SN54ABT843

ACTIVE

9-Bit Bus-Interface D-type Latches With 3-State Outputs

Product details

Number of channels 9 Technology family ABT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 64 IOH (max) (mA) -32 Supply current (max) (µA) 34000 Features Flow-through pinout, Partial power down (Ioff), Power up 3-state, Very high speed (tpd 5-10ns) Operating temperature range (°C) -55 to 125 Rating Military
Number of channels 9 Technology family ABT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type TTL-Compatible CMOS Output type 3-State Clock frequency (max) (MHz) 150 IOL (max) (mA) 64 IOH (max) (mA) -32 Supply current (max) (µA) 34000 Features Flow-through pinout, Partial power down (Ioff), Power up 3-state, Very high speed (tpd 5-10ns) Operating temperature range (°C) -55 to 125 Rating Military
CDIP (JT) 24 221.44 mm² 32 x 6.92
  • State-of-the-Art EPIC-II BTM BiCMOS Design Significantly Reduces Power Dissipation
  • Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
  • Typical VOLP (Output Ground Bounce) < 1 V at VCC = 5 V, TA = 25°C
  • High-Drive Outputs (-32-mA IOH, 64-mA IOL)
  • Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Plastic (NT) and Ceramic (JT) DIPs

    EPIC-IIB is a trademark of Texas Instruments Incorporated.

  • State-of-the-Art EPIC-II BTM BiCMOS Design Significantly Reduces Power Dissipation
  • Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
  • Typical VOLP (Output Ground Bounce) < 1 V at VCC = 5 V, TA = 25°C
  • High-Drive Outputs (-32-mA IOH, 64-mA IOL)
  • Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Plastic (NT) and Ceramic (JT) DIPs

    EPIC-IIB is a trademark of Texas Instruments Incorporated.

The 'ABT843 9-bit latches are designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The nine transparent D-type latches provide true data at the outputs.

A buffered output-enable (OE\) input can be used to place the nine outputs in either a normal logic state (high or low logic levels) or a high-impedance state. The outputs are also in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered down. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE\ does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT843 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT843 is characterized for operation from -40°C to 85°C.

The 'ABT843 9-bit latches are designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The nine transparent D-type latches provide true data at the outputs.

A buffered output-enable (OE\) input can be used to place the nine outputs in either a normal logic state (high or low logic levels) or a high-impedance state. The outputs are also in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered down. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE\ does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT843 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT843 is characterized for operation from -40°C to 85°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 21
Type Title Date
* Data sheet 9-Bit Bus-Interface D-Type Latches With 3-State Outputs datasheet (Rev. D) 01 May 1997
* SMD SN54ABT843 SMD 5962-95712 21 Jun 2016
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 15 Dec 2022
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
Application note Quad Flatpack No-Lead Logic Packages (Rev. D) 16 Feb 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 Jan 2001
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) 01 Mar 1997
Application note Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins CAD symbols, footprints & 3D models
CDIP (JT) 24 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos