
Application Note
AM64x and AM243x: MCU+ SDK-Based PCIe End Point

Ashwani Goel Sitara MPU

ABSTRACT

This document serves as application report for the PCIe EP driver extension of the MCU+SDK 9.2.1 or newer for
the Texas Instruments ARM-based SOCs AM64x and AM243x.

Table of Contents
1 Abbreviations..2
2 Introduction...2

2.1 Peripheral Component Interconnect Express.. 2
2.2 PCIe Features on AM64x and AM243x..5

3 X86 as RC and AM64x as EP... 6
3.1 Hardware Environment.. 6
3.2 Software Environment..7

4 Test Setup..9
4.1 Common Setup for LINUX and WIN.. 9
4.2 Linux Driver (VFIO).. 10
4.3 Test Application Usage...11
4.4 Setup Steps for LINUX PC...12
4.5 MSI Example..14
4.6 Setup Steps for WINDOWS PC... 15

5 PCIe Test Specification.. 19
5.1 Identification and Configuration Functionalities..19
5.2 Reference Clock Functionalities...22
5.3 Inbound ATU and BAR Functionalities...25
5.4 Outbound ATU Functionalities..30
5.5 MSI Functionality..31
5.6 Downstream Interrupt Functionality... 32
5.7 Device Power Management State Functionality.. 33
5.8 Function Level Reset Mechanism.. 35
5.9 Legacy Interrupt Mechanism..35
5.10 MSI-X Capability.. 36
5.11 Hot Reset Mechanism.. 36

6 Windows Example Driver Verification...38
7 References.. 40

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

1 Abbreviations
PCIe Peripheral Component Interconnect Express
PCI-SIG PCI Special Interest Group
EP End Point
RC Root Complex
SSC Spread Spectrum
BIOS Basic Input Output Software
CCS Code Composer Studio
TI Texas Instruments
BAR Base Address Register
MSI Message Signal Interrupt
MSI-X Message Signal Interrupt X
SBL Secondary Bootloader
VFIO Virtual Function I/O
IOMMU I/O Memory Management Unit
ATU Address Translation Unit
FLR Function Level Reset

2 Introduction
2.1 Peripheral Component Interconnect Express
Peripheral Component Interconnect Express (PCIe) is a motherboard expansion bus standard introduced in
2003 to enable high-speed serial communication between the Central Processing Unit (CPU) and the peripheral
components. Today, the PCIe is the primary motherboard expansion bus standard and a popular communication
method for many other onboard applications. PCIe is often used for Graphics Processing Unit (GPU) and
solid-state drives (SSD) to send and receive data with the CPU.

• Texas Instruments TIPL video: What is PCIe?

2.1.1 Components of PCIe Communication

PCIe communication consists of three main components: root complex, repeaters, and PCIe endpoints. PCIe
communication is hierarchical so there is a single source, which is the root complex, through which all the data
passes. The data goes to the root complex from multiple PCIe endpoints and vice versa.

Figure 2-1. PCIe Topology

Abbreviations www.ti.com

2 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/video/6254837397001?context=1139747-1138099-1139710-1148285
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

2.1.1.1 Root Complex

A root complex is the interface between the system CPU, memory, and the remainder of the PCIe interface. The
root complex is either integrated into the CPU directly, or is external to the CPU as a discrete component. This
interface also acts as a single source where all the data from various PCIe endpoints pass through. Figure 2-1
shows the root complex as the dark blue box that connects CPU, memory, and PCIe components and is referred
as Root Complex.

For more details AM64x as RC

2.1.1.2 Repeater

A repeater is a signal conditioning device that makes sure a good signal to reach to and from the root complex
and PCIe endpoints. Repeaters can fall into two categories: retimers and redrivers. Both are common PCIe
components used to maintain signal quality of high speed links and compensate for the loss of signal quality
over the traces. Figure 2-1 shows the repeater as the dark blue box that connects the root complex and PCIe
endpoint and is referred as Repeater.

2.1.1.3 Endpoints

An endpoint is a general term for a PCIe end component. This can represent many different types of PCIe
devices such as M.2 solid state drive (SSD) or graphics processing unit (GPU). The endpoint can be either a
PCIe component or a PCI component with PCIe to PCI/PCI-X bridge. Figure 2-1 shows PCI endpoint as light
blue box and gray box that is connected to either bridge, switch, or repeater and is referred as either PCIe
Endpoint or PCI Endpoint.

For more details AM64x as EP

2.1.2 Signaling

Each component of PCIe communication (except for redrivers) have the following control signals: PERST,
WAKE, CLKREQ, and REFCLK. These signals work to generate high-speed signals and communicate with
other PCIe devices. Figure 2-2 shows the diagram of PCIe devices with the control signals. This diagram shows
that all of the control signals except REFCLK are active low signals.

In Figure 2-2, the repeater is referred as retimer

Figure 2-2. PCIe Signaling

2.1.2.1 PERST

PERST is referred to as a fundamental reset. PERST can be held low until all the power rails in the system and
the reference clock are stable. A transition from low to high in this signal usually indicates the beginning of link
initialization. In Figure 2-2, PERST is referred as PERST#.

2.1.2.2 WAKE and CLKREQ

WAKE and CLKREQ signals are both used for transitioning to and from low power states. WAKE signal is an
active-low signal that is used to return the PCIe interface to an active state when in a low-power state. CLKREQ
signal is also an active-low signal and is used to request the reference clock. In Figure 2-2, these are referred as
WAKE# and CLKREQ#, respectively.

www.ti.com Introduction

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 3

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/processor-sdk-linux/esd/AM64X/latest/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/PCIe/PCIe_Root_Complex.html
https://software-dl.ti.com/processor-sdk-linux/esd/AM64X/latest/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/PCIe/PCIe_End_Point.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

2.1.2.3 REFCLK

A REFCLK, or reference clock signal, is a prerequisite for a PCIe device to begin data transmission. This
100MHz reference clock signal is used by the PCIe device to generate the high-speed PCIe data within the link
and is shared by the PCIe devices within the link. In Figure 2-2, REFCLK is referred as REFCLK.

2.1.3 PCIe Common Usage

• Computer Hardware
– Graphics Cards

PCIe is the common motherboard interface for graphics cards. PCIe allows high-speed communication
between the GPU and the remainder of the system.

– Sound Cards
Sound cards use PCIe slots for audio processing and output.

– Storage Devices
SSDs (Solid State Drives) connect through PCIe for fast data transfer.

– Network Interface Cards (NICs)
PCIe enables high-speed networking connections.

• Industrial Systems
– In industrial automation and control systems, PCIe is used for high-speed communication between

sensors, actuators, and controllers.
– Industrial PCs often rely on PCIe for expansion cards and peripherals.

• Data Centers
– Servers and storage systems in data centers use PCIe for connecting storage devices, network adapters,

and accelerators (such as GPUs or FPGAs).
– PCIe provides low-latency communication, essential for data center workloads.

• Automotive Technology
– Infotainment Systems

PCIe interfaces are used for connecting multimedia components, such as displays, audio systems, and
navigation units.

– Advanced Driver Assistance Systems (ADAS)
PCIe connects sensors, cameras, and processing units for real-time data processing.

• Laptop and Mini-PCs
– PCIe is used to connect built-in peripherals and add-in cards.
– Mini PCIe uses the same topology and specifications as regular PCIe and is electrically compatible.
– The now-common M.2 SSD interface also uses PCIe topology.

2.1.4 PCIe Aggregate Throughput

A PCI Express interconnect is referred to as a Link, and connects two devices. A link consists of either 1, 2, 4,
8, 12, 16 or 32 signals in each direction (note, because the system uses full-differential signaling, each signal
actually needs two wires). These signals are referred to as Lanes. A designer determines how many lanes to
implement based on the targeted performance benchmark required on a given link. In the nomenclature, the
width of a link is shown with an x in front of a number, where the x is pronounced as by, so that a link with 4
signals in each direction, for example, is referred to as by four link.

Introduction www.ti.com

4 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Figure 2-3. PCIE Express Link

Table 2-1 shows the aggregate bandwidth numbers for various Link width implementations. As is apparent from
this table, the peak bandwidth achievable with PCI Express is significantly higher than most existing buses
today.

Consider how these bandwidth numbers are calculated. The transmission/reception rate is currently 2.5
Gbits/sec per Lane per direction. To support a greater degree of robustness during data transmission and
reception, each byte of data to be transmitted is converted into a 10-bit code (via an 8b/10b encoder in the
transmitter device). In other words, for every Byte of data to be sent, 10-bits of encoded data are actually
transmitted. The result is a 25% overhead to transmit a byte of data. PCI Express implements a dual-simplex
Link which implies that data is both transmitted and received simultaneously.

The aggregate bandwidth assumes simultaneous traffic in both directions. To obtain the aggregate bandwidth
numbers in Table 2-1, multiply 2.5 Gbits per second by 2 (to account for both directions), then multiply by the
number of Lanes, and finally divide by 10-bits per Byte (to account for the 8-to-10 bit encoding) to arrive at a
bytes per second result.

Table 2-1. PCIe Link Speed
PCIExpress Link Width x1 x2 x4 x8 x12 x16 x32
AggregateBand- width
(GBytes/sec)

0.5 1 2 4 6 8 16

2.2 PCIe Features on AM64x and AM243x
There is one instance of PCIe subsystem. Following are some of the main features:

• EP and RC operation
• Gen 1 and 2 operation speed
• x1 lane support
• Legacy interrupts
• MSI (Message Signaled Interrupt)

EVM

There is one instance of the PCIe subsystem on the EVM. Following are some of the details for that instance:

Table 2-2. PCIe on AM64x and AM243x EVM
Instance Supported lanes Supported Connector
PCIE0 1 lane Standard female connector

For more info : PCIe

www.ti.com Introduction

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 5

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/latest/exports/docs/api_guide_am64x/DRIVERS_PCIE_PAGE.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

3 X86 as RC and AM64x as EP
Here, we are describing the steps to make PCIe connection between generic x86 PC as RC and AM64x as EP.

3.1 Hardware Environment
The following hardware is used to perform the specified function tests:

• x86 system with an available PCIe slot
– The PCIe slot does NOT need to be connected to a PCIe switch but needs to rather be connected directly

to the x86 CPU or PCH.
– For development and testing the following systems have been used:

• The x86 needs to be installed with a recent Linux version that supports VFIO, VFIO-PCI and IOMMU.

• TMDS243EVM or TMDS64EVM: is termed as a single EVM going forward
• PCIE_FLEX_NOCLK: Adex Electronics PCIe flexible extender cable PE-FLEX1-G2.MMCX-12-TI1
• PCIE_FLEX_CLK: Modified Adex Electronics PCIe flexible extender cable PE-FLEX1-G2.MMCX-12-TI1 with

connected reference clock REFCLK+/-
• SPEC_ANA: Spectrum Analyzer
• The AM24x EVM needs to be modified to support a common reference clock for PCIe: - remove Resistors

R661, R662, R667 & R668 - populate Resistors R665, R666, R679 & R680 (all 0 ohm)

X86 as RC and AM64x as EP www.ti.com

6 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TMDS243EVM
https://www.ti.com/tool/TMDS64EVM
https://www.adexelec.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

3.2 Software Environment
The following software is used to perform the specified function tests:

1. CCS12: TI Code Composer Studio, Version: 12.4.0.00007 2.
2. SysConfig: Version: 1.17.0 3.
3. SER_TER: Serial Terminal Emulator Program for example, Tera Term or Putty
4. LIN: Lenovo ThinkStation-P620 having Ubuntu 20.04
5. WIN: Windows 10 22H2
6. MCU+ SDK
7. EP sample application

a. The PCIe Enumeration (EP) example demonstrates an EP that supports enumeration through an RC
that is running Windows or Linux.

