mA current source on the VANA supply.
- VBUS_IADP_SINK bit enables a VBUS 1.5-mA current sink.
- RA_BUS_IN resistor is fixed and a combination of all parallel resistor bridges implemented on VBUS in the various IPs such as backup battery, OTG, and charger.
- RVBUS_LKG represents the TPS80032 device internal leakage.

Detailed Description

Copyright © 2011–2014, Texas Instruments Incorporated

Related to the OTG 1.3 revision, four comparators supplied on the VANA regulator are implemented to evaluate the proper voltage level on the VBUS line.

In the OTG 2.0 revision, only one comparator is required for the session valid detection (VOTG_SESS_VLD) supplied also on the VANA domain. Still, the VA_VBUS_VLD comparator can be used to detect a possible VBUS short-circuit condition.

The TPS80032 device embeds the OTG 2.0 optional features related to the VBUS ADP probing and sensing, and hence with two additional comparators supplied on VANA (VADP_PRB and VADP_SNS).

Seven comparators allow the detection of the four OTG 1.3 and the three OTG 2.0 debounced interrupts:

- VA_VBUS_VLD (OTG 1.3/OTG 2.0) fixed 30-ms debouncing
- VB_SESS_VLD (OTG 1.3) fixed 30-ms debouncing
- VA_SESS_VLD (OTG 1.3) fixed 30-ms debouncing
- VB SESS END (OTG 1.3) fixed 30-ms debouncing
- VOTG SESS VLD (OTG 2.0) fixed 30-ms debouncing
- VADP_PRB (OTG 2.0) fixed 2x 30-µs debouncing
- VADP_SNS (OTG 2.0) fixed 2x 30-µs debouncing

It is possible to use the GPADC to monitor the voltage on the VBUS line (channel 10), see GENERAL-PURPOSE ADC for more information.

NOTE

- If the system switches off, the LDOUSB regulator stays on if the VBUS is still connected.
- When the NRESPWRON signal is released, only I²C accesses enable the regulator, if not previously enabled by the VBUS wake-up comparator in the PRECHARGE state.
- The LDOUSB regulator is a dual-input supply LDO. The LDOUSB regulator enable is independent of the overvoltage condition.
- When a VBUS overvoltage condition occurs, the CHRG_PMID input switch is automatically opened, protecting the LDOUSB from possible overvoltage stresses.
- When neither the VSYS nor PMID input supply is selected, the LDOUSB regulator cannot output a proper voltage, even if its control enable is set (see the LDOUSB_CFG_TRANS register).
- Host should keep monitoring the VBUS overvoltage condition and turn off the LDOUSB regulator when necessary.
- The VBUS detection mechanism works only when the VANA supply is present:
 - TPS80032 SLEEP state VANA should remain active.
 - TPS80032 ACTIVE state VANA is always on.
- For ADP detection, host can use the TPS80032 embedded mechanism or directly use the output of the comparators with their associated interrupts.
- There is no source and enable low register bits associated with the ADP interrupt, because this ADP interrupt represents the output of the digital ADP module and not the output of an analog comparator.

5.10.3 ADP on VBUS Line

The ADP lets the device detect when a remote device is attached or detached with a low power consumption. The ADP detects the change in the VBUS capacitance that occurs when two devices are attached or detached. The capacitance is detected by first discharging (VBUS_IADP_SINK) the VBUS line and then measuring the time it takes for VBUS to charge to a VADP_PRB voltage level with a VBUS_IADP_SRC current source. The change in the capacitance is detected by looking for a change in the T_ADP_RISE charge time. This procedure is called ADP probing.

If an A-device is attached to a B-device, and both support ADP features, the A-device performs ADP probing and the B-device performs ADP sensing. During ADP sensing, the B-device looks for ADP probing activity on the VBUS line. If ADP probing activity is detected, the B-device determines that the A-device is still attached.

As shown in Figure 5-26, the ADP module has timing register bits (T_ADP_HIGH, T_ADP_LOW, and T_ADP_RISE), control logic, a current source (VBUS_IADP_SRC), a current sink (VBUS_IADP_SINK), and two comparators (VADP_PRB [ADP probing] and VADP_SNS [ADP sensing]).

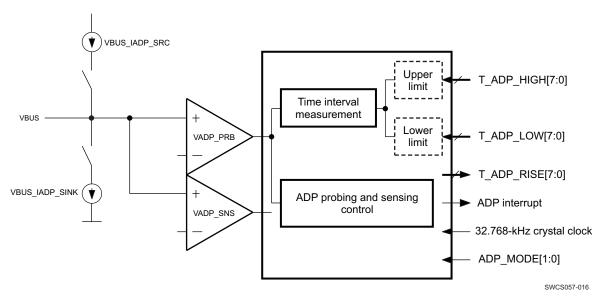


Figure 5-26. Attach Detection Protocol Scheme

Figure 5-27 shows the ADP timing diagram.

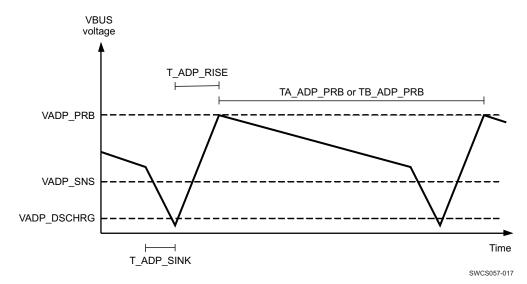


Figure 5-27. ADP Timing Diagram

ADP_MODE[1:0]	OPERATION
00	ADP digital module is disabled.
01	ADP sensing mode is enabled.
10	ADP probing mode as an A-device is enabled.
11	ADP probing mode as a B-device is enabled.

The limit registers (T_ADP_LOW[7:0] and T_ADP_HIGH[7:0]) and the last measurement time (T_ADP_RISE[7:0]) are reset when the digital module is disabled.

During the ADP sensing mode, the VADP_SNS comparator is used. The digital module monitors the comparator output to ensure that it toggles and the time duration between the rising edge of the comparator output signal is shorter than T_ADP_SNS. If there is no new rising edge within the T_ADP_SNS period, the module generates an ADP interrupt.

Figure 5-28 shows the ADP sensing timing diagram.

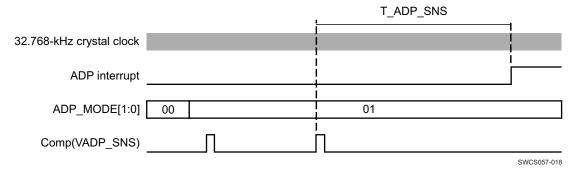


Figure 5-28. ADP Sensing Timing Diagram

During ADP probing, the VADP_PRB comparator is used. The time interval measurement counter is reset and the VBUS_IADP_SINK current sink is turned on for T_ADP_SINK. The T_ADP_SINK time is long enough to discharge the VBUS voltage below VADP_DSCHG. There is no comparator to monitor the discharge level. After that, the current sink is turned off, the current source VBUS_IADP_SRC is turned on, and the time interval measurement counter starts to count 32.768-kHz crystal clock cycles. When the VBUS voltage reaches VADP_PRB voltage level the current source is turned off, and the time interval measurement counter is stopped. If the VADP_PRB voltage is not reached before counter value is 255,

the counter value is stopped to 255. The current source is disabled when the voltage reaches VADP_PRB level or the next current sink period starts. If the measured time interval value is lower than T_ADP_LOW[7:0] or higher than T_ADP_HIGH[7:0], an interrupt is generated. The host processor sets the limit values so that the operation fulfills the requirements of the OTG 2.0 specification. Figure 5-29 shows the ADP probing timing diagram.

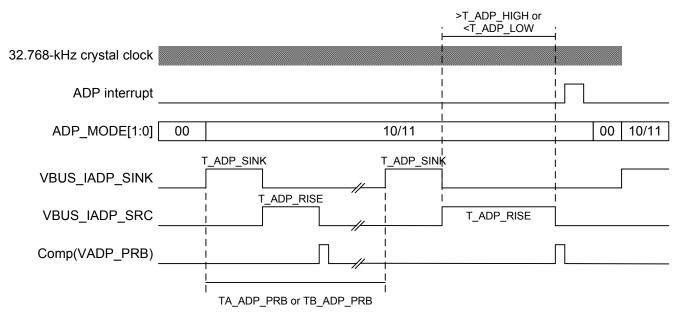


Figure 5-29. ADP Probing Timing Diagram

5.11 Gas Gauge

The gas gauge, also called the current gauge, measures the current from the battery or the current into the battery. An ADC (Coulomb counter) is required to measure the voltage over the external sense resistor, R2. This resistor is connected to the negative side of the battery. The integration period of the ADC is programmable from 3.9 to 250 ms with CC_ACTIVE_MODE[1:0] bits (in FG_REG_00 register). The gas gauge works continuously, which means that the new measurement starts immediately after the previous result becomes available. The accumulated result is calculated by the TPS80032 digital module but requires host processor to calculate the battery energy (See).

