SLVSDR2B November   2018  – March 2021 ADC12DJ3200QML-SP

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: DC Specifications
    6. 6.6  Electrical Characteristics: Power Consumption
    7. 6.7  Electrical Characteristics: AC Specifications (Dual-Channel Mode)
    8. 6.8  Electrical Characteristics: AC Specifications (Single-Channel Mode)
    9. 6.9  Timing Requirements
    10. 6.10 Switching Characteristics
    11. 6.11 Timing Diagrams
    12. 6.12 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs
        1. 7.3.1.1 Analog Input Protection
        2. 7.3.1.2 Full-Scale Voltage (VFS) Adjustment
        3. 7.3.1.3 Analog Input Offset Adjust
      2. 7.3.2 ADC Core
        1. 7.3.2.1 ADC Theory of Operation
        2. 7.3.2.2 ADC Core Calibration
        3. 7.3.2.3 ADC Overrange Detection
        4. 7.3.2.4 Code Error Rate (CER)
      3. 7.3.3 Timestamp
      4. 7.3.4 Clocking
        1. 7.3.4.1 Noiseless Aperture Delay Adjustment (tAD Adjust)
        2. 7.3.4.2 Aperture Delay Ramp Control (TAD_RAMP)
        3. 7.3.4.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          1. 7.3.4.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
          2. 7.3.4.3.2 Automatic SYSREF Calibration
      5. 7.3.5 Digital Down Converters (Dual-Channel Mode Only)
        1. 7.3.5.1 Numerically-Controlled Oscillator and Complex Mixer
          1. 7.3.5.1.1 NCO Fast Frequency Hopping (FFH)
          2. 7.3.5.1.2 NCO Selection
          3. 7.3.5.1.3 Basic NCO Frequency Setting Mode
          4. 7.3.5.1.4 Rational NCO Frequency Setting Mode
          5. 7.3.5.1.5 NCO Phase Offset Setting
          6. 7.3.5.1.6 NCO Phase Synchronization
        2. 7.3.5.2 Decimation Filters
        3. 7.3.5.3 Output Data Format
        4. 7.3.5.4 Decimation Settings
          1. 7.3.5.4.1 Decimation Factor
          2. 7.3.5.4.2 DDC Gain Boost
      6. 7.3.6 JESD204B Interface
        1. 7.3.6.1 Transport Layer
        2. 7.3.6.2 Scrambler
        3. 7.3.6.3 Link Layer
          1. 7.3.6.3.1 Code Group Synchronization (CGS)
          2. 7.3.6.3.2 Initial Lane Alignment Sequence (ILAS)
          3. 7.3.6.3.3 8b, 10b Encoding
          4. 7.3.6.3.4 Frame and Multiframe Monitoring
        4. 7.3.6.4 Physical Layer
          1. 7.3.6.4.1 SerDes Pre-Emphasis
        5. 7.3.6.5 JESD204B Enable
        6. 7.3.6.6 Multi-Device Synchronization and Deterministic Latency
        7. 7.3.6.7 Operation in Subclass 0 Systems
      7. 7.3.7 Alarm Monitoring
        1. 7.3.7.1 NCO Upset Detection
        2. 7.3.7.2 Clock Upset Detection
      8. 7.3.8 Temperature Monitoring Diode
      9. 7.3.9 Analog Reference Voltage
    4. 7.4 Device Functional Modes
      1. 7.4.1 Dual-Channel Mode
      2. 7.4.2 Single-Channel Mode (DES Mode)
      3. 7.4.3 JESD204B Modes
        1. 7.4.3.1 JESD204B Output Data Formats
        2. 7.4.3.2 Dual DDC and Redundant Data Mode
      4. 7.4.4 Power-Down Modes
      5. 7.4.5 Test Modes
        1. 7.4.5.1 Serializer Test-Mode Details
        2. 7.4.5.2 PRBS Test Modes
        3. 7.4.5.3 Ramp Test Mode
        4. 7.4.5.4 Short and Long Transport Test Mode