3.2.1 Building Application

Location: examples/drivers/pcie/pcie_enumerate_ep

The example can be imported into CCS 12.4 and built as a regular CCS project.

3.2.2 Usage

• You can refer MCUSDK documentation to flash generated binary into OSPI using section
• If the pcie_enumerate_ep example is started on an AM24x EVM that is NOT connected to an x86 RC, or if

the x86 is not powered, the only output is going to be:
– Power off AM64x and Linux-PC
– Power on AM64x having pcie_enumerate_ep flashed

www.ti.com X86 as RC and AM64x as EP

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/download/CCSTUDIO/12.4.0
https://www.ti.com/tool/download/SYSCONFIG/1.17.0.3128
https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/latest/exports/docs/api_guide_am64x/GETTING_STARTED_FLASH.html
https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/latest/exports/docs/api_guide_am64x/GETTING_STARTED_FLASH.html#:~:text=the%20config%20file.-,Flashing%20the%20application,-AM64X%2DEVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Afterward, the sample application is waiting for a PCIe link to be established, which requires the RC. Once the
cable is connected and the RC is powered, the application outputs the state changes:

• Now power ON Linux PC

X86 as RC and AM64x as EP www.ti.com

8 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

4 Test Setup

4.1 Common Setup for LINUX and WIN
To perform function tests with the TMDS243EVM/TMDS64EVM as a PCIe EP and either a Linux-based PCIe RC
or a Windows-based RC, the following test setup needs to be performed:

1. Perform hardware modification on TMDS243EVM:
a. Remove resistors R661, R662, R667 and R668
b. Populate 0Ω resistors R665, R666, R679 and R680

2. Remove Jumper J34 on TMDS243EVM, as we want neither the AM24x to driver the PERST signal (we are
an EP, this is an input) nor do we want the x86's PERST signal to reset our processor, because we want to
boot the AM24x BEFORE the x86 to make sure the startup and reset timing requirements are met.

3. Enable Intel Virtualization Technology in BIOS settings of X86 Linux-based RC hardware for IOMMU usage.
4. Connect TMDS243EVM with X86_10TH or X86_ADLN using the modified Cable PCIE_FLEX_CLK.
5. Note, the blue circled zero-ohm resistors in the following image:

Figure 4-1. Modified PCIE_FLEX_CLK cable
6. Boot TMDS243EVM with NULL SBL from SD card.
7. Connect to TMDS243EVM through FTDI USB for UART port using serial terminal emulator program

SER_TER.

Note
The serial connection is intended to provide various status messages of the PCIe EP, which can be
used for test verification as described in Section 5 and Section 6

Each function test described in Section 5 requires modifications of the pcie_enumerate_ep example application.
These modifications are either performed on the Sysconfig file or within the source code on CCS. On executing
these modifications, continue with the following test setup:

1. On changing Sysconfig file or source code save files and build project.

www.ti.com Test Setup

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

2. Open designed for target configuration, connect with target. Perform system reset, load and run the
pcie_enumerate_ep example application on TMDS243EVM.

3. Boot X86 based PCIe RC.

Note
The PCIe EP needs to always run before the PCIe RC hardware boots.

4. Perform test validation on successful boot up via terminal commands as descriptive in Section 5.

4.2 Linux Driver (VFIO)

4.2.1 Prerequisites

To use the ti-sample-vfio example driver the target system's Linux needs to support the following features:

• VFIO, VFIO_PCI
– CONFIG_VFIO, CONFIG_VFIO_PCI

• IOMMU
– CONFIG_IOMMU, CONFIG_INTEL_IOMMU
– enabled via kernel command line argument intel_iommu=on
– Intel VT-d support needs to be enabled in the BIOS

4.2.2 Building

The ti-sample-vfio example driver consists of a single C file that can be compiled on-target using a simple GCC
command:

gcc ti-sample-vfio.c -o ti-sample-vfio -g -O2

4.2.3 Deploying

Since the driver can be compiled self-hosted on Linux there is no separate deployment step.

Test Setup www.ti.com

10 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

4.3 Test Application Usage
• To run the pcie_enumerate_ep example application the AM24x EVM needs to be booted with the NULL

bootloader (SOC Initialization Binary).
• The pcie_enumerate_ep example can then be loaded via CCS 12.4 and the onboard XDS110.

• The pcie_enumerate_ep example prints the output on the EVM's debug UART.

• If the pcie_enumerate_ep example is started on an AM24x EVM that is NOT connected to an x86 RC, or if
the x86 is not powered, the only output is going to be:

PCIe: initialized and waiting for link

www.ti.com Test Setup

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

• Afterward, the sample application is waiting for a PCIe link to be established, which requires the RC. Once
the cable is connected and the RC is powered, the application outputs the state changes:

PCIe: link detected
PCIe Link Parameter: PCIe Gen1 with 2.5 GT/s speed, Number of Lanes: 1
EP is in D0 state
PCIe: signaling APPL ready
APPL: pcie ready

• At this point, the application is ready for configuration through the RC driver, either ti-sample-vfio or ti-sample-
kmdf.

4.4 Setup Steps for LINUX PC
Since a RC sample application ti-sample-vfio based on Linux VFIO driver is implemented for testing and
verification purposes, some tests descripted on Section 5 require the usage. To use ti-sample-vfio, the following
setup needs to be implemented:

1. On successful PCIe boot up open Linux terminal and acquire root privileges:

sudo su

2. Determine bus-, device-, and function number of TMDS243EVM PCIe EP device using lspci command in
Linux terminal. Use the vendor and device ID as set in Sysconfig. Search for it with the following command
which shows related information of all PCIe devices numerically:

lspci -vtn

3. The output of the previous command is shown in the following figure. In that case, the PCIe EP is assigned
the bus 4, device 00 and function 0.

