TXB0104

ACTIVE

4-Bit Bidirectional Voltage-Level Shifter with Auto Direction Sensing and +/-15 kV ESD Protect

Product details

Technology family TXB Applications I2S, JTAG, SPI, UART Bits (#) 4 Data rate (max) (Mbps) 100 High input voltage (min) (V) 0.78 High input voltage (max) (V) 5.5 Vout (min) (V) 1.2 Vout (max) (V) 5.5 IOH (max) (mA) -0.02 IOL (max) (mA) 0.02 Supply current (max) (µA) 10 Features Edge rate accelerator, Integrated pullup resistors, Output enable, Partial power down (Ioff), Vcc isolation Input type Standard CMOS Output type 3-State, CMOS, Push-Pull Rating Catalog Operating temperature range (°C) -40 to 85
Technology family TXB Applications I2S, JTAG, SPI, UART Bits (#) 4 Data rate (max) (Mbps) 100 High input voltage (min) (V) 0.78 High input voltage (max) (V) 5.5 Vout (min) (V) 1.2 Vout (max) (V) 5.5 IOH (max) (mA) -0.02 IOL (max) (mA) 0.02 Supply current (max) (µA) 10 Features Edge rate accelerator, Integrated pullup resistors, Output enable, Partial power down (Ioff), Vcc isolation Input type Standard CMOS Output type 3-State, CMOS, Push-Pull Rating Catalog Operating temperature range (°C) -40 to 85
DSBGA (YZT) 12 3.9375 mm² 2.25 x 1.75 NFBGA (NMN) 12 5 mm² 2 x 2.5 SOIC (D) 14 51.9 mm² 8.65 x 6 TSSOP (PW) 14 32 mm² 5 x 6.4 UQFN (RUT) 12 3.4 mm² 2 x 1.7 VQFN (RGY) 14 12.25 mm² 3.5 x 3.5
  • 1.2-V to 3.6-V on A port and 1.65-V to 5.5-V on B port (VCCA ≤ VCCB)
  • VCC isolation feature: if either VCC input ss at GND, all outputs are in the high-impedance state
  • Output enable (OE) input circuit referenced to VCCA
  • Low power consumption, 5-µA maximum ICC
  • I OFF supports partial power-down mode operation
  • Latch-up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • A Port:
      • 2500-V Human-Body Model (A114-B)
      • 1500-V Charged-Device Model (C101)
    • B Port:
      • ±15-kV Human-Body Model (A114-B)
      • 1500-V Charged-Device Model (C101)
  • 1.2-V to 3.6-V on A port and 1.65-V to 5.5-V on B port (VCCA ≤ VCCB)
  • VCC isolation feature: if either VCC input ss at GND, all outputs are in the high-impedance state
  • Output enable (OE) input circuit referenced to VCCA
  • Low power consumption, 5-µA maximum ICC
  • I OFF supports partial power-down mode operation
  • Latch-up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • A Port:
      • 2500-V Human-Body Model (A114-B)
      • 1500-V Charged-Device Model (C101)
    • B Port:
      • ±15-kV Human-Body Model (A114-B)
      • 1500-V Charged-Device Model (C101)

This TXB0104 4-bit noninverting translator uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes. VCCA must not exceed VCCB.

When the OE input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down, OE must be tied to GND through a pulldown resistor The current sourcing capability of the driver determines the minimum value of the resistor.

The TXB0104 device is designed so the OE input circuit is supplied by VCCA.

This device is fully specified for partial power-down applications using I OFF. The I OFF circuitry disables the outputs, which prevents damaging current backflow through the device when the device is powered down.

This TXB0104 4-bit noninverting translator uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes. VCCA must not exceed VCCB.

When the OE input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down, OE must be tied to GND through a pulldown resistor The current sourcing capability of the driver determines the minimum value of the resistor.

The TXB0104 device is designed so the OE input circuit is supplied by VCCA.

This device is fully specified for partial power-down applications using I OFF. The I OFF circuitry disables the outputs, which prevents damaging current backflow through the device when the device is powered down.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
TXU0104 ACTIVE Four channel unidirectional level shifter 4 bit fixed direction translator
TXU0204 ACTIVE Four-channel fixed multidirectional level shifter Unidirectional 4 bit translator
TXU0304 ACTIVE Four-channel fixed multidirectional level shifter Unidirectional 4 bit translator
Same functionality with different pin-out to the compared device
TXB0108 ACTIVE 8-Bit Bidirectional Voltage-Level Shifter with Auto Direction Sensing and +/-15-kV ESD Protect Same function in 8-channel version

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 18
Type Title Date
* Data sheet TXB0104 4-Bit Bidirectional Voltage-Level Translator With Automatic Direction Sensing and ±15-kV ESD Protection datasheet (Rev. J) PDF | HTML 02 Oct 2020
Application note Overcoming TXB-Type Translators Design Challenges PDF | HTML 18 Sep 2024
Application note Schematic Checklist - A Guide to Designing with Auto-Bidirectional Translators PDF | HTML 12 Jul 2024
Application note Understanding Transient Drive Strength vs. DC Drive Strength in Level-Shifters (Rev. A) PDF | HTML 03 Jul 2024
Application note Leveraging Edge Rate Accelerators with Auto-Sensing Level Shifters PDF | HTML 29 Sep 2023
Application brief Future-Proofing Your Level Shifter Design with TI's Dual Footprint Packages PDF | HTML 05 Sep 2023
Application note Do’s and Don’ts for TXB and TXS Voltage Level-Shifters with Edge Rate Accelerato PDF | HTML 28 Jun 2023
Product overview Enabling System on Module Industrial PC Connectivity With Level Translation PDF | HTML 03 Apr 2023
Application brief Enabling Smart Solar Inverter Designs with Level Translation PDF | HTML 31 Oct 2022
EVM User's guide TXB-EVM Evaluation Module User's Guide (Rev. A) PDF | HTML 02 Aug 2021
Selection guide Voltage Translation Buying Guide (Rev. A) 15 Apr 2021
Application note Optimizing Video Doorbell Designs with Common Logic Use Cases (Rev. A) PDF | HTML 01 Apr 2021
Application note 2N7001T Voltage Level Translator for SPI, UART, JTAG Interface (Rev. A) PDF | HTML 29 Mar 2021
Application note Effects of pullup and pulldown resistors on TXS and TXB devices (Rev. A) 28 Mar 2018
Application note Factors Affecting VOL for TXS and LSF Auto-bidirectional Translation Devices 19 Nov 2017
Application note Biasing Requirements for TXS, TXB, and LSF Auto-Bidirectional Translators 30 Oct 2017
Application note A Guide to Voltage Translation With TXS-Type Translators 29 Jun 2010
Application note A Guide to Voltage Translation With TXB-Type Translators 03 Mar 2010

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin D, DB, DGV, DW, DYY, NS and PW packages

The 14-24-LOGIC-EVM evaluation module (EVM) is designed to support any logic device that is in a 14-pin to 24-pin D, DW, DB, NS, PW, DYY or DGV package,

User guide: PDF | HTML
Not available on TI.com
Evaluation board

14-24-NL-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin non-leaded packages

14-24-NL-LOGIC-EVM is a flexible evaluation module (EVM) designed to support any logic or translation device that has a 14-pin to 24-pin BQA, BQB, RGY, RSV, RJW or RHL package.

User guide: PDF | HTML
Not available on TI.com
Evaluation board

TXB-EVM — 1 to 8 bit TXB translator family evaluation module

This EVM is designed to support the TXB auto bidirectional families for single, dual, four and eight channel devices. The TXB devices belong to the auto bidirectional translation family with an operating voltage designed to level translation between 1.2V and 5.5 V.
User guide: PDF | HTML
Not available on TI.com
Simulation model

HSPICE Model for TXB0104

SCEJ249.ZIP (109 KB) - HSpice Model
Simulation model

TXB0104 IBIS Model (Rev. C)

SCEM517C.ZIP (208 KB) - IBIS Model
Reference designs

TIDM-SERVODRIVE — Industrial Servo Drive and AC Inverter Drive Reference Design

The DesignDRIVE Development Kit is a reference design for a complete industrial drive directly connecting to a three phase ACI or PMSM motor. Many drive topologies can be created from the combined control, power and communications technologies included on this single platform.  Includes (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-01161 — 1-GHz Signal Bandwidth RF Sampling Receiver Reference Design

The RF sampling architecture offers an alternative to the traditional super-heterodyne architecture. An RF sampling analog-to-digital converter (ADC) operates at a high sampling rate and converts signals directly from radio frequencies (RF) to digital. Because of the high sampling rate, the RF (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-01247 — Efficient, LDO-Less, Power-Supply Network Reference Design for RF-Sampling ADC

This reference design demonstrates a simplified and efficient network to power an ADC32RFxx. All three power domains of the analog-to-digital converter (ADC) are supplied using a switching regulator to enable the use of a power-supply network without a low-dropout (LDO) linear regulator. (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-01163 — Multi-band RF Sampling Receiver Reference Design

The RF sampling receiver captures signals directly in the radio frequency (RF) band. In a multi-band application the desired signals are not very wide band but they are spaced far apart within the spectrum. The reference design captures signals in different RF bands and digitally down-converts them (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-01016 — Clocking Reference Design for RF Sampling ADCs in Signal Analyzers and Wireless Testers

TIDA-01016 is a clocking solution for high dynamic range high speed ADC. RF input signals are directly captured using the RF sampling approach by high speed ADC. The ADC32RF45 is a dual- channel, 14-bit, 3-GSPS RF sampling ADC. The 3-dB input bandwidth is 3.2 GHz, and it captures signals up to 4 (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00823 — 16-Bit 1-GSPS Digitizer Reference Design with AC and DC Coupled Fixed Gain Amplifier

This reference design discusses the use and performance of the Ultra-Wideband, Fixed-gain high-speed amplifier, the LMH3401 to drive the high-speed analog-to-digital converter (ADC), the ADS54J60 device. Different options for common-mode voltages, power supplies, and interfaces are discussed and (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00822 — 16-Bit 1-GSPS Digitizer Reference Design with AC and DC Coupled Variable Gain Amplifier

This reference design discusses the use and performance of the Digital Variable-Gain high-speed amplifier, the LMH6401, to drive the high-speed analog-to-digital converter (ADC), the ADS54J60 device. Different options for common-mode voltages, power supplies, and interfaces are discussed and (...)
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
DSBGA (YZT) 12 Ultra Librarian
NFBGA (NMN) 12 Ultra Librarian
SOIC (D) 14 Ultra Librarian
TSSOP (PW) 14 Ultra Librarian
UQFN (RUT) 12 Ultra Librarian
VQFN (RGY) 14 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos