Home Power management Voltage references Shunt voltage references

LM4041B

ACTIVE

Adjustable, precision micropower shunt voltage reference with 0.2% accuracy

Product details

VO (V) 1.225 Initial accuracy (max) (%) 0.2 VO adj (min) (V) 1.225 VO adj (max) (V) 10 Iz for regulation (min) (µA) 45 Reference voltage (V) adjustable Rating Catalog Temp coeff (max) (ppm/°C) 100 Operating temperature range (°C) -40 to 85 Iout/Iz (max) (mA) 25
VO (V) 1.225 Initial accuracy (max) (%) 0.2 VO adj (min) (V) 1.225 VO adj (max) (V) 10 Iz for regulation (min) (µA) 45 Reference voltage (V) adjustable Rating Catalog Temp coeff (max) (ppm/°C) 100 Operating temperature range (°C) -40 to 85 Iout/Iz (max) (mA) 25
SOT-23 (DBZ) 3 6.9204 mm² 2.92 x 2.37 SOT-SC70 (DCK) 5 4.2 mm² 2 x 2.1
  • 1.225V Fixed and adjustable outputs (1.225V to 10V)
  • Tight output tolerances and low temperature coefficient
    • Maximum 0.1%, 100ppm/°C – A grade
    • Maximum 0.2%, 100ppm/°C – B grade
    • Maximum 0.5%, 100ppm/°C – C grade
    • Maximum 1.0%, 150ppm/°C – D grade
  • Low output noise . . . 20µVRMS (typical)
  • Wide operating current range . . . 45µA (typical) to 12mA
  • Stable with all capacitive loads; no output capacitor required
  • Available in
    • Industrial temperature: –40°C to 85°C
    • Extended temperature: –40°C to 125°C
  • 1.225V Fixed and adjustable outputs (1.225V to 10V)
  • Tight output tolerances and low temperature coefficient
    • Maximum 0.1%, 100ppm/°C – A grade
    • Maximum 0.2%, 100ppm/°C – B grade
    • Maximum 0.5%, 100ppm/°C – C grade
    • Maximum 1.0%, 150ppm/°C – D grade
  • Low output noise . . . 20µVRMS (typical)
  • Wide operating current range . . . 45µA (typical) to 12mA
  • Stable with all capacitive loads; no output capacitor required
  • Available in
    • Industrial temperature: –40°C to 85°C
    • Extended temperature: –40°C to 125°C

The LM4041 series of shunt voltage references are versatile, easy-to-use references designed for a wide array of applications. These parts do not require external capacitors for operation and are stable with all capacitive loads. Additionally, the reference offers low dynamic impedance, low noise, and a low temperature coefficient to maintain a stable output voltage over a wide range of operating currents and temperatures. The LM4041 uses fuse and Zener-zap reverse breakdown voltage trim during wafer sort to offer four output voltage tolerances, ranging from 0.1% (maximum) for the A grade to 1% (maximum) for the D grade. Thus, a great deal of flexibility is offered to designers in choosing the best cost-to-performance ratio for applications. The LM4041 is available in a fixed (1.225V nominal) or an adjustable version (which requires an external resistor divider to set the output to a value between 1.225V and 10V).

Packaged in space-saving SC-70 and SOT-23-3 and requiring a minimum current of 45µA (typical), the LM4041 also designed for portable applications. The TO-92 package also is available for through-hole packaging needs. The LM4041xI is characterized for operation over an ambient temperature range of –40°C to 85°C. The LM4041xQ is characterized for operation over an ambient temperature range of –40°C to 125°C.

The LM4041 series of shunt voltage references are versatile, easy-to-use references designed for a wide array of applications. These parts do not require external capacitors for operation and are stable with all capacitive loads. Additionally, the reference offers low dynamic impedance, low noise, and a low temperature coefficient to maintain a stable output voltage over a wide range of operating currents and temperatures. The LM4041 uses fuse and Zener-zap reverse breakdown voltage trim during wafer sort to offer four output voltage tolerances, ranging from 0.1% (maximum) for the A grade to 1% (maximum) for the D grade. Thus, a great deal of flexibility is offered to designers in choosing the best cost-to-performance ratio for applications. The LM4041 is available in a fixed (1.225V nominal) or an adjustable version (which requires an external resistor divider to set the output to a value between 1.225V and 10V).

Packaged in space-saving SC-70 and SOT-23-3 and requiring a minimum current of 45µA (typical), the LM4041 also designed for portable applications. The TO-92 package also is available for through-hole packaging needs. The LM4041xI is characterized for operation over an ambient temperature range of –40°C to 85°C. The LM4041xQ is characterized for operation over an ambient temperature range of –40°C to 125°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 3
Type Title Date
* Data sheet LM4041 Precision Micropower Shunt Voltage Reference datasheet (Rev. G) PDF | HTML 19 Jul 2024
E-book Voltage Supervisor and Reset ICs: Tips, Tricks and Basics 28 Jun 2019
More literature SLL Precision Reference Product Clip 23 Feb 2006

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Calculation tool

SHUNT-REFERENCE-CALC Shunt Reference Selector and Design Calculator

This tool guides the user through the design process for the TLx431 and LM40x0 family of shunt voltage references. This calculator will recommend resistance and capacitance values to optimally meet the user's desired specifications.
Supported products & hardware

Supported products & hardware

Products
Shunt voltage references
ATL431 2.5-V low-IQ adjustable precision shunt regulator ATL431LI Low-IQ programmable shunt regulator offered in an ultra-small DQN package ATL431LI-Q1 Automotive, high-bandwidth, low-IQ programmable shunt regulator (pinout: KRA) ATL432 2.5-V precision programmable shunt regulator ATL432LI High-bandwidth, low-IQ programmable shunt regulator (pinout: RKA) ATL432LI-Q1 Automotive, high-bandwidth, low-IQ programmable shunt regulator (pinout: RKA) LM4030 Ultra-high-precision shunt voltage reference LM4040 Fixed voltage, 45-µA, precision micropower shunt voltage reference LM4040-N 100-ppm/°C precision micropower shunt voltage reference LM4040-N-Q1 Automotive, 100-ppm/°C precision micropower shunt voltage reference LM4040C25-EP Enhanced Product 2.5-V Precision Micropower Shunt Voltage Reference, 0.5% accuracy LM4041-N Fixed & adjustable, 45-µA, precision micropower shunt voltage reference LM4041-N-Q1 Automotive, precision micropower shunt voltage reference LM4041A12 1.2-V precision micropower shunt voltage reference with 0.1% accuracy LM4041B Adjustable, precision micropower shunt voltage reference with 0.2% accuracy LM4041B12 1.2-V precision micropower shunt voltage reference with 0.2% accuracy LM4041C Adjustable, precision micropower shunt voltage reference with 0.5% accuracy LM4041C12 1.2-V precision micropower shunt voltage reference with 0.5% accuracy LM4041D Adjustable, precision micropower shunt voltage reference with 1% accuracy LM4041D12 1.2-V precision micropower shunt voltage reference with 1% accuracy LM4050-N 50-ppm/°C precision micropower shunt voltage reference LM4050-N-Q1 Automotive, 50-ppm/°C precision micropower shunt voltage reference LM4050QML-SP Radiation-hardened QMLV, 2.5-V or 5-V shunt voltage reference LM4051-N Fixed & adjustable, precision micropower shunt voltage reference LMV431 1.5%, low-voltage (1.24-V) adjustable precision shunt regulator LMV431A 1%, low-voltage (1.24-V) adjustable precision shunt regulator LMV431B 0.5%, low-voltage (1.24-V) adjustable precision shunt regulator TL431 Adjustable precision shunt regulator TL431-Q1 Automotive adjustable precision shunt regulator (pin layout: KRA) TL431C 2% adjustable precision shunt regulator TL431LI Adjustable precision shunt regulator with optimized reference current (pin layout: KRA) TL431LI-Q1 Automotive, adjustable, precision shunt regulator with optimized reference current TL432 Adjustable precision shunt regulator (reverse pinout) TL432-Q1 Automotive adjustable precision shunt regulator (pin layout: RKA) TL432LI Adjustable precision shunt regulator with optimized reference current (pin layout: RKA) TL432LI-Q1 Automotive, adjustable, precision shunt regulator with optimized reference current TLA431 All-capacitor stable precision programmable reference with KRA pin layout TLA432 All-capacitor stable precision programmable reference with RKA pin layout TLV431 1.5% accuracy, low-voltage, adjustable precision shunt regulator TLV431A 1% accuracy, low-voltage, adjustable precision shunt regulator TLV431A-Q1 Automotive, low-voltage adjustable precision shunt regulator TLV431B 0.5% accuracy, low-voltage, adjustable precision shunt regulator TLV431B-Q1 Automotive, low-voltage adjustable precision shunt regulator TLVH431 1.5% low-voltage wide-operating current adjustable precision shunt regulator TLVH431A 1% low-voltage wide-operating current adjustable precision shunt regulator TLVH431A-Q1 Automotive, low-voltage adjustable precision shunt regulator TLVH431B 0.5% low-voltage wide-operating current adjustable precision shunt regulator TLVH431B-EP Enhanced-plastic 0.5% low-voltage wide-operating-current adjustable precision shunt regulator TLVH431B-Q1 Automotive, low-voltage adjustable precision shunt regulator (reverse pinout) TLVH432 1.5% low-voltage wide-operating current adjustable precision shunt regulator (reverse pinout) TLVH432A 1% low-voltage wide-operating current adjustable precision shunt regulator (reverse pinout) TLVH432B 0.5% low-voltage wide-operating current adjustable precision shunt regulator (reverse pinout)
General-purpose op amps
TLV4313 Quad, 5.5-V, 1-MHz, low quiescent current (65-μA), RRIO operational amplifier TLV4314 Quad, 5.5-V, 3-MHz, RRIO operational amplifier TLV4314-Q1 Automotive-grade, quad, 5.5-V, 3-MHz, RRIO operational amplifier TLV4316 Quad, 5.5-V, 10-MHz, RRIO operational amplifier TLV4316-Q1 Automotive-grade, quad, 5.5-V, 10-MHz, RRIO operational amplifier TLV4379 Quad, 5.5-V, 90-kHz, low quiescent current (4-μA), RRIO operational amplifier
Precision op amps (Vos<1mV)
TLV4333 Quad, 350-kHz, low-noise, RRIO, CMOS operational amplifier for cost-sensitive systems TLV4376 Quad 5.5-MHz, 100-µV offset, 8-nV/√Hz noise, 815-µA power, precision operational amplifiers TLV4387 Quad, ultra-high-precision (10 μV) zero-drift (0.01 μV/°C) low-input-bias-current op amp
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Reference designs

