SLASF77A December 2022 – September 2023 AFE11612-SEP
PRODUCTION DATA
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
DAC CHARACTERISTICS(1) | ||||||
Resolution | 12 | Bits | ||||
Full-scale output voltage | VREF = 2.5 V | 0 | 5 | V | ||
DNL | Differential nonlinearity | Specified 12-bit monotonic | –1 | 1 | LSB | |
INL | Integral nonlinearity | –1.25 | 1.25 | LSB | ||
TUE | Total unadjusted error | TA = 25°C | –10 | 10 | mV | |
Offset error | TA = 25°C | –2 | 2 | mV | ||
Offset error temperature drift | ±1 | ppm/°C | ||||
Gain error | External 2.5-V reference | –0.15 | 0.15 | %FSR | ||
Gain error temperature drift | ±2 | ppm/°C | ||||
Load current(2) | Source within 200 mV of supply | 10 | mA | |||
Sink within 300 mV of supply | –10 | mA | ||||
Short-circuit current(2) | ±30 | mA | ||||
Capacitive load stability(3) | 0 | 10 | nF | |||
DC output impedance(3) | Midscale code | 0.3 | Ω | |||
Output voltage settling time | RL = 2 kΩ, CL = 200 pF, 1/4 to 3/4 scale settling to 1/2 LSB | 3 | µs | |||
Slew rate | 1/4 to 3/4 scale transition, 10% to 90% | 1.5 | V/µs | |||
Output noise | f = 0.1 Hz to 10 Hz, midscale code | 8 | µVpp | |||
Output noise density | f = 1 kHz, midscale code, external reference | 81 | nV/√Hz | |||
Code change glitch impulse | 1 LSB change around major carrier | 0.15 | nV-s | |||
Supply ramp-up glitch amplitude | AVCC = 0-V to 5-V, 2-ms ramp | 5 | mV | |||
Digital feedthrough | Device is not accessed | 0.15 | nV-s | |||
ADC CHARACTERISTICS | ||||||
Resolution | 12 | Bits | ||||
Full-scale input voltage | Single-ended, 0 V to VREF | 0 | VREF | V | ||
Single-ended, 0 V to 2 × VREF | 0 | 2 × VREF | ||||
Fully differential, VIN+ – VIN–, 0 V to VREF |
–VREF | VREF | ||||
Fully differential, VIN+ – VIN–, 0 V to 2 × VREF |
–2 × VREF | 2 × VREF | ||||
Absolute input voltage | GND – 0.2 | AVDD + 0.2 | V | |||
DNL | Differential nonlinearity | Specified 12-bit monotonic | –1 | 1 | LSB | |
INL | Integral nonlinearity | –1 | 1 | LSB | ||
Offset error | –3 | 3 | LSB | |||
Offset error match | ±0.4 | LSB | ||||
Gain error | Single-ended mode, external 2.5-V reference |
–5 | 5 | LSB | ||
Differential mode, 0 V to VREF, VCM = 1.25 V, external 2.5-V reference |
–5 | 5 | ||||
Differential mode, 0 V to 2 × VREF, VCM = 2.5 V, external 2.5-V reference |
–5 | 5 | ||||
Gain error match | Single-ended mode | ±0.4 | LSB | |||
Differential mode | ±0.5 | |||||
Zero code error | Differential mode, 0 V to VREF, VCM = 1.25 V, external 2.5-V reference |
–3 | 3 | LSB | ||
Differential mode, 0 V to 2 × VREF, VCM = 2.5 V, external 2.5-V reference |
–3 | 3 | ||||
Zero code error match | ±0.5 | LSB | ||||
Common-mode rejection | Differential mode, 0 V to 2 × VREF, measured at dc |
67 | dB | |||
Input capacitance | 0 V to VREF | 118 | pF | |||
0 V to 2 × VREF | 73 | |||||
Input bias current | Unselected ADC input | ±10 | µA | |||
Conversion rate | External single analog channel, auto-mode conversion |
500 | kSPS | |||
External single analog channel, direct-mode conversion |
167 | |||||
Conversion time | External single analog channel | 2 | µs | |||
Autocycle update rate | All 16 single-ended inputs enabled | 32 | µs | |||
Throughput rate | SCLK ≥ 12 MHz, external single-channel | 500 | kSPS | |||
INTERNAL TEMPERATURE SENSOR CHARACTERISTICS | ||||||
Accuracy | AVDD = 5 V, TA = –55°C to +125°C | –4.5 | 4.5 | °C | ||
AVDD = 5 V, TA = 0°C to 100°C | –1.5 | 1.5 | ||||
Resolution | 0.125 | °C | ||||
Conversion rate | Remote temperature sensors disabled | 15 | ms | |||
REMOTE TEMPERATURE SENSOR CHARACTERISTICS | ||||||
Accuracy(4) | AVDD = 5 V, TA = –55°C to +125°C, TD = –40°C to +150°C |
–6 | 6 | °C | ||
AVDD = 5 V, TA = 0°C to +100°C, TD = –40°C to +150°C |
–1.5 | 1.5 | ||||
Resolution | 0.125 | °C | ||||
Conversion rate per sensor | With resistance cancellation (RC = 1) | 93 | ms | |||
Without resistance cancellation (RC = 0) | 44 | |||||
INTERNAL REFERENCE CHARACTERISTICS | ||||||
VREF-OUT | Internal reference voltage | TA = 25°C, REF-OUT pin | 2.48 | 2.5 | 2.52 | V |
Internal reference temperature coefficient | TA = –55°C to +125°C | 25 | ppm/°C | |||
Internal reference impedance | 0.4 | Ω | ||||
Internal reference output noise | f = 0.1 Hz to 10 Hz | 13 | µVPP | |||
Internal reference noise density | f = 1 kHz | 260 | nV/√Hz | |||
Internal reference load current | ±5 | mA | ||||
EXTERNAL REFERENCE CHARACTERISTICS | ||||||
VREF | Input voltage | DAC reference input, REF-DAC pin | 1.4 | 2.5 | 2.6 | V |
ADC reference input, ADC-REF-IN pin | 1.4 | 2.5 | 2.6 | |||
Input current | DAC reference input, VREF = 2.5 V | 170 | µA | |||
ADC reference input, VREF = 2.5 V | 145 | |||||
ADC reference buffer offset | TA = 25°C | –5 | 5 | mV | ||
DIGITAL INPUT CHARACTERISTICS | ||||||
VIH | High-level input voltage | IOVDD = 5 V | 2.1 | V | ||
IOVDD = 3.3 V | 2.2 | |||||
VIL | Low-level input voltage | IOVDD = 5 V | 0.8 | V | ||
IOVDD = 3.3 V | 0.7 | |||||
Input current | All except SCL, SDA, ALARM and GPIO | –1 | 1 | µA | ||
SCL, SDA, ALARM and GPIO | –5 | 5 | ||||
Input pin capacitance | 5 | pF | ||||
DIGITAL OUTPUT CHARACTERISTICS | ||||||
VOH | High-level output voltage | IOVDD = 5 V, ISOURCE = 3 mA | 4.8 | V | ||
IOVDD = 3.3 V, ISOURCE = 3 mA | 2.9 | |||||
VOL | Low-level output voltage | ISINK = 3 mA | 0.4 | V | ||
VOL | Open-drain low-level output voltage | GPIO and ALARM, IOVDD = 5 V, ISINK = 5 mA |
0.4 | V | ||
GPIO and ALARM, IOVDD = 3.3 V, ISINK = 2 mA |
0.4 | |||||
SDA and SCL, IOVDD = 5 V, ISINK = 3 mA |
0.4 | |||||
SDA and SCL, IOVDD = 3.3 V, ISINK = 3 mA |
0.4 | |||||
High-impedance leakage | –5 | 5 | µA | |||
Output pin capacitance | 10 | pF | ||||
POWER CONSUMPTION CHARACTERISTICS | ||||||
IVDD | AVDD and DVDD supply current | AVDD and DVDD combined, no DAC load, DACs at midscale code and ADC at the fastest autoconversion rate | 8 | 19 | mA | |
AVDD and DVDD combined, power-down mode | 1.6 | |||||
IAVCC | AVCC supply current | No DAC load, DACs at midscale code and ADC at the fastest autoconversion rate | 7 | mA | ||
Power consumption | No DAC load, DACs at midscale code and ADC at the fastest autoconversion rate, AVDD = DVDD = 5 V, AVCC = 5 V | 95 | 120 | mW |