4. Load the VFIO-PCI driver using modprobe:

modprobe vfio-pci

5. Assign TMDS243EVM PCIe EP vendor and device ID to the VFIO driver.

echo "17cd 0100" > /sys/bus/pci/drivers/vfio-pci/new_id

6. Check which IOMMU group the PCIe EP is assigned to:

readlink /sys/bus/pci/devices/0000:04:00.0/iommu_group

a. The output of the previous command can provide: PCIe EP assigned the IOMMU group.
7. Make sure the EP is the only device in this IOMMU group:

ls -l /sys/bus/pci/devices/0000:04:00.0/iommu_group/devices

As can be seen the TMDS243EVM PCIe EP is the only device in IOMMU group 60. In case of additional
PCIe devices within the same IOMMU group, these PCIe devices must be bind to VFIO driver as well.

Test Setup www.ti.com

12 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

8. Compile ti-sample-vfio (root privileges are no longer needed for the next steps):

gcc ti-sample-vfio.c -o ti-sample-vfio -g -O2

9. Execute ti-sample-vfio application with previously determined parameter:

sudo ./ti-sample-vfio 40 0 60 1 wait

Note
The ti-sample-vfio application requires the following parameter for execution:
1. [bus]: PCIe EP bus number
2. [device]: PCIe EP device number
3. [function]: PCIe EP function number
4. [IOMMU group]: PCIe EP IOMMU group
5. [test_mode] This parameter is only required for test case 4.3.2 which refers to an extended

inbound ATU/BAR configuration (see the corresponding description). To start the test case, the
parameter testbars must be passed. Otherwise, this parameter can be omitted, and the input is
interpreted as the subsequent parameter [Number of MSI IRQs].

6. [Number of MSI IRQs]: Number of to be tested MSI IRQs as descripted on Test 4.5.2. This
parameter needs to be set to 1 if test 4.5.2 is not performed.

7. [Number of loops]: Number of loops the test program can execute. This parameter is optional and
can be left empty. The default value is 10.

8. [‘wait’] This parameter instructs the test program to wait for user input throughout the execution of
the test application.

4.4.1 UART Console Output

Running the sample application puts the device from D3hot into D0 state.

The application outputs further state changes while the sample executes until finally the EP is put back into
D3hot state:

EP is in D0 state
PCIe: signaling APPL ready
APPL: pcie ready
PCIe: lost PCIe link
PCIe: hot reset detected
PCIe: signaling APPL halt
APPL: pcie not ready
PCIe: link detected
PCIe Link Parameter: PCIe Gen2 with 5.0 GT/s speed, Number of Lanes: 1
PCIe: signaling APPL ready
APPL: pcie ready
PCIe: MSI enabled with 1 vector(s) using address fee00538 and data 0
APPL: EP configured
APPL: EP unconfigured
PCIe: lost PCIe link
PCIe: hot reset detected
PCIe: signaling APPL halt
APPL: pcie not ready
PCIe: link detected
PCIe Link Parameter: PCIe Gen2 with 5.0 GT/s speed, Number of Lanes: 1
PCIe: signaling APPL ready

www.ti.com Test Setup

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

APPL: pcie ready
PCIe: power state entry
EP is in D3hot state
PCIe: signaling APPL halt
APPL: pcie not ready

4.5 MSI Example
This test setup is intended for testing the PCIe MSI RC project pcie_msi_irq_rc_am243x-
evm_r5fss0-0_nortos_ti-arm-clang in combination with the PCIe EP example project pcie_msi_irq_ep_am243x-
evm_r5fss0-0_nortos_ti-arm-clang.

1. Connect two TMDS243EVM or two TMDS64EVM through unmodified cable PCIE_FLEX_NOCLK.

Test Setup www.ti.com

14 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Figure 4-2. Two AM64x Connected Though Unmodified PCIe Cable
2. For first TMDS243EVM open CCS, import and build pcie_msi_irq_rc_am243x-evm_r5fss0-0_nortos_ti-arm-

clang. Open designed for target configuration and connect with target. Perform system reset and load the
example application.

3. Connect to first TMDS243EVM through FTDI USB for UART port using serial terminal emulator program
SER_TER.

4. For second TMDS243EVM open second CCS application (this can require an additional workspace),
import and build pcie_msi_irq_ep_am243x-evm_r5fss0-0_nortos_ti-arm-clang. Open designed for target
configuration and connect with target. Perform system reset and load the example application.

5. Connect to second TMDS243EVM through FTDI USB for UART port using serial terminal emulator program
SER_TER.

4.6 Setup Steps for WINDOWS PC
To make use of the driver the ti-sample-console application can be run. This application opens the driver, sends
IOCTLs to the driver, and waits for the IOCTLs to return.

The KMDF driver uses the pattern sent with the IOCTL to fill the Bar0 data area of the EP and then triggers a
downstream interrupt in the EP. The EP copies the data area from the Bar0 to the RC driver's DMA buffer and
triggers an MSI in the RC. The RC handles this interrupt and replies to the IOCTL with the data sent back via
DMA

This test setup is intended for:

• Windows-PC as PCIe Rc
• AM243x as PCIe EP

4.6.1 Prerequisites

To perform function tests with the TI TMDS243EVM as a PCIe EP and a Windows-based RC, the following test
setup can be performed:

Building the Windows driver requires a Windows host with the following software packages:

• WDK for windows 10, version 2004
• Windows SDK 10.0.19041.685

Visual Studio 2019 (Professional or Community edition)

• spectre mitigation libraries need to be added as an individual component using Visual Studio's installer
• ti-sample-kmdf and ti-sample-console source code

The target machine needs to have the following software installed:

• Windows 10 22H2
• WDK for windows 10, version 2004
• Microsoft Visual C++ Redistributable

4.6.2 Building

The ti-sample-kmdf solution contains two projects, the kernel mode driver ti-sample-kmdf and a console
application ti-sample-console.

www.ti.com Test Setup

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 15

Copyright © 2024 Texas Instruments Incorporated

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#visual-studio-2015-2017-2019-and-2022
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Both projects can be built by opening the ti-sample-kmdf solution in Visual Studio 2019 and building the entire
solution.

