SLASFA1 july   2023 AFE539F1-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: ADC Input
    6. 6.6  Electrical Characteristics: General
    7. 6.7  Timing Requirements: I2C Standard Mode
    8. 6.8  Timing Requirements: I2C Fast Mode
    9. 6.9  Timing Requirements: I2C Fast Mode Plus
    10. 6.10 Timing Requirements: SPI Write Operation
    11. 6.11 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 0)
    12. 6.12 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 1)
    13. 6.13 Timing Requirements: PWM Output
    14. 6.14 Timing Diagrams
    15. 6.15 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Smart Analog Front End (AFE) Architecture
      2. 7.3.2 Programming Interface
      3. 7.3.3 Nonvolatile Memory (NVM)
        1. 7.3.3.1 NVM Cyclic Redundancy Check (CRC)
          1. 7.3.3.1.1 NVM-CRC-FAIL-USER Bit
          2. 7.3.3.1.2 NVM-CRC-FAIL-INT Bit
      4. 7.3.4 Power-On Reset (POR)
      5. 7.3.5 External Reset
      6. 7.3.6 Register-Map Lock
    4. 7.4 Device Functional Modes
      1. 7.4.1 Analog-to-Digital Converter (ADC) Mode
        1. 7.4.1.1 Voltage Reference Selection
          1. 7.4.1.1.1 Power-Supply as Reference
          2. 7.4.1.1.2 Internal Reference
          3. 7.4.1.1.3 External Reference
      2. 7.4.2 Pulse-Width Modulation (PWM) Mode
      3. 7.4.3 Constant Power-Dissipation Control
    5. 7.5 Programming
      1. 7.5.1 SPI Programming Mode
      2. 7.5.2 I2C Programming Mode
        1. 7.5.2.1 F/S Mode Protocol
        2. 7.5.2.2 I2C Update Sequence
          1. 7.5.2.2.1 Address Byte
          2. 7.5.2.2.2 Command Byte
        3. 7.5.2.3 I2C Read Sequence
    6. 7.6 Register Maps
      1. 7.6.1  NOP Register (address = 00h) [reset = 0000h]
      2. 7.6.2  REF-GAIN-CONFIG Register (address = 15h) [reset = 0401h]
      3. 7.6.3  COMMON-CONFIG Register (address = 1Fh) [reset = 13FFh]
      4. 7.6.4  COMMON-TRIGGER Register (address = 20h) [reset = 0000h]
      5. 7.6.5  COMMON-PWM-TRIG Register (address = 21h) [reset = 0001h]
      6. 7.6.6  GENERAL-STATUS Register (address = 22h) [reset = 00h, DEVICE-ID, VERSION-ID]
      7. 7.6.7  INTERFACE-CONFIG Register (address = 26h) [reset = 0000h]
      8. 7.6.8  STATE-MACHINE-CONFIG0 Register (address = 27h) [reset = 0003h]
      9. 7.6.9  SRAM-CONFIG Register (address = 2Bh) [reset = 0000h]
      10. 7.6.10 SRAM-DATA Register (address = 2Ch) [reset = 0000h]
      11. 7.6.11 MAX-OUTPUT Register (SRAM address = 20h) [reset = 007Fh]
      12. 7.6.12 MIN-OUTPUT Register (SRAM address = 21h) [reset = 0000h]
      13. 7.6.13 FUNCTION-COEFFICIENT Register (SRAM address = 22h) [reset = 01F4h]
      14. 7.6.14 PWM-FREQUENCY Register (SRAM address = 23h) [reset = 000Bh]
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pulse-Width Modulation (PWM) Mode

The AFE539F1-Q1 provides the 7-bit duty-cycle PWM output on the SDA/SCLK/PWM pin. Pull the VREF/MODE pin high to enable PWM functionality. Table 7-2 lists all the possible PWM frequency configurations using the PWM-FREQ bits in the PWM-FREQUENCY SRAM register.

Table 7-2 PWM Frequency Configuration
SRAM REGISTER PWM-FREQ BIT FIELD PWM FREQUENCY (kHz) DUTY CYCLE (%) FOR CODE 1 DUTY CYCLE (%) FOR CODE 126
PWM-FREQUENCY
(0x23 [4:0])
0 Invalid N/A N/A
1 48.828 4.88 95.12
2 24.414 2.44 97.56
3 16.276 1.63 98.37
4 12.207 1.22 98.44
5 8.138 0.81 98.44
6 6.104 0.78 98.44
7 3.052 0.78 98.44
8 2.035 0.78 98.44
9 1.526 0.78 98.44
10 1.221 0.78 98.44
11 1.017 0.78 98.44
12 0.872 0.78 98.44
13 0.763 0.78 98.44
14 0.678 0.78 98.44
15 0.610 0.78 98.44
16 0.555 0.78 98.44
17 0.509 0.78 98.44
18 0.470 0.78 98.44
19 0.436 0.78 98.44
20 0.407 0.78 98.44
21 0.381 0.78 98.44
22 0.359 0.78 98.44
23 0.339 0.78 98.44
24 0.321 0.78 98.44
25 0.305 0.78 98.44
26 0.291 0.78 98.44
27 0.277 0.78 98.44
28 0.265 0.78 98.44
29 0.254 0.78 98.44
30 0.244 0.78 98.44
31 0.218 0.78 98.44

The duty cycle of the PWM is proportional to the 7-bit code, 0d to 126d. As Table 7-3 shows, the code 127d corresponds to 100% duty cycle. The duty cycle 99.22% (127d/128d) is skipped to achieve 100% duty cycle using a 7-bit code. The PWM duty-cycle setting is done by the state machine and is not exposed to the user.

Table 7-3 PWM Duty Cycle Setting
CODE DUTY-CYCLE DESCRIPTION
0 0% Always 0
1 0.78% Minimum linear duty cycle
x (x/128)% x is the code between 2d and 125d, both included
126 98.44% Maximum linear duty cycle
127 100% Always 1. The duty cycle 99.22% (127d/128d) is skipped.