Figure 5-30 shows a block diagram of the gas gauge.

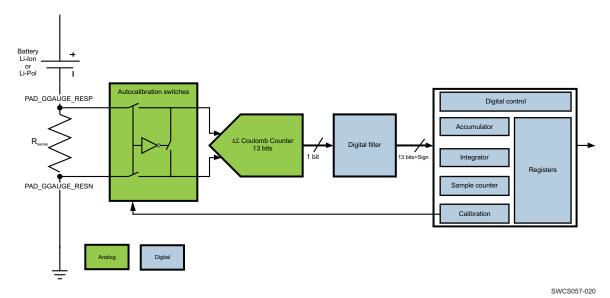


Figure 5-30. Gas Gauge Block Diagram

5.11.1 Autocalibration

Autocalibration is enabled by host. During autocalibration, the gas gauge performs eight measurements so that the inputs for the ADC are short-circuited. The result indicates the offset error of the gas gauge. The result is stored in the CC_OFFSET[9:0] bits and the completion of the measurement procedure is indicated with the CC_AUTOCAL interrupt. Software must read the offset error result (CC_OFFSET[9:0] bits in FG_REG_08 and FG_REG_09 registers) and use that to compensate the actual measurement results. The CC_CAL_EN bit self-clears when the calibration completes. The gas gauge must be enabled (FGS bit TOGGLE1 register) before starting the calibration. The temperature variation changes the offset error, so the recalibration is preferred during operation.

5.11.2 Auto-Clear and Pause

The auto-clear function is used in the sequence of changing from one integration period to another. Before changing the integration period, the CC_PAUSE bit must be set to 1. Setting the CC_AUTOCLEAR bit to 1 clears the CC_OFFSET[9:0], CC_SAMPLE_CNTR[23:0], and CC_ACCUM[31:0] bit fields. The CC_AUTOCLEAR bit self-clears when the registers are reset.

Setting CC_PAUSE to 1 keeps the analog from updating the integrator, accumulator, and sample counter registers. The integrator continues to run. If an integration period ends while the CC_PAUSE bit is 1, the value that is normally written to these registers is lost and the next integration period starts automatically.

5.11.3 Dithering

The FGDITHS bit is set to 1 to enable dithering in the ADC, which keeps idle tones from being generated with a DC input value. FGDITHS is not affected by the CC_AUTOCLEAR bit. Use the FGDITHR bit to disable the dithering. The dithering feature status is available in the FGDITH_EN bit.

5.11.4 Operation Guidelines

In order to start the current gauging the host processor must first set the correct integration period (CC_ACTIVE_MODE[1:0] bits), enable the gas gauge (FGS toggle bit), and perform the calibration (CC_CAL_EN bit) to get the offset error and use that to make corrections to the measurement results. The current gauge enters normal operation automatically when calibration completes. After that, host processor can read the sample counter (CC_SAMPLE_CNTR[23:0] bits) and accumulator (CC_ACCUM[31:0] bits) results and calculate the energy accordingly.

To record the current consumption waveform, the host must use an interrupt (CC_EOC) to detect when the integration sample result is ready. The integration register CC_INTEG[13:0] always stores the result of the last measurement.

WARNING

Anti-aliasing filter (RC-filtering) is not allowed with Charger Power Path configuration. The charger senses the battery current using the same resistor as Gas Gauge and RC filtering affects the charger loops and may generate stability problems.

5.12 General-Purpose ADC

The GPADC consists of a 12-bit sigma-delta ADC combined with a 19-input analog multiplexer. The GPADC enables the host processor to monitor a variety of analog signals using analog-to-digital conversion on the input source. After the conversion completes, an interrupt is generated (GPADC_RT_EOC or GPADC_SW_EOC) for the host processor and it can read the result of the conversion through the I²C interface.

The GPADC supports 19 analog inputs: 7 of these inputs are available on external balls and the remaining 12 are dedicated to internal resource monitoring. Two of the seven external inputs are associated with current sources allowing measurements of resistive elements (battery type and temperature or other thermal sensor). The reference voltage (GPADC_VREF) is available when the GPADC is enabled.

GPADC_IN0 is associated with a current source of 7 μ A. An additional 15- μ A current source can be enabled by register bit (GPADC_ISOURCE_EN bit in GPADC_CTRL register). A comparator connected to this input is intended to detect the presence or absence of the battery (resistance to ground is less than 130 k Ω in the battery pack). The removal and insertion of the battery pack generates an interrupt and the detection result is also available at the BATREMOVAL ball.

GPADC_IN1 and GPADC_IN4 are associated with a voltage reference equal to the ADC reference and are intended to measure temperature with an NTC sensor. In addition, a detection module is connected to GPADC IN1 to permanently monitor the temperature and gate the charge for the battery.

GPADC_IN3 is associated with the three selectable current sources and can be used, for example, to measure a voltage across an external resistor or diode. The selectable current levels are 10 μ A, 400 μ A, and 800 μ A and the current is controlled by a register bits (GPADC_REMSENSE[1:0] bits in GPADC_CTRL2 register).

Figure 5-31 shows the block diagram of the GPADC.

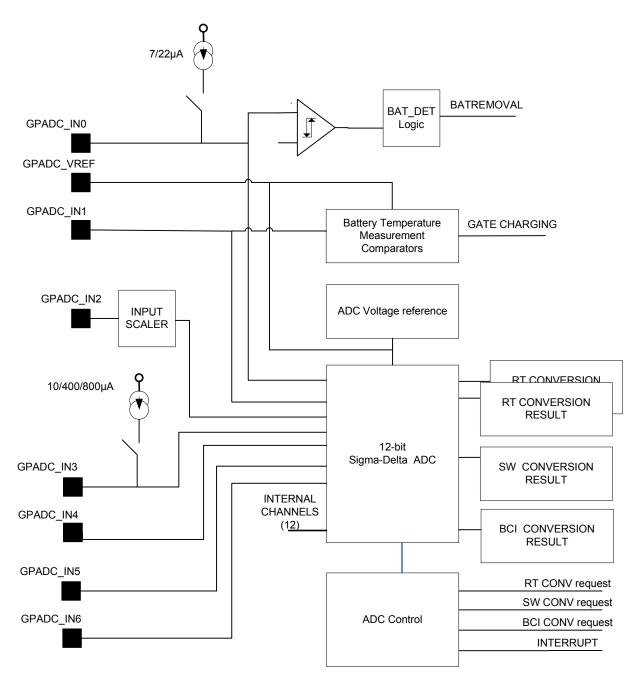


Figure 5-31. Block Diagram of the GPADC

For all the measurements performed by the monitoring ADC, the means to scale of the signal to be measured to the ADC input range are integrated in the TPS80032 device (voltage dividers, current to voltage converters, and current source).

The conversion requests are initiated by the host processor, either by software through the I²C or by hardware through a dedicated external ball GPADC_START. This last mode is useful when real-time conversion is required. An interrupt signal is generated when the conversion result is ready.

There are three kinds of conversion requests with the following priority:

- Real-time conversion request (RT)
- Asynchronous conversion request (SW)
- Battery charging module internal conversion request (BCM)

Before starting the measurement, the software can enable channels, scalers, current sources and select other parameters:

- GPADC IN0: Additional current source with the GPADC ISOURCE EN bit in the GPADC CTRL register. (Can be enabled only if OTP bit EN_BAT_DET=1)
- GPADC_IN1: Enable channel with the GPADC_TEMP1_EN bit in the GPADC_CTRL register.
- GPADC_IN2: Enable channel with the GPADC_SCALER_EN_CH2 bit in the GPADC_CTRL register.
- GPADC IN3: Select current source level with the GPADC REMSENSE [1:0] bits in the GPADC_CTRL2 register.
- GPADC IN4: Enable channel with the GPADC TEMP2 EN bit in GPADC CTRL the register.
- GPADC IN7: Select scaler ratio with the VSYS SCALER DIV4 bit in GPADC CTRL the register.
- GPADC_IN11: Enable channel with the GPADC_SCALER_EN_CH11 bit in GPADC_CTRL the
- GPADC_IN12: Enable channel with the TMP1_EN_MONITOR bit in GPADC_CTRL the register.
- GPADC IN13: Enable channel with the TMP2 EN MONITOR bit in GPADC CTRL the register.
- GPADC_IN18: Enable channel with the GPADC_SCALER_EN_CH18 bit and select scaler ration with the VBAT_SCALER_DIV4 bit in the GPADC_CTRL2 register.
- Polarity of the GPADC START signal for RT measurement: GPADC START POLARITY bit in the TOGGLE1 register.
- Sampling window time (16.5 µs / 450 µs): GPADC_SAMP_WINDOW bit in the TOGGLE1 register. The 450-us sampling window is beneficial, for example, when measuring system/battery voltage level synchronized with GSM burst. During the 450-µs delay the system/battery voltage settles to a loaded situation.

5.12.1 Real-Time Conversion Request (RT)

The real-time conversion is requested with the GPADC START signal. Before requesting the conversion, software must enable the required channels, scalers, and current sources. In addition, software must enable the GPADC with the GPADCS bit in the TOGGLE1 register and select one or two channels for conversion with the RTSELECT LSB, RTSELECT ISB, and RTSELECT MSB register bits. If more than two channels are selected for the conversion, the two lowest input numbers are converted. At the end of the conversions, the GPADC writes the conversion results into the results register (RTCH0_LSB, RTCH0 MSB, RTCH1 LSB, and RTCH1 MSB) and sets the GPADC RT EOC interrupt (if interrupt is unmasked).

If a GPADC START real-time request occurs while a software-initiated conversion or BCM internal conversion is running, the ongoing conversion is aborted, the real-time conversion is started, and a new software-initiated or BCM internal conversion is rescheduled after the real-time conversion is ready.

5.12.2 Asynchronous Conversion Request (SW)

Software can also request a conversion asynchronously with respect to the GPADC START signal. This conversion is not critical in terms of start-of-conversion positioning.

Software enables the required channels, scalers, current sources, enables the GPADC with GPADCS bit in TOGGLE1 register and selects the channel to be converted with GPSELECT_ISB register bits. The conversion is requested with SP1 bit in the CTRL P1 register. When the conversion is ready a GPADC SW EOC interrupt is generated (if interrupt is unmasked) and the conversion result is available in GPCH0 LSB and GPCH0 MSB registers. A GPADC START-initiated conversion (RT) and BCM internal conversion have higher priority than the software-initiated conversion.

If a software request occurs while a GPADC_START-initiated sequence (RT) or BCM internal conversion is running, the software request is placed on hold and the ongoing conversion continues until it completes and the converted data is stored. A GPADC RT EOC interrupt is then generated and sent to the processor in case of RT sequence. The digital control executes the software request when the higher priority conversion are completed. A GPADC_SW_EOC interrupt is then generated.

Detailed Description

Copyright © 2011-2014, Texas Instruments Incorporated

104

5.12.3 BCM Internal Conversion Request

The GPADC is automatically enabled when an internal BCM request is asserted. When this occurs, the GPADC input channel 17 is selected for a conversion. At the end of the conversion, the GPADC result is passed internally to the BCM digital control. Interrupt is not generated at the end of the BCM conversion request.

GPADC_START-initiated conversion (RT) has a higher priority than the BCM-initiated conversion.

The different ADC channels are summarized in the following table.

Table 5-2. GPADC Input Channels

			•	
CHANNEL	TYPE	INPUT VOLTAGE FULL RANGE ⁽¹⁾	INPUT VOLTAGE PERFORMANCE RANGE ⁽²⁾	OPERATION
0	External	0-1.25 V ⁽³⁾	0.01–1.215 V	Battery type, resistor value
1	External	0-1.25 V ⁽³⁾	0.01–1.215 V	Battery temperature, NTC resistor value
2	External	0-1.875 V ⁽³⁾	0.015-1.822 V	Audio accessory/general purpose
3	External	0-1.25 V ⁽³⁾	0.01-1.215 V	Temperature with external diode/general purpose
4	External	0-1.25 V ⁽³⁾	0.01-1.215 V	Temperature measurement/general purpose
5	External	0-1.25 V ⁽³⁾	0.01-1.215 V	General purpose
6	External	0-1.25 V ⁽³⁾	0.01-1.215 V	General purpose
7	Internal	0–5 V or 0–6.25 V	0.04–4.86 V or 0.05–6.075 V	System supply
8	Internal	0-6.25 V	0.05-4.8 V	Backup battery
9	Internal	0–11.25 V	2.0-10.0 V	External charger input
10	Internal	0-27.25 V	0.01–6.0 V	VBUS
11	Internal	0–1.875 A	0.015–1.5 A	VBUS DC-DC output current (available only without power path, OTP memory bit POP_APPSCH = 0, R9 = 68 mΩ)
12	Internal	0–1.25 V	0.01-1.215 V	Die temperature
13	Internal	0–1.25 V	0.01-1.215 V	Die temperature
14	Internal	0-6.875 V	0.055-6.68 V	USB ID line
15	Internal	0-6.25 V	0.05-6.075 V	Test network
16	Internal	0–4.75 V	0.038-4.617 V	Test network
17	Internal	0-7.8125 A	0–1.5 A	Battery charging current (with 20-mΩ sense resistor) (available only with power path, OTP memory bit POP_APPSCH = 1)
18	Internal	0–5 V or 0–6.25 V	0.04–4.86 V or 0.05–6.075 V	Battery voltage

⁽¹⁾ The minimum and maximum voltage in full range corresponds to typical minimum and maximum output codes (0 and 4095).

5.12.4 Calibration

The GPADC channels are calibrated in the production line using a two point calibration method. The channels are measured with two known values (X1 and X2) and the difference (D1 and D2) to the ideal values (Y1 and Y2) are stored in OTP memory. The principle of the calibration is shown in Figure 5-32.

⁽²⁾ The performance voltage is a range where gain error drift, offset drift, INL and DNL, and specification parameters are ensured.

⁽³⁾ The maximum current sourced into the input is 1mA in NO SUPPLY, BACKUP, and WAIT-ON states.

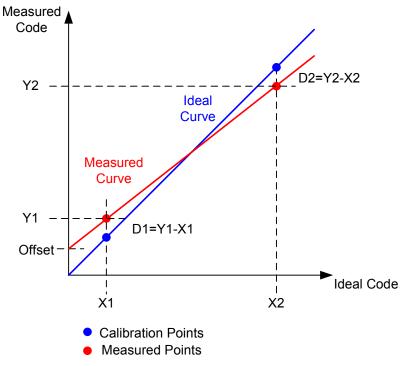


Figure 5-32. ADC Calibration Scheme

The corrected result can be calculated using the following equations.

Gain:
$$k = 1 + ((D2 - D1) / (X2 - X1))$$

Offset:
$$b = D1 - (k - 1) \times X1$$

If the measured code is a, the corrected code a' is:

$$a' = (a - b) / k$$

Some of the GPADC channels can use the same calibration data. Table 5-3 lists the parameters X1 and X2, and the register of D1 and D2 needed in the calculation for all the channels.

Table 5-3. GPADC Calibration Parameters

CHANNEL	X1	X2	D1 ⁽¹⁾	D2 ⁽¹⁾	COMMENTS
0, 1, 3, 4, 5, 6, 12, 13	1441 (0.44 V)	3276 (1.0 V)	GPADC_TRIM3[4:0] * 4 + GPADC_TRIM1[2:1], sign = GPADC_TRIM1[0]	GPADC_TRIM4[5:0] * 4 + GPADC_TRIM2[2:1], sign = GPADC_TRIM2[0]	Channel 3 trimming is used
2	1441 (0.66 V)	3276 (1.5 V)	GPADC_TRIM3[4:0] * 4 + GPADC_TRIM1[2:1], sign = GPADC_TRIM1[0]	GPADC_TRIM4[5:0] * 4 + GPADC_TRIM2[2:1], sign = GPADC_TRIM2[0]	Channel 3 trimming is used
8	1441 (2.2 V)	3276 (5.0 V)	(GPADC_TRIM3[4:0] * 4 + GPADC_TRIM1[2:1], sign = GPADC_TRIM1[0]) + (GPADC_TRIM8[4:3] * 16 + GPADC_TRIM7[4:1], sign = GPADC_TRIM7[0])	(GPADC_TRIM4[5:0] * 4 + GPADC_TRIM2[2:1], sign = GPADC_TRIM2[0]) + (GPADC_TRIM10[4:0] * 4 + GPADC_TRIM8[2:1], sign = GPADC_TRIM8[0])	Channel 3 and channel 8 trimming is combined
9	1441 (3.96 V)	3276 (9.0 V)	(GPADC_TRIM3[4:0] * 4 + GPADC_TRIM1[2:1], sign = GPADC_TRIM1[0]) + (GPADC_TRIM14[4:3] * 16 + GPADC_TRIM12[4:1], sign = GPADC_TRIM12[0])	(GPADC_TRIM4[5:0] * 4 + GPADC_TRIM2[2:1], sign = GPADC_TRIM2[0]) + (GPADC_TRIM16[4:0] * 4 + GPADC_TRIM14[2:1], sign = GPADC_TRIM14[0])	Channel 3 and channel 9 trimming is combined

(1) The result is coded so that the LSB defines the sign and the MSBs define the magnitude (not 2's complement).