• The driver currently only supports 64-bit mode on x86 machines, so the platform x64 needs to be selected,
along with the configuration Release.

• In the solution explorer, select the solution ti-sample-kmdf and build the solution.

The build output is located in a new folder x64\Release below the solution directory (ti-sample-
kmdf\x64\Release).

4.6.3 Deploying

The following files from the solution’s build output are required on the target machine:

• ti-sample-kmdf.inf
• ti-sample-kmdf.sys
• ti-sample-kmdf.cat
• ti-sample-console.exe

Windows by default only accepts signed drivers. An installation can be modified to accept so-called test signed
drivers. The Windows KMDF sample driver ti-sample-kmdf uses this approach and is built as a test signed driver.

To allow Windows to use test signed drivers, open an administrator prompt (cmd, Run as administrator) and
enter the following command:

Bcdedit.exe -set TESTSIGNING ON

Enabling test signing the system needs to be rebooted. At this point the AM24x EVM with the
pcie_enumerate_ep application needs to be started as described above.

You then need to install the certificate used to test sign the driver on the target computer. This certificate is
placed in the solution output folder along with the driver and is named ti-sample-kmdf.cer.

It can be installed using the CertMgr.exe tool that comes with the WDK from an administrator prompt:

• cd C:\Program Files (x86)\Windows Kits\10\bin\10.0.19041.0\x64\
• CertMgr.exe /add ti-sample-kmdf.cer /s /r localMachine root /all
• CertMgr.exe /add ti-sample-kmdf.cer /s /r localMachine trustedpublisher

Note
• Use full path to ti-sample-kmdf.cer
• PCI device and verify the hardware ID is PCI\VEN_17cd&DEV_0100. Right-click the device

Test Setup www.ti.com

16 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

www.ti.com Test Setup

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 17

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Windows installs the driver and then notifies you when finished installing the driver for the ti-sample-kmdf device.

Test Setup www.ti.com

18 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

5 PCIe Test Specification
This chapter defines and specifies various PCIe function tests. Based on a test description, detailed instructions
are given on how to carry out a test as well as an explanation of the desired results. The following test
specification shown in Section 4.4 assumes environment.

5.1 Identification and Configuration Functionalities
Table 5-1. Identification and Configuration Functionalities

S.No. Test Specification
1 Description:

Test to verify if desired PCIe vendor ID, device ID, subsystem ID & subsystem vendor ID can be set and configured
correctly in the TMDS243EVM PCIe EP.
Execution:
1. Configure desired IDs through Sysconfig, and so on:

a. Vendor ID:0xAAAA
b. Device ID: 0xBBBB
c. Subsystem Vendor ID: 0xCCCC
d. Subsystem ID: 0xDDDD

2. Determine the PCIe EP bus-, device- and function number and verify the configured IDs in Linux terminal, and so
on.
a. sudo lspci -vn -s 4:00.0
b. The desired IDs are displayed as configured in Sysconfig. The following figure shows the expected result.

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 19

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Table 5-1. Identification and Configuration Functionalities (continued)
S.No. Test Specification
2 Description:

Test to verify if a desired PCIe class code, sub-class code, the programming interface & the revision-ID can be set and
configured correctly in the PCIe EP.
Just for testing purposes the base class code needs to be set as “Input device (09h)” with a sub-class code set as
“Gameport controller (10h)” and a programming interface set to “10h”. The revision ID is set to “03h”.
For additional information regarding the encoding of above parameter refer to “PCI Code and ID Assignment
Specification” as published by PCI-SIG.
Execution:
1. Configure desired settings through Sysconfig.

a. Classe Code: 0x09
b. Sub-Class Code:0x04
c. Programming Interface: 0x10
d. Revision ID: 0x03

2. Determine the PCIe EP bus-, device- and function number and verify the configured settings in Linux terminal, and
so on.
a. sudo lspci -vnn -s 4:00.0
b. The desired parameter is displayed as configured in Sysconfig. The following figure shows the expected

result.

5.1.1 Test Case

Test

Description:

Test to verify if desired PCIe vendor ID, device ID, subsystem ID and subsystem vendor ID can be set and
configured correctly in the TMDS243EVM PCIe EP.

Execution:

1. Configure desired IDs via Sysconfig, and so on.

PCIe Test Specification www.ti.com

20 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

a. Vendor ID:0xAAAA
b. Device ID: 0xBBBB
c. Subsystem Vendor ID: 0xCCCC
d. Subsystem ID: 0xDDDD

2. Determine the PCIe EP bus-, device- and function number and verify the configured IDs in Linux terminal,
and so on.:

sudo lspci -vn -s 4:00.0

The desired IDs is displayed as configured in Sysconfig.

Test

Description:

Test to verify if a desired PCIe class code, sub-class code, the programming interface and the revision-ID can be
set and configured correctly in the PCIe EP.

Just for testing purposes. the base class code needs to be set as Input device (09h) with a sub-class code set as
Gameport controller (10h) and a programming interface set to 10h. The revision ID needs to be set to 03h.

For additional information regarding the encoding of above parameter refer to PCI Code and ID Assignment
Specification as published by PCI-SIG.

Execution:

1. Configure desired settings through Sysconfig.
a. Class Code: 0x09
b. Sub-Class Code:0x04
c. Programming Interface: 0x10
d. Revision ID: 0x03

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 21

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

2. Determine the PCIe EP bus-, device- and function number and verify the configured settings in Linux
terminal, and so on:

sudo lspci -vnn -s 4:00.0

The desired parameter is displayed as configured in Sysconfig.

5.2 Reference Clock Functionalities

Test

Description:

Test to verify if external reference clock can be configured on TMDS243EVM PCIe EP and if PCIe EP works
correctly with external reference clock.

Execution:

1. Check if the following setting is configured on Sysconfig:
a. Reference Clock Mode: External Reference Clock, no SSC

PCIe Test Specification www.ti.com

22 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

2. Verify if Common Clock and Slot Clock mechanisms are enabled as shown in the following figure.

Test

Description:

Test to verify if internal reference clock configuration of AM243X/AM64X can be used with enabled output and
SSC configuration.

Execution:

1. Remove PCIe cable PCIE_FLEX_CLK from TMDS243EVM PCIe EP

Note

This is important since having two driving PCIe reference clock sources from EP and RC can damage
the hardware.

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 23

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

2. Configure the following setting via Sysconfig:
a. Internal Reference Clock, no SSC, Output enabled.

3. Measure the PCIe reference clock spectrum on PCIe connector. Since SCC is disabled, the measured
spectrum shows a single frequency above the noise level at 100MHz as shown in the following image.

4. Configure the following setting via Sysconfig:
a. Internal Reference Clock, with SSC, Output enabled.

5. Since SCC is enabled, the measured spectrum can be spread one around 100MHz as shown in the
following image.

PCIe Test Specification www.ti.com

24 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

We probe REFCLK+ and respective GROUND pins to get waveform on oscilloscope

https://en.wikipedia.org/wiki/PCI_Express

5.3 Inbound ATU and BAR Functionalities

Test

Description:

Test to verify if PCIe inbound ATU and BAR configurations work correctly for the TMDS243EVM/TMDS64EVM
PCIe EP.

By default, the following BAR configurations are set in Sysconfig for the pcie_enumerate_ep example
application:

1. Inbound Address Translation 0:
This ATU configuration uses region index 0 with a 32 Kbyte non-prefetchable 32bit memory BAR linked to an
external struct bar0_mem. This inbound ATU configuration can not be modified for this test as it is required
to ensure functionality with the RC VFIO based sample application ti-sample-vfio.

2. Inbound Address Translation 1:
This ATU configuration uses region index 1 with a 64 Mbyte prefetchable 32bit memory BAR linked to
an external data buffer bar1_data. This inbound ATU may be modified for this test as it is specifically
implemented to test various BAR configurations.

3. Inbound Address Translation 2:
This ATU configuration uses region index 2 with a 1 Gbyte non-prefetchable 64bit memory BAR linked
to an external data buffer bar2_data. This inbound ATU may be modified for this test as it is specifically
implemented to test various BAR configurations.

Execution:

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 25

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

1. Set desired BAR configurations in Sysconfig file for Inbound Address Translation 1 and 2 for
pcie_enumerate_ep application.

2. Check if desired PCIe EP BARs are configured correctly on Linux-based RC hardware. On boot up the
configured BARs can be shown as disabled on PCIe configuration space as shown in the following figure:

3. Run RC sample application ti-sample-vfio. Open a second Linux terminal and check PCIe EP configuration
space. As the program halts after EP initialization and BAR mapping, corresponding BARs can now be
enabled (not shown as disabled).

PCIe Test Specification www.ti.com

26 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

4. Continue RC sample application ti-sample-vfio. The program can continue normally and end without any
failure.

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 27

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Test

Description

Test to verify if PCIe inbound ATU and extended BAR configurations work correctly for the TMDS243EVM/
TMDS64EVM PCIe EP.

For this purpose, up to 6 different BAR configurations are defined for the PCIe EP:

1. Inbound Address Translation 0:
This ATU configuration uses region index 0 with a 32 Kbyte non-prefetchable 32bit memory BAR.

2. Inbound Address Translation 1:
This ATU configuration uses region index 1 with a 32 Mbyte prefetchable 32bit memory BAR.

3. Inbound Address Translation 2:
This ATU configuration uses region index 2 with a 512 Mbyte non-prefetchable 32bit memory BAR.

4. Inbound Address Translation 3:
This ATU configuration uses region index 3 with a 128 byte 32bit I/O BAR.

5. Inbound Address Translation 4:
This ATU configuration uses region index 4 with a 1 Kbyte 32bit I/O BAR.

6. Inbound Address Translation 5:
This ATU configuration uses region index 5 with an 8 Kbyte 32bit. I/O BAR.

Execution:

1. Set described BAR configurations in Sysconfig file for pcie_enumerate_ep application.
2. Check if desired PCIe EP BARs are configured correctly on Linux-based RC hardware. On boot up the

configured BARs can be shown as disabled on PCIe configuration space as shown in the following figure:

PCIe Test Specification www.ti.com

28 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

3. Run RC sample application ti-sample-vfio with parameter testbars. Open a second Linux terminal and check
PCIe EP configuration space. As the program halts after VFIO initialization, corresponding BARs can now be
enabled (not shown as disabled) as shown in the following figure.

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 29

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

4. Continue RC sample application ti-sample-vfio. The program can perform an extended BAR test and output
BAR information as shown in the following figure.

5.4 Outbound ATU Functionalities

Test

Description:

Test to verify if several PCIe outbound ATU configurations work correctly for the TMDS243EVM/TMDS64EVM
PCIe EP.

The pcie_enumerate_ep application implements two outbound mappings. The first realizes a DMA mapping from
internal “PCIE0_DAT0” window to a corresponding PCIe address. This DMA outbound mapping is used to write

PCIe Test Specification www.ti.com

30 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

back received data from the RC. The second serves the MSI mechanism and maps the local MSI address
configured by the RC to a corresponding PCIe address.

Execution:

1. Run PCIe EP application pcie_enumerate_ep.
2. Run Linux-based RC test application ti-sample-vfio.
3. Check status of both programs. As ti-sample-vfio waits for MSI interrupts generated by the PCIe EP and

checks the received data, it can terminate without any failure ensuring correct functionality of PCIe EP
outbound mapping.

5.5 MSI Functionality

Test

Description:

Test to verify if MSI IRQs are sent correctly from the PCIe EP to the address configured by the RC.

Execution:

1. Run PCIe EP application pcie_enumerate_ep.
2. Run Linux-based RC test application ti-sample-vfio.
3. Check status of both programs. As ti-sample-vfio waits for MSI IRQs sent by PCIe EP on specified address,

it can terminate without any failure ensuring correct functionality of PCIe EP MSI mechanism.

Test

Description:

Test to verify if the maximum number of different MSI IRQs (multi-message capable) available in the PCIe EP is
determined correctly in the PCIe RC and if a reduced number of desired MSI IRQs (multi-message enable) can
be requested from the RC.

Execution:

1. Run PCIe EP application pcie_enumerate_ep with the default number of MSI IRQs set as 16.
2. On Linux-based RC hardware check PCIe EP MSI capability on offset 90. The MSI capability can be

disabled with a count set to 1 out of 16 as shown in the following figure.
3. Run Linux-based RC test application ti-sample-vfio. Pass the default number of configured MSI IRQs as the

desired number of MSI IRQs being tested as the fifth parameter:

sudo ./ti-sample-vfio 9 0 0 19 16

4. Continue ti-sample-vfio with enter until the program halts at status output Initialize MSI test. Expect 16
distinct MSI IRQs.

5. Open a second Linux terminal and check the PCIe EP MSI capability at offset 90. The MSI mechanism can
be enabled with a count of 16 as shown in the following figure.

6. Continue ti-sample-vfio. The program can continue normally, perform an extended MSI test with 16 MSI
IRQs and end without any failure as shown in the following figure.

7. Run Linux-based RC test application ti-sample-vfio. Configure the number of MSI IRQs to be tested with less
than the default number, for example, 8:

sudo ./ti-sample-vfio 9 0 0 19 8

8. Continue ti-sample-vfio with enter until the program halts at status output
a. Initialize MSI test. Expect 8 distinct MSI IRQs.

9. Check the PCIe EP MSI capability at offset 90 on second Linux terminal. The MSI capability can be enabled
with the count 8 out of 16 as shown in the following figure.

10. Continue ti-sample-vfio. The program can continue normally, perform an extended MSI test with 8 MSI IRQs
and end without any failure as shown in the following figure.

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 31

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

11. On Linux-based RC hardware check PCIe EP MSI capability on offset 90. The MSI capability can be
disabled with a count set to 1 out of 16 as shown in the following figure.

Test

Description:

Test to verify is MSI per vector masking is disabled correctly at TMDS243EVM/TMDS64EVM PCIe EP.

Execution:

1. On Linux-based RC hardware, check PCIe EP MIS capability with Linux terminal. The maskable filed can be
disabled as shown in the following figure.

5.6 Downstream Interrupt Functionality

Test

Description:

PCIe Test Specification www.ti.com

32 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Test to verify if downstream interrupt functionality can be configured and triggered at TMDS243EVM/
TMDS64EVM PCIe EP.

Execution:

1. On the pcie_enumeraute_ep sample application set a breakpoint within the downstream interrupt service
routine void DwnStrIsr(void *args), and so on at line 196.

2. Perform system reset, load and run pcie_enumerate_ep on TMDS243EVM PCIe EP.
3. On Linux-based RC hardware use GNU Debugger to start RC sample application ti-sample-vfio. Set a

breakpoint at sendDwnStrIrq function, and so on at line 623.
4. Run ti-sample-vfio. As the program stops at sendDwnStrIrq continue and check if a downstream interrupt is

triggered at pcie_enumerate_ep
5. On positive test result pcie_enumerate_ep can halt at void DwnStrIsr(void *args) indicating that a

downstream interrupt is triggered successfully.

5.7 Device Power Management State Functionality

Test

Description:

Test to verify if power management states work correctly at TMDS243EVM/TMDS64EVM PCIe EP.

Execution:

1. On Linux-based RC hardware, check PCIe EP power management state with Linux terminal. On boot up, the
PCIe EP can be in power management state D0, as shown in the following figure.

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 33

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

2. Bind VFIO driver to TMDS243EVM PCIe EP.
3. As VFIO is bind to PCIe EP as a kernel driver, the PCIe EP power management state can change to D3hot.

Verify the power management state with Linux terminal as shown in the following figure:

4. Open ti-sample-vfio with GNU debugger. Set a breakpoint after initVFIO function call within main at line 583.
Run ti-sample-vfio.

5. As the ti-sample-vfio program halts after initVFIO and initVFIO initializes the PCIe EP device, the power
management state can change to D0. Verify the power management state with Linux terminal as shown in
the following figure:

PCIe Test Specification www.ti.com

34 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

5.8 Function Level Reset Mechanism

Test

Description:

Test to verify if the Function Level Reset (FLR) mechanism is disabled correctly at TMDS243EVM/TMDS64EVM
PCIe EP.

Execution:

1. On Linux-based RC hardware, check if the FLR mechanism is disabled at the PCIe EP. This can be checked
at the device capabilities as shown in the following figure

5.9 Legacy Interrupt Mechanism

Test

Description:

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 35

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Test to verify if the legacy interrupt (INTx) mechanism is disabled correctly at TMDS243EVM/TMDS64EVM PCIe
EP.

Execution:

1. On Linux-based RC hardware check the device status of PCIe EP in Linux terminal. For a valid test case,
the information Interrupt: pin A routed to IRQ XXX cannot occur.

For comparison, the following figure shows the device status of a different PCIe EP on the same Linux-based
RC hardware where the legacy interrupt mechanism is active.

5.10 MSI-X Capability

Test

Description:

Test to verify if the MSI-X capability is disabled correctly at TMDS243EVM/TMDS64EVM PCIe EP.

Execution:

1. On Linux-based RC hardware, check if the MSI-X capability is disabled at the PCIe EP. Since the MSI-X
capability is on offset B0, this field can contain NULL if disabled, as shown in the following figure.

5.11 Hot Reset Mechanism

Test

Description:

Test to verify if the hot reset mechanism works correctly at TMDS243EVM/TMDS64EVM PCIe EP.

Execution:

1. On PCIe EP sample application pcie_enumerate_ep set a breakpoint within the function HotResetIsr, for
example, at line 178. As this function is the interrupt service routine for the corresponding mechanism the
program can halt there.

PCIe Test Specification www.ti.com

36 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

2. Run ti-sample-vfio on Linux-based RC hardware.
3. Check if pcie_enumerate_ep halts at described breakpoint as shown in the following figure.
4. Continue pcie_enumerate_ep and check its status through SER_TER. The status can message PCIe: hot

reset detected as shown in the following figure.

www.ti.com PCIe Test Specification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 37

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

6 Windows Example Driver Verification
This chapter defines and specifies testing of the Windows example driver. Only a reduced subset of the EP’s
functionality is being tested, to make sure that functions previously tested on Linux work similarly on Windows.
The following test specification assumes environment AM24_WIN.

Test

Description:

Test to verify functionality of the Windows KMDF driver.

Execution:

1. Verify that the Windows driver for the pcie_enumerate_ep example EP has been loaded by searching for the
ti-sample-kmdf Device in the Windows device manager:

2. Open a command prompt with administrator privileges and run the ti-sample-console.exe application:

3. Verify that all tests have passed without errors as shown above.
4. Verify that the output on the EP’s UART matches the expected output, indicating completion of the DMA test,

the MSI test (sending 16 distinct interrupts) and the BAR test:

Windows Example Driver Verification www.ti.com

38 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

Rationale

The ti-sample-console application calls the ti-sample-kmdf driver and executes the following test steps:

• A COPY test where data previously written by the KMDF driver to the EP’s Bar0 memory is correctly sent
back to the Windows host’s DMA buffer

• A MSI test where the EP triggers every enabled MSI vector (multiple message enable) once. The KMDF
driver triggers this test in the EP and waits for the reception of all MSI vectors. If the test returns, all
configured vectors have been received. Additionally, a bitmask of received MSI vectors is displayed (for
example,. result: 0000ffff indicates vectors 0-15 have been received).

• A Bar1/2 test where the KMDF driver fills Bar1 and Bar2 of the EP with a known pattern, then triggers test
execution in the EP. The EP verifies the known pattern in Bar1 and Bar2 and on success sends an MSI back
to the RC. If the test returns, the verification was successful.

www.ti.com Windows Example Driver Verification

SPRADH9 – JUNE 2024
Submit Document Feedback

AM64x and AM243x: MCU+ SDK-Based PCIe End Point 39

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

7 References
• Texas Instruments, AM64x MCU+ SDK: PCIE
• Texas Instruments, PCIe End Point — Processor SDK AM64X Documentation
• Texas Instruments, PCIe Root Complex — Processor SDK AM64X Documentation
• Texas Instruments, TMDS243EVM Evaluation board
• Texas Instruments, TMDS64EVM Evaluation board

References www.ti.com

40 AM64x and AM243x: MCU+ SDK-Based PCIe End Point SPRADH9 – JUNE 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/latest/exports/docs/api_guide_am64x/DRIVERS_PCIE_PAGE.html
https://software-dl.ti.com/processor-sdk-linux/esd/AM64X/latest/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/PCIe/PCIe_End_Point.html
https://software-dl.ti.com/processor-sdk-linux/esd/AM64X/latest/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/PCIe/PCIe_Root_Complex.html
https://www.ti.com/tool/TMDS243EVM
https://www.ti.com/tool/TMDS64EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADH9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADH9&partnum=AM6442

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Abbreviations
	2 Introduction
	2.1 Peripheral Component Interconnect Express
	2.1.1 Components of PCIe Communication
	2.1.1.1 Root Complex
	2.1.1.2 Repeater
	2.1.1.3 Endpoints

	2.1.2 Signaling
	2.1.2.1 PERST
	2.1.2.2 WAKE and CLKREQ
	2.1.2.3 REFCLK

	2.1.3 PCIe Common Usage
	2.1.4 PCIe Aggregate Throughput

	2.2 PCIe Features on AM64x and AM243x

	3 X86 as RC and AM64x as EP
	3.1 Hardware Environment
	3.2 Software Environment
	3.2.1 Building Application
	3.2.2 Usage

	4 Test Setup
	4.1 Common Setup for LINUX and WIN
	4.2 Linux Driver (VFIO)
	4.2.1 Prerequisites
	4.2.2 Building
	4.2.3 Deploying

	4.3 Test Application Usage
	4.4 Setup Steps for LINUX PC
	4.4.1 UART Console Output

	4.5 MSI Example
	4.6 Setup Steps for WINDOWS PC
	4.6.1 Prerequisites
	4.6.2 Building
	4.6.3 Deploying

	5 PCIe Test Specification
	5.1 Identification and Configuration Functionalities
	5.1.1 Test Case

	5.2 Reference Clock Functionalities
	5.3 Inbound ATU and BAR Functionalities
	5.4 Outbound ATU Functionalities
	5.5 MSI Functionality
	5.6 Downstream Interrupt Functionality
	5.7 Device Power Management State Functionality
	5.8 Function Level Reset Mechanism
	5.9 Legacy Interrupt Mechanism
	5.10 MSI-X Capability
	5.11 Hot Reset Mechanism

	6 Windows Example Driver Verification
	7 References