TIDA-00661 — High Resolution, Fast Startup Analog Front End for Air Circuit Breaker Reference Design

The TIDA-00661 reference design features signal processing front-end subsystem for electronic trip units (ETU) used in air circuit breakers (ACB) or molded case circuit breakers (MCCB). This subsystem consists of Delta-Sigma ADC with 24-Bit resolution and fast startup (< 3ms), ±2.5V (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00498 — Signal Processing Subsystem and Current Input Based Self Power for Breaker Applications (ACB/MCCB)

THe TIDA-00498 reference design features signal processing front-end and self-power block for electronic trip unit (ETU) used in circuit breakers.  A FRAM based micro-controller is used for processing current inputs from signal conditioning amplifiers for 3-phase, neutral and ground current. (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00809 — EMC Compliant, Group Isolated, 2-Channel Binary Input Module for Wide AC/DC Input Reference Design

This reference design showcases a cost-optimized architecture that improves resolution of a binary-input module. A microcontroller unit (MCU) is shared between two-input channels (group isolation) to minimize the cost per channel. Wide-input range is covered using an amplifier with gain and (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00222 — Measurement Module for Branch Circuit Power Monitor Reference Design

This reference design targets measurement accuracy across the rated current range while at the same time being a cost efficient solution. This is achieved by using a highly integrated SoC device which has up to 7 channels of the 24-bit Delta-Sigma ADCs available for current measurement. For voltage (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00130 — Zero drift PGA based Analog Front End Design for Circuit Breakers (ACB/MCCB-ETU)

This reference design is intended for use in molded case circuit breakers (MCCB) electronic trip units.  The programmable gain amplifier based design acts as the current monitoring for over-current earth fault relays. Utilizing a zero drift programmable amplifier, this design provides a (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00191 — Analog Front End for Motor Electronic Overload Relays with Enhanced Current Range

This reference design is the analog front end (AFE) for an electronic overload relay, used for monitoring and protecting motors from overcurrent or undercurrent events. It is an ideal tool for developers creating overload relays for sensitive AC motors in industrial applications. This programmable (...)
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
SOT-23 (DBZ) 3 Ultra Librarian
SOT-SC70 (DCK) 5 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos