SBASAU8 December   2024 ADC3649

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Power Consumption
    6. 6.6  Electrical Characteristics - DC Specifications
    7. 6.7  Electrical Characteristics - AC Specifications (ADC3648 - 250 MSPS)
    8. 6.8  Electrical Characteristics - AC Specifications (ADC3649 - 500 MSPS)
    9. 6.9  Timing Requirements
    10. 6.10 Typical Characteristics, ADC3648
    11. 6.11 Typical Characteristics, ADC3649
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog Inputs
        1. 8.3.1.1 Nyquist Zone Selection
        2. 8.3.1.2 Analog Front End Design
      2. 8.3.2 Sampling Clock
      3. 8.3.3 Multi-Chip Synchronization
        1. 8.3.3.1 SYSREF Monitor
      4. 8.3.4 Time-Stamp
      5. 8.3.5 Overrange
      6. 8.3.6 External Voltage Reference
      7. 8.3.7 Digital Gain
      8. 8.3.8 Decimation Filter
        1. 8.3.8.1 Uncommon Decimation Ratios
        2. 8.3.8.2 Decimation Filter Response
        3. 8.3.8.3 Decimation Filter Configuration
        4. 8.3.8.4 Numerically Controlled Oscillator (NCO)
      9. 8.3.9 Digital Interface
        1. 8.3.9.1 Parallel LVDS
        2. 8.3.9.2 Serial LVDS (SLVDS) with Decimation
          1. 8.3.9.2.1 SLVDS - Status Bit Insertion
        3. 8.3.9.3 Output Data Format
        4. 8.3.9.4 32-bit Output Resolution
        5. 8.3.9.5 Output Scrambler
        6. 8.3.9.6 Output MUX
        7. 8.3.9.7 Test Pattern
    4. 8.4 Device Functional Modes
      1. 8.4.1 Low Latency Mode
      2. 8.4.2 Digital Channel Averaging
      3. 8.4.3 Power Down Mode
    5. 8.5 Programming
      1. 8.5.1 GPIO Programming
      2. 8.5.2 Register Write
      3. 8.5.3 Register Read
      4. 8.5.4 Device Programming
      5. 8.5.5 Register Map
      6. 8.5.6 Detailed Register Description
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Wideband Spectrum Analyzer
      2. 9.2.2 Design Requirements
        1. 9.2.2.1 Input Signal Path
        2. 9.2.2.2 Clocking
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1 Sampling Clock
      4. 9.2.4 Application Performance Plots
    3. 9.3 Initialization Set Up
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The ADC3648 and ADC369 are 14-bit, 250MSPS and 500MSPS, dual channel analog to digital converters (ADC). The devices are designed for high signal-to-noise ratio (SNR), and delivers a noise spectral density as low as -158.5dBFS/Hz. The buffered analog inputs support a programmable internal termination impedance of 100 and 200Ω with a full power input bandwidth of 1.4GHz (-3dB).

The devices include an optional quad band digital down-converter (DDC) supporting wideband decimation by 2 to narrow band decimation by 32768. The DDC uses a 48-bit NCO which supports phase coherent and phase continuous frequency hopping.

The devices are outfitted with a flexible LVDS interface. In decimation bypass mode, the output data is transmitted over 14 LVDS pairs with a DDR clock. When using real or complex decimation, the output data is transmitted using a serial LVDS interface - reducing the number of lanes used as decimation increases.

The power efficient ADC architecture consumes 300mW/ch at 500MSPS and provides power scaling with lower sampling rates (250mW/ch at 250MSPS).