SBAS108E May   2000  – December 2016 ADS8320

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: VCC = 5 V
    6. 6.6 Electrical Characteristics: VCC = 2.7 V
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Typical Connection Diagram
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
      2. 7.3.2 Reference Input
      3. 7.3.3 Noise
      4. 7.3.4 Averaging
    4. 7.4 Device Functional Modes
      1. 7.4.1 Signal Levels
      2. 7.4.2 Serial Interface
      3. 7.4.3 Data Format
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Universal Sensor IF SAR Booster Pack
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
          1. 8.2.1.3.1 Static Test (DC)
          2. 8.2.1.3.2 Dynamic Test (AC)
      2. 8.2.2 Wireless Motor Monitor (WMM)
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Power Dissipation
      1. 10.3.1 Short Cycling
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC 6 V
Analog input –0.3 VCC + 0.3 V
Logic input –0.3 6 °C
External reference voltage 5.5 V
Input current to any pin except supply ±10 mA
Case temperature 100 °C
Junction temperature 150 °C
Storage temperature, Tstg 125 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage, VCC to GND Low voltage levels 2.7 3.3 V
5-V logic levels 4.75 5 5.25
Reference input voltage, VREF 0.5 VCC V
Analog input voltage –IN to GND –0.1 0 0.5 V
+IN to GND –0.1 VCC + 0.1
+IN to – (–IN) 0 VREF
Operating temperature, TA –40 85 °C

Thermal Information

THERMAL METRIC(1) ADS8320 UNIT
DGK (VSSOP)
8 PINS
RθJA Junction-to-ambient thermal resistance 163.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 56.6 °C/W
RθJB Junction-to-board thermal resistance 83.4 °C/W
ψJT Junction-to-top characterization parameter 6.7 °C/W
ψJB Junction-to-board characterization parameter 82 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics: VCC = 5 V

at –40°C to 85°C, VREF = 5 V, –IN = GND, fSAMPLE = 100 kHz, and fCLK = 24 × fSAMPLE (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RESOLUTION
Resolution 16 Bits
ANALOG INPUT
Full-scale input span +In – (–In) 0 VREF V
Absolute input +In –0.1 VCC + 0.1 V
–In –0.1 1
Capacitance 45 pF
Leakage current 1 nA
SYSTEM PERFORMANCE
No missing codes ADS8320E 14 Bits
ADS8320EB 15
Integral linearity error ADS8320E ±0.008% ±0.018% FSR
ADS8320EB ±0.006% ±0.012%
Offset error ADS8320E ±1 ±2 mV
ADS8320EB ±0.5 ±1
Offset temperature drift ±3 µV/°C
Gain error ADS8320E ±0.05% FSR
ADS8320EB ±0.024%
Gain error temperature drift ±0.3 ppm/°C
Noise 20 µVrms
Power-supply rejection ratio 4.7 V < VCC < 5.25 V 3 LSB(1)
SAMPLING DYNAMICS
Conversion time 16 Clock Cycles
Acquisition time 4.5 Clock Cycles
Throughput rate 100 kHz
Clock frequency 0.024 2.4 MHz
DYNAMIC CHARACTERISTICS
Total harmonic distortion VIN = 5 VP-P at 10 kHz ADS8320E –84 dB
ADS8320EB –86
SINAD VIN = 5 VP-P at 10 kHz ADS8320E 82 dB
ADS8320EB 84
Spurious-free dynamic VIN = 5 VP-P at 10 kHz ADS8320E 84 dB
ADS8320EB 86
SNR ADS8320E 90 dB
ADS8320EB 92
REFERENCE INPUT
Voltage 0.5 VCC V
Resistance CS = GND, fSAMPLE = 0 Hz 5
CS = VCC 5
Current drain 40 80 µA
fSAMPLE = 0 Hz 0.8
CS = VCC 0.1 3
DIGITAL INPUT/OUTPUT
Logic family CMOS
Logic levels VIH IIH = 5 µA 3 VCC + 0.3 V
VIL IIL = 5 µA –0.3 0.8
VOH IOH = –250 µA 4
VOL IOL = 250 µA 0.4
Data format Straight Binary
POWER SUPPLY REQUIREMENTS
VCC Specified performance 4.75 5.25 V
VCC(2) 2 5.25 V
Quiescent current 900 1700 µA
fSAMPLE = 10 kHz(3)(4) 200
Power dissipation 4.5 8.5 mW
Power down CS = VCC 0.3 3 µA
LSB means Least Significant Bit with VREF equal to 2.5 V, one LSB is 0.038 mV.
See Typical Characteristics for more information.
fCLK = 2.4 MHz, CS = VCC for 216 clock cycles out of every 240.
See Power Dissipation for more information regarding lower sample rates.

Electrical Characteristics: VCC = 2.7 V

at –40°C to 85°C, VREF = 5 V, –IN = GND, fSAMPLE = 100 kHz, and fCLK = 24 × fSAMPLE (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RESOLUTION
Resolution 16 Bits
ANALOG INPUT
Full-scale input span +In – (–In) 0 VREF V
Absolute input +In –0.1 VCC + 0.1 V
–In –0.1 0.5
Capacitance 45 pF
Leakage current 1 nA
SYSTEM PERFORMANCE
No missing codes ADS8320E 14 Bits
ADS8320EB 15
Integral linearity error ADS8320E ±0.008% ±0.018% FSR
ADS8320EB ±0.006% ±0.012%
Offset error ADS8320E ±1 ±2 mV
ADS8320EB ±0.5 ±1
Offset temperature drift ±3 µV/°C
Gain error ADS8320E ±0.05% FSR
ADS8320EB ±0.024%
Gain error temperature drift ±0.3 ppm/°C
Noise 20 ppm/°C
Power-supply rejection ratio 2.7 V < VCC < 3.3 V 3 LSB(1)
SAMPLING DYNAMICS
Conversion time 16 Clock Cycles
Acquisition time 4.5 Clock Cycles
Throughput rate 100 kHz
Clock frequency 0.024 2.4 MHz
DYNAMIC CHARACTERISTICS
Total harmonic distortion VIN = 2.7 VP-P at 1 kHz ADS8320E –86 dB
ADS8320EB –88
SINAD VIN = 2.7 VP-P at 1 kHz ADS8320E 84 dB
ADS8320EB 86
Spurious-free dynamic VIN = 2.7 VP-P at 1 kHz ADS8320E 86 dB
ADS8320EB 88
SNR ADS8320E 88 dB
ADS8320EB 90
REFERENCE INPUT
Voltage 0.5 VCC V
Resistance CS = GND, fSAMPLE = 0 Hz 5
CS = VCC 5
Current drain 20 50 µA
CS = VCC 0.1 3
DIGITAL INPUT/OUTPUT
Logic Family CMOS
Logic levels VIH IIH = 5 µA 2 VCC + 0.3 V
VIL IIL = 5 µA –0.3 0.8
VOH IOH = –250 µA 2.1
VOL IOL = 250 µA 0.4
Data format Straight Binary
POWER SUPPLY REQUIREMENTS
VCC Specified performance 2.7 3.3 V
VCC(3) 2 5.25 V
See(2) 2 2.7
Quiescent current 650 1300 µA
fSAMPLE = 10 kHz(4)(5) 100
Power dissipation 1.8 3.8 mW
Power down CS = VCC 0.3 3 µA
LSB means Least Significant Bit with VREF equal to 2.5 V, one LSB is 0.038 mV.
The maximum clock rate of the ADS8320 is less than 2.4 MHz in this power supply range.
See Typical Characteristics for more information.
fCLK = 2.4 MHz, CS = VCC for 216 clock cycles out of every 240.
See Power Dissipation for more information regarding lower sample rates.

Typical Characteristics

ADS8320 IntLine_Error_vs_Code_SBAS108.gif
Figure 1. Integral Non-Linearity (INL) vs Code (25°C)
ADS8320 Supply_Current_vs_Temp_SBAS108.gif
Figure 3. Supply Current vs Temperature
ADS8320 Q_Current_vs_VCC_SBAS108.gif
Figure 5. Quiescent Current vs VCC
ADS8320 Change_Offset_vs_Ref_Volt_SBAS108.gif
Figure 7. Change In Offset vs Reference Voltage
ADS8320 Change_Gain_vs_Ref_Voltage_SBAS108.gif
Figure 9. Change In Gain Error vs Reference Voltage
ADS8320 Freq_Spectrum_SBAS108.gif
Figure 11. Frequency Spectrum (8192 Point FFT,
FIN = 10.120 kHz, –0.3 dB)
ADS8320 Spur_FreeDyn_vs_Freq_SBAS108.gif
Figure 13. Spurious-Free Dynamic Range and Signal-to-Noise Ratio vs Frequency
ADS8320 Signal_To_vs_Freq_SBAS108.gif
Figure 15. Signal-to-(Noise + Distortion) vs Frequency
ADS8320 Ref_Current_vs_Sample_Rate_SBAS108.gif
Figure 17. Reference Current vs Sample Rate
ADS8320 Diff_Line_Vs_Code_SBAS108.gif
Figure 2. Differential Non-Linearity Error vs Code (25°C)
ADS8320 Power_Down_vs_Supply_SBAS108.gif
Figure 4. Power-Down Supply Current
Code (25°C)
ADS8320 Max_Sample_vs_VCC_SBAS108.gif
Figure 6. Maximum Sample Rate vs VCC
ADS8320 Change_Offset_vs_Temp_SBAS108A.gif
Figure 8. Change In Offset vs Temperature
ADS8320 Change_Gain_vs_Temp_SBAS108.gif
Figure 10. Change In Gain Error vs Temperature
ADS8320 Peak_to_Peak_vs_RefV_SBAS108.gif
Figure 12. Peak-to-Peak Noise vs Reference Voltage
ADS8320 Total_Harm_vs_Freq_SBAS108.gif
Figure 14. Total Harmonic Distortion vs Frequency
ADS8320 Signal_To_vs_Input_SBAS108.gif
Figure 16. Signal-to-(Noise + Distortion) vs Input Level
ADS8320 Ref_Current_vs_Temp_SBAS108.gif
Figure 18. Reference Current vs Temperature