SBASAK2B march   2022  – june 2023 AFE7903

PRODUCTION DATA  

  1.   1
  2. 1Features
  3. 2Applications
  4. 3Description
  5. 4Description (continued)
  6. 5Revision History
  7. 6Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Transmitter Electrical Characteristics
    6. 6.6  RF ADC Electrical Characteristics
    7. 6.7  PLL/VCO/Clock Electrical Characteristics
    8. 6.8  Digital Electrical Characteristics
    9. 6.9  Power Supply Electrical Characteristics
    10. 6.10 Timing Requirements
    11. 6.11 Switching Characteristics
    12. 6.12 Typical Characteristics
      1. 6.12.1  RX Typical Characteristics 30 MHz and 400 MHz
      2. 6.12.2  RX Typical Characteristics at 800 MHz
      3. 6.12.3  RX Typical Characteristics 1.75 GHz to 1.9 GHz
      4. 6.12.4  RX Typical Characteristics 2.6 GHz
      5. 6.12.5  RX Typical Characteristics 3.5 GHz
      6. 6.12.6  RX Typical Characteristics 4.9 GHz
      7. 6.12.7  RX Typical Characteristics 6.8 GHz
      8. 6.12.8  TX Typical Characteristics at 30 MHz and 600 MHz
      9. 6.12.9  TX Typical Characteristics at 800 MHz
      10. 6.12.10 TX Typical Characteristics at 1.8 GHz
      11. 6.12.11 TX Typical Characteristics at 2.6 GHz
      12. 6.12.12 TX Typical Characteristics at 3.5 GHz
      13. 6.12.13 TX Typical Characteristics at 4.9 GHz
      14. 6.12.14 TX Typical Characteristics at 7.1 GHz
      15. 6.12.15 PLL and Clock Typical Characteristics
  8. 7Device and Documentation Support
    1. 7.1 Receiving Notification of Documentation Updates
    2. 7.2 Support Resources
    3. 7.3 Trademarks
    4. 7.4 Electrostatic Discharge Caution
    5. 7.5 Glossary
  9. 9Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

TX Typical Characteristics at 2.6 GHz

Typical values at TA = +25°C with nominal supplies. Unless otherwise noted, TX input data rate = 491.52 MSPS, fDAC = 11796.48 MSPS, interleave mode, AOUT = –1 dBFS, 1st Nyquist zone output, Internal PLL, fREF = 491.52 MSPS, 24x Interpolation, DSA = 0 dB, Sin(x)/x enabled, DSA calibrated

GUID-A4D73C7D-6531-498D-AF24-3E17110D7C32-low.gif
Including PCB and cable losses, Aout = -0.5 dBFS, DSA = 0, 2.6 GHz matching
Figure 6-374 TX Full Scale vs RF Frequency at 5898.24 MSPS
GUID-52502B9D-7AC5-469A-9C21-2C6812878056-low.gif
Including PCB and cable losses, Aout = -0.5 dBFS, DSA = 0, 2.6 GHz matching
Figure 6-376 TX Full Scale vs RF Frequency at 11796.48 MSPS
GUID-20211125-SS0I-3KKQ-8JT7-ZJ7NW6QTZ0VW-low.svg
fDAC = 8847.36 MSPS, Aout = -0.5 dBFS, matching 2.6 GHz
Figure 6-378 TX Output Power vs DSA Setting and Channel at 2.6 GHz
GUID-20211125-SS0I-FWPT-SR7P-KDGB6QBSJXTJ-low.svg
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Setting) + 1
Figure 6-380 TX Calibrated Differential Gain Error vs DSA Setting and Channel at 2.6 GHz
GUID-20211125-SS0I-QKSB-XNNW-6HL25L0D5S07-low.svg
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Setting = 0) + (DSA Setting)
Figure 6-382 TX Calibrated Integrated Gain Error vs DSA Setting and Channel at 2.6 GHz
GUID-BDD0FC4E-72B7-47F8-A33D-3BD55845A9DD-low.gif
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Setting) + 1
Figure 6-384 TX Calibrated Differential Gain Error vs DSA Setting and Temperature at 2.6 GHz
GUID-F610FE5B-D43C-47FE-AEA0-95CF0A51B73E-low.gif
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Setting = 0) + (DSA Setting)
Figure 6-386 TX Calibrated Integrated Gain Error vs DSA Setting and Temperature at 2.6 GHz
GUID-20211125-SS0I-FN6V-HH9B-LCHZK4LP61CK-low.svg
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz
Differential Phase Error = PhaseOUT(DSA Setting – 1) – PhaseOUT(DSA Setting)
Phase DNL spike may occur at any DSA setting.
Figure 6-388 TX Calibrated Differential Phase Error vs DSA Setting and Channel at 2.6 GHz
GUID-20211125-SS0I-PGHT-0BZV-GQLSXRQFQ2P0-low.svg
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)
Figure 6-390 TX Calibrated Integrated Phase Error vs DSA Setting and Channel at 2.6 GHz
GUID-A94CF401-CDAD-488F-9512-4EAA49F81927-low.gif
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Differential Phase Error = PhaseOUT(DSA Setting – 1) – PhaseOUT(DSA Setting)
Figure 6-392 TX Calibrated Differential Phase Error vs DSA Setting and Temperature at 2.6 GHz
GUID-4EC574AB-4A6F-4404-BE12-15FEDE2C557E-low.gif
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)
Figure 6-394 TX Calibrated Integrated Phase Error vs DSA Setting and Temperature at 2.6 GHz
GUID-20211125-SS0I-C91X-29S2-QTVWF8LVQ7BS-low.svg
fDAC = 8847.36 MSPS, straight mode, fCENTER = 2.6 GHz, matching at 2.6 GHz, –13 dBFS each tone
Figure 6-396 TX IMD3 vs DSA Setting at 2.6 GHz
GUID-0B6BDC4F-5EDA-45B4-8AD1-C177104513EB-low.gif
fDAC = 8847.36 MSPS, straight mode, fCENTER = 2.6 GHz, matching at 2.6 GHz, –13 dBFS each tone, worst channel, dither = 1.
Figure 6-398 TX IMD3 vs Tone Spacing and Temperature at 2.6 GHz
GUID-AA24E1F9-B889-4E17-9AFC-6656C84C9CCC-low.gif
fDAC = 8847.36 MSPS, straight mode, fCENTER = 2.6 GHz, matching at 2.6 GHz, –13 dBFS each tone
Figure 6-400 TX IMD3 vs Tone Spacing and Temperature
GUID-ED8CECD3-6B87-4979-93AE-F9D8CA77D371-low.gif
TM1.1, POUT_RMS = –13 dBFS
Figure 6-402 TX 20-MHz LTE Output Spectrum at 2.6 GHz (Band 41)
GUID-20211125-SS0I-BW60-VZQT-WVPXG17SLP2X-low.svg
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-404 TX 20-MHz LTE alt-ACPR vs Digital Level at 2.6 GHz
GUID-20211125-SS0I-H1DD-HJTS-S98TN44S5BPJ-low.svg
Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR
Figure 6-406 TX 100-MHz NR ACPR vs Digital Level at 2.6 GHz
GUID-20211125-SS0I-T2NK-M9BT-6VDFHVVBRSSL-low.svg
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-408 TX 20-MHz LTE ACPR vs DSA at 2.6 GHz
GUID-20211125-SS0I-N7H8-WG1D-KCWLJNQXB7MD-low.svg
Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR
Figure 6-410 TX 100-MHz NR ACPR vs DSA at 2.6 GHz
GUID-20211125-SS0I-SLZF-GG23-PT8VDJJ5BHMG-low.svg
Matching at 2.6 GHz, fDAC = 11.79648GSPS, interleave mode, normalized to output power at harmonic frequency
Figure 6-412 TX HD2 vs Digital Amplitude and Output Frequency at 2.6 GHz
GUID-20211125-SS0I-CDCG-VF5Q-TC5KJT6CXSS5-low.svg
Inband = 2600 MHz ± 600 MHz, fDAC = 12 GSPS, not including FS/3 and FS/4, external clock mode, non-interleave mode
Figure 6-414 Two Tone Inband SFDR vs Digital Amplitude at 2.6 GHz
GUID-8B217B8E-AF5B-4027-883B-5C198FC48A0D-low.gif
fDAC = 8847.36 MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 6-416 TX Single Tone (–12 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-68BB565A-BBE3-42EF-9D6D-686381B1EE42-low.gif
fDAC = 8847.36 MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 6-418 TX Single Tone (–6 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-0EA1A9DE-1B0E-4ECB-B939-0488ADA80C35-low.gif
fDAC = 8847.36 MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 6-420 TX Single Tone (–1 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-71E21490-49A8-4824-ACD5-046975154149-low.gif
fDAC = 8847.36 MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT and is due to mixing with digital clocks.
Figure 6-422 TX Single Tone (–12 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-C3DCFDC1-97C3-4B36-9878-C7B855073421-low.gif
fDAC = 8847.36 MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT and is due to mixing with digital clocks.
Figure 6-424 TX Single Tone (–6 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-EB23E1B9-3DAE-4629-A2FC-A025065572A2-low.gif
fDAC = 8847.36 MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT and is due to mixing with digital clocks.
Figure 6-426 TX Single Tone (–1 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-20210708-CA0I-D8WK-BPTQ-GT64SQCNBKK0-low.png
fDAC = 9000 MSPS, external clock mode, non-interleave mode
Figure 6-428 TX Dual Tone Output Spectrum at 2.6 GHz, -7 dBFS each (0 - DAC)
GUID-20210708-CA0I-CWLS-HBMQ-SLXPXBZ1WN68-low.png
fDAC = 9000 MSPS, external clock mode, non-interleave mode
Figure 6-430 TX Dual Tone Output Spectrum at 2.6 GHz, -13 dBFS each (0 - DAC)
GUID-20210708-CA0I-KSP7-KZS9-GPSFG1FMTL7L-low.svg
fDAC = 9000 MSPS, external clock mode, non-interleave mode
Figure 6-432 TX Dual Tone Output Spectrum at 2.6 GHz, -30 dBFS each (0 - DAC)
GUID-2DA4139B-2888-4587-91E5-C96138D5D9D1-low.gif
fDAC = 11796.48 MSPS, interleave mode, 2.6 GHz matching. 40-MHz offset from tone. Output Power = –1 dBFS. All supplies simultaneously at MIN, TYP, or MAX voltages.
Figure 6-434 TX Output Noise vs Supply Voltage at 2.6 GHz
GUID-20211125-SS0I-L5BK-DQ7C-0SC6CZWRMHZV-low.svg
fDAC = 9000 MSPS, non-interleave mode, external clock mode
Figure 6-436 IMD3 vs Tone Spacing and Channel at 2.6 GHz
GUID-20211125-SS0I-ZLML-GNZ5-FRSZ0WV2ZQQS-low.svg
fDAC = 9000 MSPS, non-interleave mode, external clock mode
Figure 6-438 IMD3 vs Digital Amplitude and Channel at 2.6 GHz
GUID-20210628-CA0I-1NSJ-SRFX-NNTWNZMR1C41-low.png
fDAC = 9000 MSPS, non-interleave mode, external clock mode
Figure 6-440 IMD3 vs Digital Amplitude and Dither at 2.6 GHz
GUID-20211029-SS0I-HBSX-F3FM-RJ5884R2KPWD-low.svg
fDAC = 9000 MSPS, non-interleave mode, external clock mode, 50 MHz offset
Figure 6-442 NSD vs Digital Amplitude and Temperature at 2.6 GHz
GUID-2F1C1BEE-275F-4749-93EF-A62E28E81F2E-low.gif
Including PCB and cable losses, Aout = -0.5 dBFS, DSA = 0, 2.6 GHz matching
Figure 6-375 TX Full Scale vs RF Frequency at 8847.36 MSPS
GUID-20211125-SS0I-VMH5-SSQ2-G4QKRSQ7PKCD-low.svg
fDAC = 8847.36 MSPS, interleave mode, including PCB and cable losses, Aout = -0.5 dBFS, DSA = 0, 2.6 GHz matching
Figure 6-377 TX Output Fullscale vs Output Frequency and Channel
GUID-20211125-SS0I-HLNB-HSSQ-SSHQDRD0GHSR-low.svg
fDAC =8847.36 MSPS, straight mode, matching at 2.6 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Setting) + 1
Figure 6-379 TX Uncalibrated Differential Gain Error vs DSA Setting and Channel at 2.6 GHz
GUID-20211125-SS0I-KZ69-ZVVS-RTL5FJKBJQGG-low.svg
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Setting = 0) + (DSA Setting)
Figure 6-381 TX Uncalibrated Integrated Gain Error vs DSA Setting and Channel at 2.6 GHz
GUID-9D25DB19-63BE-42F2-A4F8-C3F9A416DB40-low.gif
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Setting) + 1
Figure 6-383 TX Uncalibrated Differential Gain Error vs DSA Setting and Temperature at 2.6 GHz
GUID-60D484D5-2C68-4CF1-8F31-40D9E10ADD0E-low.gif
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Setting = 0) + (DSA Setting)
Figure 6-385 TX Uncalibrated Integrated Gain Error vs DSA Setting and Temperature at 2.6 GHz
GUID-20211125-SS0I-WP9G-SDVJ-KST29QNRKQSD-low.svg
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz
Differential Phase Error = PhaseOUT(DSA Setting – 1) – PhaseOUT(DSA Setting)
Figure 6-387 TX Uncalibrated Differential Phase Error vs DSA Setting and Channel at 2.6 GHz
GUID-20211125-SS0I-WQV1-GZT9-KTJBHQTTGHD7-low.svg
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)
Figure 6-389 TX Uncalibrated Integrated Phase Error vs DSA Setting and Channel at 2.6 GHz
GUID-1BCFC11E-0ADC-45CC-96C8-F9B9CBCC6D12-low.gif
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Differential Phase Error = PhaseOUT(DSA Setting – 1) – PhaseOUT(DSA Setting)
Figure 6-391 TX Uncalibrated Differential Phase Error vs DSA Setting and Temperature at 2.6 GHz
GUID-7B63683D-E899-4E29-B055-62B0D783B377-low.gif
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz, channel with the medium variation over DSA setting at 25°C
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)
Figure 6-393 TX Uncalibrated Integrated Phase Error vs DSA Setting and Temperature at 2.6 GHz
GUID-20211125-SS0I-7TQB-HLWC-4R70LS7WSWZ4-low.svg
fDAC = 8847.36 MSPS, straight mode, matching at 2.6 GHz, POUT = –13 dBFS
Figure 6-395 TX Output Noise vs Channel and Attenuation at 2.6 GHz
GUID-20211125-SS0I-41RH-RQ6M-5DX5JFP9GLVJ-low.svg
fDAC = 8847.36 MSPS, straight mode, fCENTER = 2.6 GHz, matching at 2.6 GHz, –13 dBFS each tone
Figure 6-397 TX IMD3 vs Tone Spacing and Channel at 2.6 GHz
GUID-20211125-SS0I-BRNQ-HHPM-SZRTPFBDBXC2-low.svg
fDAC = 8847.36 MSPS, straight mode, fCENTER = 2.6 GHz, fSPACING = 20 MHz, dither = 1, matching at 2.6 GHz
Figure 6-399 TX IMD3 vs Digital Level at 2.6 GHz
GUID-F9E98816-8075-4D51-95E1-8A59BF8DB139-low.gif
Matching at 2.6 GHz, Single tone, fDAC = 11.79648GSPS, interleave mode, 40-MHz offset
Figure 6-401 TX Single Tone Output Noise vs Frequency and Amplitude at 2.6 GHz
GUID-20211125-SS0I-LGBF-LH40-FJFGDN883NGR-low.svg
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-403 TX 20-MHz LTE ACPR vs Digital Level at 2.6 GHz
GUID-20211125-SS0I-NBFW-WMPM-WZGTS4JJHRSX-low.svg
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-405 TX 20-MHz LTE alt2-ACPR vs Digital Level at 2.6 GHz
GUID-20211125-SS0I-Z22N-T5W3-33C0WXBQ1NPQ-low.svg
Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR
Figure 6-407 TX 100-MHz NR alt-ACPR vs Digital Level at 2.6 GHz
GUID-20211125-SS0I-GHDS-BCCJ-T1C0RN0R32SG-low.svg
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-409 TX 20-MHz LTE alt-ACPR vs DSA at 2.6 GHz
GUID-20211125-SS0I-S29M-8JRZ-V4JM4XMX6XZJ-low.svg
Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR
Figure 6-411 TX 100-MHz NR alt-ACPR vs DSA at 2.6 GHz
GUID-20211125-SS0I-C0WP-QXKT-B44WCTJMGWD9-low.svg
Matching at 2.6 GHz, fDAC = 11.79648GSPS, interleave mode, normalized to output power at harmonic frequency
Figure 6-413 TX HD3 vs Digital Amplitude and Output Frequency at 2.6 GHz
GUID-20211125-SS0I-HP3W-P1HF-R7HHCHHDV75H-low.svg
Inband = 2600 MHz ± 600 MHz, fDAC = 12 GSPS, external clock mode, non-interleave mode
Figure 6-415 Two Tone Inband Fixed Spurs vs Digital Amplitude at 2.6 GHz
GUID-666B68FA-BBC5-4158-9A91-4F1CCA73A0B3-low.gif
fDAC = 8847.36 MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses
Figure 6-417 TX Single Tone (–12 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-840EB66F-D8CC-4FE1-94EC-FD140D9C8771-low.gif
fDAC = 8847.36 MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses
Figure 6-419 TX Single Tone (–6 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-23434A22-76EF-4A4F-B9A8-CFEC55278045-low.gif
fDAC = 8847.36 MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses
Figure 6-421 TX Single Tone (–1 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-9F5C2251-53F9-4F26-8C69-27E09677ADA9-low.gif
fDAC = 8847.36 MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses
Figure 6-423 TX Single Tone (–12 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-23AC9FB9-73A4-46DF-A20A-6ECE8B95C8E2-low.gif
fDAC = 8847.36 MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses
Figure 6-425 TX Single Tone (–6 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-CC19DC06-13B8-4240-9935-ED04513E3E9B-low.gif
fDAC = 8847.36 MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses
Figure 6-427 TX Single Tone (–1 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-20210708-CA0I-4VNG-TX25-2SKJP7LR1574-low.svg
fDAC = 9000 MSPS, external clock mode, non-interleave mode
Figure 6-429 TX Dual Tone Output Spectrum at 2.6 GHz, -7 dBFS each (±600 MHz)
GUID-20210708-CA0I-ZZRB-K9GQ-K9H9M1SQJ3QP-low.png
fDAC = 9000 MSPS, external clock mode, non-interleave mode
Figure 6-431 TX Dual Tone Output Spectrum at 2.6 GHz, -13 dBFS each (±600 MHz)
GUID-20210708-CA0I-XPT4-MDFG-WCNM5T12BPBK-low.svg
fDAC = 9000 MSPS, external clock mode, non-interleave mode
Figure 6-433 TX Dual Tone Output Spectrum at 2.6 GHz, -30dBFS each (±600 MHz)
GUID-DE412DDF-3270-4677-9A5B-E49E3734F449-low.gif
fDAC = 11796.48 MSPS, interleave mode, 2.6 GHz matching. 40-MHz offset from tone. Output Power = –13 dBFS. All supplies simultaneously at MIN, TYP, or MAX voltages.
Figure 6-435 TX IMD3 vs Supply Voltage at 2.6 GHz
GUID-20210628-CA0I-P5KR-1DR2-PK2NQ24CJ1LZ-low.svg
fDAC = 9000 MSPS, non-interleave mode, external clock mode
Figure 6-437 IMD3 vs Tone Spacing and Amplitude at 2.6 GHz
GUID-20210628-CA0I-1CG5-SDL4-4F2WRTNWDG6Q-low.svg
fDAC = 9000 MSPS, non-interleave mode, external clock mode
Figure 6-439 IMD3 vs Digital Amplitude and Temperature at 2.6 GHz
GUID-20211125-SS0I-DCGD-8THV-0QJZL1XT1JXW-low.svg
fDAC = 9000 MSPS, non-interleave mode, external clock mode, 50 MHz offset
Figure 6-441 NSD vs Digital Amplitude and Channel at 2.6 GHz
GUID-20211029-SS0I-DDN2-WQX5-KRC5C0BBKFSH-low.svg
fDAC = fCLK = 9000 MSPS, non-interleave mode
Figure 6-443 External Clock Additive Phase Noise at 2.6 GHz