          1. 7.4.5.4.1 Short Transport Test Pattern
          2. 7.4.5.4.2 Long Transport Test Pattern
        5. 7.4.5.5 D21.5 Test Mode
        6. 7.4.5.6 K28.5 Test Mode
        7. 7.4.5.7 Repeated ILA Test Mode
        8. 7.4.5.8 Modified RPAT Test Mode
      6. 7.4.6 Calibration Modes and Trimming
        1. 7.4.6.1 Foreground Calibration Mode
        2. 7.4.6.2 Background Calibration Mode
        3. 7.4.6.3 Low-Power Background Calibration (LPBG) Mode
      7. 7.4.7 Offset Calibration
      8. 7.4.8 Trimming
      9. 7.4.9 Offset Filtering
    5. 7.5 Programming
      1. 7.5.1 Using the Serial Interface
        1. 7.5.1.1 SCS
        2. 7.5.1.2 SCLK
        3. 7.5.1.3 SDI
        4. 7.5.1.4 SDO
        5. 7.5.1.5 Streaming Mode
    6. 7.6 Register Maps
      1. 7.6.1 Register Descriptions
      2. 7.6.2 SYSREF Calibration Registers (0x2B0 to 0x2BF)
      3. 7.6.3 Alarm Registers (0x2C0 to 0x2C2)
  8. Application Information Disclaimer
    1. 8.1 Application Information
      1. 8.1.1 Analog Inputs
      2. 8.1.2 Analog Input Bandwidth
      3. 8.1.3 Clocking
      4. 8.1.4 Radiation Environment Recommendations
        1. 8.1.4.1 Single Event Latch-Up (SEL)
        2. 8.1.4.2 Single Event Functional Interrupt (SEFI)
        3. 8.1.4.3 Single Event Upset (SEU)
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 RF Input Signal Path
        2. 8.2.2.2 Calculating Values of AC-Coupling Capacitors
      3. 8.2.3 Application Curves
    3. 8.3 Initialization Set Up
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Community Resources
    5. 10.5 Trademarks

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ZMX|196
  • NWE|196
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Switching Characteristics

typical values at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1dBFS, fCLK = maximum-rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum values are at nominal supply voltages and over the operating temperature range provided in the Recommended Operating Conditions table
PARAMETERTEST CONDITIONSSUBGROUP(1)MINTYPMAXUNIT
DEVICE (SAMPLING) CLOCK (CLK+, CLK–)
tADSampling (aperture) delay from CLK± rising edge (dual-channel mode) or rising and falling edge (single-channel mode) to sampling instantTAD_COARSE = 0x00, TAD_FINE = 0x00 and TAD_INV = 0350ps
tAD(MAX)Maximum tAD Adjust programmable delay, not including clock inversion (TAD_INV = 0)Coarse adjustment (TAD_COARSE = 0xFF)289ps
Fine adjustment (TAD_FINE = 0xFF)4.9
tAD(STEP)tAD Adjust programmable delay step sizeCoarse adjustment (TAD_COARSE)1.13ps
Fine adjustment (TAD_FINE)19
tAJAperture jitter, rmsMinimum tAD adjust coarse setting (TAD_COARSE = 0x00, TAD_INV = 0)56fs
Maximum tAD adjust coarse setting (TAD_COARSE = 0xFF) excluding TAD_INV (TAD_INV = 0)68(4)
SERIAL DATA OUTPUTS (DA[7:0]+, DA[7:0]–, DB[7:0]+, DB[7:0]–)
fSERDESSerialized output bit rateMaximum output bit rate[9, 10, 11]12.8Gbps
Minimum output bit rate1Gbps
UISerialized output unit intervalMinimum output unit interval[9, 10, 11]78.125ps
Maximum output unit interval1000ps
tTLHLow-to-high transition time (differential)20% to 80%, PRBS-7 test pattern, 12.8 Gbps, SER_PE = 0x0427ps