CHANNEL	X1	X2	D1 ⁽¹⁾	D2 ⁽¹⁾	COMMENTS
10	150 (1.0 V)	751 (5.0 V)	GPADC_TRIM11[3:0] * 8 + GPADC_TRIM9[3:1], sign = GPADC_TRIM9[0]	GPADC_TRIM15[3:0] * 8 + GPADC_TRIM13[3:1], sign = GPADC_TRIM13[0]	Dedicated trimming
11	1441 (0.66 A)	3276 (1.5 A)	GPADC_TRIM3[4:0] * 4 + GPADC_TRIM1[2:1], sign = GPADC_TRIM1[0]	GPADC_TRIM4[5:0] * 4 + GPADC_TRIM2[2:1], sign = GPADC_TRIM2[0]	Channel 3 trimming is used
14	1441 (2.42 V)	3276 (5.5 V)	GPADC_TRIM3[4:0] * 4 + GPADC_TRIM1[2:1], sign = GPADC_TRIM1[0]	GPADC_TRIM4[5:0] * 4 + GPADC_TRIM2[2:1], sign = GPADC_TRIM2[0]	Channel 3 trimming is used
7, 18	1441 (2.2 V)	3276 (5.0 V)	(GPADC_TRIM3[4:0] * 4 + GPADC_TRIM1[2:1], sign = GPADC_TRIM1[0]) + (GPADC_TRIM5[6:1], sign = GPADC_TRIM5[0])	(GPADC_TRIM4[5:0] * 4 + GPADC_TRIM2[2:1], sign = GPADC_TRIM2[0]) + (GPADC_TRIM6[7:1], sign = GPADC_TRIM6[0])	Channel 3 and channel 18 trimming is combined, input voltage range is 0–6.25 V
17	$I_{charge} = (a - GPADC_TRIM20[7:0]) * (1 + GPADC_TRIM21[5:0] / 512) * 1.25 V / 4096 / 8 / R2 ; \\ a = measured code, GPADC_TRIM20[7:0] is an unsigned value, \\ in GPADC_TRIM21[5:0] the bit 5 is the sign and bits[4:0] are the magnitude$				Dedicated equation

5.13 Vibrator Driver and PWM Signals

The LDO3 regulator can be used as a generic voltage supply or as a vibrator motor driver. The output voltage level is controlled with the LDO3_CFG_VOLTAGE register and the regulator provides output current up to 200 mA.

The vibrator mode is selected with the SEL_VIB bit in the MISC2 register. The duty cycle and frequency are controlled with the DSEL[1:0] and FREQ[1:0] bits in the VIBCTRL and VIBMODE registers. The vobrator is started with the VIBS bit and stopped with the VIBC bit in the TOGGLE2 register. The vibrator driver allows a soft turn on (500-µs maximum) and turn off (2-ms maximum).

Figure 5-33 shows a block diagram of the vibrator motor driver.

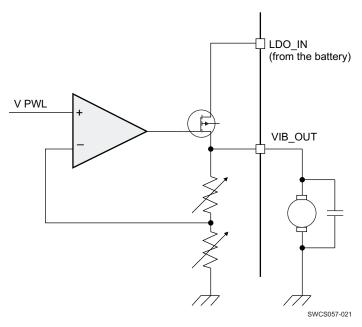


Figure 5-33. Block Diagram of Vibrator Motor Driver

The PWM1 and PWM2 digital outputs provide PWM signals on the 1.8-V I/O domain. The current drive capability of both PWM buffer is 4 mA and the outputs can also be active when the system is in the SLEEP state.

The period of the PWM signals can be selected separately with the PWM1 LENGTH and PWM2 LENGTH bits in the PWM1ON and PWM2ON registers. The selection of 128 clock cycles results as a 256-Hz PWM signal and the selection of 64 cycles results as 512-Hz PWM signal. Both PWM signals have dedicated counters. The counters are started by first enabling the 32768-Hz clock inputs with the PWM1EN and PWM2EN bits in the TOGGLE3 register and then setting the PWM1S and PWM2S bits. The rising and falling-edge positions are selected with the PWM1ON[6:0], PWM1OFF[6:0], PWM2ON[6:0], and PWM2OFF[6:0] bits in the PWM1ON, PWM1OFF, PWM2ON, and PWM2OFF registers as shown in Figure 5-34.

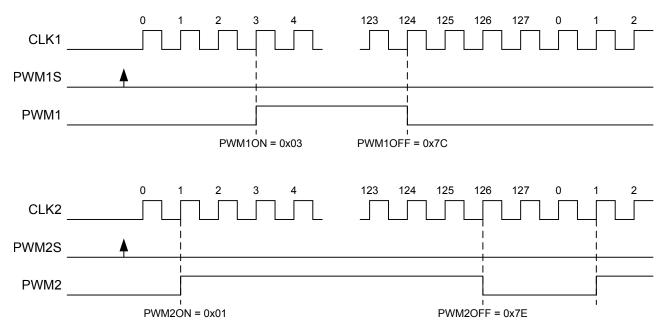


Figure 5-34. PWM Signal Timings (128 Clock Cycles in Period, Clocks Synchronized)

NOTE

The clock inputs for generation of PWM signals are enabled with the PWM1EN and PWM2EN bits in the TOGGLE3 register. The start and stop of the PWM signal generation is controlled with the PWM1S, PWM2S, PWM1C, and PWM2C bits in the TOGGLE3 register. To get a clean start and stop, the clock input must be enabled before starting PWM signal generation and the PWM signal generation must be stopped before disabling the clock input. The CLK1 and CLK2 counters can be synchronized by setting both the PWM1S and PWM2S bits high with the same I²C write.

The PWM signal is constantly high if PWMxON[6:0] is equal to PWMxOFF[6:0].

The following rules must be fulfilled for the PWMxON and PWMxOFF settings:

- $PWMxOFF[6:0] \ge PWMxON[6:0]$
- PWMxON[6:0] > 0x00

5.14 Detection Features

The TPS80032 device supports the following detection functions:

- Detection of SIM card insertion and extraction with programmable debouncing using SIM pin, automatic power shutdown of LDO7 when extraction is detected (configurable)
- Detection of MMC card insertion and extraction with programmable debouncing using MMC pin, automatic power shutdown of LDO5 when extraction is detected (configurable)
- Detection of battery presence and removal with GPADC IN0 input (see Section 5.9.8)

Detailed Description

The TPS80032 device supports SIM card and MMC card insertion and extraction detections with programmable debounce times. The debounce times are programmed with SIMDEBOUNCING and MMCDEBOUNCING registers. When the SIM card or MMC card is inserted, a mechanical contact connected on the TPS80032 device terminal SIM or MMC is tripped, and after debouncing an interrupt is generated. The SIM card and MMC card presence detection logic is active even when the system is in idle mode; the debouncing logic (programmable) is based on the 32-kHz clock. When a card insertion is detected, the required regulator must be enabled by host processor. When a card is extracted, the LDO7 for SIM card and LDO5 for MMC card can be selected to turn off automatically. These are controlled by SIMCTRL and MMCCTRL registers. An interrupt is generated when a plug or unplug is detected.

The SIM card or MMC card plug and battery insertion/extraction are detected in SLEEP and ACTIVE states. Both card detections and battery detection have dedicated maskable interrupts (MMC, SIM, and BAT).

5.15 Thermal Monitoring

The TPS80032 device includes several different thermal monitoring functions:

- Thermal protection module in the TPS80032 device, close to SMPSs and LDOs
- Thermal shutdown for system supply regulator inside the TPS80032 device
- Battery temperature monitoring with external NTC resistor (can be used to gate the battery charging)
- Platform temperature monitoring with external NTC resistor
- Platform temperature monitoring with external diode

A thermal protection module inside the TPS80032 device monitors the temperature of the device. It generates a warning to the system when excessive power dissipation occurs and shuts down the TPS80032 device if the temperature rises to a value at which damage can occur.

CAUTION

The silicon technology used to build the TPS80032 device supports a maximum operating temperature of 150°C. Regarding packaging technology, a continuous operation above 125°C requires special packaging and must be avoided.

By default, thermal protection is always enabled except in the BACKUP or OFF state.

The TPS80032 device integrates two HD detection mechanisms to monitor and alert the host that the junction temperature is rising and must take action to reduce consumption. Those mechanisms are placed on two opposite sides of the chip and closed to the LDOs and SMPSs. Even if there are two identical thermal feature instances on the chip, it is always considered through the specification to be unique. In addition to those HD detections, there is another HD feature embedded in the system supply regulator. This HD is specified in Section 5.9, Battery Charging, and does not behave exactly as described in the following section.

5.15.1 Hot-Die Function

The HD detector monitors the temperature of the die and provides a warning to the host processor through the interrupt (HOT_DIE) when temperature reaches a critical value. The temperature threshold value is programmable with the THERM_HD_SEL[1:0] bits in the TMP_CFG register. The threshold has typically 10°C hysteresis to avoid the generation of multiple interrupts.

When an interrupt is triggered by the power-management software, immediate action to reduce the amount of power drawn from the TPS80032 device must be taken (for example, noncritical applications must be closed).

5.15.2 Thermal Shutdown

The thermal shutdown detector monitors the temperature on the die. If the junction reaches a temperature at which damage can occur, a switch-off transition is initiated and a thermal shutdown event is written into a status register.

To avoid interrupts at restart, the system cannot be restarted until the die temperature falls below the HD threshold.

The thermal shutdown monitor function is integrated to generate an immediate, unconditional TPS80032 device switch off when an overtemperature condition exists. This function must be distinguished with the early warning provided to host processor by the HD monitor function.

In the TPS80032 device, the threshold (T_J rising) of the thermal shutdown is 148°C nominal. The thermal shutdown hysteresis is 10°C in typical conditions. The reset generation is debounced. The thermal shutdown function can be masked only in the SLEEP state (the TMP_CFG_TRANS register) and in test mode.

5.15.3 Temperature Monitoring with External NTC Resistor or Diode

The GPADC_IN1 and GPADC_IN4 channels can be used to measure a temperature with an external NTC resistor. External pullup and pulldown resistors can be connected to the input to linearize the characteristics of the NTC resistor. GPADC_IN1 can be used to gate the battery charging at invalid temperatures. The temperature limits are set by external resistors.

GPADC IN3 can be used to measure the temperature with external diode. The input channel has three selectable current sources.

5.16 I²C Interface

A general-purpose serial control interface (CTL-I²C) allows read-and-write access to the configuration registers of all resources of the system.

A second serial control interface (DVS-I²C) is dedicated to dynamic voltage scaling (DVS).

Both control interfaces comply with the HS-I²C specification and support the following features:

- Mode: Slave only (receiver and transmitter)
- Speed
 - Standard mode (100 kbps)
 - Fast mode (400 kbps)
 - High-speed mode (3.4 Mbps)
- Addressing: 7-bit mode addressing device

The following features are not supported:

- 10-bit addressing
- General call

5.17 Secure Registers

Certain registers of the TPS80032 device can be protected by restricting their access in write mode to software running in the secure mode. Read access to protected registers is always possible. Secure access is enabled or disabled by the MSECURE control signal.

The following components or actions can be protected:

- All RTC registers
- 64 bits of general-purpose memory (8 x 8) in the VALIDITY backup domain

The read accesses are independent to the MSECURE value.

Detailed Description

When MSECURE is logical level 1, all read and write accesses are authorized; when MSECURE is logical level 0, only read accesses are authorized.

The MSECURE detection security feature is enabled and disabled by an OTP bit.

5.18 Access Protocol

For compatibility purpose, the I²C interface of the TPS80032 device uses the same read/write protocol based on an internal register size of 8 bits as do other TI power ICs. Supported transactions are described in the following sections.

5.18.1 Single-Byte Access

A write access is initiated by a first byte including the address of the device (7 most-significat bits [MSBs]) and a write command (least-significant bit [LSB]), a second byte provided the address (8 bits) of the internal register, and the third byte represents the data to be written in the internal register.

Figure 5-35 shows a write access single-byte timing diagram.

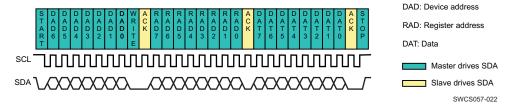


Figure 5-35. I²C Write Access Single Byte

A read access is initiated by:

- A first byte, including the address of the device (7 MSBs) and a write command (LSB)
- · A second byte, providing the address (8 bits) of the internal register
- A third byte, including again the device address (7 MSBs) and the read command (LSB)

The device replies by sending a fourth byte representing the content of the internal register.

Figure 5-36 shows a read access single-byte timing diagram.

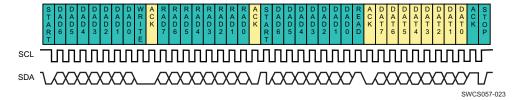


Figure 5-36. I²C Read Access Single Byte

5.18.2 Multiple-Byte Access to Several Adjacent Registers

A write access is initiated by:

- A first byte, including the address of the device (7 MSBs) and a write command (LSB)
- A second byte, providing the base address (8 bits) of the internal registers

The following N bytes represent the data to be written in the internal register, starting at the base address and incremented by 1 at each data byte.

Figure 5-37 shows a write access multiple-byte timing diagram.

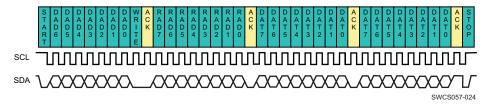


Figure 5-37. I²C Write Access Multiple Bytes

A read access is initiated by:

- A first byte, including the address of the device (7 MSBs) and a write command (LSB)
- A second byte, providing the base address (8 bits) of the internal register
- A third byte, including again the device address (7 MSBs) and the read command (LSB)

The device replies by sending a fourth byte representing the content of the internal registers, starting at the base address and next consecutive ones.

Figure 5-38 shows a read acces multiple-byte timing diagram.

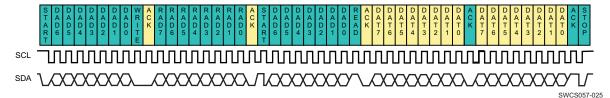


Figure 5-38. I²C Read Access Multiple Bytes

5.19 Interrupts

The INT signal (active low) indicates the host processor of events occurring on the TPS80032 device. The host processor then reads the interrupt status registers (INT_STS_A, INT_STS_B, and INT_STS_C) through I²C to identify the interrupt source. Each interrupt source can be individually masked through the interrupt mask registers. If the source is masked with mask line register (INT_MSK_LINE_A, B, C) then the INT signal is not generated for host processor but the interrupt status register (INT_STS_A, B, C) is set in case of source event. If the source is masked with mask status register (INT_MSK_STS_A, B, C) then the INT signal is not generated and the status register is not set in case of source event. The block diagram of the interrupt handler is shown in Figure 5-39.

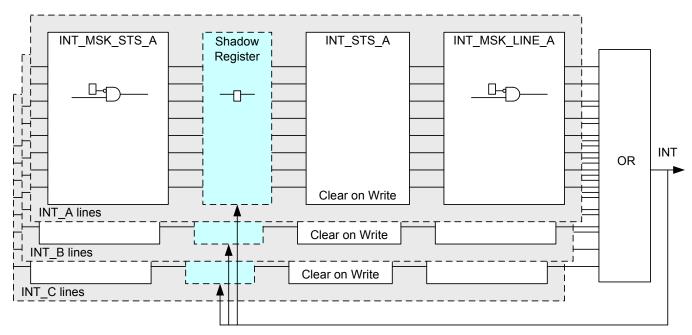


Figure 5-39. Block Diagram of Interrupt Handler

In order to clear the status registers and the interrupt signal, a write in any of the status registers (INT_STS_A, B, or C) must be done. Each write has the same effect (interrupt line goes high and all status registers are cleared). This requires that the three status registers must be read before acknowledging the interrupt to avoid losing any interrupt sources.

If additional interrupt or interrupts occur while the status registers and interrupt line are not cleared, the status registers are not updated immediately. Instead, the interrupts are held pending in a shadow registers. When the previous interrupt(s) are cleared, the interrupt line goes high and the content of the shadow registers is moved to status registers. If there are new unmasked events the interrupt signal is set to low again.

If the unmasked source event occurs when the INT signal is high, the interrupt status bit is set without using the shadow register.

NOTE

- An interrupt associated with a function must be masked before enabling or disabling the
 feature; otherwise, it might generate a false interrupt directly linked to the state change of
 the source and not related to a detection event (for example, a SYS_VLOW interrupt with
 the VSYSMIN_HI comparator).
- INT is always active low.
- When a interrupt occurs:
 - Software should first read all status registers INT_STS_A, INT_STS_B, and INT_STS_C.
 - Execute the subroutines related to the read interrupts.
 - Clear the interrupt signal and interrupt status of all status registers.

#	REG	BIT	SECTION	INTERRUPT	Description
00	A	0	РМ	PWRON	PWRON detection: Power-on button pressed and released. Detection performed on falling and rising edges. Interrupt sent in the SLEEP or ACTIVE state only, not in WAIT-ON.
01	Α	1	PM	RPWRON	RPWRON detection: Remote power on signal change. Interrupt sent in the SLEEP or ACTIVE state only, not in WAIT-ON.
02	Α	2	PM	VSYS_VLOW	System voltage low: System voltage decreasing and crossing V _{SYSMIN_HI}

03	Α	3	RTC	RTC_ALARM	RTC alarm event: Occurs at programmed determinate date and time
04	Α	4	RTC	RTC_PERIOD	RTC periodic event: Occurs at programmed regular period of time (every second or minute)
05	Α	5	Thermal monitoring and shutdown	HOT_DIE	At least one of the two embedded thermal monitoring modules detects a die temperature above the HD detection threshold.
06	Α	6	SMPS/LDO	VXXX_SHORT	At least one of the following power resources has its output shorted: SMPS1, SMPS2, SMPS3, SMPS4, SMPS5, VANA, LDO1, LDO2, LDO3, LDO4, LDO5, LDO6, LDO7, LDOLN, LDOUSB
07	Α	7	PM	SPDURATION	PWRON short press duration
80	В	0	PM	WATCHDOG	Warning of primary watchdog expiration
09	В	1	Detection	BAT	Battery detection plug/unplug
10	В	2	Detection	SIM	SIM card plug/unplug
11	В	3	Detection	MMC	MMC card plug/unplug
12	В	4	GPADC	GPADC_RT_EOC	End of conversion: Completion of a real-time conversion cycle; result available
13	В	5	GPADC	GPADC_SW_EOC	End of conversion: Completion of a software (SW) conversion cycle; result available
14	В	6	Gas gauge	CC_EOC	End of conversion: Completion of gas gauge measurement (end of integration period); result available
15	В	7	Gas gauge	CC_AUTOCAL	Calibration procedure finished and the result is available in the register.
16	С	0	OTG	ID_WKUP	ID wake-up event (from WAIT-ON/SLEEP states)
17	С	1	OTG	VBUS_WKUP	VBUS wake-up event (from WAIT-ON/SLEEP states)
18	С	2	OTG	ID	ID event detection in SLEEP/ACTIVE states
19	С	3	OTG	VBUS	VBUS event detection in SLEEP/ACTIVE states
20	С	4	Charger	CHRG_CTRL	Charger controller
21	С	5	Charger	EXT_CHRG	External charger fault
22	С	6	Charger	INT_CHRG	Internal USB charger fault
23	С	7			Reserved

6 Recommended External Components

Table 6-1. Recommended External Components

REF	COMPONENT ⁽¹⁾	PCS	# ⁽²⁾	MANUFACTURER	PART NUMBER	VALUE	PACK ⁽³⁾	SIZE (mm)
				Input Power Supplies Ex	ternal Components		"	<u> </u>
C1, C2	VDD tank capacitor ⁽⁴⁾	2	1	Murata	GRM188R60J106ME84	10 μF, 6V3	0603	1.6 x 0.8 x 0.8
C3	Backup capacitor	1	1	Seiko Instruments	XH414H-IV01E	0.08 F		ø4.8, 1.4
C44	Capacitor (optional)	1	1	Murata	GRM155R60J475M	4.7 μF	0402	1.0 x 0.5 x 0.5
				Crystal Oscillator Exte	rnal Components		_	
X1	Crystal		1	Microcrystal	CC7V-T1A	32.768 kHz		3.2 x 1.5 x 0.9
		1	2	Epson	FC135	32.768 kHz		3.2 x 1.5 x 0.8
			3	NDK	NX3215SA	32.768 kHz		3.2 x 1.5 x 0.8
C4	Supply decoupling	1	1	Murata	GRM155R60J225ME15	2.2 µF, 6V3	0402	1.0 x 0.5 x 0.5
C5, C6	Crystal decoupling	2	1	Murata	GRM1555C1H220JZ01	12 pF, 6V3	0402	1.0 x 0.5 x 0.5
				Bandgap External	Components			
R1	Bias resistor	1	1	Multicomp	MC0.0625W, 1%	510 kΩ	0402	1.0 x 0.5 x 0.5
C7	Capacitor	1	1	Murata	GRM155R61C104KA88	100 nF, 6V3	0402	1.0 x 0.5 x 0.5
				Gas Gauge and Charger E	xternal Components		_	1
R2	Resistor		1	Panasonic	ERJ3BWFR020V	20 mΩ, 0.25W, 1%	0603	1.6 x 0.8 x 0.45
		1	2	Panasonic	ERJ8BWFR020V	20 mΩ, 0.5W, 1%	1206	3.2 x 1.6 x 0.65
				GPADC External (Components		'	'
R3, (R4)	NTC resistor (optional)	2	1	Murata	NCL15WB473F03RC	47 kΩ	0402	1 x 0.5 x 0.5
R5, R6, (R7, R8)	Bias resistor (optional)	4	1	The resistor values depends on	The resistor values depends on the required temperature levels			
C42, (C43)	Capacitor (optional)	2	1	Murata	GRM155R61C104K	100 nF, 6V3	0402	1 x 0.5 x 0.5
				SMPS External C	omponents		'	'
C8C12	Input capacitor	5	1	Murata	GRM155R60J475M	4.7 μF	0402	1.0 x 0.5 x 0.5
C13	Output capacitor	1	1	Murata	GRM188R60G226MEA0	22 µF	0603	1.6 x 0.8 x 0.8
	Output capacitor, up to 5 A	2	1	Murata (2 in parallel)	GRM188R60G226MEA0	22 μF	2x 0603	2 pcs 1.6 x 0.8 x 0.8
C14C17	Output capacitor	4	1	Murata	GRM188R60J106ME84L	10 μF	0603	1.6 x 0.8 x 0.8
L6, L7, L8	Inductor, 1.1 A		1	Murata	LQM2MPN1R0NG0	1 μH (1.4 A)	0806	2.0 x 1.6 x 0.9
		3	2	токо	MDT2520-CN1R0M	1 μH (1.35 A)	1008	2.5 x 2.0 x 1.2
			3	TDK	MLP2520S1R0M	1 μH (1.5 A)	1008	2.5 x 2.0 x 1.0
L9	Inductor, up to 5.0 A		1	COILCRAFT	XFL4020-102ME	1 μH (5.4 A)		4.0 x 4.0 x 2.1
			2	TOKO (2 in parallel)	DFE322512C	1 μH (3.1 A), 2 in parallel (5 A)	2x 1210	2 pcs 3.2 x 2.5 x 1.2
		1	3	токо	DFE322512C	1 μH (3.1 A)	1210	3.2 x 2.5 x 1.2
			4	токо	DFE252012C	1 μH (3.0 A)	1008	2.5 x 2.0 x 1.2
			5	TDK	SPM3012T-1R0M	1 μH (2.8 A)		3.2 x 3.0 x 1.2
L10	Inductor, up to 2.5 A	-	1	Murata	LQM32PN1R0MG0	1 μH (1.8 A)	1210	3.2 x 2.5 x 1.0
			2	токо	DFE322512C	1 μH (3.1 A)	1210	3.2 x 2.5 x 1.2
		1	3	токо	DFE252012C	1 μH (3.0 A)	1008	2.5 x 2.0 x 1.2
			4	Coilcraft	EPL2010-681MLB	0.68 μH (2.0 A)	0808	2.0 x 2.0 x 1.0
	Inductor (Option 2)		1	токо	DFE322512C	0.47 µH (3.7 A)	1210	3.2 x 2.5 x 1.2
				LDO External Co	omponents			
C18C22	Input capacitor	5	1	TDK	C1005X5R0J225M	2.2 μF, 6V3	0402	1.0 x 0.5 x 0.5
C23C33	Output capacitor	11	1	TDK	C1005X5R0J225M	2.2 μF, 6V3	0402	1.0 x 0.5 x 0.5
				Charger External	Components			
L11	Inductor		1	FDK	MIPS2520D1R0	1 µH (1.2 A)	2520	2.5 x 2.0 x 1.0
		1	2	Taiyoyuden	CKP25201R0M-T	1 µH (1.4 A)	2520	2.5 x 2.0 x 1.0
			3	токо	DFE252012C	1 μH (3.0 A)	1008	2.5 x 2.0 x 1.2

⁽¹⁾ Component minimum and maximum tolerance values are provided in the electrical parameters section for each IP.

⁽²⁾ The # column refers to the first (1), second (2), and third (3) source suppliers, for which the IPs are either simulated or characterized.

³⁾ The PACK column describes the external component package type.

⁽⁴⁾ The VDD tank capacitors filter the VSYS/VDD input voltage of the LDO and SMPS core architectures.

Table 6-1. Recommended External Components (continued)

S1	PMOS battery switch (with power path)		1	Texas Instruments (C45 = 4.7 nF needed)	CSD25201W15	33 mΩ ($V_{GS} = -4.5 \text{ V}$)		1.5 x 1.5 x 0.62
	() []		2	Vishay (C45 not needed)	Si8417DB	21 mΩ (V _{GS} = -4.5 V)		2.4 x 2.0 x 0.65
		1	3	Vishay (C45 = 4.7 nF needed)	Si8407DB	22 mΩ (V _{GS} = -4.5 V)		2.4 x 2.0 x 0.65
			4	Vishay (C45 = 4.7 nF needed)	SiA429DJT	21 mΩ (V _{GS} = -4.5 V)		2.05 x 2.05 x 0.6
			5	Rohm (C45 = 15 nF needed)	RQ1A060ZP	16 mΩ (V _{GS} = -4.5 V)		3.0 x 2.8 x 0.8
C45	Gate capacitor (with		1	Murata	GRM155R61A472KA01D	4.7 nF, 10 V	0402	1.0 x 0.5 x 0.5
	power path, see S1 comments)	1	2	Murata	GRM155R71C153KA01D	15 nF, 10 V	0402	1.0 x 0.5 x 0.5
R9	Sense resistor (shorted with power path)	1	1	Panasonic	ERJ3BWFR068V	68 mΩ, 0.25 W	0603	1.6 x 0.8 x 0.8
C34	CHRG_VREF capacitor	1	1	Murata	GRM188R61A225KE34D	2.2 μF, 10 V	0603	1.6 x 0.8 x 0.8
C35	VAC decoupling capacitor	1	1	Murata	GRM155R61C104K	100 nF, 16 V	0402	1.0 x 0.5 x 0.5
C36	VBUS decoupling	1	1	Murata	GRM219R61C475KE15	4.7 μF, 16 V	0805	2.0 x 1.25 x 0.85
C37	CHRG_PMID capacitor	1	1	Murata	GRM219R61C475KE15	4.7 μF, 16 V	0805	2.0 x 1.25 x 0.85
C38	CHRG_CSIN capacitor (not placed with power path)	1	1	Murata	GRM155R61C104K	100 nF, 6V3	0402	1 x 0.5 x 0.5
C39	CHRG_CSOUT cap1	1	1	Murata	GRM188R60J106ME84L	10 μF, 6V3	0603	1.6 x 0.8 x 0.8
C41	CHRG_CSOUT cap2	1	1	Murata	GRM155R61A105KE15D	1 μF, 6V3	0402	1.0 x 0.5 x 0.5
C40	CHRG_SW capacitor	1	1	Murata	GRM155R61C104K	100 nF, 16 V	0402	1.0 x 0.5 x 0.5
S2	PMOS switch for negative voiltage protection	1	1	Vishay	Si8417DB	22 mΩ		2.4 x 2.0 x 0.65
R10	Pull-down resistor	1	1			100 kΩ	0402	1.0 x 0.5 x 0.5
D1	LED	1	1	Everlight	16S-216UTD/S559/TR8	2 mA	0402	1.0 x 0.5 x 0.35

7 Device and Documentation Support

7.1 Device Support

7.1.1 Development Support

TI offers an extensive line of development tools, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer StudioTM Integrated Development Environment (IDE).

The following products support development of the TPS80032 device applications:

Software Development Tools: Code Composer Studio Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any TPS80032 device applications.

Hardware Development Tools: Extended Development System (XDS™) Emulator

7.1.2 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, *TPS80032*). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).

Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, YFF) and the temperature range (for example, blank is the default commercial temperature range).

For orderable part numbers of *TPS80032* devices in the *YFF* package types, see the Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.

7.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

7.3 Trademarks

Code Composer Studio, XDS, E2E are trademarks of Texas Instruments.

7.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.5 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

7.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

7.7 Additional Acronyms

Additional acronyms used in this data sheet are described below.

TERM	DEFINITION DEFINITION
ADC	Analog-to-Digital Converter
IC	Integrated Circuit
I2C/I ² C	Inter-IC Control Bus
LDO	Low Dropout Voltage Regulator
LSB	Least-Significant Bit
MSB	Most-Significant Bit
PFM	Pulse Frequency Modulation
PWM	Pulse Width Modulation
RTC	Real-Time Clock

7.8 Detailed Revision History

VERSION	DATE	NOTES
*	03/2010	See ⁽¹⁾ .
Α	06/2011	See ⁽²⁾ .

- (1) SWCS059, TPS80032 Data Manual: Initial release
- (2) SWCS059A: Update
 - Table 4-10, Boost mode for VBUS voltage generation: I_{BO1} and I_{BLIMIT} updated.
 - Long Key Press (PWRON), OTP memory bit to generate startup after shutdown.
 - Table Table 6-1, S2, R10, and C40 updated.
 - PCB Placement and Routing Guidelines chapter removed, there will be a separate Application Note.
 - updated.
 - Section 5.19, second paragraph updated.
 - Section 5.4.1 updated.
 - Section 5.7.2, last paragraph updated.
 - Section 5.9 updated.
 - USB ID resistance detection figure added, Figure 5-25.
 - USB ID resistance detection table added, Table 5-1.
 - Caution added to short-circuit protection chapter, Section 5.7.1.
 - Major updates in Battery Charging chapter Section 5.9.
 - Updated.
 - Recommended SMPS External Components updated, Table 6-1.
 - LDOUSB 3.3 V output voltage levels updated, Table 4-4.
 - GPADC INL error for GPADC_IN14 added, Section 4.5.13.
 - GPADC channel scaler changed to input voltage range, Section 5.12.3.
 - Thermal characteristics updated, Section 8.1.

18 Device and Documentation Support

VERSION	DATE	NOTES
В	09/2011	See ⁽³⁾ .
С	11/2011	See ⁽⁴⁾ .

(3) SWCS059B: Update

- Update: CHRG_CSOUT connection when not used.
- Update Section 1.1: Battery voltage range from 2.5 to 5.5 V.
- Typo corrected Section 4.5.1: T_{LDR} for SMPS2 and SMPS5 swapped.
- Typo corrected Section 4.5.1: I_Q for SMPS2 and SMPS5 swapped.
- Update Section 5.9: Example of external charger changed to BQ24159.
- Update Section 4.5.11: Several parameters added into Pullup and Pulldown Resistors chapter.
- Update Section 4.5.1: IQ for SMPS1 added.
- Update Section 4.5.1: V_{INP}, V_{INF}, and MinDOV clarified.
- Update Section 4.5.13: Offset from +/-9 LSB to +/-36 LSB.
- Update Table 5-2: Nonsaturated input voltage range added.
- Update Section 5.10.3 and Figure 5-29: VBUS_IADP_SRC operation during ADP probing.
- Update Section 5.9.13.1.3: Warning about thermal regulation loop operation added.
- Update Section 5.7.2.2: Inductor value for optimized operation.
- Update Table 6-1: C13 and L9 updated.
- Update Section 5.7.2: Numerous parameters updated.
- Update Figure 4-1: SMPS1 efficiency curve updated.
- Update Table 5-2: Table notes added and VBUS and VAC range updated.
- Update Table 4-15: Channel 11 offset from +/-20 to +/-36 LSB.
- Update Table 4-4: LDO's minimum PSRR updated.
- Update: CTLI2C_SCL, CTLI2C_SDA, DVSI2C_SCL, and DVSI2C_SDA pull-up resistor range changed (new value is 1.46 k to 7.4
- Update Section 5.7.2.5: 3-A and 5-A mode clarified for SMPS1.
- Update: Ordering information updated.
- Update Section 4.5.16: Condition for WAIT-ON current clarified.
- Update Table 4-10: Boost mode quiescent current updated to 5 mA.
- Update Section 5.9.4: VBUS anticollapse sensing point clarified.
- Update Table 4-1: Additional points for SMPS2 dropout voltage added.
- Update Figure 4-3.
- (4) SWCS059C: Update
 - Update Section 5.19: The interrupts chapter clarified and figure added.
 - Update Section 5.12: The block diagram, calibration and software guidelines added.
 - Update Section 5.13: The operation is clarified and the software guidelines are added.
 - Update Section 5.2, DVS Software Commands, Boot Pins, Section 5.4.1, Section 5.4.2, PWRON, RPWRON, Section 5.5, Section 5.8, Section 5.10, Section 5.10.1, Section 5.11: Register names added.
 - Update Section 5.4.4: Chapter updated.
 - Update Table 4-10: Parameters of analog thermal regulation loop updated.
 - Update Section 5.9.13.1.3: CURRENT_TERM, CHARGE_DONE, NO_BAT and EN_LINCH dependency of Power Path usage is

 - Update Table 4-10: V_{OVP_VSYS} updated. Update Table 4-1: SMPS2 rated current increased to 2.5 A. ILIMIT, MinDOV, R_V , DC_{LDR} , T_{DCOV} updated.
 - Update Section 5.14: Description clarified, names of the registers and bits added.
 - Update Section 5.15: Description clarified, names of the registers and bits added.
 - Update: Ordering information updated.
 - Update Section 5.9: Major updates in the chapter.
 - Update Section 5.5: Regulator short circuit detection added to stopping event.

VERSION	DATE	NOTES
D	12/2011	See ⁽⁵⁾ .
Е	02/2012	See ⁽⁶⁾ .
F	04/2012	See ⁽⁷⁾ .

- (5) SWCS059D: Update
 - Update Section 8.1: MSL Peak Temp added.
 - Update Table 5-2: Performance range of CH11 and CH17 updated.
 - Update Tablenote: Note updated for the result's coding.
 - Update Table 4-1: SMPS1 turn off time with 44 F output capacitance, SMPS1 on ground current and SMPS2 DC_{LDR} updated.
 - Update Figure 5-12: Min. VICHRG level changed from 0.3 A to 0.1 A and VSYSMIN_HI replaced by VBATMIN_HI.
 - Update Section 5.6: Note about system voltage level and regulator's dropout requirements added.
 - Update Tablenote, Section 5.9.3.4, Section 5.9.3.5, Section 5.9.3.6: Battery charging and termination current depends on sense resistor R_{Sense} or R_{SNS}.
 - Update Section 5.9.3.6: Termination current described.
 - Update Section 5.9.13.1.3: Note for TMREG bit added.
 - Update Section 5.4.2: The HOLD_WDG_INSLEEP register bit described.
 - Update Table 4-1: SMPS overshoot changed from max. 10% to max. 100 mV, SMPS1's (3-A mode) DC_{LDR} updated.
 - Update Section 4.5.13: GPADC_VREF output current capability and source resistance specified.
 - Update Section 4.5.2: LDO1's PSRR updated.
 - Update Section 4.5.8: System supply regulator's D_{MAX} specified.
 - Update Section 5.9.12: Priority between VBUS and VAC clarified.
 - Update Table 5-3: Equation for channel 17 added.
 - Update Figure 1-1, Table 6-1: Capacitor C45 added.
 - · Update: Pullup and pulldown resistors clarified; fixed, programmable, default.
 - Update Section 5.9.3.1: Note added.
 - Update Table 4-10: I_{IN LIMIT} max increased to 2250 mA.
 - Update Table 4-1: R_V measured with 20-MHz LPF.
 - Update Section 5.1: Alarm and Timer interrupts clarified.
 - Update : Ordering information updated.
 - Update Section 5.9.4: Operation clarified and figure added.
- (6) SWCS059E: Update
 - Update Table 4-10: (System Supply Regulator, PWM) MOSFET on-resistances updated.
 - Update Table 4-10: C_{BOOT} value updated from 10nF to 100nF.
 - Update Table 5-3: X1 and X2 values updated for channel 10.
 - Update Table 4-15: GPADC_IN3 current source values updated.
 - Update Table 5-2: Input voltage performance range updated for channel 8.
 - Update Table 4-10: Output voltage for full charge mode, typo corrected (VBAT instead of VSYS).
 - Update Table 4-13: External ID resistances added.
 - Update Figure 5-29: Figure updated.
 - Update Section 5.3: Major updates in the chapter.
 - Update Section 5.4: Some updates in the chapter.
 - Update Table 4-11: Threshold error and comparator offset updated for Battery Temperature Measurement.
 - Update Table 4-15: Offset, gain error, INL, GPADC_IN0 current levels updated.
 - Update Table 4-2: Switching frequency updated.
 - Update Table 4-11: A range of ΔLIN updated.
 - Update Section 5.9.12: Figure added, description clarified.
 - Update Section 5.9.3.1: Figure added, description clarified.
 - Update Figure 5-24: Figure updated.
 - Update Figure 5-22: Figure added.
 - · Update: Boot sequence figure removed.
 - Update: Chapter "Group and Subsystem Groups Power States" removed.
 - Update Section 5.3.7.3: Shutdown generation added.
- (7) SWCS059F: Update
 - Update Table 4-4, Section 5.7.3.2: VBRTC electrical parameters added and control clarified.
 - Update 0 : Note for 100 nF capacitor requirement with over 20 k Ω source impedance added.
 - Update and .
 - Update Table 4-15: GPADC_VREF output impedance spec removed. GPADC_IN0 current source spec updated.
 - Update Figure 5-7, Figure 5-8, Figure 5-9, Figure 5-10: Text clarified in the flowcharts.
 - Update: R_{SNS} and R_{sense} replaced by R2 and R9 for clarification.
 - Update Section 5.9.6: Description added that system supply regulator operates after watchdog or safety timer expires.
 - Update Section 5.9.3.1: Caution about resistor R2 usage added.
 - Update Table 4-11: VBAT_FULLCHRG parameters added.
 - Update Table 4-17: VSYSMIN_HI and VSYSMIN_LO thresholds added.
 - Update Section 4.5.8: VBUS and VAC detection thresholds updated.

120 Device and Documentation Support

VERSION	DATE	NOTES
G	08/2012	See ⁽⁸⁾ .
Н	08/2012	See ⁽⁹⁾ .
I	11/2014	See ⁽¹⁰⁾ .

(8) SWCS059G: Update

- Update Table 4-4, Section 5.7.3.2: VBRTC electrical parameters added and control clarified.
- Update ⁰. Note for 100 nF capacitor requirement with over 20 kΩ source impedance added.
- Undate and
- Update Table 4-15: GPADC_VREF output impedance spec removed. GPADC_IN0 current source spec updated.
- Update Figure 5-7, Figure 5-8, Figure 5-9, Figure 5-10: Text clarified in the flowcharts.
- Update: R_{SNS} and R_{sense} replaced by R2 and R9 for clarification.
- Update Section 5.9.6: Description added that system supply regulator operates after watchdog or safety timer expires.
- Update: Section 5.9.3.1: Caution about resistor R2 usage added.
- Update Table 4-11: VBAT_FULLCHRG parameters added.
- Update Table 4-17: VSYSMIN_HI and VSYSMIN_LO thresholds added.
- Update Section 4.5.8: VBUS and VAC detection thresholds updated.
- Update Section 5.11.4: Warning about RC-filtering added.
- Update Section 5.9: Note about the terminology of different charging sources added.
- (9) SWCS059H: Update
 - · Update : Ordering information updated.
 - Update : ESD Specification updated.
- (10) Changed data sheet to standard TI format

8 Mechanical Packaging and Orderable Information

8.1 Packaging Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document.

www.ti.com 16-Aug-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS80032A2D7YFFR	PREVIEW	DSBGA	YFF	155	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS80032 A2D7	
TPS80032A2F7YFFR	PREVIEW	DSBGA	YFF	155	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS80032 A2F7	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 16-Aug-2024

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated