SLASF44A May   2023  – June 2024 AFE78201 , AFE88201

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements
    7. 5.7  Timing Diagrams
    8. 5.8  Typical Characteristics: VOUT DAC
    9. 5.9  Typical Characteristics: ADC
    10. 5.10 Typical Characteristics: Reference
    11. 5.11 Typical Characteristics: Power Supply
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Digital-to-Analog Converter (DAC) Overview
        1. 6.3.1.1 DAC Resistor String
        2. 6.3.1.2 DAC Buffer Amplifier
        3. 6.3.1.3 DAC Transfer Function
        4. 6.3.1.4 DAC Gain and Offset Calibration
        5. 6.3.1.5 Programmable Slew Rate
        6. 6.3.1.6 DAC Register Structure and CLEAR State
      2. 6.3.2  Analog-to-Digital Converter (ADC) Overview
        1. 6.3.2.1 ADC Operation
        2. 6.3.2.2 ADC Custom Channel Sequencer
        3. 6.3.2.3 ADC Synchronization
        4. 6.3.2.4 ADC Offset Calibration
        5. 6.3.2.5 External Monitoring Inputs
        6. 6.3.2.6 Temperature Sensor
        7. 6.3.2.7 Self-Diagnostic Multiplexer
        8. 6.3.2.8 ADC Bypass
      3. 6.3.3  Programmable Out-of-Range Alarms
        1. 6.3.3.1 Alarm-Based Interrupts
        2. 6.3.3.2 Alarm Action Configuration Register
        3. 6.3.3.3 Alarm Voltage Generator
        4. 6.3.3.4 Temperature Sensor Alarm Function
        5. 6.3.3.5 Internal Reference Alarm Function
        6. 6.3.3.6 ADC Alarm Function
        7. 6.3.3.7 Fault Detection
      4. 6.3.4  IRQ
      5. 6.3.5  Internal Reference
      6. 6.3.6  Integrated Precision Oscillator
      7. 6.3.7  Precision Oscillator Diagnostics
      8. 6.3.8  One-Time Programmable (OTP) Memory
      9. 6.3.9  GPIO
      10. 6.3.10 Timer
      11. 6.3.11 Unique Chip Identifier (ID)
      12. 6.3.12 Scratch Pad Register
    4. 6.4 Device Functional Modes
      1. 6.4.1 Register Built-In Self-Test (RBIST)
      2. 6.4.2 DAC Power-Down Mode
      3. 6.4.3 Reset
    5. 6.5 Programming
      1. 6.5.1 Communication Setup
        1. 6.5.1.1 SPI Mode
        2. 6.5.1.2 UART Mode
      2. 6.5.2 GPIO Programming
      3. 6.5.3 Serial Peripheral Interface (SPI)
        1. 6.5.3.1 SPI Frame Definition
        2. 6.5.3.2 SPI Read and Write
        3. 6.5.3.3 Frame Error Checking
        4. 6.5.3.4 Synchronization
      4. 6.5.4 UART Interface
        1. 6.5.4.1 UART Break Mode (UBM)
      5. 6.5.5 Status Bits
      6. 6.5.6 Watchdog Timer
  8. Register Maps
    1. 7.1 AFEx8201 Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Multichannel Configuration
    2. 8.2 Typical Application
      1. 8.2.1 Analog Output Module
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 XTR305
            1. 8.2.1.2.1.1 Current-Output Mode
            2. 8.2.1.2.1.2 Voltage Output Mode
            3. 8.2.1.2.1.3 Diagnostic Features
        3. 8.2.1.3 Application Curves
    3. 8.3 Initialization Setup
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RRU|24
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

Figure 8-3 shows a block diagram of an analog output module using the AFEx8201 and the XTR305.

AFE78201 AFE88201 Block Diagram of the Analog
                    Output Module Using the AFEx8201 and XTR305 Figure 8-3 Block Diagram of the Analog Output Module Using the AFEx8201 and XTR305

The AFE88201 sets an output voltage from 0 V to 2.5 V using a 16-bit code. Use the AFE78201 in this same application if 14-bit performance is required. This DAC voltage is converted to an output voltage or an output current by the XTR305. The XTR305 provides two basic functional blocks: an instrumentation amplifier (IA) and an operational amplifier (OPA) for an output driver.

This application is a configurable current or voltage analog output. Figure 8-2 shows a schematic of the circuit. The AFE88201 DAC controls the XTR305, which is an industrial analog current or voltage output driver. The XTR305 takes an analog input control signal and drives a proportional analog output. The output is configured as a current output if M2 is high and M1 is low, and a voltage output if M2 and M1 are both low.

The input-to-output gain of the XTR305 is set by RSET and RGAIN. The gain components in this design are selected for ±11-V or 0-mA to 25-mA output.

During current-output mode, a precision current mirror generates an exact 1/10th copy of the output current, and this current is routed to the summing junction of the OPA to close the feedback loop. In voltage-output mode, the IA senses the output voltage and feeds back a current equal to 2 × VOUT / RGAIN to the summing junction of the OPA to close the feedback loop.

A basic design procedure using the XTR305 as an output stage is described in the following list.

  • Leave RSET open for bipolar output
  • Select ROS for current-output transfer function
  • Select RGAIN for the voltage-output transfer function
  • Select EMC protection components