tTHLHigh-to-low transition time (differential)20% to 80%, PRBS-7 test pattern, 12.8 Gbps, SER_PE = 0x0427ps
DDJData dependent jitter, peak-to-peakPRBS-7 test pattern, 12.8 Gbps, SER_PE = 0x04, JMODE = 211.7ps
RJRandom jitter, RMSPRBS-7 test pattern, 12.8 Gbps, SER_PE = 0x04, JMODE = 20.8ps
TJTotal jitter, peak-to-peak, with gaussian portion defined with respect to a BER=1e-15 (Q = 7.94)PRBS-7 test pattern, 12.8 Gbps, SER_PE = 0x04, JMODE = 0, 224ps
PRBS-7 test pattern, 6.4 Gbps, SER_PE = 0x04, JMODE = 1, 320
PRBS-7 test pattern, 8 Gbps, SER_PE = 0x04, JMODE = 4, 5, 6, 731
PRBS-7 test pattern, 8 Gbps, SER_PE = 0x04, JMODE = 932
PRBS-7 test pattern, 8 Gbps, SER_PE = 0x04, JMODE = 10, 1135
PRBS-7 test pattern, 3.2 Gbps, SER_PE = 0x04, JMODE = 1224
PRBS-7 test pattern, 8 Gbps, SER_PE = 0x04, JMODE = 13, 1435
PRBS-7 test pattern, 8 Gbps, SER_PE = 0x04, JMODE = 15, 1631
ADC CORE LATENCY
tADCDeterministic delay from the CLK± edge that samples the reference sample to the CLK± edge that samples SYSREF going high(2)JMODE = 0–8.5tCLK cycles
JMODE = 1–20.5
JMODE = 2–9
JMODE = 3–21
JMODE = 4–4.5
JMODE = 5–24.5
JMODE = 6–5
JMODE = 7–25
JMODE = 960
JMODE = 10140
JMODE = 11136
JMODE = 12120
JMODE = 13232
JMODE = 14232
JMODE = 15446
JMODE = 16430
JMODE = 17–48.5
JMODE = 18–49
JESD204B AND SERIALIZER LATENCY
tTXDelay from the CLK± rising edge that samples SYSREF high to the first bit of the multiframe on the JESD204B serial output lane corresponding to the reference sample of tADC(3)JMODE = 072(5)84(5)tCLK cycles
JMODE = 1119(5)132(5)
JMODE = 272(5)84(5)
JMODE = 3119(5)132(5)
JMODE = 467(5)80(5)
JMODE = 5106(5)119(5)
JMODE = 667(5)80(5)
JMODE = 7106(5)119(5)
JMODE = 9106(5)119(5)
JMODE = 1067(5)80(5)
JMODE = 11106(5)119(5)
JMODE = 12213(5)225(5)
JMODE = 1367(5)80(5)
JMODE = 14106(5)119(5)
JMODE = 1567(5)80(5)
JMODE = 16106(5)119(5)
JMODE = 17195(5)208(5)
JMODE = 18195(5)208(5)
SERIAL PROGRAMMING INTERFACE (SDO)
t(OZD)Delay from falling edge of 16th SCLK cycle during read operation for SDO transition from tri-state to valid data1(5)ns
t(ODZ)Delay from SCS rising edge for SDO transition from valid data to tri-state10(5)ns
t(OD)Delay from falling edge of SCLK during read operation to SDO valid[4, 5, 6]110ns
For subgroup definitions, please see Table 6-1.
tADC is an exact, unrounded, deterministic delay. The delay can be negative if the reference sample is sampled after the SYSREF high capture point, in which case the total latency is smaller than the delay given by tTX.
The values given for tTX include deterministic and non-deterministic delays. The delay varies over process, temperature, and voltage. JESD204B accounts for these variations when operating in subclass-1 mode in order to achieve deterministic latency. Proper receiver RBD values must be chosen such that the elastic buffer release point does not occur within the invalid region of the local multiframe clock (LMFC) cycle.
tAJ increases because of additional attenuation on the internal clock path.
This parameter is specified by design and is not tested in production.