Product details

Technology family ABT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 64 IOH (max) (mA) -32 Supply current (max) (µA) 30000 Input type TTL-Compatible CMOS Output type 3-State Features Over-voltage tolerant inputs, Partial power down (Ioff), Ultra high speed (tpd <5ns) Rating Catalog Operating temperature range (°C) -40 to 85
Technology family ABT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 64 IOH (max) (mA) -32 Supply current (max) (µA) 30000 Input type TTL-Compatible CMOS Output type 3-State Features Over-voltage tolerant inputs, Partial power down (Ioff), Ultra high speed (tpd <5ns) Rating Catalog Operating temperature range (°C) -40 to 85
PDIP (N) 20 228.702 mm² 24.33 x 9.4 SOIC (DW) 20 131.84 mm² 12.8 x 10.3 SOP (NS) 20 98.28 mm² 12.6 x 7.8 SSOP (DB) 20 56.16 mm² 7.2 x 7.8 TSSOP (PW) 20 41.6 mm² 6.5 x 6.4
  • Typical VOLP (Output Ground Bounce)
       <1 V at VCC = 5 V, TA = 25°C
  • High-Drive Outputs (–32-mA IOH, 64-mA IOL)
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

  • Typical VOLP (Output Ground Bounce)
       <1 V at VCC = 5 V, TA = 25°C
  • High-Drive Outputs (–32-mA IOH, 64-mA IOL)
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Together with the SN54ABT241, SN74ABT241A, SN54ABT244, and SN74ABT244A, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (OE)\ inputs, and complementary OE and OE\ inputs.

The SN54ABT240 and SN74ABT240A are organized as two 4-bit buffers/line drivers with separate OE\ inputs. When OE\ is low, the devices pass inverted data from the A inputs to the Y outputs. When OE\ is high, the outputs are in the high-impedance state.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Together with the SN54ABT241, SN74ABT241A, SN54ABT244, and SN74ABT244A, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (OE)\ inputs, and complementary OE and OE\ inputs.

The SN54ABT240 and SN74ABT240A are organized as two 4-bit buffers/line drivers with separate OE\ inputs. When OE\ is low, the devices pass inverted data from the A inputs to the Y outputs. When OE\ is high, the outputs are in the high-impedance state.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
SN74AHCT240 ACTIVE 8-ch, 4.5-V to 5.5-V inverters with TTL-compatible CMOS inputs Larger voltage range (2V to 5.5V)
Same functionality with different pin-out to the compared device
SN74ACT240 ACTIVE Eight-channel 4.5V-to-5.5V inverters with TTL-compatible CMOS inputs and 3-state outputs Longer propagation delay (8ns), lower average drive strength (24mA)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 19
Type Title Date
* Data sheet Octal Buffers/Drivers With 3-State Outputs datasheet (Rev. I) 13 Jun 2002
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
Application note Quad Flatpack No-Lead Logic Packages (Rev. D) 16 Feb 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 Jan 2001
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) 01 Mar 1997
Application note Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin D, DB, DGV, DW, DYY, NS and PW packages

The 14-24-LOGIC-EVM evaluation module (EVM) is designed to support any logic device that is in a 14-pin to 24-pin D, DW, DB, NS, PW, DYY or DGV package,

User guide: PDF | HTML
Not available on TI.com
Simulation model

SN74ABT240A Behavioral SPICE Model

SCBM143.ZIP (7 KB) - PSpice Model
Package Pins CAD symbols, footprints & 3D models
PDIP (N) 20 Ultra Librarian
SOIC (DW) 20 Ultra Librarian
SOP (NS) 20 Ultra Librarian
SSOP (DB) 20 Ultra Librarian
TSSOP (PW) 20 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos