SLVSDR2B November   2018  – March 2021 ADC12DJ3200QML-SP

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: DC Specifications
    6. 6.6  Electrical Characteristics: Power Consumption
    7. 6.7  Electrical Characteristics: AC Specifications (Dual-Channel Mode)
    8. 6.8  Electrical Characteristics: AC Specifications (Single-Channel Mode)
    9. 6.9  Timing Requirements
    10. 6.10 Switching Characteristics
    11. 6.11 Timing Diagrams
    12. 6.12 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs
        1. 7.3.1.1 Analog Input Protection
        2. 7.3.1.2 Full-Scale Voltage (VFS) Adjustment
        3. 7.3.1.3 Analog Input Offset Adjust
      2. 7.3.2 ADC Core
        1. 7.3.2.1 ADC Theory of Operation
        2. 7.3.2.2 ADC Core Calibration
        3. 7.3.2.3 ADC Overrange Detection
        4. 7.3.2.4 Code Error Rate (CER)
      3. 7.3.3 Timestamp
      4. 7.3.4 Clocking
        1. 7.3.4.1 Noiseless Aperture Delay Adjustment (tAD Adjust)
        2. 7.3.4.2 Aperture Delay Ramp Control (TAD_RAMP)
        3. 7.3.4.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          1. 7.3.4.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
          2. 7.3.4.3.2 Automatic SYSREF Calibration
      5. 7.3.5 Digital Down Converters (Dual-Channel Mode Only)
        1. 7.3.5.1 Numerically-Controlled Oscillator and Complex Mixer
          1. 7.3.5.1.1 NCO Fast Frequency Hopping (FFH)
          2. 7.3.5.1.2 NCO Selection
          3. 7.3.5.1.3 Basic NCO Frequency Setting Mode
          4. 7.3.5.1.4 Rational NCO Frequency Setting Mode
          5. 7.3.5.1.5 NCO Phase Offset Setting
          6. 7.3.5.1.6 NCO Phase Synchronization
        2. 7.3.5.2 Decimation Filters
        3. 7.3.5.3 Output Data Format
        4. 7.3.5.4 Decimation Settings
          1. 7.3.5.4.1 Decimation Factor
          2. 7.3.5.4.2 DDC Gain Boost
      6. 7.3.6 JESD204B Interface
        1. 7.3.6.1 Transport Layer
        2. 7.3.6.2 Scrambler
        3. 7.3.6.3 Link Layer
          1. 7.3.6.3.1 Code Group Synchronization (CGS)
          2. 7.3.6.3.2 Initial Lane Alignment Sequence (ILAS)
          3. 7.3.6.3.3 8b, 10b Encoding
          4. 7.3.6.3.4 Frame and Multiframe Monitoring
        4. 7.3.6.4 Physical Layer
          1. 7.3.6.4.1 SerDes Pre-Emphasis
        5. 7.3.6.5 JESD204B Enable
        6. 7.3.6.6 Multi-Device Synchronization and Deterministic Latency
        7. 7.3.6.7 Operation in Subclass 0 Systems
      7. 7.3.7 Alarm Monitoring
        1. 7.3.7.1 NCO Upset Detection
        2. 7.3.7.2 Clock Upset Detection
      8. 7.3.8 Temperature Monitoring Diode
      9. 7.3.9 Analog Reference Voltage
    4. 7.4 Device Functional Modes
      1. 7.4.1 Dual-Channel Mode
      2. 7.4.2 Single-Channel Mode (DES Mode)
      3. 7.4.3 JESD204B Modes
        1. 7.4.3.1 JESD204B Output Data Formats
        2. 7.4.3.2 Dual DDC and Redundant Data Mode
      4. 7.4.4 Power-Down Modes
      5. 7.4.5 Test Modes
        1. 7.4.5.1 Serializer Test-Mode Details
        2. 7.4.5.2 PRBS Test Modes
        3. 7.4.5.3 Ramp Test Mode
        4. 7.4.5.4 Short and Long Transport Test Mode
          1. 7.4.5.4.1 Short Transport Test Pattern
          2. 7.4.5.4.2 Long Transport Test Pattern
        5. 7.4.5.5 D21.5 Test Mode
        6. 7.4.5.6 K28.5 Test Mode
        7. 7.4.5.7 Repeated ILA Test Mode
        8. 7.4.5.8 Modified RPAT Test Mode
      6. 7.4.6 Calibration Modes and Trimming
        1. 7.4.6.1 Foreground Calibration Mode
        2. 7.4.6.2 Background Calibration Mode
        3. 7.4.6.3 Low-Power Background Calibration (LPBG) Mode
      7. 7.4.7 Offset Calibration
      8. 7.4.8 Trimming
      9. 7.4.9 Offset Filtering
    5. 7.5 Programming
      1. 7.5.1 Using the Serial Interface
        1. 7.5.1.1 SCS
        2. 7.5.1.2 SCLK
        3. 7.5.1.3 SDI
        4. 7.5.1.4 SDO
        5. 7.5.1.5 Streaming Mode
    6. 7.6 Register Maps
      1. 7.6.1 Register Descriptions
      2. 7.6.2 SYSREF Calibration Registers (0x2B0 to 0x2BF)
      3. 7.6.3 Alarm Registers (0x2C0 to 0x2C2)
  8. Application Information Disclaimer
    1. 8.1 Application Information
      1. 8.1.1 Analog Inputs
      2. 8.1.2 Analog Input Bandwidth
      3. 8.1.3 Clocking
      4. 8.1.4 Radiation Environment Recommendations
        1. 8.1.4.1 Single Event Latch-Up (SEL)
        2. 8.1.4.2 Single Event Functional Interrupt (SEFI)
        3. 8.1.4.3 Single Event Upset (SEU)
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 RF Input Signal Path
        2. 8.2.2.2 Calculating Values of AC-Coupling Capacitors
      3. 8.2.3 Application Curves
    3. 8.3 Initialization Set Up
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Community Resources
    5. 10.5 Trademarks

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ZMX|196
  • NWE|196
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

The component selection and ADC12DJ3200QML-SP configuration for the application described in Section 8.2.1 is discussed is this section. The components of the wideband RF sampling receiver are given in Table 8-3 along with the reason for the selection.

Table 8-3 Wideband RF Sampling Receiver Component Selection
COMPONENTSELECTIONREASON
ADCTexas Instruments' ADC12DJ3200QML-SPSampling rate requirement (6.4 GSPS) and high input frequency makes ADC12DJ3200QML-SP a natural choice.
Sampling clock generationTexas Instruments' LMX2615-SPLMX2615-SP generates a high performing sampling clock due to low jitter (45 fs) and high output swing. The SYSREF features simplify multi-device synchronization.
Clock distributionTexas Instruments' LMK04832Support for 7 JESD204 ADCs, DACs or logic devices (FPGA or ASIC) and a number of operating modes such as single PLL mode, dual PLL mode or clock distribution mode.
Transformer/BalunMarki Microwave's BAL-0208SMG(1)Small size, wide frequency coverage and good performance within required frequency band.
See the Third-Party Products Disclaimer section.

The ADC12DJ3200QML-SP configuration and key parameters are given in Table 8-4. The calculations or sources for the various parameters are provided where applicable.

Table 8-4 ADC12DJ3200QML-SP Configuration and Key Parameters
PARAMETERCALCULATIONSETTING OR VALUEUNITS
JMODE1
DDC modeFrom JMODE selectionN/A (dual-channel mode only)
ADC channelsFrom JMODE selection1
Analog input usedINA± provides best performance in single-channel modeINA±
Total SerDes lanesFrom JMODE selection16Lanes
R (fBIT / fCLK)From JMODE selection2Gbps / GHz
SerDes line ratefLINERATE = fCLK * R6.4Gbps
LinksFrom JMODE selection2Links
L (per link)From JMODE selection8Lanes / Link
M (per link)From JMODE selection8Converters / Link
FFrom JMODE selection8Frames / Lane
SFrom JMODE selection5Samples / Frame
Kceil(17/F) ≤ K ≤ min(32, floor(1024/F))8 (others allowed)Frames / Multiframe
CLK± FrequencyfCLK = fS / 2 (for single-channel mode)3.2GHz
SYSREF frequencyfSYSREF = fLINERATE / (10 * F * K * n)10 / nMHz
Total clock jitterτT = sqrt( τCLK2 + τAJ2 )83fs